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Abstract

The least squares problem is an extremely useful device to represent an approximate solution to overde-

termined systems, and a QR factorisation is a common method for solving least squares problems. It

is often the case that multiple least squares solutions have to be computed with only minor changes in

the underlying data. In this case, knowledge of the difference between the old data set and the new one

can be used to update an existing QR factorisation at a reduced computational cost. However, fairly

recent developments have introduced the widespread use of massively parallel computational devices

known as GPUs. GPUs have allowed QR factorisations, and subsequently, least squares solutions to

be calculated in a greatly reduced time. The purpose of this project is to investigate the viability

of the implementation of QR updating algorithms on the GPU and attempt gain speedup with a

GPU based updating algorithm over both existing sequential QR updating algorithms, and full GPU

QR factorisations. The conclusion of the investigation is that GPU based updating algorithms gain

speedups over their sequential analogues for almost all problem sizes, whereas the proposed algorithms

only gain speedups over the full GPU QR factorisation under certain conditions.
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Chapter 1

Introduction

An overdetermined system is defined as a set of equations containing one or more unknown variables,

where the number of equations exceeds the number unknowns. An overdetermined system can often

represent observations from some physical system that needs to be modelled. The difficulty with

solving overdetermined systems however is that they are often ill posed such that there exists no exact

solution to the system. The Least squares method is a common approach to providing an approximate

solution to overdetermined systems. There are many methods for solving a least squares problem,

however the one that this project is concerned with is the least squares solution via QR factorisation.

QR factorisations are computationally expensive procedures but when many QR factorisations need

to be calculated with small adjustments in the underlying data, some of this cost can be amortised

by QR updating algorithms.

There are 4 general types of updates to the underlying data matrix A, adding a block of columns,

removing a block of columns, adding a block of rows, and removing a block of rows. Adding and

removing a block of columns from the problem matrix can be interpreted as respectively adding and

removing a set of variables from the overdetermined system. Adding and removing rows on the other

hand can be interpreted as respectively adding and removing equations from the overdetermined

system. In this project I will attempt to accelerate QR updating algorithms on the GPU via a

mainstream massively parallel GPU programming language, CUDA. This project investigates the

resulting algorithms for their runtime and accuracy against their sequential analogue and a full QR

algorithm calculated from scratch.

1.1 Notation and Organisation

Within this project, we denote with A the data matrix undergoing QR factorisation. This matrix

has dimensions n ×m, n rows and m columns. Matrix ‘updates’ will entail the addition or removal

of contiguous blocks of p columns, or p rows. When a block of columns or rows is added during an

update, this block is denoted U . The location of an update within the data matrix A is given as an

offset in columns or rows from the top left corner and is denoted k. The products of the factorisation

will be denoted Q and R respectively.
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All host code (as opposed to kernel code) will be presented in this project as pseudocode. My

pseudocode for simplicity will be in a Matlab style, with similar syntax with regards to commenting,

indexing, and logical operators. The algorithms however are meant to be implemented in CUDA C

so I have not omitted the important memory management statements and other operations specific

to massively parallel programming. Note that in future pseudocode I will refer to previously defined

functions such as blockedQRFactorisation() defined in its own listing in Section 3.1 will be taken

as a reference to the listing, any subsequent adjustments to the algorithm will then be clearly stated.

Kernel calls within the host pseudocode are identified by the <<<>>> (angle brackets) and are

intended to be placeholders, some arguments and grid and block definitions may be omitted for

simplicity reasons.

Chapter 2 presents background material. Core concepts are discussed regarding the least squares

problem, QR factorisation and updating procedures. An introduction to GPUs and the GPU pro-

gramming model is also given.

Chapter 3 gives details of the implementation of Givens and Householder algorithms presented in

this paper. Documented CUDA kernels are given along with details of the calling code for execution

on the host.

Chapter 4 applies the ideas investigated in chapter 3 to the four updating algorithms introduced in

chapter 2. Data and computations are structured such that the algorithms will run as efficiently as

possible with CUDA on the GPU. A CUDA specific library, CUBLAS, is also employed to build some

aspects of the algorithms presented.

Chapter 5 presents the results of the parallelisation of the QR updating algorithms. Runtimes of

the implemented algorithms are compared to an existing full QR factorisation provided by CULA

and sequential QR update algorithms implemented via CLAPACK subroutines. Analysis is included

regarding the major trends in the results with changing size and location of the matrix update, and

changing dimensions of the problem being updated. Accuracy in the GPU based updating algorithms

is also investigated and commented upon.

Chapter 6 concludes the project and presents ideas for future work.
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Chapter 2

Background Material

This chapter presents the background material that this project is based on. First, the least squares

problem is introduced, from [12]. This is the main practical application of both QR factorisations

and their updating algorithms. Second, the GPU programming model is presented, from [10] and [6].

This is the environment within which all of the algorithms presented in this project will run. Third,

both Householder and Givens methods of QR factorisation are discussed, from [3]. QR factorisations

share many of the core principles of QR updating and an overdetermined system must obviously be

factorized using one of these QR factorisation methods before it may be updated. Finally, the theory

behind the four QR updating algorithms themselves is introduced, from [4].

2.1 QR Factorisations and the Least Squares Problem.

This material is also introduced in [12]. In a least squares problem we wish to find a vector x that

results in the minimum value of the function:

minx||Ax− b||2 (2.1)

where || · ||2 is the 2-norm, A is an n×m matrix and can be interpreted as holding the input coefficients

of the variables x within each row. The jth row of A can be interpreted as an instance or a set of the

variables that, within the system we are observing, results in the jth element of the right hand side,

observation vector b. The objective of the least squares problem is to find the vector x that best fits

the equation Ax = b and x can subsequently be used as a linear model to approximate the system we

are observing.

A model is normally much more accurate when as many observations as possible are made, so in

practice the matrix A is massively overdetermined (n > m). In overdetermined systems an exact

solution to Ax = b cannot be found and we must therefore seek the closest solution or the solution to

the least squares problem (2.1), which gives the minimum residual.

As a stable solution to (2.1) we can factorise the matrix A = QR where Q is orthogonal:

QTQ = I

8



and R is upper trapezoidal, this is known as a QR factorisation.

With the factorized A we can then adjust the formula (2.1):

||Ax− b||2 = ||QTAx−QT b||22

then as A = QR =⇒ QTA = R and d = QT b

= ||Rx− d||22

=

∣∣∣∣∣∣
∣∣∣∣∣∣
 R1

0

x−
 f

g

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

= ||R1x− f ||22 + ||g||22

Where R1 is upper triangular and d =

 f

g

.

Finally ||R1x− b||22 = 0 can be solved exactly by back substitution, leaving ||g||22 as the minimum

residual or error.

2.2 The GPU Programming Model

GPUs are massively parallel computational devices. They gain their performance advantage over

CPUs in some algorithms by exploiting independence of operations. An additional requirement for

the algorithm is that each independent branch uses the same or similar sequence of elementary oper-

ations e.g. add, multiply, load/store etc. This requirement is due to the Single Instruction Multiple

Data (SIMD) or Single Instruction Multiple Threads (SIMT) architecture type of the Streaming Mul-

tiprocessors (SM) within the GPU.

The GPU programming model is unusual compared to other forms of software interface in that it is

closely tied to the underlying hardware with very little abstraction. It is for this reason that I will

not consider hardware and software principles of the GPU separately and will instead discuss their

combined effect on programming style and performance.

I will consider a popular GPU programming API in this project, the CUDA programming API, which

is specific to Nvidia GPUs. Although there are other standards in competition with this model, they

are arguably closely related, and therefore share most, if not all, of the principles alluded to in this

paper. Throughout this project I will write my programs in C++ and CUDA C.

My chosen testing platform for the algorithms that I will develop during this project is an Nvidia

Tesla M2050 GPU, an implementation of the Fermi architecture. Again, as with the CUDA pro-

gramming API, I will discuss principles of GPU programming using this specific model of GPU as an

example. However, the main features I will discuss about this hardware are shared in general with

other GPUs, even GPUs from other manufacturers such as AMD. A full description of the CUDA

GPU programming model is given in [10].
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2.2.1 The Programming Model

The main software interface is organised into kernel calls:

MyKernel<<<(dim3)grid dimensions,(dim3)block dimensions>>>(argument1, argument2, ... )

Kernels are C functions that are instantiated many times and are run on the GPU in parallel, typically

over many SM. Kernel calls are an example of a fork-join design pattern.

Kernel execution is organised within a hierarchy consisting of grids, blocks and threads:

• Threads are the lowest level of execution, they each run an instance of the kernel sequentially.

• Blocks contain a 1, 2 or 3 dimensional array of threads. Blocks are further broken up into

vectors of 32 threads known as warps, these are scheduled to execute on an SM one command

at a time in a step-lock fashion so threads are completely synchronised within a warp. Separate

warps however are executed according to the warp scheduler and can be executed in any order

to hide latencies of memory accesses and pipelined commands, synchronisation and interaction

of threads at this level must be managed explicitly by the programmer. A block resides and is

executed within a single SM and in the Tesla M2050 GPU there is a limit of 1024 threads per

block.

• Grids contain many thread blocks and are the highest organisational level within a kernel.

There is only one grid per kernel call and blocks within a grid may be scheduled and executed

on separate SM. Blocks are assumed to be completely independent of one another and there is

no simple way of thread communication at this level. Every block within a grid has the same

dimensions.

Each thread is supplied variables such as thread ids, block ids, etc. which are used by the programmer

to map a thread to the data it must operate on. The Fermi architecture has 16 SM and each can have

several blocks occupying it at any one time.

2.2.2 Thread Communication

By default, each of the many threads in a kernel execution operates independently of all of the other

threads. Sometimes however, some co-ordination is required in order to avoid data race hazards within

a block, this can be achieved via the syncthreads() statement. Efficient data sharing among all

threads within a block can be explicitly managed by the programmer via shared memory.

The syncthreads() statement works by acting as a concurrency barrier which forces any threads

that reach it within a block to wait until every thread in that block has reached the statement before

continuing the block execution. There is obviously therefore some synchronisation overhead involved

in calling syncthreads() and it should only be used when necessary.

