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Abstract 

 

We are motivated by the latest statistical facts that weather directly affects about 20% of the 

U.S. economy and, as a result energy companies experience enormous potential losses due to 

weather that is colder or warmer than expected for a certain period of a year. Incompleteness 

and illiquidity of markets renders hedging the exposure using energy as the underlying asset 

impossible. We attempt to price and hedge a written European call option with an asset that is 

highly correlated with the underlying asset; still, a significant amount of the total risk cannot 

be diversified. Yet, our analysis begins by considering hedging in a complete markets system 

that can be utilised as a theoretical point of reference, relative to which we can assess 

incompleteness. The Black-Scholes Model is introduced and the Monte Carlo approach is 

used to investigate the effects of three hedging strategies adopted; Delta hedging, Static 

hedging and a Stop-Loss strategy. Next, an incomplete system of markets is assumed and the 

Minimal Variance approach is demonstrated. This approach results in a non-linear PDE for 

the option price. We use the actuarial standard deviation principle to modify the PDE to 

account for the unhedgeable risk. Based on the derived PDE, two additional hedging schemes 

are examined: the Delta hedging and the Stop-loss hedging. We set up a risk-free bond to 

keep track of any money injected or removed from the portfolios and provide comparisons 

between the hedging schemes, based on the Profit/Loss distributions and their main statistical 

features, obtained at expiry. 
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1 Introduction 
 

1.1 Overview 

Hedging can be considered as one of the most important investment strategies nowadays. 

These strategies aim to minimise the exposure to an unwanted business or investment risk, 

while allowing the business to be able to gain profits from any investment activities. In 

particular, a hedge is a position that is taken in one market to eliminate or even cancel out the 

risk associated to some opposite position taken in another market. If an investor decides to 

hedge a current position, he only protects himself from the effects of a negative event whilst 

the hedging strategy cannot stop the negative event from occurring; if the event does occur 

and the investor has hedged his position correctly, the impact is reduced [29]. 

Hedging techniques can be separated into four main categories [31]. 

 Direct Hedge: hedging an asset, such as a stock, with an asset that, if not the same, 

has similar price movements and trades in a similar manner. 

 Dynamic Hedge: hedging a contingent claim, usually an option or a future, on an 

underlying asset by maintaining an offsetting position on the asset and changing its 

amount, according to certain conditions, as time progresses.  

 Static Hedge: it is constructed at the beginning of the life of the claim in such a way 

that no further readjustment has to be made in the portfolio until expiry. 

 Cross Hedge: hedging a contingent claim, in an underlying asset that cannot be traded 

on the exchange, by another asset that can be traded and it is highly correlated with 

the original one. 

Hedging strategies usually involve the use of financial derivatives, which are securities 

whose values depend on the values of other underlying securities. The two most common 

derivative markets are the futures market and the options market. Portfolio managers, 

corporations and individual investors use financial derivatives to construct trading strategies 

where a loss in one investment is offset by a gain in a derivative and vice versa. 

We denote a perfect hedge to be a hedge that completely eliminates the risk. Nevertheless, 

perfect hedges are very difficult to be constructed, thus very rare. Therefore, financial 
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analysts are confined to finding ways of constructing hedging strategies so that they perform 

as close to perfect as possible [29]. 

Like any other wealth-building techniques, hedging has both advantages and disadvantages. 

It is important to note that a hedging technique can lead to either an increase or a decrease in 

a company‟s profits relative to the position it would hold with no hedging [29]. On the one 

hand, successful hedging protects the trader against price changes, inflation, currency 

exchange rate changes, but, on the other hand, every hedging strategy involves a cost and, as 

a result, an investor has to consider whether the benefits received from the hedge justify the 

expense [15]. 

 

1.2 The Problem 

A complete market is one in which every agent is able to exchange every „good‟
1
, either 

directly or indirectly, with every other agent [14]. 

However, in the real world, markets are usually not complete. Despite this, we begin by 

considering the complete market case because, as Flood said, “it can serve as a theoretical 

point of reference, relative to which incompleteness can be assessed” [14].   

We will consider as an example a financial institution that has written a European call option, 

to buy one unit of stock, to a client in over-the-counter markets and is facing the problem of 

managing the risk exposure [29]. Throughout this project we assume discrete time and 

discrete time models. We introduce the Black-Scholes-Merton PDE and we price the option 

using the Black-Scholes model. We set up a riskless bond that will track down any money 

injected or taken out from the portfolio. We solve the problem by introducing the delta (Δ) 

and setting up the homonymous hedging strategy and then extend our analysis to other 

hedging techniques that corporation managers use, such as on Static hedging and on Stop-

Loss strategy.  

An incomplete market is one in which some payoffs cannot be replicated by trading in the 

marketed securities [46]. 

                                                           
1
 We define ‘good’ to include the date and the environment in which a commodity is consumed, so that 

economists are able to consider consumption, production and investment choices in a multi-period world [14]. 
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We are motivated by the latest statistical facts that weather directly affects about 20% of the 

U.S. economy and, as a result, many companies, such as energy companies, experience 

enormous potential losses due to weather that is colder or warmer than expected for a certain 

period of a year [8]. 

For years, companies have been using insurance to cover any catastrophic damages caused by 

unexpected weather conditions. However, insurance could not protect energy producers in the 

case of a reduced demand their company might had faced. 

Fortunately, in 1996 the first weather derivatives were introduced in the over the counter 

markets. Weather derivatives either depend on 

HDD: Heating degree days 

or 

CDD: Cooling degree days. 

These two measures are calculated according to the average daily temperature in the 

following way; 

)65,0max( AHDD  

)65,0max( ACDD  

where A  is the average of the highest and lowest temperature during a day, measured in 

degrees Fahrenheit [29]. 

The first derivatives were used when Aquila Energy created a dual-commodity hedge for 

Consolidated Edison Co [49]. The agreement provided the purchasing of energy from Aquila 

in August 1996 but the contract had to be drawn up in such a way that any unexpected 

weather changes during that month would be compensated. Weather derivatives contracts 

were soon traded with an $8-billion-a-year industry arising within a couple of years [7]. 

With these in mind, we will attempt to hedge a European call option on an underlying asset 

with another asset that is highly correlated with the first one. Nonetheless, due to imperfect 

correlation between the two assets, an unhedgeable residual risk arises, the basis risk [19].  
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Many researchers have attempted to extend the theory of complete markets to incomplete 

markets; among them is Xu who adopted a partial hedging technique that left him with some 

residual risk at expiration [50]. 

To price the option, we derive a non-linear PDE by using the modified standard deviation 

principle in infinitesimal time, according to Wang et al [19]. We will construct a best local 

hedge, one in which the residual risk is orthogonal to the risk which is hedged, by minimising 

the variance [19]. The actuarial standard deviation principle is then used to determine the 

price that takes into consideration the residual risk [19]. Based on the derived PDE, two 

additional hedging schemes are examined: Delta hedging and a Stop-Loss strategy.  

Furthermore, we use C++ programming to code up the hedging strategies under consideration 

and, then, examine them by constructing the Profit/ Loss distributions that arise. 

Lastly, having considered the case in both complete and incomplete markets we provide 

comparisons between the hedging techniques, based on their return distribution and their 

main statistical features: Value at risk, Conditional value at risk, Mean, Hedge Performance. 

 

1.3 Outline 

Chapter 2 is split in three main subchapters;  

a. Fundamentals 

We provide the reader with some basic definitions that we will use and refer to in the 

entire project and explain some of the important statistical characteristics that our 

conclusion will rely on. 

b.  Hedging strategies in a complete market 

We introduce the Black-Scholes model and comment on some alternatives processes the 

asset price can follow. We introduce the Black-Scholes PDE and the option formulas that 

arise from it. We present the three hedging strategies to be studied and explicitly explain 

the theory they are based on. 

c.  Hedging strategies in an incomplete market  
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We briefly explain the notion incompleteness in markets and present some of the main 

causes of this phenomenon. Based on the risks that energy producers face, we recall 

alternative approaches that have been attempted by researchers in order to pricing and 

hedging such claims and comment on their performance and efficiency. We, then, 

introduce the hedging strategy used according to Wang et al [19] and derive the linear 

PDE along with the parameters involved. 

Chapter 3 comprises the methodology, explaining all the methods and procedures followed 

and is divided into two subchapters: one on Complete and another on incomplete markets‟ 

systems. The parameters involved in both subchapters are listed in Table 3 while any 

additional ones, involved in the second subchapter, are listed in Table 4. 

The methodology followed in Chapter 3 caused certain results to be deduced. The results 

yielded are depicted in a variety of forms, such as tables, diagrams and charts, throughout the 

fourth chapter, along with a commendation on them. 

Finally, in Chapter 5, we conclude with an overall discussion and recommendations derived 

by the results obtained, as well as by presenting some future work and extensions that can be 

made. 
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2 Background theory 

 

2.1 Fundamentals 

2.1.1 Long and short positions 

A long position is a position that involves the purchase of a security such as a stock, 

commodity, currency and derivative with the expectation that the asset will rise in value [33]. 

A short position is a position that involves the sale of a borrowed security such as a stock, 

commodity or currency with the expectation that the asset will fall in value [34]. In the 

context of derivatives such as options and futures, the short position is also known as the 

„written‟ position. 

2.1.2 European call option 

A European call option is a financial contract between two parties that gives the holder the 

right to buy the underlying asset at a certain date at a predetermined price. In such a contract 

the date is known as the expiry date or maturity and the predetermined price as the strike or 

exercise price [29]. The holder of the option pays a cost of buying the call option, often called 

the call premium. 

The payoff from the call option is given by       

                                         
0

)(
KS

KSC
T

TT
if

if

KS

KS

T

T

                

(2.1.1) 

where,   S  is the underlying asset price, 

             K  is the strike price,  

             T  is the expiry date 
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Figure 1: Call option price with T=1 and K=100 

 

Asset prices greatly affect the value of the call option. As the asset price increases, the option 

becomes more valuable. A call option is always worth more than its expiry value because the 

holder can either maintain it until maturity or sell it for a price bigger than what he can 

receive if the option is exercised. 

2.1.3 In-the-money, at-the-money, out-of-the money options 

There are three possible states where an option can be at any time within its life: in-the-

money, at-the-money and out-of-the-money. 

An option is said to be in-the-money when the stock price is higher than the strike price. In 

this case the holder can exercise the option and realise their difference as a profit [29]. In-the-

money call options can offer the holder unlimited potential gains, whereas the writer can face 

unlimited potential costs. 

An option is said to be out-of-the-money when the stock price is below the strike price [29]. 

In this case the holder does not exercise the option and loses the entire call premium he had 

paid to buy the option at the first place. On the other hand, the writer of the option realises a 

profit equal to the call premium. 

At-the-money options are options when the stock price is equal to the strike price [29]. 
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Figure 2: Profit/Loss function of the European call option with K=100 

 

Figure 2 shows that the short party of the option is exposed to unlimited losses if the option 

closes in-the-money whereas realising a profit equal to the call premium if the option closes 

out-of-the money. Conversely, the option owner can realise unlimited profits if the option 

closes in-the-money and faces a loss equal to the call premium if it closes out-of-the-money. 