Shared memory on the other hand can be allocated statically or dynamically and can be used as low

latency memory. Shared memory can be read from, or written to by any thread in a block and can

be used to improve memory performance in situations where spatial locality of data is low or when

data is reused by separate threads in a block. In a Fermi GPU, shared memory is configurable with

L1 cache memory to be 48KB/16KB or 16KB/48KB respectively depending on the requirements of

the algorithm.
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Figure 2.1: A diagram of the GPU software model from [10].

2.2.3 Memory Hierarchy

The increasing requirements placed on GPUs for general computing has meant that modern GPUs

have a memory hierarchy to take advantage of spatial and temporal locality of data accesses. With the

Tesla M2050 there is 3GB [7] of higher latency DRAM, a smaller L2 cache shared between all 16 SM,

and 1 L1 cache per SM (low latency and configurable as previously mentioned). The registers have

the lowest access latency of all memory, they also unfortunately have the lowest capacity. Overflow

of this capacity can however lead to register spilling to local memory which incurs a performance

penalty and should be avoided. The Fermi architecture provides approximately 32K registers per SM

shared between a maximum thread occupancy per SM of 1536, which leads to a worst case scenario

of approximately 20 registers per thread. Registers are therefore not a plentiful resource.

In general, the presence of a cache hierarchy automatically boosts efficiency of data accesses that ex-

hibit temporal locality. For GPU programming however, due to the nondeterministic nature of thread

scheduling, temporal locality is usually handled within a thread or warp execution via assignment

to a register or between threads within a block via shared memory. The real benefit from the cache

hierarchy with GPU programming comes from spatial locality where, in an architecture such as Fermi,

cache lines are transferred between caches in contiguous blocks of 128 bytes. The implication of this

is, for example, if memory accesses to 4-bit integers or floating point numbers are aligned in memory
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Figure 2.2: A diagram of the Fermi GPU architecture from [6].

and are contiguous for the 32 threads in a warp, all required data can be fetched with one memory

access with no wastage. Correct use of coalesced memory alignment can lead to orders of magnitude

speedup over similar algorithms with non-coalesced memory accesses.

By far the largest issue facing GPU programming as far as memory is concerned is the data transfer

latency between the host and device and vice versa. The performance penalty of moving data in this

way is often so large that a huge amount of computation within the algorithm and often also large

problem sizes are required to gain any performance benefits from using the GPU. This is why in linear

algebra on the GPU, we give preference to algorithms rich in matrix operations due to the quadratic

or cubic scaling in computational complexity. I use this philosophy when choosing the algorithms to

implement throughout this project.

2.2.4 Heterogeneous Programming

All interaction with the CUDA runtime takes place in the host code. The memory address spaces of

the GPU and CPU are physically and programmatically considered to be separate and this forces the

programmer to explicitly call special CUDA runtime functions to allocate and transfer data to and

from GPU global memory. By default, memory transfers are blocking, which means host code waits

for the transfer to complete. CUDA does give the option to execute asynchronous memory copies with

the use of CUDA streams, but as one of my main goals in my algorithms was to minimise altogether
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the number of memory transfers executed, I did not find this necessary.

Kernel calls on the other hand by default are completely asynchronous with respect to host code,

and in most modern GPUs occupancy of the SM can even be increased by allowing the in-built block

scheduler to execute many kernels in parallel using streams. To ensure that all work on the GPU is

complete from within the host code, global device synchronisation statements are available (such as

cudaThreadSynchronize() in CUDA).

2.2.5 BLAS subroutines

Within the algorithms that I will present in this paper there are a wealth of BLAS specification

subroutines. Rather than write my own set of these routines I have utilised the CUBLAS library for

BLAS routines based on the GPU, and CLAPACK (containing cBLAS, a C-based Fortran port) for the

sequential implementation for comparative purposes. The main difference between the programming

with these two libraries is the heterogeneous programming model discussed in the previous section.

Data movement must be explicitly managed while programming with CUBLAS and so great care

must be taken to minimise high latency communication between the device and the host.

All CUBLAS subroutines utilised in this project operate on single precision floating point numbers,

as this offers maximum bandwidth on modern GPUs, therefore the ‘S’ prefix is used for all CUBLAS

calls e.g. cublasSgemm, cublasSgemv, etc.

A full guide to the CUBLAS library is given in [8]. The main CUBLAS subroutines used in this

project are:

• cublasSgemm: General matrix-matrix multiply.

• cublasSgemv: General matrix-vector multiply.

• cublasSger: Rank one update to a general matrix.ger(c, x, y, A) : A := A+ cxyT where A is a

general matrix, c is a scalar, and both x and y are vectors.

• cublasSaxpy: General vector addition. axpy(c, x, y) : y := y+ cx where c is a scalar, and both

x and y are vectors.

2.3 QR Factorisations

Also introduced in [3], QR factorisations can be accomplished in many different ways, but Givens

and Householder orthogonal transformations are most widely used. QR factorisation methods can be

explained from the point of view of introducing zeros into the matrix being factorised, A ∈ Rn×m,

which becomes the upper-trapezoidal matrix R. The orthogonal matrix Q ∈ Rn×n can be formed

during the factorisation to store the inverse transformation that has been applied to R such that

A = QR. Transformations can alternatively be applied directly to the right hand side vector b as

defined in (2.1), depending on the requirements of the specific application. Formation of the matrix

Q is rarely a practical choice due to its large size, but as explained in Section 2.4, formation of Q is

required for some updating algorithms.
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2.3.1 Householder Reflections

A Householder reflection is a transformation applied via an orthogonal matrix of the form:

P = I − 2

vT v
vvT

where P can be chosen for a vector x such that:

Px = ||x||e1

where e1 is a vector of zeros with a 1 as the top element and || · || is the vector 2-norm. This means

that if we choose x to be the column beginning at the diagonal of a matrix A we can choose P to zero

the sub diagonal of that column. To apply a Householder transformation to zero a sub diagonal in

the ith column of a matrix A during a QR factorisation, we embed a Householder matrix P into an

n× n identity matrix, and multiply A from the left:

IPA = AP , IP =

 I(i−1)

P


where AP is the matrix A after the subdiagonal of the ith column has been made zero.

The standard QR factorisation utilising Householder reflections is rich in BLAS level 2 subroutines,

this is not ideal for GPU programming as we wish to maximise the work done within a kernel call to

fully utilise the excellent instruction bandwidth of the GPU. To solve this issue we can implement a

‘blocked’ QR factorisation which is rich in BLAS level 3 subroutines, at the expense of a little more

computational complexity, which is easily amortised in the presence of larger workloads.

In a blocked QR factorisation, multiple Householder reflections can be compounded into a single

transformation matrix:

P = P1P2...Rr

A block of r columns are reduced as if they were a full QR factorisation, then the composite of the

blocks Householder reflectors is applied to the remainder of the matrix. By [5], this can further be

represented as:

P = I +WY T

where W and Y are matrices with the number of rows equal to the length of the longest Householder

vector in the block, and number of columns equal to the number of Householder reflectors composited

within the block.

2.3.2 Givens Rotations

A Givens rotation is a matrix of the form:

G =

 c s

−s c


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this is applied to:

A =

 a1

a2

 with c =
a1√
a21 + a22

, s =
a2√
a21 + a22

it results in:

GA =

 c s

−s c

 a1

a2

 =

 ca1 + sa2

0


In contrast to the more efficient Householder reflection where zeros are introduced in the entire subdi-

agonal column per transformation, Givens rotations introduce just one zero each. To apply a Givens

transformation to the ith and (i+ 1)
th

elements within a column of a matrix A, we must embed a

givens matrix within an identity matrix overwriting the ith to (i+ 1)
th

elements in the ith to (i+ 1)
th

columns, and multiply this matrix through A from the left:

IGA = AG, IG =


I(i−1)

c s

−s c

I(n−i−1)


where AG is the matrix A after a zero has been introduced.

2.4 QR Updating Algorithms

In this section an outline of the theory regarding the QR updating algorithms is presented, the

material was initially and more exhaustively presented in [4]. For simplicity, in this project, we make

the assumption that all matrices are non-singular, and also overdetermined (n > m), before and after

they have been updated.

2.4.1 Adding Columns

Adding a block of columns may be necessary for a least squares problem when extra terms need to be

added to the linear model. A block of p columns, U , is added to the matrix A from row k such that

the new factorisation becomes:

Ã = Q̃R̃, Ã =
[
A(1 : n, 1 : k − 1) U A(1 : n, k : m)

]
(2.2)

Multiplying through QT from the QR factorisation of A, A = QR, shows that:

QT Ã =
[
R(1 : n, 1 : k − 1) UQ R(1 : n, k : m)

]
where UQ = QTU . Before any work is done, we can see that R(1 : n, 1 : k − 1) = R̃(1 : n, 1 : k − 1),

so we need only consider UQ and R(1 : n, k : m).

At the most general level, we require an orthogonal matrix O ∈ R(n−k+1)×(n−k+1) such that: Ik−1 0

0 O

QT Ã = R̃ (2.3)
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Figure 2.3: A diagram of the matrix R of dimension 10× 5, the p = 3 columns inserted from column

k = 3 are shaded in blue. The symbol ‘-’ denotes a non-zero which must be made zero, whereas a ‘+’

denotes a zero which must be made non-zero. ‘*’ denotes a general non-zero element.

If O was made up entirely of Householder reflections, we would gain the desired Ik−1 0

0 O

UQ = R̃(1 : n, k : k + p− 1)

but  Ik−1 0

0 O

R(1 : n, k : m)

would be full. Givens rotations are therefore required to satisfy (2.3). This restriction to Givens

rotations can be worked around by use of Householder reflections to reduce the submatrix UG(m+ 1 :

n, 1 : p) to an upper trapezoidal form, before the application of less efficient Givens rotations to finish

the update. This use of Householder transformations is possible due to the fact that the trailing

submatrix R(m+ 1 : n, k : m) is guaranteed to be entirely zero.

2.4.2 Removing Columns

A block of p rows is deleted from A from the column k such that:

Ã = Q̃R̃, Ã =
[
A(1 : n, 1 : k − 1) A(1 : n, k + p : m)

]
(2.4)

Multiplying through by the orthogonal matrix QT we have:

QT Ã =
[
R(1 : n, 1 : k − 1) R(1 : n, k + p : m)

]
Again, we can see that R(1 : n, 1 : k − 1) = R̃(1 : n, 1 : k − 1). This fact allows us to define just

m− p− k + 1 Householder transforms Hk,k+1,...,m−p to reduce the right hand side portion of R.