2.1.4 Basis Risk 

This is an unhedgeable risk, a market risk for which no suitable instruments are available 

[22]. Basis risk usually occurs when cross hedging techniques are in use. In particular, it is 

the risk that the change in the price of a hedge will not be the same as the change in the price 

of the asset it hedges [43]. 

2.1.5 Value at risk (VaR) and Conditional Value at Risk (CVaR) 

The Value at risk measures the potential loss in value of a portfolio over a defined period of 

time for a given confidence interval [29]. This consists of three key elements: the specified 

level of loss in value, the time horizon (N days) and the confidence level (X %). Thus, the 

Value at risk is the loss that can be made within an N-days time interval with the probability 

of only (100- X) % of being exceeded. Thus, if the 95% VaR of a portfolio is £50 million in 

one week‟s time it means that the portfolio has 95% chance of not losing more than £50 

million in any given week (N=7, X=95). 
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Clearly, VaR focuses on the downside risk and it is frequently used by banks to measure their 

risk exposures and potential losses that might be facing due to adverse market movements 

over a certain period [47]. 

The Conditional value at risk, also known as the expected shortfall, is the expected loss 

during an N-day period conditional that an outcome in the (100-X) % left tail of the 

distribution in Figure 3 occurs [29]. It is another measure of risk that becomes more sensitive 

in the shape of the left tail of the profit/loss distribution. In other words, if things do turn out 

to be adverse for a company, the CVaR measures the expected magnitude of the loss that the 

company will face [51]. 

 

Figure 3: VaR and CVaR from the Profit/Loss distribution of the portfolio [29]  

 

The X % VaR is simply the value at which X % of the portfolio values lie on the right of it 

and only (100-X) % lie on its left. The X% CVaR is the average of all the values that lie on 

the left of the X% VaR. 

2.1.6 Hedge performance 

We define the hedge performance to be the ratio of the standard deviation of the cost of 

writing and hedging the contingent claim to the theoretical price of the claim [29]. The hedge 

performance measure serves as an alternative to the relative error. A perfect hedge should 

have a hedge performance value theoretically equal to zero. We shall define a „decent‟ hedge 

as one that should return values close to or zero. 



19 
 

2.2 Hedging strategies in a complete market 

A financial market is said to be complete if every contingent claim is attainable. In other 

words, there is an equilibrium price for every asset in every possible state. As a result, traders 

can buy insurance contracts to protect and hedge themselves against any future time and state 

of the world [1]. 

In this section, we consider the problem of pricing and hedging a contingent claim in the case 

where the underlying asset can be traded. In particular, we adopt an option pricing method 

and investigate several hedging techniques that are used by traders and corporation managers 

and then we provide comparisons, based on their main statistical features, between the most 

common used ones. 

For the next few sections we will consider as an example a financial institution that has 

written a European call option, to buy one unit of stock, to a client in over-the-counter 

markets and is facing the problem of managing the risk exposure [29]. We assume that there 

are no dividend payments on the stock. The parameters used are: 

 stock price S(0)=100 

 strike price K = 100 

 risk free rate of interest r = 0.05 

 expiry time T = 1 year 

 the volatility σ = 0.3 

One way of hedging its position is to buy the same option as it has sold, on the exchange 

[29]. Of course, an identical option might not be available on the exchange. Alternatively, the 

institution can use the underlying asset itself to maintain a position in such a way that it 

offsets any profits or losses incurred due to the short call option position. 

In this chapter we examine the latter approach.  

We assume that asset prices follow geometric Brownian motion, as indicated by the Black-

Scholes model. 

2.2.1 Alternatives to Black-Scholes model 

However, there are several alternative processes that the asset price can follow other than the 

geometric Brownian motion.  
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For example, Richard Lu and Yi-Hwa Hsu used the Cox and Ross constant elasticity of 

variance model (CEV) to price options, which suggests that the stock price change dS  has 

volatility )(tS  rather than )(tS [27]. The advantage of this model over the Black-Scholes 

one is that it can explain features such as the volatility smile. 

Moreover, Kremer and Roendfeldt used Merton‟s jump-diffusion model to price warrants 

[39]. This model suggests that the stock returns are generated by two stochastic processes; a 

small continuous price change by a Wiener process and large infrequent price jumps 

produced by a Poisson process. 

Carr et al used the variance gamma model that has two additional parameters, drift of the 

Brownian motion and the volatility of the time change and the show that these parameters 

control the skewness and the kurtosis of the return distribution [9]. 

Nevertheless, the advantages that these processes have over the Black-Scholes model are 

irrelevant
2
 to our present study, which is why we will be considering the Black-Scholes 

model. 

2.2.2 Asset prices in the Black-Scholes model 

In the Black-Scholes model the risk-free bond value is given by  

                                                          dttrbtdb )()(                                                          (2.2.1) 

for all ],0[ Tt                                                                                                 

                                                            
rtebtb )0()(                                                          (2.2.2) 

with r  be the risk free rate of interest [44]. 

The share price, when assuming a real-world drift, is described by the stochastic differential 

equation: 

                                                )()()()( tdZtSdttStdS                                             (2.2.3) 

for all ],0[ Tt  

where  is the mean rate of return, is the volatility and )(tdZ is the increment of 

a Wiener process. 

                                                           
2
 This project aims to compare the different hedging strategies and not to examine which stock price model 

represents the real price process more accurately. 
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The above stochastic differential equation can be solved exactly to give: 

                                       

)()(
2

1
exp)0()( 2 tdZtTStS                             (2.2.4) 

for all ],0[ Tt   

where )0(S  is the current share price at 0t .  

This indicates that the share price )(tS at time t follows a log-normal distribution, implying 

that the log- share price changes (returns) obey 

                                          
)0(

)(
log

S

tS
low ttN 22 ,

2

1
                                     (2.2.5) 

In order to obtain the expressions that refer to the risk-neutral world we define  

                                                     
t

r
tZtW )()(                                                     (2.2.6) 

where )(tW is another Wiener process according to Girsanov‟s theorem [45]. 

Substituting (2.2.6) to (2.2.3) we get: 

                                             )()()()( tdWtSdttrStdS                                               (2.2.7) 

This stochastic differential equation can be solved exactly to give: 

                                   

)()(
2

1
exp)0()( 2 tdWtTrStS                                 (2.2.8) 

or  

                                 

tTtTrStS )(
2

1
exp)0()( 2                               (2.2.9) 

where  is a variable drawn at random from a Normal distribution, N(0,1) [35]. 

 

2.2.3 Black-Scholes-Merton differential equation 

The model was first introduced in 1973 by Fisher Black, Robert Merton and Myron Scholes 

and it is widely used in finance to determine fair prices of European options. 
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The differential equation, as indicated by Hull‟ [29], suggests that 
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where f  is the price of a call option or other derivative contingent on the stock price S , 

           r  is the risk-free interest rate and 

           is the volatility of the stock. 

2.2.3.1 Assumptions 

 The stock price is described as the solution of the stochastic differential equation 

SdWSdSdS  where  is called the mean rate of return,  the volatility and 

W  is a Brownian motion. 

 Short selling of securities with full use of proceed is permitted. 

 There are no transaction costs or taxes. All securities are perfectly divisible. 

 There are no dividends during the life of the derivative. 

 There are no riskless arbitrage opportunities. 

 Security trading is continuous. 

 The risk-free rate of interest, r, is constant and the same for all maturities. 

2.2.3.2 Derivation of the Black-Scholes-Merton differential equation [29] 

From Ito‟s lemma it follows that 
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(2.2.11)         

The discrete versions of the above equations are  

                                                     WSSSS                                                   (2.2.12) 

and 
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where f and S  are the changes in f  and S  in a small time interval t . 
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Since the stochastic (random) term in the two equations is the same, one can construct a 

portfolio involving both the derivative and the stock in such a way that the stochastic term is 

eliminated. The value of the portfolio is  

                                                         
S

dS

df
f

   
                                                   (2.2.14) 

 meaning that the portfolio holder takes a short position in the derivative and a long position 

in dSdf  amount of shares.      

By definition, the change in the portfolio in the time interval t  is 

                                                      S
dS

df
f                                                    (2.2.15) 

Substituting equations (2.2.12) and (2.2.13) into (2.2.15) we get  
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                                        (2.2.16) 

The resulting equation does not include any random terms, thus the portfolio will be riskless 

during the time interval t . In order for arbitrage opportunities to be eliminated we must have 

that  

                                                                tr                                                       (2.2.17) 

Substituting (2.2.14) and (2.2.16) into (2.2.17) we obtain 
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and after rearranging we obtain 
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2.2.4 Black-Scholes pricing formulas 

According to Hull‟ [29], the formula for the fair price of a European call option on a non-

dividend paying stock is considered as a function of the asset price S  and time t  where all 

the other parameters are assumed constant. That is; 

                                             
)()(),( 2
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1 dNKedNStSC tTr

t
                                   (2.2.20) 
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and 

                                                        dyexN

x
y2

2

1

2

1
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is the cumulative probability distribution function for a standard normal distribution. 
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2.2.5 Risk-neutral valuation 

In a risk-neutral world all individuals are indifferent to risk. In such a world, the expected 

return on all securities is the risk-free rate of interest. The Black-Scholes-Merton differential 

equation does not involve any variables that can change according to the risk preferences of 

the investors. All the variables that appear in the equation are independent of any risk 

preferences (the mean rate of return does not appear in the equation). This key property gives 

rise to the term risk-neutral valuation, meaning that we can assume that the world is risk-

neutral when pricing options and consider the resulting prices to be correct when moving 

back to the real world. In a risk-neutral world, we obtain the current prices of any cash flow 

by just discounting its expected value at the risk-free rate, a procedure that simplifies the 

analysis of derivatives [29]. 

2.2.6 Naked and Covered positions 

One strategy that can be followed by the financial institution is to do nothing. This strategy is 

called a naked position. This means that the institution realises a profit equal to the call 

premium when the option closes out-of-the-money and faces costs when it closes in-the-

money [29]. 

Alternatively, the financial institution can take a covered position. This means that as soon as 

the option is sold, the institution takes a long position in the underlying asset. If the call 

option closes in-the-money the strategy works in favour of the institution; however if it closes 

out-of-the-money the institution loses with the long position [29]. 
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2.2.7 Stop-Loss strategy 

This hedging strategy suggests that a financial institution should buy a unit of stock as soon 

as the stock price rises above the strike price and should sell it as soon as the stock price 

drops below the strike price [29]. In this way, the institution succeeds in having a covered 

position when the stock price is bigger than the strike price and a naked position when it is 

less than the strike price. This technique ensures that the institution owns the stock when the 

option closes in-the-money and does not own the stock when the option closes out-of-the-

money.  

To illustrate this idea I have created an example, based on Hull‟ [29], where two possible 

asset price paths are being considered when the strike price is 100K . 

 

Figure 4: Stop-Loss strategy example 

If path #1 is followed by the stock price, the stop-loss strategy involves buying the stock at 

0t , selling it at 5t , buying it at 10t , selling it at 15t  and buying it at 20t . The 

option closes in-the-money and the institution has a covered position. 

Alternatively, if the stock price changes according to path #2, the stop-loss strategy involves 

selling the stock at 0t , buying it at 5t , selling it at 10t , buying it at 15t  and 

selling it at 20t . The option closes out-of-the-money and the institution has a naked 

position. 
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2.2.8 Delta hedging 

We introduce the „Greeks‟, which are variables mostly denoted by Greek letters and they are 

of great importance in risk management. Each variable represents the sensitivity of the price 

of a derivative, a call option in our case, to a small change in the value of one of the 

following parameters: underlying asset, time, volatility, interest rate [48]. Consequently, 

since the portfolio faces various component risks, these are treated in isolation so that by 

rebalancing the portfolio accordingly, the desired exposure can be achieved [48].  

In this section we introduce the Delta (Δ) of the option. It is the rate of change of the option 

price with respect to the price of the underlying asset. Particularly, this is the slope of the 

curve that indicates the relationship between the option and the corresponding stock price 

[29]. 

 

Figure 5: Calculation of Delta [29] 

 

Therefore,               

                                                                S

C
                                                            (2.2.24) 

The Delta (Δ) always takes values within the range [0, 1] for a European Call option. 

The above relation means that if the stock price changes by a small amount then the option 

price will change by about Δ times that amount. For instance, let Δ=0.4 then if the stock price 

goes up by 2 pounds then the option price will go up by approximately 0.4 * 2 = 0.8 pounds, 
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and if the stock price drops by 2 pounds then the option price will also drop by about 0.8 

pounds. 

The delta (Δ) of the European call option on a stock that pays no dividends can be proved to 

be 

                                                             )( 1dN                                                           (2.2.25) 

 where 1d and )(xN  are defined in (2.2.21) and (2.2.23) respectively. 

The above formula calculates the delta of a long position in one European call option. 

Similarly, the delta of a short position in one European call option is )( 1dN . 

Returning to our example, the financial institution has written a European call option on one 

share. Suppose that at the time of the agreement, the delta of the short call position is

).( 1dN In order for the institution to hedge its short position it has to take a long position in 

)( 1dN  shares. The long position in the shares will then tend to offset any gains or losses 

realised due to the written call position. Thus, the portfolio becomes 

                                                           SdNC )( 1                                                 (2.2.26)                                                                                                                                                                                                           

and the delta of the overall position is kept at zero. An investor‟s position with delta zero is 

called „delta neutral‟. 

The delta of the option changes in a continuous basis because 1d  in the formula of delta 

depends on many parameters that change every day. As a result, a portfolio stays delta neutral 

for only a small period of time and thus if the investor wants to continue keeping the portfolio 

delta hedged he has to adjust his position in shares very frequently [29]. This procedure is 

referred to as hedge rebalancing. 
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Figure 6: Delta of a call option with T=1 and K=100 

 

 

Figure 7: Patterns for variation of delta with time to maturity for a call option 

 

Figure 6 shows that as the asset price increases, the delta approaches unity. As options expire, 

the delta is either zero or one, depending on whether the asset price closes above or below the 

strike price. Figure 7 shows the behaviour of the Delta of a call option in the three possible 

states as the time to expiration increases. As T increases, a significant convergence is 

observed; however, an out-of-the-money call option declines, as opposed to in-the-money 

and at-the-money ones. 

There are several ways of constructing the delta hedging strategy. Fliess and Join utilise the 

existence of trends in financial time series in order to propose a model-free setting for delta 
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hedging [13]. Nonetheless, we assume lognormality of prices, as proposed by Black and 

Scholes, and we shall adjust the long position in the shares according to the new value of 

delta at each time interval and use a bond to track the cost (in money) that arises for 

accomplishing this. 

The following two tables illustrate the idea of how the delta-hedging procedure works 

throughout the life of the option, when the hedge is rebalanced every two weeks. Table 1 

consists of a European call option that closes in-the-money and Table 2 consists of an 

identical option that closes out-of-the- money. 

Table 1: Call option closes out-of-the-money 

week S(t) Delta C(t) 

Total cost of 

purchasing 

the shares 

Total value of 

the portfolio 

0 100 0.62425 14.23135 -48.19382 0 

2 93.61149 0.53431 10.21881 -39.86687 -0.06836 

4 85.97174 0.41287 6.31482 -29.50342 -0.32310 

6 88.05065 0.43913 6.93478 -31.87252 -0.14153 

8 94.87611 0.54010 9.98245 -41.51357 -0.25328 

10 91.44893 0.48128 7.92091 -36.21394 -0.12267 

12 91.61463 0.47802 7.69399 -35.98553 0.11427 

14 101.0477 0.62223 12.55882 -50.62674 -0.31056 

16 97.04307 0.55695 9.84091 -44.38901 -0.18195 

18 95.20838 0.52139 8.50088 -41.08908 0.05081 

20 86.88466 0.36355 4.48374 -27.45463 -0.35106 

22 84.60318 0.31092 3.43216 -23.05484 -0.18175 

24 82.04486 0.25251 2.45487 -18.30630 -0.04430 

26 90.10772 0.39469 4.75641 -31.15326 -0.34515 

28 91.45834 0.41176 4.94739 -32.77682 -0.06301 

30 90.51311 0.38025 4.20821 -29.98524 0.22384 

32 83.91198 0.22772 1.88707 -17.24439 -0.02280 

34 75.87235 0.08409 0.48079 -6.38006 -0.48052 

36 75.57715 0.06590 0.34055 -5.01746 -0.37739 

38 73.31207 0.03362 0.14305 -2.66066 -0.33881 

40 67.80988 0.00549 0.01641 -0.75812 -0.40229 

42 71.36358 0.00764 0.02272 -0.91311 -0.39056 

44 75.84479 0.01303 0.03908 -1.32332 -0.37445 

46 81.06885 0.02547 0.07701 -2.33501 -0.34686 

48 82.96421 0.01551 0.03711 -1.51303 -0.26318 

50 85.03356 0.00354 0.00533 -0.49752 -0.20220 

52 86.66678 0 0 -0.19206 -0.19206 
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Week 0: The share price is 100 and the delta of the option is 0.624. Thus, in order for a delta-

neutral portfolio the institution has to take a long position in 0.624 of a share. The total cost 

for the institution at this point is 0.624*100-14.231 = 48.193. 

Week 2: The share loses in value and the price drops to 93.611. The delta of the option has 

also changed to 0.534 meaning that the institution will have to sell (0.624-0.534) = 0.09 of 

the share to maintain the new long share position and a delta-hedged portfolio. The new cost 

is the previous cost grown at the risk free rate minus 0.09 * new share price = 39.866. 

Week 3-19: As we move on to the end of the life of the option, it becomes clear that the call 

option will not be exercised and the delta tends to zero. 

Week 20:  By week 20 the institution has a naked position. The call option closes out-of-the-

money and it is not exercised and the total cost of hedging the option is 0.192.  
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Table 2: Call option closes in-the-money 

week S(t) Delta C(t) 

Total cost of 

purchasing 

the shares 

Total value of 

the portfolio 

0 100 0.62425 14.23135 -48.19382 0 

2 106.51083 0.70018 18.22772 -56.37453 -0.02482 

4 107.08322 0.70597 18.30104 -57.10321 0.19395 

6 108.75284 0.72414 19.16039 -59.18929 0.40354 

8 107.27921 0.70743 17.76511 -57.51026 0.61773 

10 104.44657 0.67218 15.46473 -53.93907 0.80348 

12 117.85224 0.81645 25.15282 -71.04573 0.02121 

14 111.38956 0.75531 19.71485 -64.37111 0.04769 

16 113.83953 0.78311 21.23814 -67.66042 0.25098 

18 107.17351 0.70597 15.89201 -59.52262 0.24662 

20 98.993538 0.58138 10.22497 -47.30383 0.02427 

22 91.48603 0.44038 6.015392 -34.49598 -0.22194 

24 101.75657 0.62227 11.1072 -53.07064 -0.85717 

26 103.06588 0.64291 11.52368 -55.30026 -0.56101 

28 96.20008 0.50999 7.13381 -42.61936 -0.69171 

30 101.77110 0.61636 9.84368 -53.52680 -0.64241 

32 108.40456 0.73569 13.88097 -66.56596 -0.69421 

34 113.37245 0.81524 17.28702 -75.71249 -0.57351 

36 105.53189 0.69116 10.86799 -62.76436 -0.69285 

38 115.66152 0.86411 18.32653 -82.88908 -1.27031 

40 107.51513 0.74374 11.23534 -70.10625 -1.37814 

42 109.49432 0.79625 12.20745 -75.99089 -1.01321 

44 110.65179 0.83753 12.59813 -80.70543 -0.62858 

46 114.68921 0.92682 15.6616 -91.10014 -0.46599 

48 107.31511 0.82545 8.570884 -80.39687 -0.38494 

50 114.50242 0.99096 14.71535 -99.50316 -0.75139 

52 119.20930 1 19.20904 -100.77256 -0.77256 

 

Alternatively, the call option might close in-the-money. Delta hedging technique ensures the 

institution that it has a fully covered position by week 20. In this scenario, the option is 

exercised but most of the losses are offset by the gains in the long share position. The total 

cost of hedging is now 0.772 and the institution gains from placing the hedge the first time. 
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2.2.9 Static hedging 

Delta hedging is an example of dynamic hedging where the portfolio has to be rebalanced 

frequently in order to be kept hedged. 

On the other hand, the institution can adopt a Static hedging strategy. Static hedging involves 

creating a delta hedged portfolio initially and then never re-adjust this position in the shares 

throughout the life of the option. As we examine this technique later on we show that it works 

more or less as a speculative strategy. 

2.2.10 Relationship with the Black-Scholes-Merton analysis 

Delta hedging is closely related to what Black, Scholes and Merton showed. As we have seen 

earlier in (2.2.14) it is possible to construct a portfolio in such a way that the random term 

disappears. In particular, the appropriate portfolio to be used, in the case of a call option, is 

                                                           S
dS

dC
C                                                     (2.2.27) 

Recalling (2.2.14) the portfolio becomes 

                                                            SC                                                        (2.2.28) 

Therefore, we can say that Black and Scholes valued the derivatives by maintaining a delta 

hedged portfolio and by using absence of arbitrage they deduced that the portfolio would 

evolve at the risk free interest rate [29].  

Badagnani in one of his articles showed that, by taking discrete steps in the time and the stock 

price and assuming the Black-Scholes formula, delta-hedging does not lead to a risk free self 

financing portfolio [3]. However, as we shall see in this project, a delta-hedging strategy 

leads to a risk free portfolio.   
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2.3 Hedging strategies in an incomplete market 

Incomplete markets are those in which perfect risk transfer is not possible. This means that 

some payoffs cannot be hedged by the marketed securities [46]. As a result, one cannot 

construct a perfect hedging portfolio that eliminates all the risk [50], and there is no 

replication scheme that gives a unique price. Alternatively, a range of prices can be calculated 

for the actual price of a contingent claim. 

There are numerous phenomena that cause the incompleteness of markets. First, the marketed 

assets are not sufficient compared to the risks a trader wants to hedge, as the risks might 

involve jumps or volatility of asset prices, or variables that are not derived from the market 

prices [46]. Incompleteness is can also be caused by transaction costs, particular constraints 

on the portfolio or other market frictions [46] that we do not discuss in this note. 