Hm−p, ...,HkR(1 : n, k + p : m) = R̃(1 : n, k + p : m)

so:

Hm−p, ...,HkR = R̃ (2.5)

Thus we can also see that the matrix Q is not required to update the least squares problem.
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Figure 2.4: A diagram of the matrix R of dimension 10× 8, the p = 3 columns removed from column

k = 3 are represented by the blue line. The symbol ‘-’ denotes a non-zero which must be made zero,

whereas a ‘*’ denotes a general non-zero element.

2.4.3 Adding Rows

Figure 2.5: A diagram of the matrix R of dimension 8× 6, the p = 4 rows added are shaded in blue.

The symbol ‘-’ denotes a non-zero which must be made zero, whereas a ‘*’ denotes a general non-zero

element.

A block of p rows, U , are added to the matrix A from row k such that the new QR factorisation

becomes:

Ã = Q̃R̃, Ã =


A(1 : (k − 1), 1 : m)

U

A((k) : n, 1 : m)

 (2.6)

Wherever U is added within the matrix A, we can permute it to the bottom of the matrix such that:
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PÃ =

 A

U


where P in this case is a permutation matrix. Multiply both sides by

 QT 0

0 Ip

:

 QT 0

0 Ip

PÃ =

 R

U


With m Householder reflectors H1,2,3,...,m we can reduce:

Hm...H2H1

 R

U

 = R̃

Again, we can see that Q is not required to update the last squares problem, and as A = QR we have:

Ã =

PT

 Q 0

0 Ip

H1...Hm

Hm...H1

 R

U

 = Q̃R̃

2.4.4 Removing Rows

Figure 2.6: A diagram of the matrix Q of dimension 12 × 12, the p = 4 rows removed are shaded in

blue. The symbol ‘-’ denotes a non-zero which must be made zero, whereas a ‘*’ denotes a general

non-zero element. Transformations used to introduce zeros into this Q matrix are applied to the

matrix R to produce R̃

A block of p rows are removed from the matrix A from row k such that the new QR factorisation

becomes:

Ã = Q̃R̃, Ã =

 A(1 : (k − 1), 1 : m)

A((k + p) : n, 1 : m)

 (2.7)

In order to show that Q̃ and R̃ in (2.7) can be calculated from just Q and R from the original

18



factorisation, we must first permute the deleted rows to the top of the matrix A.

PA =

 A(k : k + p− 1, 1 : m)

Ã


where P in this case is a permutation matrix. A series of Givens matrices represented by the orthog-

onal matrix G are then employed to introduce zeros directly into a permuted Q, or PQ, to create

PQG =

 I 0

0 Q̃

. These transformations are applied to the matrix R, which is not permuted, along

with the fact that A = QR to give the equation:

PA =

 A(k : k + p− 1, 1 : m)

Ã

 = P (QG)(GR) =

 I 0

0 Q̃

 S

R̃

 =⇒ Ã = Q̃R̃ (2.8)

The consistency of the original least squares problem can then be preserved by applying the trans-

formations to d = QT b from the least squares formula. Note that the more efficient Householder

transformations may not be used in this case due to the fact that R̃ would be full following a trans-

formation via a full Householder matrix. Givens transformation matrices are Upper Hessenberg so do

not suffer from the same drawbacks.
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Chapter 3

Parallelising Householder and

Givens

The implementation of the updating algorithms in this project feature heavily both Givens and House-

holder transformations. Efficiently parallelising these operations for a GPU implementation is there-

fore a high priority. In this chapter, parallel GPU implementations of both Givens and Householder

transformations will be explored and details of the resulting algorithms will be given.

3.1 Parallelising Householder Reflections

QR factorisations via Householder reflections and its efficient implementation on the GPU is detailed

in [5]. To create a Householder vector I implemented a CUDA kernel which takes as arguments

separately a pointer to the diagonal element of the column we are required to zero, and a pointer

to the top element of the sub diagonal column. I do this for efficiency reasons that will be apparent

later, specifically when performing an update by adding rows, given in Section 4.3. The output of the

kernel is then the raw Householder vector which is normalised such that the leading element is 1. A

listing of the Householder kernel is:

1 __device__ float s;

2
3 __global__ void houseKernel(float *tau ,float *diagVal , float *lcolumn

4 , float *v, int n) {

5
6 int tid = blockIdx.x*blockDim.x + threadIdx.x;

7
8 float dotprod = s;

9 if (dotprod != 0 && tid < n) {

10
11 float vold = *diagVal;

12
13 float t = sqrtf(dotprod + vold*vold);

14
15 float vone;

16 if (* diagVal <= 0) {

17 vone = vold - t;

18 }else {

19 vone = vold + t;
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20 }

21
22 float vsq = vone*vone;

23
24 v[tid] = lcolumn[tid]/vone;

25 if(tid == 0) {

26 *tau = (-2*vsq )/(( dotprod )+vsq);

27 }

28 }

29 }

In practice a one dimensional grid was used with one dimensional blocks of length 128. This is a

reasonable size to provide enough work per block as we are assigning 1 thread per element and the

block size is small enough to minimise wastage when the input vectors are smaller. As Householder

vectors are applied column by column, it is memory efficient to represent the matrices involved in

column major order. By coincidence, CUBLAS also assumes matrices are represented in column

major order. In Fermi, cache configuration can be set to provide a larger L1 cache at the expense of

shared memory, this option is chosen for houseKernel<<<>>> as no shared memory is used.

• line 1: A device declared floating point number s, this is to avoid having to allocate memory

every iteration. Before the kernel invocation the dot product of the sub diagonal column is

calculated via a CUBLAS routine and placed in this variable.

• line 8: The global floating point number is loaded into a thread specific register for efficiency

reasons.

• line 9: tid < n handles the edge case so there is no segmentation fault.

• line 13: There is a floating point square root to avoid costly double precision arithmetic and

Fermi SM have Special Function Units that handle sqrtf() and similar functions in hardware.

• line 15-20: To avoid large errors later involving small vone in normalisation, a branch is used

to calculate its value. As an entire warp is guaranteed to execute either one statement or the

other, there is no expensive warp divergence.

• line 24: Every thread normalises its corresponding element.

• line 25-27: calculation of the single Householder coefficient is done by thread 0 in block 0.

Application of the Householder matrices to the trailing submatrix of the matrix undergoing reduction

can be broken down into elementary BLAS subroutines. This means that the highly efficient CUBLAS

library may be employed to handle these subroutines. Note that any expensive data transfer during the

QR factorisation has been rendered unnecessary due to the fact that all the calculations of a sequential

nature were handled within my Householder kernel. The fact that there is no communication of data

between the device and host greatly simplifies the use of CUBLAS.
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Pseudocode for the blocked QR factorisation is given:

1 %A, b, and Q are assumed to be present in GPU memory.

2 blockedQRFactorisation(A,Q,d,blockWidth ){

3
4 %allocation of maximum size outside the loop to avoid

5 %redundant reallocation.

6 allocate tau(1: blockWidth );

7 allocate Y(1:n,1: blockWidth );

8 allocate W(1:n,1: blockWidth );

9 %reset V to zeros

10 transfer zeros to Y;

11
12 %for every block.

13 for i = 1: blockWidth:m

14 %reset W to zeros

15 transfer zeros to W;

16 jb = min(blockWidth ,m-i);

17
18 endblock = (i+jb -1);

19 for j = i:endblock

20 %column number within the block.

21 index = j-i+1;

22 get address of global s;

23 s = dot(A(j+1:n,j));

24 [tau(index) Y(index:n-j,index )] = housekernel <<<>>>(A(j:n,j));

25
26 %apply the Householder reflector to the current block.

27 %note the addition due to -1 multiplied to tau within

28 %the kernel.

29 v = Y(index:n-j,index );

30 vA = (v’*A(j:n,j:endblock ));

31 A(j:n,j:endblock) = A(j:n,j:endblock) + tau(index )*v*vA;

32
33 %apply the Householder reflector to W.

34 if index == 1

35 W(1:n-i,1) = tau(index )*v;

36 else

37 WYv = W(1:n-i,1:index -1)*(Y(1:n-i,1:index -1)’*v);

38 W(1:n-i,index) = tau(index )*v + tau(index )*WYv;

39 end

40
41 end

42
43 %update d

44 d(i:n) = d(i:n) + Y*W’*d(i:n);

45 %update trailing matrix A.

46 if i + jb < m

47 A(i:n,i+jb:m) = A(i:n,i+jb:m) + Y*W’*A(i:n,i+jb:m);

48 end

49 %update Q.

50 Q(1:n,i:n) = Q(1:n,i:n) + Q(1:n,i:n)*W*Y’;

51 end

52 }

Operations such as that on lines 37-38 or lines 43-50 are broken up into two CUBLAS matrix-matrix or

matrix-vector products, making use of an allocated matrix or vector to store the intermediate result.

For example:

Q := Q+QWY T =⇒ Qtemp := QW then Q := Q+QtempY
T
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is fewer flops than the other multiply order, as the matrices W and Y typically have much fewer

columns than rows. The whole operation can be accomplished with just two CUBLAS ‘gemm’ routines.

3.2 Parallelising Givens Rotations

In order to introduce a zero correctly in the lower of two consecutive column elements in a matrix using

Givens rotations there are two main considerations; First, within the rows to the left of the subject

elements there be no other non-zero elements, and second, there must be no non-zero elements in the

column below the element to be made zero. These restrictions make Givens QR factorisations difficult

to parallelise. Algorithms have however been developed for parallelising Givens from the point of view

of distributed systems or even multicore CPUs such as in [2].

[2] suggests that each functional unit can be assigned a strip of rows and zeros are introduced:

• First in the leftmost column of the lowest strip.

• Once the leftmost column of the lowest strip has been made zero, the owner of the second lowest

strip is notified and it too introduces zeros in its leftmost column. The owner of the lowest strip

introduces zeros in its second-to-leftmost column at the same time.