The above reasons create the need for cross-hedging; hedging a position in one asset by 

taking an offsetting position in another asset that is highly correlated with the first one; 

however, this technique offers a decent hedge as long as the asset prices move in the same 

direction [32]. 

There have been studied several approaches to the problem of pricing and hedging such 

options, as the Black-Scholes formula is not appropriate in this case. 

El karoui and Quenez studied maximum and minimum prices using stochastic control 

methods [11], whereas Kramkov [38] and then Follmer and Kabanov [16] proved a 

supermartingale decomposition of the price process. However, their results have shown that 

selling an option based on a super-replication price that takes into consideration all the risks 

associated, often leads to very high option price that no investor would agree to pay [50].  

Moreover, Eberlein and Jacob [10] considered this case in pure-jump models and concluded 

that optimal criteria have to be imposed, whereas Bellamy and Jeanblanc [5] attempted the 

same using Merton‟s jump diffusion models and realised that such models lead to large 

option price ranges. 

Since the former approach cannot be adopted, a trader has to write the option for a sensible 

price and try to find a partial hedging strategy that will, unfortunately, leave him exposed to 

some risk in the end [50]. 
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We consider, as an example, the case where energy producers want to hedge their exposure 

due to unexpected weather changes. The risk associated in this case can be split in two 

components; the price risk and the volume risk. Thus, when developing a hedging strategy, 

both components have to be taken into consideration. The price risk can be hedged by energy 

derivative contracts, futures, swaps, options, in the electricity derivatives market and the 

volume risk using weather options, i.e. the „underlying‟ asset is a weather index [29]. 

We, briefly, discuss the two major approaches to the problem, as these appear in Xu‟s report 

[50].  

One is to choose a particular martingale measure for pricing according to some optimal 

criterion. Unlike pricing in complete markets, incompleteness leads to infinitely many 

martingale measures each of which produces a no-arbitrage price. An incomplete list of 

references is: Fritelli, derived the martingale measure that minimises the relative entropy and 

proceeded in characterising its density [21]. Follmer and Schweizer introduced a minimal 

martingale measure [17], and Miyahara the minimal entropy martingale measure [41] for the 

option price based on the assumption that the prices follow a geometric Levy process. These 

processes provided a „decent‟ hedging; however, they are impracticable as problems emerge 

when constructing the option price process, for these have to be based on the stochastic 

calculus of the Levy process. Furthermore, Goll and Ruschendorf [23] introduced the 

minimal distance martingale measure and its relationship with the minimax measure with 

respect to utility functions, as well as Bellini and Fritelli the minimax measure [6]. Once 

again, these methods provided a „decent‟ hedging; nonetheless, these are not easily 

constructed in practice, because, as it turned out, a sufficient condition for the existence of 

such a measure must be imposed.  

The other approach is to base the pricing of the derivatives according to the utility. This 

means that the security is priced in such a way that the utility remains the same whether the 

optimal trading portfolio includes a marginal amount of the security or not [50]. Fritelli [20], 

Rouge and El karoui [12], Henderson  [25], Hugonnier et al [28] and Henderson and Hobson 

[26] attempted this approach. Although, these methods provide a good hedging strategy, Xu 

[50] argued that “in practice, it is quite unusual for the trader to explicitly write down her 

utility function for derivative pricing”. 

In this project, we use the cross hedging technique to hedge a European call option on a non-

traded asset. However, this will result in an unhedgeable residual risk, the basis risk [19].  
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Alfredo Ibanez has shown that a European style option can be decomposed in two 

components; a robust component which is priced by arbitrage and another component that 

depends on a risk orthogonal to the traded securities [30]. As a result, the first component 

represents the unique price of the hedging portfolio and the second component that depends 

only on the risk premium associated with the basis risk. 

Furthermore, Wang et al hedge such a contingent claim, and extent the case to other 

portfolios, by adjusting the hedging portfolio to reflect a risk premium due to the basis risk. 

Particularly, their aim is to construct a best local hedge, a hedge in which the residual risk is 

orthogonal to the risk which is hedged [19].  

We will follow these ideas to construct a hedging scheme which minimises the variance of 

the resulting portfolio values and, then, compare its performance with other hedging 

strategies, such as the delta hedging and the stop-loss strategy. We will attempt to price the 

option in a way that it reflects all the risks associated with the short position. This 

methodology gives rise to a linear PDE that can be evaluated to obtain the option premium.  

After solving the PDE, we hedge the option and construct a profit/loss distribution for the 

portfolio. The resulting distribution can then be used to calculate the mean, variance, hedge 

performance, value at risk (VaR) and the conditional value at risk (CVaR).  

2.3.1 The PDE - Minimal Variance approach 

Following Wang et al we suppose that we can trade a correlated asset H  that follows a 

stochastic process 

                                               )()(')(' tdWtHdttHdH                                          (2.3.1) 

where )(tdW  is the increment of a Wiener process [19]. 

The properties of the Wiener processes, )(tdW and )(tdZ are: 

 dttdWtdW )()( , dttdZtdZ )()( , dttdZtdW )()(  

where  denotes the correlation of )(tdW with )(tdZ . 

Construct the portfolio 

                                                    )()()( tBtxHtV                                               (2.3.2) 

where x  is the number of units of H  held in the portfolio and B  is a risk free bond.   
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We set  

                                                      )0()0()0( xHVB                                                    (2.3.3) 

so that the portfolio at the beginning is 

                                                                0)0(                                                             (2.3.4) 

The change in the portfolio value is given by 
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       (2.3.5) 

The variance of d  is given by 

                
dtHxSVVSHxdZSVHdWxE sss

P ]'2)'([])'[( 2222222        (2.3.6) 

where PE is the expectation under the P  probability measure. 

We, then, choose x  to minimise the equation (2.3.6) 
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Substituting equation (2.3.7) into equation (2.3.5) we get 
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Defining  

                                                          '
)'(' rr                                                    (2.3.9) 

in equation (2.3.8) gives 
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2

'
22

dZdWSVdtrVV
S

SVrVd sssst              (2.3.10) 

To eliminate any arbitrage opportunities we require rr' as 1 . Substituting (2.3.7) 

into (2.3.6) we get 
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dtSVd s

2222 )1()var(                                     (2.3.11) 

We note that 0],[ dWdZdW , we obtain 0],cov[ dWd indicating that the residual 

risk is orthogonal to the hedging instrument. 

Define a new Brownian increment 
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2
tdZtdWtdX                                     (2.3.12) 

with the property dttdXtdX )()( . Thus, according to Wang et al [19], the equation can be 

written as 

                           

dXSVdtrVV
S

SVrVd sssst

2
22

1
2

'                   (2.3.13) 

By requiring that the portfolio is mean self-financing 

                                                              
0][dE P

                                                       (2.3.14) 

 we obtain the linear PDE 

                                               
0

2
'

22

ssst V
S

rVSVrV                                         (2.3.15) 

2.3.2 PDE Solution – Option Price formula 

The solution to equation (2.3.15) is the required European call option price. 

Thus, in order to solve it we define 

                                                                  qrr'                                                         (2.3.16) 

where q  is a constant, q . 

Substitute (2.3.16) into (2.3.15) to get  

                                             
0

2
)(

22

ssst V
S

rVSVqrV                                   (2.3.17) 

We observe that (2.3.17) is similar to the Black-Scholes PDE that accounts for dividends; 

although, q  should not be misinterpreted as a dividend yield, the solution for this PDE can 

be calculated in a similar manner using the corresponding Black-Scholes formulas. That is; 
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                                         )()(),( 2

)(

1

)( dNKedNeStSC tTrtTq

t
                             (2.3.18) 

where 

                                             
tT

tTqr
K

S

d

t ))(
2

1
(ln 2

1
                                   (2.3.19) 

and 

                                  tTd
tT

tTqr
K

S

d

t

1

2

1

))(
2

1
(ln

                     (2.3.20) 

 

2.3.3 Derivation of parameters  

Recall by (2.3.9) that  

                                                       '
)'(' rr                                                     (2.3.21) 

which implies  

                                                        
'

)'( rr
                                                     (2.3.22) 

if 1and rr '  we obtain 

                                                        
'

)(' rr                                                     (2.3.23)

  

and if 1 and rr '  we obtain 

                                                        
'

)(' rr                                                (2.3.24)

  

The above suggest that ' can be intepreted as 

                                                   
'

))((' rfr                                                  (2.3.25) 

with 1)1(f  and 1)1(f . 
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Substituting (2.3.25) in (2.3.21) and using )(f , for simplicity, we conclude that  

                                                      rr 22 )1('                                                    (2.3.26) 

We can now evaluate q by substituting (2.3.26) into (2.3.16), and obtain 

                                                       )1)(( 2rq                                                    (2.3.27) 

2.3.4 Risk loading 

Our aim is to modify (2.3.18) to account for the basis risk. In particular, we want to add a 

term to (2.3.27) that will reflect all the associated risks to the short position. 

For pricing in the incomplete market, we proceed according to Wang et al [19], and thus we 

use the actuarial standard deviation principle in infinitesimal time. This is 

                                                   dt
dt

d
dE P ]var[

][                                              (2.3.28) 

where  is the risk loading parameter, which has units of 2

1

)(time . This means that there 

should be a premium earned in the portfolio during any time interval ],[ dttt that is 

proportional to the standard deviation on the particular interval. 

From (2.3.11) we have 

                                                  
21

]var[
SVS

dt

d
                                           (2.3.29) 

Combining (2.3.13, 2.3.28, 2.3.29) we get the non-linear PDE 

                                    0
2

1'
22

2 rVV
S

VSSVrV sssst                      (2.3.30) 

Therefore, the PDE
3
 for the short option position is given by: 

                                  0
2

)]sgn(1'[
22

2 rVV
S

SVVrV sssst                   (2.3.31) 

And, similarly, the PDE for the long option position is given by: 

                                                           
3
 As long as the S derivative does not change sign, the PDE will be linear. In fact, this is the case when 

considering a European Call option. 
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                                  0
2

)]sgn(1'[
22

2 rVV
S

SVVrV sssst

                  
(2.3.32) 

Therefore, using similar arguments when deriving (2.3.16) and then (2.3.27) we conclude that 

                                           )sgn(1)1)(( 22

sVrq                              (2.3.33) 

Then, the derived PDE can also be used for pricing the option when delta hedging and stop-

loss techniques are applied. 
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3 Methodology 

 

Monte-Carlo simulation is used to simulate paths that can be taken by the asset.  This is a 

forward induction method; however its convergence is slow and, as a result, it makes it very 

difficult to determine the error terms. In particular, the convergence to the correct value will 

be at a rate 2
1

N , where N the number of sample paths. As the computation takes very long 

to compile for a large number of simulations, our results will be based on only two thousand 

simulations. 

For each price path, the call price is calculated at expiry and the final value of the portfolio is 

obtained. In order to achieve this, we first generate random numbers, which are uniformly 

distributed on [0, 1], by using the Mersenne Twister random number generator according to 

Bedaux [4]. We, then, use the Box-Muller method to transform them in normally distributed 

numbers. In particular, if 1x  and 2x  are two uniformly distributed numbers, the Box-Muller 

method suggests that  

                                                    
)log(2)2cos( 121 xx                                            (3.0.1) 

and  

                                                    
)log(2)2sin( 212 xx                                            (3.0.2) 

are two normally distributed numbers [36]. 