• The algorithm continues in this way until the matrix is upper trapezoidal.

This approach can be adapted to function effectively on the GPU. In contrast to multicore CPUs and

distributed systems, GPUs require no data communication between threads due to the unified global

memory space. The GPU prefers parallelism of a much finer grain (less work per thread, more threads)

compared to CPU based parallelism. In order to achieve a maximum occupancy, or the maximum

number of the SM on a GPU active and doing useful work at any one time, a strip width of just two

rows maximises the number of zeros being introduced in each parallel step.

Figure 3.1: A diagram of the application of Givens matrices on a non-zero block on the GPU. As

before, an asterisk denotes a non-zero element.
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Figure 3.2: A diagram of the application of Givens matrices on a non-zero strip on the GPU. Al-

gorithmically, the only difference between this algorithm and the one depicted in Figure 3.1 is the

increment of the variable ‘end’ once per iteration instead of twice, and the ‘q’ variable is initialised at

(strip height+1) as opposed to n (matrix height).

Figure 3.1 and Figure 3.2 show the GPU Givens approach applied to a matrix. The numerical labels

along the bottom denote the kernel or iteration number. The coloured blocks, on the other hand,

denote different block assignments within a kernel invocation; red denotes block id y=0 within a 2

dimensional grid, blue denotes y = 1, yellow denotes y = 2, and finally green denotes y = 3. This

is extended to arbitrarily large grid dimension y in the obvious way. In addition to distribution of

the matrix amongst blocks in the y direction, in this projects’ implementation, the x direction is

partitioned into blocks of 128 elements.

We can see that it would be beneficial to memory efficiency to represent the matrix in row major

order, by the nature of the distribution of matrix elements among threads. As all other methods

in this project benefit from matrices in column major order, there is need for an efficient transpose

kernel. The transpose kernel implemented in this project is based on the one from [13], and kernel

code is given in Figure 3.4. As discussed regarding the Fermi architecture, memory accesses that are

coalesced and aligned into 128 byte segments (32 floating point numbers) per warp can be retrieved

in one fetch operation. Row dominant matrices provide the coalesced memory condition so memory

alignment can be ensured by padding the leading dimension of a matrix to be a multiple of 128

bytes. This matrix padding can be allocated automatically by explicit use of cudaMallocPitch(), as

opposed to cudaMalloc().

Due to the fact that the matrix is partitioned along its width as well as its height, dependencies

are created between thread blocks with regard to the calculation of the Givens coefficients s and c.

Calculation of these coefficients for an entire step of Givens rotations must therefore take place before

each step, in its own kernel. A diagram of how calculation of Givens coefficients is distributed along

the x direction of the 1-dimensional blocks, in the 1-dimensional grid, of the makeGivens<<<>>> kernel

is given in Figure 3.3. 32 threads are allocated per block, this small number was chosen to give as

much power over dynamic parallelism as possible to the block scheduler, as two separate cache lines
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will be required per thread. With Fermi, for both makeGivens<<<>>> and applyGivens<<<>>> the

cache configuration is chosen to prefer the L1 cache, as little or no shared memory is used.

1 //row major access macro.

2 #define GETR(A,i,j,pitch) A[(i)*( pitch )+(j)]

3 __global__ void makeGivens(int startx , int endx , int starty , float *A

4 , float *s, float *c, int ldA , int startlim) {

5
6 int i = blockIdx.x*blockDim.x + threadIdx.x;

7 int tozero = starty + 2*i + (startx - startlim );

8 if( i < endx -startx) {

9 int xindex = i + startx;

10
11 float a1 = GETR(A,tozero -1,xindex ,ldA);

12 float a2 = GETR(A,tozero ,xindex ,ldA);

13
14 float norm = sqrtf(a1*a1 + a2*a2);

15
16 c[xindex - startx] = a1/norm;

17 s[xindex - startx] = a2/norm;

18 }

19 }

• line 6-7: Maps the thread and block index to the row index of the element to be made zero.

• line 8: Checks for the edge case, the difference between the arguments endx-startx defines

how many coefficients are required for this step (see Figure 3.2 and Figure 3.1).

• line 9: Maps the thread and block index to the column index of the element to be made zero.

• line 11-12: load the relevant elements into registers.

• line 14: Explicit multiply as opposed to general power function to represent a square. Floating

point square root avoids the possibility of the invocation of expensive double precision arithmetic.

• line 16-17: Final calculation and storage of the Givens coefficients.

1 //Row major access macro.

2 #define GETR(A,i,j,pitch) A[(i)*( pitch )+(j)]

3 __global__ void applyGivens(int startx , int endx , int starty , float *A

4 , float *s, float *c, int ldA , int startlim) {

5 __shared__ float cs;

6 __shared__ float ss;

7
8 if(threadIdx.x == 0) {

9 cs = c[blockIdx.y];

10 ss = s[blockIdx.y];

11 }

12
13 __syncthreads ();

14
15 int i = blockIdx.y;

16 int tozero = starty + 2*i + (startx - startlim );

17 int xindex = blockIdx.x*blockDim.x + threadIdx.x;

18 if(i < endx -startx && xindex < ldA) {

19 float a1 = GETR(A,tozero -1,xindex ,ldA);

20 float a2 = GETR(A,tozero ,xindex ,ldA);

21
22 float tempc = cs;

23 float temps = ss;
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24 float tempa = a1;

25 a1 = tempc*tempa + temps*a2;

26 a2 = -temps*tempa + tempc*a2;

27
28 GETR(A,tozero -1,xindex ,ldA) = a1;

29 GETR(A,tozero ,xindex ,ldA) = a2;

30 }

31 }

• lines 5-6: Declaration of the Givens coefficients as shared variables, they are common to the

entire block so the broadcast mechanic of shared memory is invoked. Shared memory broadcasts

are triggered when all threads in a warp read from the same shared memory address, this

increases efficiency by providing all threads with a piece of data in one operation.

• lines 8-13: Givens coefficients are loaded in once per block, this makes up for the overhead

incurred by syncthreads().

• line 16: Maps the thread and block index to the row index of the element to be made zero.

• line 17: Maps the thread and block index to the column to be multiplied by the Givens rotation

for this specific thread.

• line 18: Checks for the edge case, the difference between the arguments endx-startx defines

how many coefficients are required for this step (see Figure 3.2 and Figure 3.1). The column index

must also not exceed the leading dimension, this avoids out-of-bounds errors and segmentation

faults.

• lines 19-20: load the elements to be operated on into registers.

• lines 22-23: Givens coefficients are loaded into thread specific registers from shared memory.

• lines 24-26: Apply the Givens rotation.

• lines 28-29: Write the new elements back to main memory.
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Figure 3.3: A diagram depicting the distribution of the calculation of Givens coefficients among

threads in the makeGivens<<<>>> kernel. The example shown is the calculation of Givens coefficients

prior to their application within the strip in step 8, Figure 3.2.
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1 #define TILE_DIM 32

2 #define BLOCK_ROWS 4

3 __global__ void transpose(float *idata , int ldi , float *odata

4 , int ldo , int width , int height)

5 {

6 __shared__ float tile[TILE_DIM ][ TILE_DIM ];

7
8 // calculate the index of the input matrix.

9 int xIndex = blockIdx.y*TILE_DIM + threadIdx.y;

10 int yIndex = blockIdx.x*TILE_DIM + threadIdx.x;

11 //first is a transpose operation to shared memory.

12 //x thread maps to the y axis so a block

13 // directly maps to the first 4 columns.

14 int index_in = (xIndex )*ldi + yIndex;

15
16 //the stepping must not overflow

17 int inlim = min(TILE_DIM ,width -( blockIdx.y*TILE_DIM ));

18 int outlim = min(TILE_DIM ,height -( blockIdx.x*TILE_DIM ));

19
20 //32*4 threads per block and 32*32 values.

21 // conditional code is for edge cases.

22 for (int i=0; i<TILE_DIM; i+= BLOCK_ROWS) {

23 if(threadIdx.x < outlim && threadIdx.y+i < inlim) {

24 tile[threadIdx.x][ threadIdx.y+i] = idata[index_in+i*ldi];

25 }

26 }

27 __syncthreads ();

28
29 // calculate the index of the output matrix.

30 xIndex = blockIdx.x * TILE_DIM + threadIdx.y;

31 yIndex = blockIdx.y * TILE_DIM + threadIdx.x;

32 int index_out = (xIndex )*ldo + yIndex;

33
34 for (int i=0; i<TILE_DIM; i+= BLOCK_ROWS) {

35 if(threadIdx.x < inlim && threadIdx.y+i < outlim) {

36 odata[index_out+i*ldo] = tile[threadIdx.y+i][ threadIdx.x];

37 }

38 }

39 }

Figure 3.4: An efficient transpose kernel, based on [13]. Fermi cache configuration is chosen to prefer

shared memory, this is due to the fact that multiple blocks scheduled per SM will fill up shared

memory fairly quickly (32× 32× sizeof(float) = 4KB per block, 16KB or 48KB shared memory per

SM).
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Chapter 4

QR Updating Algorithms

I will now consider how each of the 4 standard updates to the QR factorisation, adding a block of

columns, removing a block of columns, adding a block of rows, and removing a block of rows, may be

implemented on the GPU. My approach will be systematic, introducing first the sequential algorithm,

then consideration will be given to ways the algorithm may be effectively parallelised and finally, the

GPU based algorithm I implemented will be presented in pseudocode.

4.1 Adding a Block of Columns

The act of adding a block of columns can be defined as considering an initial matrix A (n×m) where

the QR factorisation is A = QR, and a block of columns U (n×p). Providing an index k, 0 ≤ k ≤ m+1,

we can define the updated QR factorisation as:

[A(1 : n, 1 : k − 1) U A(1 : n, k : m)] = Q̃R̃

which we will calculate given just the original Q, R and the new columns U . A visualisation of an

example problem where m = 5, n = 10, p = 3 and k = 3 is given in Figure 4.1.

The diagram shows multiple stages in the reduction process, described in detail in [4] and Section 2.4.