We approximate the normal distribution by using the trapezium rule. 

We define the constant ‘steps’ to indicate the number of discrete time steps we will be 

looking at, within the life of the option. In other words, ‘steps’ will account for the number of 

times the hedge is rebalanced. Then, we define 

                                                              
steps

T
dt                                                             (3.0.3) 

the time increment, so that, the time grid becomes 

                                               TdtTdtTdtdt ,,2,.......,2,,0                                           (3.0.4) 
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3.1 Hedging a contingent claim with the underlying asset 

Table 3: Parameters Involved 

K=100 Strike price 

S(0)=100 

Stock price is initially set equal to the 

strike price so that an at-the-money 

written call option is considered and 

thus, allowing for hedging is sensible. 

r=0.05 Risk-free rate of interest 

σ=0.3 
Volatility is examined for a range of 

values 0.1<σ<0.6 

μ=0.1 

Mean rate of return does not appear in 

the equation when assuming a risk-

neutral world, still, in real world, it is 

assumed to take either positive or 

negative values  

T=1 Maturity time is set to 1 year 

steps=252 

We initially assume that a year has 

252 trading days. Daily hedging 

implies 252 steps, weekly hedging 

implies 52 steps etc.   

 

3.1.1 Delta hedging 

We construct the portfolio 

                                                )()()()()( tBtSttVt                                           (3.1.1) 

where  

                                                     ))](,([)( 1 tStTdNt                                               (3.1.2) 

 is the number of units of S  held in the portfolio, B  is the risk-free bond and V the value of 

the call option according to the Black-Scholes formula (2.2.20). 

Initially, 0t , we set  

                                                      )0()0()0()0( SVB                                                (3.1.3) 

so that the portfolio is 

                                                                  0)0(                                                           (3.1.4) 

For each hedging time we calculate the share price by 
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                                      dtdtrtSdttS 1

2

2

1
exp)()(                                  (3.1.5)          

the option price V from (2.2.20)  and the delta (Δ) of the option from (2.2.29).  

We update the value of the portfolio by buying )()( tdtt shares. This will then update 

the value of the bond to 

                                    )]()()[()()( tdttdttSetBdttB rdt

                           (3.1.6) 

The procedure proceeds to maturity Tt , at which the obtained final value of the portfolio 

reflects any profits or losses incurred due to the hedging. 

 

3.1.2 Static hedging  

We follow an identical procedure to the delta hedging one, but only at initial time. After that, 

we do not update the portfolio at any time within the life of the option.  

We construct the portfolio 

                                                )()()0()()( tBtStVt                                          (3.1.7) 

where 

                                                     ))](,([)( 1 tStTdNt                                               (3.1.8) 

is the number of units of S  held in the portfolio, B  is the risk-free bond and V the value of 

the call option according to the Black-Scholes formula (2.2.20). 

Initially, 0t , we set  

                                                      )0()0()0()0( SVB                                               (3.1.9) 

so that the portfolio is 

                                                                  0)0(                                                         (3.1.10) 

For each hedging time we calculate the share price by 

                                      dtdtrtSdttS 1

2

2

1
exp)()(                                (3.1.11)          

the option price V from (2.2.20)  and the delta (Δ) of the option from (2.2.29).  
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We do not readjust the long share position at any time interval. Still, the value of the bond 

grows at the predetermined risk-free rate of interest 

                                                             
rdtetBdttB )()(

                                             (3.1.12) 

and, therefore, a new value of the portfolio is obtained. 

The procedure proceeds to maturity Tt , at which the obtained final value of the portfolio 

reflects any profits or losses incurred due to the hedging. 

 

3.1.3 Stop-loss hedging 

We construct the portfolio 

                                                  )()()()( tBtfStVt                                            (3.1.13) 

where   

                                                      
0

1
f

if

if

KtS

KtS

)(

)(
                                                   (3.1.14) 

indicates the amount of units of S held. 

Initially, 0t , we set  

                                                         )0()0()0( SVB                                                  (3.1.15) 

and 1f so that the portfolio is 

                                                                 0)0(                                                          (3.1.16) 

For each hedging time the share and the option prices are calculated using the above 

mentioned formulas and the portfolio is updated by either maintaining the long share position 

or closing it out. The share price, that arises each time, indicates whether the long position in 

shares is maintained (f=1) or closed out (f=0).  
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The values of the bond and f change in the following manner. 

If KdttS )(  

1f ; 

     If KtS )(     then       )()()( dttSetBdttB rdt

     else      
rdtetBdttB )()( .         

whereas 

If KdttS )(  

0f ; 

     If KtS )(     then       
rdtetBdttB )()(      else      )()()( dttSetBdttB rdt

.          

The procedure continues until maturity Tt , at which the obtained final value of the 

portfolio reflects any profits or losses incurred due to the hedging. 
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3.2 Hedging a contingent claim with a correlated asset 

We recall that in this case the asset S cannot be traded and we assume a real world. We recall 

by (2.3.1) that H is a traded asset highly correlated with S . Therefore, some additional 

parameters are involved. 

Table 4: Additional Parameters Involved 

H(0)=100 

When S cannot be traded, the 

correlated asset H is initially set equal 

to S for simplicity 

σ'=0.3 
Volatility of H is examined for a 

range of values 0.1<σ'<0.6 

μ'=0.1 
The drift rate of H depends on the 

drift rate of S as indicated by (2.3.24) 

ρ=0.5 

The correlation between weather and 

oil, in real world, lies around 0.7, thus 

it is reasonable to consider a range of 

values 0.5<ρ<1.0 

λ=0.5 

The risk loading parameter examined 

is in the range 0.0<λ<1.5, so that the 

behaviour of the VaR can be 

investigated 

q 22 1)1)((rq   

 

3.2.1 Minimal Variance hedging 

The asset price S is given by  

                                     

dtdttSdttS 1

2

2

1
exp)()(                                  (3.2.1)

 

 

The price of the correlated asset H is given by 

               2

21

2 1)'()'()'(
2

1
'exp)()( dtdtdttHdttH      (3.2.2) 

We construct the portfolio 

                                               )()()()()( tBtHtxtVt                                           (3.2.3) 

where  
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))](,([
')(

)(
)( 1 tStTdN

tH

tS
tx                                       (3.2.4) 

 is the number of units of H  held in the portfolio, B  is the risk-free bond and V the value of 

the call option according to the derived formula in (2.3.17). 

Initially 0t , we set  

                                                       )0()0()0()0( HxVB                                              (3.2.5) 

so that the portfolio is  

                                                                    0)0(                                                         (3.2.6) 

We update the value of the portfolio by buying )()( txdttx of the asset H . This will then 

update the value of the bond to 

                                      )]()()[()()( txdttxdttHetBdttB rdt

                         (3.2.7) 

The procedure proceeds to maturity Tt , at which the obtained final value of the portfolio 

reflects any profits or losses incurred due to the hedging. 

 

3.2.2 Delta hedging 

The asset price S is given by  

                                     

dtdttSdttS 1

2

2

1
exp)()(                                  (3.2.8)

 

 

The price of the correlated asset H is given by 

               2

21

2 1)'()'()'(
2

1
'exp)()( dtdtdttHdttH      (3.2.9) 

We construct the portfolio 

                                               )()()()()( tBtHttVt                                         (3.2.10) 

where  

                                                     

))](,([)( 1 tStTdNt                                              (3.2.11) 
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 is the number of units of H  held in the portfolio, B  is the risk-free bond and V the value of 

the call option according to the derived formula in (2.3.17). 

Initially 0t , we set  

                                                       )0()0()0()0( HVB                                           (3.2.12) 

so that the portfolio is  

                                                                    0)0(                                                       (3.2.13) 

We update the value of the portfolio by buying )()( txdttx of the asset .H This will then 

update the value of the bond to 

                                      )]()()[()()( tdttdttHetBdttB rdt

                      (3.2.14) 

The procedure continues until maturity Tt , at which the obtained final value of the 

portfolio reflects any profits or losses incurred due to the hedging. 

Due to the structure of the code in the case of a perfect positive correlation between the two 

assets, the Delta and Minimal Variance give the same result. Discussion about what causes 

this follows in the next chapter. 

 

3.2.3 Stop-loss hedging 

The method used for this type of hedging is similar to what it has been used in the complete 

market case with the only difference that the traded asset is the correlated asset H and not S . 

In other words, the value of the call option still depends only on ;S however, any 

readjustments to the portfolio are achieved using the new value of the correlated asset H  

which can be traded. 

We construct the portfolio 

                                                  )()()()( tBtfHtVt                                           (3.2.15) 

where   

                                                      
0

1
f

if

if

KtS

KtS

)(

)(
                                                   (3.2.16) 

indicates the amount of units of H held. 
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Initially, 0t , we set  

                                                         )0()0()0( HVB                                                 (3.2.17) 

and 1f so that the portfolio is 

                                                                 0)0(                                                          (3.2.18) 

For each hedging time the asset and the option prices are calculated using the above 

mentioned formulas and the portfolio is updated by either maintaining the long position in H  

or closing it out. The asset price, that arises each time, indicates whether the long position in 

H  is maintained (f=1) or closed out (f=0).  

 

The values of the bond and f change in the following manner. 

If KdttS )(  

1f ; 

     If KtS )(     then       )()()( dttHetBdttB rdt

     else      
rdtetBdttB )()( .         

whereas 

If KdttS )(  

0f ; 

     If KtS )(     then       
rdtetBdttB )()(      else      )()()( dttHetBdttB rdt

.          

The procedure proceeds to maturity Tt , at which the obtained final value of the portfolio 

reflects any profits or losses incurred due to the hedging. 
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4 Results 
 

4.1 Hedging with the underlying asset: Complete market case 

We begin by looking at the results obtained in the Complete market case after considering the 

three hedging strategies Delta hedging, Static hedging and the Stop-Loss hedging. The 

results, unless otherwise stated, are based on the parameters as these appear in Table 3.  

4.1.1 Three Hedging Schemes Results 

 

Table 5: Three Hedging Strategies results 

Strategy  

Days Between 

Hedge 

Rebalancing 

Mean 
Standard 

Deviation 

Hedge 

Performance 

95% 

VaR 

95% 

CVaR 

Stop-Loss 1 0.62837 9.41642 0.66167 16.93423 23.34122 

Static 1 -0.33334 9.49293 0.66704 17.44834 24.68128 

Delta 1 0.01681 0.55304 0.03886 0.89650 1.27920 

 

 

Figure 8: Profit/Loss Distributions  
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Table 3 along with Figure 8 presents the Profit/Loss Distributions and the statistics obtained 

after performing the three strategies with the hedge being rebalanced on a daily basis. 

A stop-loss strategy might seem to work quite well in theory; however, a closer look at its 

key statistical features reveals that this is not the case. The standard deviation is very high 

and despite the fact that the hedge is rebalanced every trading day, its performance cannot 

drop more than 0.6. 

The static hedging, on the other hand, maintains a delta hedged portfolio for just one day. 

After that, the short option position is exposed to any fluctuations of the share price. Indeed, 

looking at some of its statistical features, it does not work very well. The downside risk is 

huge and the standard deviation very high. The resulting portfolio‟s mean is -0.333 

(negative), indicating that the cost of hedging the option is more expensive than its Black-

Scholes price. This strategy can be considered as a gambling strategy since the portfolio is 

fully exposed to risks. 

The delta hedging strategy manages to minimise the mean and standard deviation and looking 

at its hedge performance we observe that the hedge seems to work almost perfectly. Finite 

hedge rebalancing interval causes the performance not to be exactly perfect. 

Clearly, a Delta hedging strategy is a huge improvement over the other two strategies; 

nevertheless, its immense effectiveness gives the false impression that the Static and Stop-

Loss schemes do not work at all [see Figure 8]. 

Being based on the slope between the option change and the stock price change implies that 

the change in the long stock position made at time dtt is very small compared to the 

change made at time t . In other words, delta hedging does not involve changing from a fully 

naked position to a fully covered position every time the stock price crosses the strike price. 

Any profits or losses tend to vanish and the strategy leads to a risk free portfolio.  

 

4.1.2 Delta Hedging Analysis 

Since the Delta hedging proved to be more effective than the Static and the Stop-Loss 

Strategies, we proceed to investigate the efficiency of the Delta hedging scheme by 

examining it using varying hedge rebalancing intervals and several initial stock prices. Then, 

we assume a Real world drift and comparisons are made between this and the Risk-neutral 
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world. Lastly, we use real historical data of Logica shares to illustrate the efficiency of the 

method in practice. 

Table 6: Delta Hedging simulations 

Days Between 

Hedge 

Rebalancing 

Mean 
Standard 

Deviation 

Hedge 

Performance  

95% 

VaR 

95% 

CVaR 

14 -0.04766 1.99763 0.14021 3.29265 4.61731 

7 -0.01256 1.40325 0.09859 2.31706 3.16587 

2 0.02709 0.74933 0.05252 1.19326 1.60500 

1 0.01681 0.55304 0.03886 0.89650 1.27920 

 

Table 6 shows the Delta hedging statistics obtained when the hedging interval varies from 1 

to 14 trading days. As the hedge is monitored more frequently, the delta hedging strategy gets 

progressively better. The standard deviation drops down to 0.553 indicating that the portfolio 

return values are narrowly spread around the mean. We note that although the mean is close 

to zero at all cases, it is never exactly zero because of the finite rebalancing interval. 

 

Figure 9: Profit/Loss Distributions 

 

Figure 9 shows the resulting Profit/Loss Distributions obtained when the hedge rebalancing 

interval decreases. Improvement of the Profit/Loss distribution is spotted. We observe that 

any profits or losses tend to vanish, as the hedge position is readjusted more often. The curve 

becomes much smoother and its mean point goes very close to zero. 
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Figure 10: Hedge Performance with varying hedging intervals (in Days) 

 

Figure 10 shows the relationship between the hedge performance measure and the days 

between hedge rebalancing. The hedge performance approaches zero
4
 rapidly, verifying our 

expectations that the more frequently the hedge is rebalanced the better the strategy works 

and the costs of hedging are reduced. 

 

Figure 11: 95% VaR and CVaR with varying hedging intervals (in Days) 

 

                                                           
4
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Figure 11 shows the behaviour of the 95% VaR and CVaR as the hedging interval increases. 

as the days between hedge rebalancing decrease in number, convergence of the VaR and 

CVaR is noted. The difference between the two measures becomes bigger implying that when 

„things do get bad‟, the institution will incur bigger losses. 

 

Table 7: Hedging simulations with varying Spot prices 

S(0) 

Days 

Between 

Hedge 

Rebalancing 

C(0) Mean 
Standard 

Deviation 

Hedge 

Performance 

95% 

VaR 

95% 

CVaR 

80 7 4.55322 0.01661 1.19257 0.27408 1.82889 2.82442 

100 7 14.23135 -0.01256 1.40325 0.09860 2.31706 3.16587 

120 7 28.88043 -0.00152 1.25064 0.04603 2.12751 2.91965 

 

 

 

Figure 12: Profit/Loss Distributions with varying spot prices 

 

Table 7 along with Figure 12 addresses the effectiveness of the strategy when the initial stock 
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Spot and Call option prices are positively correlated. The mean is close to zero in all the three 

cases; however, in-the-money or out-of-the-money Call option portfolios have lower standard 

deviation than at-the-money Call options and face lower potential losses. 

Figure 12 implies that an option that is either in-the-money or out-of-the-money at the 

beginning of the contract can be hedged rather easy as it can become apparent, at that point, 

whether the option is going to be exercised at expiry.  

The Black-Scholes model assumes the absence of transaction costs and that the volatility is 

single and constant at all times. However, in real markets, the initial stock price has a 

significant impact on the implied volatilities. In particular, at-the-money options produce 

higher implied volatilities than in-the money or out-of-the money options. This behaviour 

results in the well known „volatility smile‟ and, therefore, the results obtained by the Black-

Scholes model do not reflect reality.  
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Furthermore, we investigate the performance of the Delta hedging scheme in both real and 

risk-neutral world.  The obtained results are summarised in Table 8 and Figures 13 and 14. 

 

Table 8: Hedging simulations in both Real and Risk-neutral world. 

 World 

Days 

Between 

Hedge 

Rebalancing 

Mean 
Standard 

Deviation 

Hedge 

Performance 

95% 

VaR 

95% 

CVaR 

Real           

μ=0.1 
14 -0.06250 1.97902 0.13906 3.34804 4.64677 

Real           

μ=-0.1 
14 -0.06002 1.96605 0.13815 3.24704 4.56002 

Risk-neutral 

r=0.05 
14 -0.04766 1.99763 0.14037 3.29267 4.61731 

 

 

 

Figure 13: Profit/Loss Distributions in Real and Risk-neutral world 

 

Figure 13 shows the Profit/Loss Distributions that arise in both the Risk-neutral world

)0( and the Real world )1.0( . 
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Figure 14: Stock price ranges at expiry in Real and Risk-neutral world 

 

In the real world, the hedging scheme gives identical results for either choice of . Delta 

hedging in a Risk-neutral and a Real world seems to produce similar Profit/Loss distributions. 

This occurs due to the way the Black-Scholes equation is set up initially; it is constructed in 

such a way that the term μ is eliminated and never appears on the equation, thus it somehow 

takes care of the drift rate μ. 

Figure 14 shows the stock price range at expiry in the Risk-neutral world )0( and the Real 

world )1.0( . We can, clearly, see that the stock price, at maturity, takes higher values 
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negative. Intermediate values are produced when the hedging is considered to take place in a 

risk-neutral world. 
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4.1.3 Delta Hedging Example using Historical Data 

Historical data of LOGICA share prices is used to examine the performance of the delta 

hedging method during a four-month period; Tuesday, 02/03/2010 to Wednesday, 

02/07/2010. 

We assume that a company has written a four-month European call option contract on 100 

LOGICA shares on March the 3
rd

 with a strike price 120K . The data has been obtained 

from Livecharts.co.uk [40].The hedge rebalancing is set to be made every Tuesday.  

Table 9: Delta hedging results using LOGICA shares 

Date 

LOG 

Share 

price 

Delta 
Long 

shares 

Call 

price 
B(t) Portfolio 

02/03/2010 120 0.57422 58 948.1673 -6011.83 0 

09/03/2010 121.3 0.59651 60 994.1852 -6255.63 28.18915 

16/03/2010 127.3 0.70194 71 1353.211 -7657.17 27.92224 

23/03/2010 125.5 0.67292 68 1197.743 -7282.19 54.07087 

30/03/2010 133.7 0.80461 81 1774.369 -9021.73 33.59914 

06/04/2010 138.5 0.86740 87 2147.312 -9854.52 47.66683 

13/04/2010 138.1 0.87035 88 2084.853 -9994.58 73.36991 

20/04/2010 142.5 0.91839 92 2452.561 -10566.6 90.87896 

28/04/2010 140 0.90584 91 2199.044 -10428.7 112.29873 

05/05/2010 137.4 0.88942 89 1937.969 -10155.9 134.70479 

12/05/2010 133.7 0.85336 86 1584.192 -9756.84 157.16646 

19/05/2010 126.3 0.72104 73 958.844 -8116.88 144.17822 

26/05/2010 118.9 0.50537 51 453.5701 -5502.69 107.64143 

02/06/2010 126.2 0.74263 75 860.353 -8532.58 72.06664 

09/06/2010 120.1 0.53785 54 410.1797 -6012.17 63.04682 

16/06/2010 122 0.62343 63 456.7165 -7111.37 117.91702 

23/06/2010 117 0.33825 34 136.4487 -3719.78 121.77365 

30/06/2010 108.8 0.00154 1 0.155928 -130.116 -21.47169 

02/07/2010 105 0 0 0 -25.1416 -25.14158 

 

The option closes out-of-the-money and thus it is not exercised. The company gains in the 

short option position but loses in the long share position, resulting in a total cost of about 25. 

We divide the total cost of pricing and hedging the option with the theoretical call price and 

we obtain 0.0265. Thus, the hedging costs just about 2% of the call price. However, this is an 

example where the company, having placed a hedging strategy, is in a worse position than 

they would have been with no hedging. 
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4.2 Hedging with a correlated asset: Incomplete market case 

In this section, the analysis consicles an Incomplete system of markets. The three hedging 

strategies, Delta hedging, Stop-Loss hedging and the Minimal Variance hedging, are 

demonstrated and the results are presented. The results, unless otherwise stated, are based on 

the parameters and the additional parameters as these appear in Table 3 and Table 4, 

respectively.  

4.2.1 Three Hedging Schemes Results 

 

Table 10: Delta Hedging results 

λ ρ Mean 
Standard 

Deviation 
C(0) 

Hedge 

Performance 

95% 

VaR 

95% 

CVaR 

0 0.1 0.22498 12.70299 10.79186 1.17709 22.32044 28.19843 

0 0.5 1.05291 9.37403 9.74208 0.96222 15.65492 19.52594 

0 0.7 0.89881 7.19438 8.74346 0.82283 11.81312 14.73853 

0 0.9 0.38928 4.09554 7.49686 0.54630 6.63764 8.37175 

0 1 -0.02452 0.42491 6.80496 0.06844 0.72639 1.06988 
 

Delta hedging results with 0 and varying , while the hedge is being rebalanced weekly. 

 

Table 11: Stop-Loss Hedging results 

λ ρ Mean 
Standard 

Deviation 
C(0) 

Hedge 

Performance 

95% 

VaR 

95% 

CVaR 

0 0.1 0.08702 12.59082 10.79186 1.16670 22.52190 28.36536 

0 0.5 0.67098 9.52288 9.74208 0.97750 16.04310 20.16683 

0 0.7 0.48197 7.59233 8.74346 0.86834 12.79252 15.62413 

0 0.9 0.03098 4.98629 7.49686 0.66512 8.41221 10.02671 

0 1 -0.30641 2.95209 6.80496 0.43381 5.61288 7.68007 
 

Stop-Loss hedging results with 0 and varying , while the hedge is being rebalanced 

weekly. 
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Table 12: Minimal Variance Hedging results 

λ ρ Mean 
Standard 

Deviation 
C(0) 

Hedge 

Performance 

95% 

VaR 

95% 

CVaR 

0 0.1 -0.35664 9.92932 10.79186 0.92008 18.59354 24.80927 

0 0.5 -0.21489 8.26896 9.74208 0.84879 15.92202 20.20857 

0 0.7 -0.11987 6.60652 8.74346 0.75560 12.39305 15.75615 

0 0.9 -0.02873 3.89170 7.49686 0.51911 7.16513 8.84603 

0 1 -0.01181 0.57475 6.80496 0.08446 0.94695 1.38944 
 

Minimal variance hedging results with 0 and varying , while the hedge is being 

rebalanced weekly. 