Step 1 involves the Householder reduction of the lower part of QTU and step 2 shows the completion

of the update via Givens rotations.
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Figure 4.1: A diagram of the update of the matrix R, the ‘+’ symbol shows the non-zeros to be

introduced and the ’-’ symbol shows an existing non-zero that must be made zero. ‘*’ shows a generic

non-zero element. The shaded blue shows the added columns, whereas the shaded red shows the

‘active’ section for that stage in the algorithm, this will be discussed later.

The QR update via adding columns in pseudocode is detailed below. Inputs to the update function

are the original Q and R from the factorisation A = QR, the block of columns U being added, and

the right hand side vector from the least squares problem d = QT b.

1 QRUpdateAddColumns(R,Q,d,U,k,p) {

2 allocate Q(1:n,1:n);

3 allocate d(1:n);

4 allocate U(1:n,1:p);

5 allocate R2(1:n,1:m+p);

6
7 transfer HOST:Q to GPU:Q;

8 transfer HOST:d to GPU:d;

9 transfer HOST:U to GPU:U;

10 transfer HOST:R(1:n,1:k-1) to GPU:R2(1:n,1:k-1);

11 transfer HOST:R(1:n,k:m) to GPU:R2(1:n,k+p:m+p);

12
13 %PHASE 0: initialise U.

14
15 R2(1:n,k:k+p-1) = Q’ * U;

16
17 %PHASE 1: Householder reflections.

18
19 blockedQRFactorisation(R2(m+1:n,k:k+p-1),Q,d);

20
21 %if the columns were added on the right hand side the

22 %algorithm is complete.

23 if k == m

24 return;

25 end

26
27
28 %PHASE 2: Givens rotations.

29 %transpose a section into row major form.

30 allocate givensA (1:m+p-(k-1) ,1:m+p-(k-1));

31 transpose <<<>>> R2(k:m+p,k:m+p) to givensA;

32
33 startlim = 1;

30



34 endlim = pnumadded;

35 start = startlim;

36 ending = start +1;

37 stripwidth = m-p-(k-1);

38 q = stripwidth;

39
40 %allocate an arbitrarily large buffer for c and s

41 allocate s(1: stripwidth );

42 allocate c(1: stripwidth );

43
44 while ending > start

45 sync;

46
47 [s c] = makeGivens <<<>>>(givensA );

48
49 sync;

50
51 stream 0: applyGivens <<<>>>(givensA ,s,c);

52 stream 1: applyGivens <<<>>>(Q(1:n,k:n),s,c);

53 stream 2: applyGivens <<<>>>(d(k:n),s,c);

54
55 %if the first givens rotation is mapped to zero within

56 %the triangle that needs to remain nonzero within the

57 %matrix , we increment the starting barrier.

58 %alternatively and initially , we decrement n.

59 if (n+(start -startlim) <= start)

60 start ++;

61 else

62 q--;

63 end

64 %every iteration , as we are making zeros only within a

65 %diagonal , non -zero strip , we increment the end barrier

66 %until we reach the end of the matrix.

67 if (ending < endlim)

68 ending ++;

69 end

70
71 end

72
73 transpose <<<>>> givensA to R2(k:m+p,k:m+p);

74
75 sync;

76 }

• lines 2-11: Memory management on the GPU. Space is allocated in R2 to accommodate the

new columns U between the (k − 1)th and the kth columns of R.

• line 15: Apply Q to the added columns U . Save the result in the allocated space within R2.

• line 19: QR factorise the lower block of QTU as described in Section 3.1 and step 1 in Figure

4.1, the section shaded in red.

• lines 23-25: If the columns are added to the right of R, then the update is complete and the

function exits.

• lines 30-31: Transposes the section shown in red in step 2 of Figure 4.1 to the newly allocated

givensA, such that it is in row major order. givensA is buffered by cudaMallocPitch().

• lines 44-71: Givens rotations are applied to a strip of non-zeros in givensA as described in

Figure 3.2. The application of the Givens coefficients is dependent on their calculation, so the
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calculation of Givens coefficients is surrounded by synchronisation statements. The application

of Givens rotations to givensA, Q and d however are completely independent, so a separate

CUDA stream can be called upon for each. Streams are then scheduled and executed simul-

taneously on the GPU. Givens rotations are applied to QT so transposing Q is not necessary.

Also the leading dimension of d is trivially 1 as it is a vector, so there is no need to transpose d

either.

• line 73: Transposes givensA back to the section shown in red in step 2 of Figure 4.1.

4.2 Removing a Block of Columns

The act of removing a block of columns can be defined as considering an initial matrix A (n × m)

where the QR factorisation is A = QR. Providing an index k, 0 ≤ k ≤ m− p+ 1, and a block width

p, we can define the updated QR factorisation as:

[A(1 : n, 1 : k − 1) A(1 : n, k + p : m)] = Q̃R̃

Which we will calculate given just the original R. Unlike adding rows in the previous section, Q is

not required for the update. A visualisation of an example problem where m = 8, n = 10, p = 3 and

k = 3 is given in Figure 4.2.

Figure 4.2: A diagram of the reduction of one block within the blocked update of the matrix R, the ‘-’

symbol shows an existing non-zero that must be made zero and ‘*’ shows a generic non-zero element.

‘nb’ = 2 in this example and represents the block size. The shaded blue line shows the point that the

removed columns used to occupy, whereas the shaded red shows the ‘active’ section for that stage in

the algorithm, this will be discussed later.

The QR update via removing columns in pseudocode is detailed below. Inputs to the update function

are the original R from the factorisation A = QR, and the right hand side vector from the least

squares problem d = QT b.
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1 QRUpdateRemoveColumns(R,d,k,p) {

2 allocate d(1:n);

3 allocate R2(1:n,1:m-p);

4
5 transfer HOST:d to GPU:d;

6 transfer HOST:R(1:n,1:k-1) to GPU:R2(1:n,1:k-1);

7 transfer HOST:R(1:n,k+p:m) to GPU:R2(1:n,k:m-p);

8
9 if kstart == m-p+1

10 return;

11 end

12
13 blockedQRFactorisation(R2(k:n,k:m-p),d);

14
15 sync;

16 }

• lines 2-7: Memory management on the GPU. Space is allocated in R2 for the remaining m− p

columns. This allows columns R(1 : n, k : k+ p− 1) to be deleted by the act of transferring the

data to the GPU.

• lines 9-11: If the right hand side p columns were deleted, the update is complete, and the

function returns.

• line 13: Blocked QR factorisation much like the one described in Section 3.1, applied to the

submatrix to the right of the removed rows as pictured in Figure 4.2. The adjustments to

the blocked QR algorithm that was presented in Section 3.1 are for efficiency reasons, avoiding

unnecessary addition and multiplication by zero. First, Householder vectors can be limited

to being just p + 1 elements long. Second, W and Y matrices need only be of dimension

(p+ 1) + (nb − 1)× nb where nb is the block size in columns. These block dimensions are again

pictured in Figure 4.2.

4.3 Adding a Block of Rows

The act of adding a block of rows can be defined as considering an initial matrix A (n×m) where the

QR factorisation is A = QR, and a block of rows U (p×m). Providing an index k, 0 ≤ k ≤ n+ 1, we

can define the updated QR factorisation as:


A(1 : k − 1, 1 : m)

U

A(k : n, 1 : m)

 = Q̃R̃

Which we will calculate given just the original R, by Section 2.4, and the new rows U . A visualisation

of the reduction of a single block within a blocked update where m = 6, n = 8, p = 4 is given in Figure

4.3. Note that the value of k does not affect the algorithm method as the added rows can be trivially

permuted to the bottom of the matrix A before the update procedure begins. As adding rows also

adds elements to the length of the right hand side vector b from the least squares problem, we denote

these added elements as e.
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Figure 4.3: A diagram of the reduction of one block within the update of the matrix R, the ‘-’ symbol

shows the non-zeros that must be made zero during the update procedure. ‘*’ shows a generic non-zero

element. The shaded blue shows the added rows. The elements shaded in red in the central matrix are

the elements involved in reduction of a block via Householder reflections, note that the intermediate

zeros are excluded from the calculation. Block size in this example is nb = 2. The elements in the red

shaded area in the matrix to the right are multiplied by the matrices produced in the previous step.

As can be seen in Figure 4.3, a transformation can be applied to a small section of the non-zero

triangular part of R separately to U to avoid wasteful arithmetic involving zero. Use of the W and Y

method method of Householder blocking, introduced in Section 3.1 from [5], would involve both the

full W and Y matrices being applied to both R and U .

An alternative yet similar approach to WY Householder blocking is proposed and explained fully in

[4] involving an upper triangular, square matrix T and a matrix V containing Householder vectors.

Given a set of Householder matrices, the product can be linked to V and T matrices by:

Hnb
...H2H1 = I − V TTV T

where nb represents block size. V is made up of Householder matrices within its columns, V =

[v1 v2 v3 ... vnb
]. By the nature of the problem pictured in Figure 4.3:

V =


Inb

0

vn+1:n+p


As the top of V is the identity, and the middle is zero, only the lowest p rows must be stored increasing

efficiency. The matrix T on the other hand is defined recursively as:

T1 = τ1, Ti =

 Ti−1 −τiTi−1V (1 : p, 1 : i− 1)T vi

0 τi

 , i = 2 : nb

where τi represents the Householder coefficient corresponding to the ith Householder vector in the
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ith column of V . Assignment of individual τi elements within T in a loop is inefficient on the GPU.

Fortunately, as their assignment along the diagonal of T is independent of the remainder of the formula

for T , the entire diagonal can be assigned in parallel beforehand within a simple kernel.

1 // Column major access macro.

2 #define GET(A,i,j,n) A[(j)*(n)+(i)]

3 __global__ void setTau(float *tau , float *T, int limit , int ldT) {

4 int i = blockIdx.x*blockDim.x + threadIdx.x;

5 if(i < limit) {

6 GET(T,i,i,ldT) = tau[i];

7 }

8 }

Pseudocode for the construction of T is presented as the function buildT. It takes as parameters an

allocated square matrix T of dimension nb × nb, and a vector of Householder coefficients tau.

1 buildT(tau ,T) {

2 setTau <<<>>>(tau ,T);

3
4 for k = 2:n_b

5 T(1:k-1,k) = -tau(k)*T(1:k-1,1:k-1)*V(1:p,1:k-1)’*V(1:p,k);

6 end

7 }

Note that as all tau Householder coefficients are created via houseKernel<<<>>> presented in Section

3.1, the unary minus operator has been pre-applied to allow passing to CUBLAS calls by reference

with no unnecessary repetition of calculation. Line 5 can be executed via 2 ‘gemv’ CUBLAS calls.