 

Tables 10, 11, 12 contain the statistics obtained after using each of the above mentioned 

strategies. Explicit comments and comparisons between the schemes can be seen in Figures 

15, 16, 17 and 18. 

 

Figure 15: Profit/Loss Distributions with ρ=0.5 

 

Figure 15 presents the Profit/Loss distributions obtained after performing the three strategies 

with the hedge being rebalanced in a weekly basis. Minimal Variance technique appears to 

produce the best Profit/Loss distribution and, therefore, it can be considered as the most 

effective strategy among them. 
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After comparing these results with the ones obtained in the complete market case, we deduce 

that the schemes are less effective. The imperfect correlation between the assets creates errors 

that are reflected in the final portfolio value. The three strategies, however, seem to produce 

very similar results whereas in the complete market case the delta scheme performed far 

better than the others.  

 

Figure 16: Hedge Performance with varying ρ 

 

Figure 16 presents the improvement of the hedge performance of the strategies as the 

correlation between the assets increases. 

Among the three trading strategies, Minimal Variance seems to work the best and Stop-Loss 

seems to work the worst. Even if perfect correlation is considered the hedge performance of 

the Stop-Loss scheme could not drop more than 0.4. Delta hedging gives intermediate values; 

low correlation case produces similar results to the stop-loss scheme, whereas high 

correlation produces similar results to the Minimal Variance scheme. Nonetheless, in the case 

of a perfect correlation between the assets, the Delta hedging performs almost the same as the 

Minimal Variance one (around 0.07), assuming that the two assets volatilities are equal. To 

realise this we recall the procedure used to set up the Minimal Variance scheme. By equation 

(2.3.7), 
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sV

H

S
x

'
                                                        (4.2.1) 

we can see that when the correlation is perfect positive then 1 and if the volatilities of the 

two assets are equal then if the price of S  changes by a certain amount, the price of H  

changes by exactly the same amount [see Equation (3.2.2)]. As a result, the term that appears 

in front of sV  cancels out and we are only left with the partial derivative that is, indeed, the 

Delta hedging strategy. 

 

 

Figure 17: Mean with varying ρ 

 

Figure 17 shows the behaviour of the mean as the correlation between the two assets 

increases. The absolute mean value approaches zero, as the correlation increases. There is a 

significant convergence in the case of the Minimal variance scheme. When there is a low 

correlation between the two assets, the mean values in the Delta and Stop-Loss case appear to 

be closer to zero than the one in the Minimal Variance case; however, as the assets become 

highly correlated, the latter approach forces the mean value to converge to zero rapidly.  

We note that, although the mean is close to zero at all cases, it is never exactly zero because 

of the finite rebalancing interval. 
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Figure 18: 95% VaR with varying ρ 

 

Figure 18 shows the behaviour of the 95% VaR as the correlation changes from 0.1 to 1. As 

the correlation increases, the VaR decreases. This indicates that the loss a company can face 

is low when the hedge is based on highly correlated assets. Once again, the Minimal Variance 

scheme produces the best curve for all correlations; nonetheless, when perfect correlation 

occurs, the Delta hedging scheme gives identical results. 
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4.2.2 Minimal Variance Hedging Analysis 

Since the Minimal Variance approach seems to have worked better than the Delta and the 

Stop-Loss Strategies, we proceed to investigate the effectiveness of the Minimal Variance 

approach by examining it using varying correlations, hedge rebalancing intervals, maturity 

times, interest rates, volatilities and drift rates. Then, a risk loading parameter is added to the 

equation and its effects are recorded. 

 

Figure 19: Profit/Loss Distributions with varying ρ 

 

Figure 19 shows the resulting Profit/Loss distributions with varying . As the correlation 

between the assets increases, the Profit/Loss distribution improves. However, imperfection is 

observed because, even if the correlation between the two assets is high, there is an amount of 

risk that cannot be hedged.  

To realise this we recall the equation (2.3.13)
                                                

 

                              

dXSVdtrVV
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SVrVd sssst

2
22

1
2

'                  (4.2.2) 

The standard deviation of the hedging error at time T  is given by 

                                                            T21                                                           (4.2.3) 
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as Ankirchner and Imkeller argued in [2].  

Therefore, the first term of the formula, 21 plays a crucial role to the efficiency of the 

hedge.  

 

Table 13: Causation of Basis Risk 

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 1 

 21  1 0.99499 0.979796 0.953939 0.91652 0.86603 0.8 0.71414 0.6 0.43589 0.14107 0 

 

The second row of table 13 presents the percentage amount of standard deviation of the 

portfolio price that cannot be hedged, as correlation increases. 

                                                                  

 

Figure 20: Percentage contribution of Basis Risk to the Total risk with varying ρ 

 

Figure 20 presents the percentage contribution that the Basis Risk has to the Total risk when 

varies. As the correlation decreases, the basis risk increases in a quadratic manner. Even if 

the two assets have an unrealistically high correlation, 99.0 , there is still 14% of the 

standard deviation of the portfolio value that cannot be hedged. 
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Table 14: Hedging simulations with varying hedging intervals 

ρ λ 

Days 

Between 

Hedge 

Rebalancing 

Mean 
Standard 

Deviation 
C(0) 

Hedge 

Performance 

95% 

VaR 

95% 

CVaR 

0.5 0 1 0.08180 8.04356 9.74208 0.82565 14.84266 19.26027 

0.5 0 2 -0.09451 7.97080 9.74208 0.81818 14.91460 19.75606 

0.5 0 7 -0.21489 8.26896 9.74208 0.84879 15.92202 20.20857 

0.5 0 14 -0.00103 8.11262 9.74208 0.83274 14.92144 18.95544 

 

Table 14 consists of the results obtained when the days between hedge rebalancing vary from 

one to fourteen trading days. The correlation seems to have a major impact on the hedge 

performance that overshadows the impact that the hedge rebalancing interval has. However, a 

slow convergence is observed in the standard deviation and VaR. 

 

Table 15: Hedging results with varying maturity time 

ρ λ T Mean 
Standard 

Deviation  
C(0) 

Hedge 

Performance 

95% 

VaR 

95% 

CVaR 

0.5 0 1 -0.21489 8.26896 9.74208 0.84879 15.92202 20.20857 

0.5 0 0.5 -0.13781 5.14827 5.51450 0.93359 10.14655 12.93159 

0.5 0 0.25 -0.08837 3.30440 3.27114 1.01017 6.64362 8.52906 
 

 

 

Figure 21: Profit/Loss distributions with varying maturity time 
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Figure 22: Hedge Performance with varying maturity date 

 

Table 15 along with Figures 21 and 22 present the results obtained after considering several 

maturity dates. Narrower distributions are obtained when considering short-term contracts, 

due to that the cost of pricing and hedging the option is cheaper. To realise which maturity 

time gives the best results, one should only consider the hedge performances and not the rest 

of the statistical features.  

Looking at Figure 22, one can see that the scheme performs better with long date option 

contracts. Assuming a weekly hedging interval, by getting a position in a long-term contract, 

a trader is able to readjust the portfolio more times than he should have done in the case of a 

short-term contract. This means that any unexpected losses in the portfolio would have 

enough time to be recovered before the end of the life of the contract. 
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Table 16: Hedging simulations with varying interest rates 

ρ λ r Mean 
Standard 

Deviation  
C(0) 

Hedge 

Performance 

95% 

VaR 

95% 

CVaR 

0.5 0 0.02 -0.21685 8.16526 9.38924 0.86964 15.71829 20.04063 

0.5 0 0.05 -0.21489 8.26896 9.74208 0.84879 15.92201 20.20857 

0.5 0 0.08 -0.21327 8.37056 10.08526 0.82998 15.98523 20.37178 

 

Table 16 shows the behaviour of the strategy when assuming several interest rates values. 

Interest rates have insignificant impact on the hedge performance and the other statistical 

features of the Minimal Variance scheme. This happens because the change incurred in the 

bond value due to the risk-free rate is very small in relation to the changes that the asset 

prices face at each time interval. 

 

Table 17: Hedging simulations with varying volatilities 

λ  '  Mean 
Standard 

Deviation  
C(0) 

Hedge 

Performance 

95% 

VaR 

95% 

CVaR 

0 0.6 0.6 0.36426 25.32933 26.14575 0.96877 45.29257 70.54721 

0 0.6 0.1 -0.03939 24.80858 26.14575 0.94886 45.65060 71.47229 

0 0.1 0.6 0.06737 4.01818 7.49686 0.53598 7.14933 8.96577 

0 0.1 0.1 -0.02873 3.89170 7.49686 0.51911 7.16513 8.84603 

 

In Table 17 one can see the results obtained after considering different combinations of the 

asset‟s volatilities. Clearly, the volatility of the asset H  has little impact on the hedge 

performance and the other statistical features. Any significant results are obtained when the 

volatility of the original asset changes. In fact, this should be the case because the call option 

formula in (2.3.18) and the sV  in (2.3.7) depend only on the characteristics of the asset S . 
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Our analysis proceeds in examining the effectiveness of the hedging scheme when the drift 

rate of the non-traded asset S varies. 

Table 18: Hedging simulations with varying drift rate μ 

ρ λ  '  Mean 
Standard 

Deviation  
C(0) 

Hedge 

Performance 

95% 

VaR 

95% 

CVaR 

0.5 0 0.1 0.075 -0.21489 8.26896 9.742079 0.84879 15.92202 20.20857 

0.5 0 0.05 0.05 -0.18155 7.01261 6.804957 1.03052 14.04273 18.46353 

0.5 0 0 0.025 -0.12437 5.59430 4.44514 1.25852 12.08676 16.26631 

0.5 0 -0.1 -0.025 -0.06025 2.83842 1.49183 1.90265 5.95774 10.16746 

0.5 0 -0.2 -0.075 -0.02773 1.00520 0.34367 2.92490 0.80811 3.15746 

 

 

 

Figure 23: Relationship between μ and μ'  

 

Figure 23 shows the relationship between the drift rates of the two assets S and H , which is 

positive and linear. This means that, as the drift rate of the non-tradable S increases, the gap 

between the two drift rates widens.  
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Figure 24: Relationship between the Call price and μ 

 

Figure 24 shows the behaviour of the option price as the drift rate of the non-traded asset 

increases. 

 

Figure 25: Relationship between the VaR and μ 

 

Figure 25 shows the behaviour of the VaR as μ increases, which is positive and almost linear. 
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Figure 26: Hedge Performance with varying μ 

 

Figure 26 shows the behaviour of the hedge performance as the drift rate of the non-tradable 

asset S increases. 

As the drift rate increases, the theoretical call option price increases [see Figure 24] and, as a 

result, the VaR increases linearly [see Figure 25]; however, the hedge performance converges 

to zero [see Figure 26]. To understand this, we recall the meaning of the drift rate . The 

change of the random variable S over a given time interval  dt  is dt , indicating that high 

drift rates result in high stock prices. On the one hand, such prices increase the potential 

losses (VaR) in the written option but, on the other hand, the call option premium gains in 

value so that the potential losses will be minimised. 

The increase in the Call price along with the gap created between the two drift rates results in 

a hedging scheme that is relatively more effective. 
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4.2.3 Minimal Variance Hedging with Risk Loading 

 

Table 19: Hedging results with varying ρ and λ 

ρ λ Mean 
Standard 

Deviation  
C(0) 

Hedge 

Performance 

95% 

VaR 

95% 

CVaR 

0.5 -0.5 -3.85051 8.28803 6.40074 1.29485 19.46954 23.97190 

0.5 0 -0.21489 8.26896 9.74208 0.84879 15.92201 20.20857 

0.5 0.5 4.10161 8.28240 13.74673 0.60250 11.55155 15.81694 

0.5 1 8.93690 8.31328 18.26170 0.45523 6.66593 10.94122 

0.5 1.5 14.15564 8.35047 23.15594 0.36062 1.39693 5.69938 

                

0.7 -0.5 -3.09031 6.62725 6.10318 1.08587 15.55993 18.94575 

0.7 0 -0.11987 6.60652 8.74346 0.75560 12.39305 15.75610 

0.7 0.5 3.33374 6.63825 11.86216 0.55962 8.84903 12.16151 

0.7 1 7.17916 6.70181 15.37513 0.43589 4.99404 8.24656 

0.7 1.5 11.32849 6.77987 19.19793 0.35316 0.86973 4.06088 

                

0.9 -0.5 -1.83332 3.90932 5.95507 0.65647 9.20179 10.87138 

0.9 0 -0.02873 3.89170 7.49686 0.51911 7.16513 8.84603 

0.9 0.5 1.96566 3.92794 9.21908 0.42607 4.98828 6.70351 

0.9 1 4.13056 4.00475 11.11528 0.36029 2.81267 4.45334 

0.9 1.5 6.44439 4.10822 13.16593 0.31203 0.44479 2.09935 

 

For different correlations examined, a range of λ values is considered and the results are 

listed in Table 19. The impact of the risk loading parameter to each of the portfolio‟s 

characteristics may be seen explicitly in Figures 29-32. 
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Figure 27: Profit/Loss distributions with varying λ and ρ=0.9 

 

In Figure 27, the correlation is set to 0.9 and the Profit/Loss distributions are recorded, as the 

risk loading parameter increases. As λ increases, the Profit/Loss distribution of the portfolio 

gains in mean. The impact that the increasing risk loading parameter has on the distribution is 

the shift it to the right and a reduction of its peak point.  
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Figure 28: Hedge performances with varying λ 

 

Figure 28 shows the impact of λ to the hedge performance. The hedge performance seems to 

improve as the value of the risk loading parameter λ increases. To understand why this is the 

case we need to set up the following diagrams. 
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Figure 29: Μean results with varying λ 

 

Figure 29 shows the behaviour of the mean as the risk loading parameter increases. The 

increasing λ causes the mean to increase in value. Interesting to note that the higher the 

correlation, the less the absolute mean value. 
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Figure 30: Relationship between the Call price and λ 

 

Figure 30 shows the relationship between the call price and the risk loading parameter. 

Clearly, adding the parameter λ to account for the basis risk, the call price gains in value. 

Figure 30 shows that when using low correlated assets, such an action results in having the 

call price to raise reluctantly much. 
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Figure 31: Relationship between 95% VaR and λ 

 

Figure 31 shows the relationship between the 95% VaR and λ, which appears to be linear and 

negative, meaning that considering risk loading when writing the option, the replicating 

strategy is improved; however, as seen in Figure 29, this happens at a higher option cost. 
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Figure 32: Relationship between the Call price and the 95% VaR with ρ=0.7 and varying λ 

 

Figure 32 shows the relationship between the call price and the VaR which appears to be  

linear and negative. The relationship appears to be more a straight line than a curve. This is, 

of course, reasonable; a trader increases the option price by a certain amount so that his 

potential risks would reduce by that amount. This risk reduction is reflected in the VaR value. 

Since the relationship between the call value and the VaR is negative and linear, it is left to 

the trader to examine and decide the value of that will result in a VaR he is willing to face 

in the case things do go wrong. In fact, we note that high correlation between the two assets 

reduces the call value and the VaR, thus the higher the correlation, the less the value of  

that the trader needs to consider adding.  
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5 Discussion 

 

5.1 Conclusions-Recommendations 

In this project we have examined several trading strategies in both complete and incomplete 

systems of markets. 

5.1.1 Hedging with the underlying asset 

The Static hedging offers almost no hedging at all. This happens due to the fact that the 

portfolio is delta neutral only at the first trading day. After that, the portfolio value moves 

according to the stock price movements and it can either end up positive or negative. 

Therefore, on the one hand, the strategy does not induce any transaction costs but, on the 

other hand, the possibility of achieving a perfect hedge in an over-the-counters market is 

small due to the limited liquid assets [24]. 

The Stop-Loss strategy also provides limited performance. Problems arise when considering 

such a strategy: if the stock price never crosses the strike price, the writer of the option had 

paid nothing, whereas if the stock price crosses the strike price many times, the hedging 

scheme becomes very expensive.  

In practice, a trader that places a hedge, when the stock price is equal to the strike price, 

cannot know in which direction the stock price will move, either above or below the strike 

price. That is why an additional cost should be added to any purchases and sales made. 

Frequent hedging can reduce this additional cost; but the hedge performance cannot drop 

more than a certain level, around 0.6. 

The Delta hedging technique is a huge improvement over the Static and the Stop-Loss 

strategies because it is based on the slope between the option change and the stock price 

change. Any profits or losses tend to vanish and the strategy leads to a risk free portfolio. 

The call option premium depends on the current stock price relative to the strike price. 

Undoubtedly, an in-the-money option costs more than an out-of-the-money option. If the 

option was either out-of-the-money or in-the-money at the time it was first issued, the hedge 

could be easily set up, as it would become clear whether the option would be exercised at 

maturity, and the downside risks minimised. However, the implied volatility depends on the 
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initial stock price and, as a result, the volatility smile arises; unfortunately, the Black-Scholes 

model is not able to capture this. 

The current price is not the price that a trader can buy the stock for, but it is the price at which 

the stocks last changed hands from seller to buyer. Therefore, purchases and sales cannot be 

made at exactly this price [29]. One should take into consideration the bid-ask spread when 

placing any hedging scheme. The spread value, measured in percentage, will indicate whether 

it is appropriate to perform a purchase or a sale. For instance, large bid-ask spreads indicate 

that the stock is not very liquid and that if one buys a stock with a certain amount of bid-ask 

spread, he will have to make a profit on the stock of at least that amount just to break even. 

The more liquid the market, the less the bid-ask spread value and, therefore, it is more 

difficult and, consequently, less effective to place a hedging strategy with frequent 

rebalancing intervals in illiquid markets. 

 

5.1.2 Hedging with a correlated asset 

We remind the reader that in an incomplete markets system, there is no formula that can give 

us the exact call option value, thus any conclusions made are restricted in our findings using 

the derived PDE in (2.3.31). 

The non-perfect correlation between the assets creates a basis risk. As the correlation 

approaches positive perfection, the basis risk decreases; yet, there is always a significant 

amount of the risk that cannot be hedged. 

All of the examined strategies have produced a reasonable hedging. 

Stop-Loss hedging provided a reasonable hedging. Increasing the correlation improved its 

performance; still, when S  is very volatile, the presence of transaction costs results in a very 

costly scheme.  

Delta hedging, on the other hand, works slightly better. Perfect correlation results in a very 

efficient hedging and a hedge performance of only 0.07. However, the standard deviation of 

the portfolio did not show any improvement compared to the Stop-Loss strategy. 

Minimal Variance performed better than Delta and Stop-Loss hedging, verifying our 

expectations. Minimising the variance of the portfolio achieves low VaR and CVaR values 
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with no additional cost. Perfect correlation leads to identical results between the Delta and the 

Minimal Variance only if the volatilities of the two assets are equal.  

When focusing on the Minimal Variance, we obtained similar results to those of Wang et al 

obtained [19]. We have shown that, as the correlation increases, the standard deviation 

decreases and, consequently, VaR and CVaR improve dramatically. Nonetheless, perfect or 

close to perfect hedge cannot occur in any case due to the non-perfect correlation and the 

finite rebalancing interval. 

Wang et al [19] showed that, by readjusting the portfolio at frequent times, convergence of 

the standard deviation of the Profit/Loss distribution occurs. Our results have shown that such 

an action leads to a very little and sometimes insignificant convergence. However, I believe 

that if the number of simulations used was larger, a reasonable convergence should have been 

realised. 

Since the hedge is not perfect, we tried to price the risk using the actuarial standard deviation 

principle in infinitesimal time. Using a risk loading parameter  we have achieved to slightly 

raise the call option value so that the loss incurred due to the basis risk will be offset by the 

excess value in the short call.  

Finally, according to the Black-Scholes model, a risk-free portfolio can be achieved by 

dynamic hedging due to the absence of transaction costs. Nevertheless, in the real world 

where time is continuous, dynamic hedging implies infinite trading which, in turn, causes a 

large amount of transaction costs. Therefore, this project is restricted within the limits set by 

our choice of the price model (Black-Scholes). This limitation could only be overcome by 

choosing an alternative model that would take into consideration the presence of transaction 

costs. Related work has been done by Forsyth et al [18] who examined this assuming that 

asset price follows a jump diffusion process and demonstrated that a dynamic hedging can be 

sufficiently effective without incurring large transaction costs. 
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5.2 Further Work 

We recall the non-linear PDE for the short position is given by 

                               0
2

)]sgn(1'[
22

2 rVV
S

SVVrV sssst                        (5.2.1) 

and the non-linear PDE for the long position by 
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(5.2.2) 

By solving these two PDE‟s we can extent our analysis to replicate more complicated payoffs 

such as bear call spreads and bull call spreads. Examination could be made to derive the 

appropriate value of λ that gives the most suitable call premium value for the written option, 

according to the resulting Value at Risk. 

What is more, we can examine payoffs produced by positions in put options by deriving the 

corresponding non-linear PDE‟s. In addition, analysis can be made to payoffs created by 

combinations in both European call and put options. The case of a straddle position has been 

examined by Wang et al [19], therefore one could, similarly, examine the case of butterfly or 

box spreads. 

Furthermore, the analysis can be extended to other more complicated types of options such as 

Asian and American options, where optimal exercise boundaries have to be taken into 

consideration. 

Lastly, the model can be extended to assume the presence of transaction costs and that the 

volatility is stochastic, a study that has also been undertaken by Gondzio et al [24]. This will 

enable us to price and hedge such contingent claims more accurately. 
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