Another kernel used within the following QRUpdateAddRows() pseudocode is the doubleSum<<<>>>

kernel. Its purpose is to perform an elementwise sum of the entire matrices A and B of dimension

Ctile2× Ctile3 to a tile within the matrix C or:

C(Ctile0 : (Ctile0 + Ctile2), Ctile1 : (Ctile1 + Ctile3)) += A+B

The tile within the matrix C is also of dimension Ctile2×Ctile3 but its top left corner is at element

(Ctile0, Ctile1) within C. The matrix tiling and allocation of thread blocks is the same as that

described in the efficient matrix transpose kernel shown in Figure 3.4 and given in [13].

1 // Column major access macro.

2 #define GET(A,i,j,n) A[(j)*(n)+(i)]

3 __global__ void doubleSum(float *A,float *B,float *C,int Ctile0

4 ,int Ctile1 ,int Ctile2 ,int Ctile3 ,int Csize0 ,int step) {

5 int x = blockIdx.y*WARP_DIM +threadIdx.y;

6 int y = blockIdx.x*WARP_DIM +threadIdx.x;

7
8 int xbase = Ctile1;

9 int ybase = Ctile0;

10 int ldC = Csize0;

11 int ceily = Ctile2;

12 float *baseptr = &(GET(C,ybase ,xbase ,ldR));

13 int xlim = min(( blockIdx.y+1)* WARP_DIM ,Rtile3 );

14 if(y < ceily) {

15 for(int i = x; i < xlim;i+=step) {

16 GET(baseptr ,y,i,ldR) += GET(A,y,i,ceily) + GET(B,y,i,ceily);

17 }

18 }

19 }

35



According to [4], the matrices V and T formed during reduction of a block can be applied to the

trailing submatrix of

 R

U

 by:

[
I − V TTV T

]  R

U

 =

In+p−kb
−


Inb

0

V

TT
[
Inb

0 V T
]

R(kb : kb + nb − 1, kb + nb : m)

R(kb + nb : n, kb + nb : m)

U(1 : p, kb + nb : m)



=


(Inb
− TT )R(kb : kb + nb − 1, kb + nb : m)− TTV TU(1 : p, kb + nb : m)

R(kb + nb : n, kb + nb : m)

−V TTR(kb : kb + nb − 1, kb + nb : m) + (I − V TTV T )U(1 : p, kb + nb : m)



and applied to

 d

e

 by:

[
I − V TTV T

]  d

e

 =


d(1 : kb − 1)

(Inb
− TT )d(kb : kb + nb − 1)− TTV T e

d(kb + nb : n)

−V TT d(kb : kb + nb − 1) + (I − V TTV T )e


where kb is the column index in the blocked update where the recently reduced block began, and nb

is the block size in columns.

The QR update via adding rows in pseudocode is detailed below. Inputs to the update function are

the original R from the factorisation A = QR, the block of columns U being added. The right hand

side vector from the least squares problem is d = QT b and the added elements to the right hand side

vector corresponding to the rows of U are provided in e. n b is the block size parameter.

1 QRUpdateAddRows(R,d,U,e,p,n_b) {

2 allocate d(1:n);

3 allocate R2(1:n+p,1:m);

4
5 transfer HOST:d to GPU:d;

6 transfer HOST:R(1:n,1:m) to GPU:R2(1:n,1:m);

7 transfer HOST:U to GPU:U;

8
9 allocate V(1:p,1:n_b);

10 allocate T(1:n_b ,1:n_b);

11 allocate tau(1:n_b);

12
13 int blockcounter = 0;

14 for j = 1:n_b:m

15
16 %PHASE 1: REDUCE BLOCK

17 jb = min(n_b ,m-j);

18
19 endblock = (i+jb -1);

20 for k = j:endblock

21 index = k-j+1;

22 %form a Householder vector.

23 get address of global s;

24
25 s = dot(U(1:p,k));

26 [tau(index) V(1:p,index )]= housekernel <<<>>>(U(1:p,k),R2(k,k));

27
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28 allocate VTU(1:jb-index +1);

29
30 [VTU] = gemv(U(1:p,k:endblock)’,V(1:p,index );

31
32 allocate RJ(1:jb-index +1);

33
34 copy R2(k,k:endblock) to RJ;

35
36 %two rank one updates to U.

37
38 ger(tau(index),V(1:p,index),RJ ,U(1:p,k:endblock ))

39 ger(tau(index),V(1:p,index),VTU ,U(1:p,k:endblock ))

40
41 %add two vectors to the row in R2.

42
43 axpy(tau[index],RJ ,RJ);

44 axpy(tau[index],VTU ,RJ);

45 copy RJ to R2(k,k:endblock );

46
47 end

48
49 %PHASE 2: BUILD T

50
51 buildT(tau ,T)

52
53 %PHASE 3: UPDATE REMAINING R2, U, b AND e

54
55 allocate TV(1:jb ,1:p)

56
57 [TV] = gemm(T’,V’);

58
59 %form temporary Te and Td.

60
61 allocate Te(1:jb);

62
63 [Te] = gemv(TV,e);

64
65 allocate Td(1:jb);

66
67 [Td] = gemv(T’,b(j:endblock ));

68
69 %Update e.

70
71 e = e + gemv(V(1:p,1:jb),Td);

72 e = e + gemv(V(1:p,1:jb),Te);

73
74 %Update b.

75
76 axpy(1,Td , d(j:endblock ));

77 axpy(1,Te , d(j:endblock ));

78
79
80 if j + jb < m

81
82 %update trailing U and R2.

83 allocate TU(1:jb ,1:m-endblock );

84 allocate TR(1:jb ,1:m-endblock );

85
86 [TU] = gemm(TV,U(1:p,endblock +1:m));

87 [TR] = gemm(T,R2(j:endblock ,endblock +1:m));

88
89 doubleSum <<<>>>(TR ,TU ,R2(j:endblock ,endblock +1:m));

90
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91 U(1:p,endblock +1:m) = U(1:p,endblock +1:m) + gemm(V,TR);

92 U(1:p,endblock +1:m) = U(1:p,endblock +1:m) + gemm(V,TU);

93
94 end

95 end

96 }

We can see that the add rows update is almost entirely made up of CUBLAS routines ‘gemm’, ‘gemv’,

‘ger’, ‘axpy’, and ‘copy’.

4.4 Removing a Block of Rows

The act of removing a block of rows can be defined as considering an initial matrix A (n×m) where

the QR factorisation is A = QR. Providing an index k, 0 ≤ k ≤ n − p + 1, and a block width p, we

can define the updated QR factorisation as:

 A(1 : k − 1, 1 : m)

A(k + p : n, 1 : m)

 = Q̃R̃

Which we will calculate given just the original Q and R. A visualisation of an example problem where

m = 5, n = 12, p = 4 and k = 5 is given in Figure 4.4.

To update Q and R, zeros must be introduced into Q. As Givens transformations to this end are

applied to QT , we can keep Q in column major format and apply the Givens algorithm as detailed

in Figure 3.1. A strip of rows Z is assigned within Q corresponding to the removed rows from A,

Z := Q(k : k+ p− 1, 1 : n), as shaded in blue in Figure 4.4. This strip is where the Givens coefficient

calculation kernel is applied. For efficiency, the number of kernels being spawned per step can be

greatly reduced by allocating a large contiguous block of memory to house the matrices Q and R

along with the vector d as pictured in Figure 4.5. An applyGivens<<<>>> kernel can then be applied

once to the entire composite matrix as opposed to applying a kernel per transformed matrix. This

also presents the opportunity to align memory for all accesses by allocating the composite matrix via

cudaMallocPitch(). The thread blocks for the applyGivens<<<>>> kernel can be increased in size

from x = 128 to x = 256 for better time efficiency due to the large size of the composite matrix. This

reduces the number of blocks, and therefore scheduling overhead, as well as increases the performance

gain from the use of shared memory for Givens coefficients, as discussed in Section 3.2.
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Figure 4.4: A diagram of the update of the matrix R, the ‘-’ symbol shows the non-zeros are to be

explicitly made zero during the update procedure. ‘*’ shows a generic non-zero element. The shaded

blue shows the rows in Q corresponding to the rows removed in A. The elements shaded in red are

the elements to be copied to form Q̃ and R̃. In contrast to the other updating algorithms presented

in this project, the matrix Q is the subject of the calculated Givens rotations as opposed to R.

The QR update via removing rows in pseudocode is detailed below. Inputs to the update function are

the original Q and R from the factorisation A = QR, and the right hand side vector from the least

squares problem d = QT b.

1 QRUpdateRemoveRows(R,Q,d,k,p) {

2 allocate R(1:n,1:m);

3 %allocate a composite matrix to contain , Q, R’, and b.

4 allocate C(1:n+m+1,1:n);

5
6 transfer HOST:R to GPU:R;

7
8 %transfer Q and d to their positions in the composite matrix.

9 transfer HOST:Q to GPU:C(1:n,1:n);

10 transfer HOST:d to GPU:C(n+m+1,1:n);

11
12 %assign the strip in Q that corresponds to the removed rows.

13 Z = C(k:k+p-1,n);

14
15 %transpose R into the composite matrix.

16 transpose <<<>>> R to C(n+1:n+m,1:n);

17
18 startlim = 1;

19 endlim = pnumadded;
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20 start = startlim;

21 ending = start +1;

22 q = n-1;

23
24 %allocate an arbitrarily large buffer for c and s

25 allocate s(1:endlim -startlim +1);

26 allocate c(1:endlim -startlim +1);

27
28 counter = 0;

29 while ending > start

30 sync;

31
32 [s c] = makeGivens <<<>>>(Z);

33
34 sync;

35 applyGivens <<<>>>(C,s,c);

36
37 %if the first givens rotation is mapped to zero

38 %within the triangle that needs to remain

39 %nonzero within the matrix , we increment the

40 %starting barrier. alternatively and initially , we

41 %decrement n.

42 if (n+(start -startlim) <= start)

43 start ++;

44 else

45 q--;

46 end

47 %every 2 iterations we increment the number of

48 %Givens rotations performed in a step as we are

49 %making zeros in a block. We increment the end

50 %barrier until we reach the end of the matrix.

51 counter ++;

52 if (mod(counter ,2) == 0 && ending < endlim)

53 ending ++;

54 end

55
56 end

57
58 allocate R(1:n-p,1:m);

59 transpose <<<>>> C(n+1:n+m,p+1:n) to R;

60
61 %prepare the updated Q and d to output.

62 allocate Q(1:n-p,1:n-p);

63 allocate d(1:n-p);

64
65 copy C(1:k-1,p+1:n) to Q(1:k-1,1:n-p);

66 copy C(k+p:n,p+1:n) to Q(k:n-p,1:n-p);

67
68 copy C(n+m+1,p+1:n) to d;

69
70 sync;

71 }

• lines 2-10: Allocate memory on the GPU along with the large composite matrix C. Q and d

are transferred to their places in C consistent with Figure 4.5.

• line 13: Assign the variable Z to the strip to be made zero by Givens transformations, Z is

shown shaded in blue in Figure 4.4.

• line 16: Transpose R to its place in the composite matrix C. The transpose procedure is as

described in 3.4.

40



• lines 18-56: The block Givens transform algorithm described in Figure 3.1. In the process of

the transformation the Q matrix is reduced to the form shown in the centre of the top of Figure

4.4, with zeros in the first p columns and in Z, with the identity matrix embedded in the first

p columns of Z. This form is guaranteed after the transformation as Q is orthogonal.

• lines 58-68: Prepare the outputs of the update, Q̃, R̃ and the new d.

Figure 4.5: A diagram of the n + m + 1 × n dimension composite matrix used to efficiently apply

Givens rotations in the update algorithm for removing a block of rows.
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Chapter 5

Results

To test the effectiveness of the ideas presented in this project, plots of runtime are presented for

all four of the subject updating algorithms: adding columns, removing columns, adding rows, and

removing rows. All tests will be run via an Nvidia Tesla M2050 (Fermi) GPU from an Intel Xeon

E5649 CPU, 12 core, 2.53GHz as host.

Runtimes of the GPU based algorithms presented in this report are first compared to a sequential

implementation of each algorithm implemented entirely on a single CPU core. All kernel invocations

are replaced by sequential loops and any CUBLAS calls substituted by their corresponding calls

provided by the CLAPACK library. All sequential loops are organised in such a way that they are

cache efficient. In order to make the comparison between the sequential and GPU updating algorithms

as direct and informative as possible, input and output data from the timed algorithm will exist in

host memory. In the GPU updating implementations this requires us to time the transfer of inputs to

the CPU as well as timing the transfer of outputs back to the host following the update. From now

on I will refer to this process as Transfer-Update-Transfer or TUT. For sequential implementations,

no initial or final copying of data is recorded, unless it is relevant to the course of the algorithm.

The second runtime comparison presented is against a full QR factorisation based least squares solve

from an existing popular commercial linear algebra library, CULA version R14. Specifically, the

runtime of the CULA ‘culaDeviceSgels’, a QR factorisation least squares routine, along with the

necessary allocation of memory and transfer to the device is measured. This full QR factorisation

begins with the updated matrix Ã, and right hand side vector b̃, in host memory and ends with the

solution to the updated least squares problem:

minx||Ãx− b̃||2 (5.1)

residing in memory on the GPU. As a direct and practically useful comparison, the algorithms de-

veloped in this project will be timed from the point that they receive a Q, R, and d = QT b, from

a previously executed QR factorisation. The inputs are subsequently transferred to the GPU, and

updated via the appropriate QR updating algorithm. The time measurement stops after the resulting

R̃, and d̃ are used to solve (5.1) via a CUBLAS back substitution routine, cublasStrsm(). This timed

procedure will be referred to from now on as Transfer-Update-Solve or TUS. The Q matrix is not
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required for updates involving the addition of rows or the removal of columns, therefore Q is omitted

from these algorithms.

The overdetermined systems that the algorithms presented in this paper are applied to are composed

of uniformly random generated numbers on the interval (−1, 1), this is assumed to ensure that they

are always non-singular. All runtimes are measured in seconds and all values presented are average

runtimes over 5 executions.

5.1 Limitations

A limitation of note with regard to the tests versus the sequential CLAPACK implementation is

that the CLAPACK library itself is a Fortran port [1] and is not entirely optimised for the CPU

architecture it is run on compared to a more platform, and language specific implementation of BLAS

such as ATLAS [14]. Another limitation is with regard to the use of the CULA library as a GPU based

comparison. CULA is a successful, mature, and highly optimised library that has been developed over

many years (since as early as 2004), so any direct comparison between the runtime of the CULA

algorithm and the algorithms presented in this project would be unfair. However, the relative general

trend in runtimes between timed programs will be relevant.

5.2 Choosing the Block Size Parameter

For the updating algorithms that involve Householder blocking, namely adding columns, removing

columns, and adding rows, each must have a constant block size nb to use during all other tests. It is

not practical in this case to try all possible other parameter values in conjunction with nb to attempt

to find an absolute optimum value. Instead we will approximate an optimum blocking value for each

algorithm, based on a model problem size, as a proportion of the problem width.

The results for the block size test for GPU TUT algorithms are shown in Figure 5.1, and runtime

values are given in Table 5.2. Problem parameters were chosen such that each algorithm applied 1000

Householder vectors to zero 1000 columns. The optimum block size can be seen to lie between 50 and

100 columns per block. For simplicity I will choose the optimum block size for all further tests to be

100
1000 = 0.1 multiplied by the number of columns to zero, or ten blocks per factorisation. For simplicity

I will also assume this is the optimum block size for the GPU TUS algorithms.

Runtimes for sequential algorithms on the other hand were monotonically increasing as a function of

block size, as shown in Table 5.1. For sequential tests a block size of 1 will be used, or a non-blocked

approach to applying Householder reflections.
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Figure 5.1: Plot of Runtimes of GPU TUT algorithms against block size for adding columns, removing

columns, and adding rows. Values are given in Table 5.2.

nb Adding Rows Adding Columns Removing Columns

n = 4000,m = 1000 n = 4000,m = 1000 n = 4000,m = 1200

k = 250, p = 200 k = 250, p = 1000 k = 0, p = 200

1 0.368 8.506 0.232

10 0.370 8.526 0.241

50 0.382 8.638 0.292

100 0.435 8.763 0.353

200 0.514 8.999 0.476

500 0.777 9.693 0.713

Table 5.1: Runtimes in seconds for sequential updating algorithms involving 1000 Householder reflec-

tions applied via different block sizes nb. Removing Rows is omitted as is does not involve Householder

Reflections.
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nb Adding Rows Adding Columns Removing Columns

n = 4000,m = 1000 n = 4000,m = 1000 n = 4000,m = 1200

k = 250, p = 200 k = 250, p = 1000 k = 0, p = 200

10 0.194 0.389 0.201

50 0.175 0.285 0.183

100 0.175 0.280 0.182

200 0.185 0.288 0.190

500 0.214 0.336 0.235

Table 5.2: Runtimes in seconds for GPU TUT algorithms involving 1000 Householder reflections

applied via different block sizes nb. Removing Rows is omitted as is does not involve Householder

Reflections.
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5.3 Adding Columns

Updating a QR factorisation by adding a block of columns requires the information contained in the

orthogonal matrix Q to calculate R̃. This requirement dictates that, to test the algorithms practical

viability, we must output Q̃ as well as R̃ to enable subsequent updates. The orthogonal matrix Q is

a large n × n matrix that is a by-product of a full QR factorisation of A by definition, A = QR. Q

is however, for efficiency and memory capacity reasons, not often formed in practice. For example,

CULA linear solve does not require the formation of Q, this is a large performance advantage over the

update algorithm. In this case therefore, the direct comparison is forfeited in favour of the practical

one as the full formation of Q is rarely necessary.

5.3.1 Complexity

The complexity of a column update is:

O(nmp+ (n−m)p2 + (n−m)np+ (m+ p− k)2p+ (m+ p− k)pn) (5.2)

where the expression could be simplified by collecting like terms, but as it is more useful for our

purposes to identify the complexities of separate parts of the algorithm, this was not done. The first

term comes from the matrix multiplication QTU , whereas second and third terms come from the QR

factorisation of the lower part of U detailed in Figure 4.1, and the subsequent application of the trans-

forms to the Q matrix. Finally the last two terms come from the application of Givens matrices to R

and Q to finish off the update, also detailed in Figure 4.1. The full factorisation becomes, following

the addition of p columns:

O(n(m+ p)2) (5.3)

so the update is in theory only less complex for certain values of the constituent variables, n, m, k,

and p.

k represents the location within the matrix A at which the columns U are added. When k gets smaller,

the fifth term in (5.2) becomes dominant, and complexity of (5.2) approaches (5.3).

5.3.2 Adding Columns GPU TUT vs Sequential Update

The GPU TUT adding columns algorithm performed very well compared to the sequential update.

Due to the large, polynomial complexity of the update, and the involvement of the large matrix Q,

the GPU implementation TUT was 10s to 100s of times faster than the sequential version for fairly

low values of n and m. This is presented in Table 5.3, and plotted in Figure 5.2. Runtime values for

GPU TUT vs sequential update with varying p is given in Table 5.7, it can be obviously seen that

there is increasing speedup of GPU TUT over the sequential update with increased p.
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Figure 5.2: Plot of speedup of the GPU TUT by adding columns against a sequential update, with

varying update location parameter k. Values for the plot are given in Table 5.3.

n=4000 n=8000 n=12000

k Sequential Update TUT Sequential Update TUT Sequential Update TUT

0 102.347 2.380 163.806 3.949 259.746 5.929

500 81.432 1.912 137.077 3.311 226.277 5.079

1000 61.654 1.478 112.467 2.697 192.782 4.348

1500 42.123 1.086 89.610 2.167 163.276 3.551

2000 28.622 0.739 68.869 1.649 135.380 2.917

2500 16.647 0.439 49.776 1.162 108.846 2.280

3000 5.846 0.172 32.932 0.735 83.457 1.737

Table 5.3: Runtimes in seconds for GPU TUT by adding columns against a sequential update, with

parameters: m = 3000, p = 200. The plot for these values is Figure 5.2.
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5.3.3 Adding Columns GPU TUS vs CULA Solve

Now, we consider our second comparison between GPU TUS and the CULA solve. The theoretical

inverse relationship between k and runtime is investigated in Figure 5.3 and Figure 5.4. Runtimes are

shown as speedup values with respect to the CULA least squares algorithm. The trend observed with

both plots Figure 5.3 and Figure 5.4 is indeed the inverse relationship between k and runtime of the

GPU update algorithm, with only the highest values of k showing observed speedup over the CULA

algorithm. Different lines on both plots show data from different values of the matrix height n. The

lower values of n in this case exhibit larger speedup values in the update over the full factorisation,

this is possibly due to the added complexity in the updating algorithm with the involvement of the

matrix Q.

Figure 5.4 shows the results from speed tests with higher m values than Figure 5.3. The complexity

of a full QR factorisation is increased with higher values of m whereas complexity in the update is

increased with the difference between m and k. This means that, as observed, the GPU updating

algorithm performs better relative to the CULA algorithm with increased m, and k close to m.

Figure 5.3: Plot of speedup of the GPU implementation of the adding columns updating algorithm

against a CULA least squares solve, with varying update location parameter k. Values for the plot

are given in Table 5.4.
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n=4000 n=8000 n=12000

k CULA Solve TUS CULA Solve TUS CULA Solve TUS

0

0.380

2.357

1.000

3.867

1.594

5.670

500 1.887 3.219 4.825

1000 1.464 2.636 4.048

1500 1.075 2.046 3.360

2000 0.725 1.499 2.667

2500 0.404 1.021 1.941

3000 0.155 0.613 1.445

Table 5.4: Runtimes in seconds for GPU TUS by adding columns vs CULA Solve, with parameters:

m = 3000, p = 200. The plot for these values is Figure 5.3. Note that the runtime for CULA solve is

constant, this is due to that fact that varying k does not change the problem size.

n=8000 n=12000 n=16000

k CULA Solve TUS CULA Solve TUS CULA Solve TUS

0

1.797

8.585

3.003

11.385

4.241

14.458

500 7.670 10.280 13.184

1000 6.730 9.162 11.930

1500 5.951 8.152 10.642

2000 5.112 7.249 9.639

2500 4.393 6.307 8.551

3000 3.720 5.423 7.512

3500 3.068 4.562 6.534

4000 2.458 3.865 5.425

4500 1.876 3.055 4.660

5000 1.388 2.414 3.717

5500 0.911 1.675 2.953

6000 0.503 1.177 2.187

Table 5.5: Runtimes in seconds for GPU TUS by adding columns vs CULA Solve, with parameters:

m = 6000, p = 200. The plot for these values is Figure 5.4. Note that the runtime for CULA solve is

constant, this is due to that fact that varying k does not change the problem size.
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Figure 5.4: Plot of speedup of the GPU implementation of the adding columns updating algorithm

against a CULA least squares solve, with varying update location parameter k. Values for this plot

are shown in Table 5.5.

This trend regarding the difference between k and m is as expected as, referring the the diagram

of the algorithm in Figure 4.1, the shaded red tile involved in the Givens Rotation (stage 2) of the

update gets larger with m− k. This observation is shown to be relevant in Figure 5.5, with runtime

values in Table 5.6. Figure 5.5 presents a pie chart showing the composition of the runtime of the

GPU updating algorithm. The top chart presents the running of the algorithm with k close to 0. We

can see that the runtime is dominated by the Givens rotation stage, which corresponds to the last two

terms of (5.2), so is as expected. This conclusion is reinforced by the second chart which pictures the

composition of the runtime of the same algorithm, but this time with k close to m. The runtimes of

all algorithm stages other than the Givens stage in fact stay fairly constant as can be seen in Table

5.6, while the proportion contributed by the Givens stage diminishes considerably.

The origin of the poor performance of the Givens rotation stage of the algorithm may be attributed

to the O((m − k) + (m − k)) number of kernels invoked during the procedure incurring a large

overhead. This effect can be observed in Figure 5.5 as the relatively small runtime of the comparable

complexity, single kernel QTU matrix multiplication or the transpose procedure, have small runtimes

in comparison to the Givens stage. A possible method to reduce the number of kernel calls required

during the application of Givens rotations is presented in Figure 4.5 and investigated in Table 5.20
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and Figure 5.17. The extremely small contribution overall runtime given by the transpose procedure

also justifies its inclusion in the algorithm to make the Givens stage more cache efficient as discussed

in Section 3.2.

The complexity of (5.2) also increases quadratically with p in the second term, corresponding to the

Householder transformation procedure. This trend is shown in Figure 5.6, with values given in Table

5.7. TUS runs faster than the full GPU QR factorisation only for the smaller values of p, this is to

be expected as with p→ m the complexity of the update approaches the full QR factorisation. This

extra complexity is due to the fact that the Householder reflections calculated to reduce the lower

part of the added columns U , as pictured in the central matrix in Figure 4.1, also have to be applied

to the large matrix Q. For the experiment shown in Figure 5.6, a high constant value of k was chosen.

This was due to the findings presented in Figure 5.3 and Figure 5.4 that the best case performance

can be gained from a small m− k value. However, k = m was not chosen as the Givens stage of the

update would not be executed as the update would be complete following the Householder reflections

stage, see Figure 4.1. This would not be an accurate portrayal of the full update algorithm due to the

large contribution of the Givens stage to total runtime as shown in Figure 5.5.

Algorithm Stage k = 500 k = 5500

Memory Transfer (HOST→GPU) 0.4913 0.5102

QTU 0.1922 0.1922

Householder Reflections 1.3950 1.3936

Transpose Procedures 0.0291 0.0006

Givens Rotations 11.0144 0.7949

Table 5.6: Runtimes in seconds corresponding to the stages pictured in Figure 5.5.

n = 5000 n = 8000

Experiment 1 Experiment 2 Experiment 1 Experiment 2

p CULA Solve TUS Seq. Update TUT CULA Solve TUS Seq. Update TUT

100 0.500 0.180 5.410 0.216 0.870 0.386 19.225 0.498

300 0.528 0.323 15.837 0.348 0.919 0.732 57.924 0.866

500 0.555 0.428 26.001 0.448 0.973 0.967 83.385 1.060

700 0.564 0.526 35.988 0.586 1.028 1.198 133.165 1.326

900 0.603 0.643 45.503 0.685 1.085 1.392 172.120 1.523

1100 0.620 0.731 54.726 0.767 1.149 1.606 205.736 1.763

1300 0.648 0.848 63.853 0.888 1.221 1.885 246.458 2.001

1500 0.683 0.954 72.324 0.974 1.230 2.027 277.459 2.181

Table 5.7: Runtimes in seconds for k = 2980,m = 3000. The plot for the values corresponding to the

comparison between GPU TUS and the CULA solve is shown in Figure 5.6. The values corresponding

to the comparison between GPU TUT and the sequential update are not plotted.
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Figure 5.5: Pie charts showing the respective contributions to the runtime of the GPU update algo-

rithm by the various components that compose it. The top execution was run via the parameters

n = 16000, m = 6000, k = 500, and p = 200, and the bottom via n = 16000, m = 6000, k = 5500,and

p = 200.
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Figure 5.6: Plot of speedup of the GPU implementation of the adding columns updating algorithm

against a CULA least squares solve, with varying update size parameter p. k = 2980 as if k = 3000

the Givens rotation stage of the updating algorithm would not take place.
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5.4 Removing Columns

Unlike the update by adding columns discussed in the previous section, the update by removing

columns can be implemented without the involvement of the orthogonal matrix Q.

5.4.1 Complexity

Without the involvement of Q, a decreased complexity is expected compared to algorithms that do

involve Q. The complexity of a removing columns update procedure is:

O((m− k − p)2p) (5.4)

compared to the complexity of a full QR factorisation of an n×m matrix with p columns removed:

O(n(m− p)2) (5.5)

An obvious first observation given (5.4) and (5.5) is that the complexity of an update via removing

columns is not dependent on the matrix height n, whereas the complexity of a full QR factorisation is.

The implication of this fact is that, given a sufficiently large n, GPU TUS will outperform a full GPU

QR factorisation. The trend with n is shown in Figure 5.9 with a linear increase in speedup of the GPU

updating algorithm over the full QR factorisation. This is a feature of the underlying algorithms as in

Table 5.11 the runtime of the updating algorithm stays fairly constant with increased n and runtime

for the full QR factorisation increases linearly, any minor increase in the runtime for GPU TUS with

increased n can be attributed to increased data transfer overhead. Another observation of note with

(5.4) is that the complexity of an update by removing columns is, as with adding columns, heavily

dependent on the value m− k. This is in fact demonstrated for removing columns GPU TUT vs the

sequential implementation in Figure 5.7, and GPU TUS vs a full QR factorisation in Figure 5.8.

5.4.2 Removing Columns GPU TUT vs Sequential Update

GPU TUT gains a speedup over the sequential update for large values of m− k and p as larger values

of these variables increases the number of flops involved in the update by (5.4). Higher p values

increase the length of the Householder vectors applied to R, and in turn increases the size of the

matrix blocks in the blocked GPU Householder implementation. Increased complexity in these BLAS

level 3 routines better utilises the instruction bandwidth available on the GPU, and therefore increases

throughput and overall algorithm efficiency over a sequential implementation. A ‘Householder block’

is pictured as shaded in red in the centre of Figure 4.2. Larger m− k values increases the size of the

trailing submatrix to be multiplied as well as increasing Householder block size in this case, which

increases instruction throughput on the GPU in the same way as with p.

The ‘trailing submatrix’ referred to in this case is pictured as shaded in red to the right in Figure

4.2. For small values of m − k there is observed slowdown of GPU TUT against the sequential

implementation, this is due to the small overall algorithmic complexity and therefore runtime being

exceeded by the various overheads of GPU execution. These overheads are namely the cost of kernel

calls and, more importantly, initial and final transfers of data to and from the GPU respectively. Even
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though this discussed slowdown is shown in Figure 5.7, the actual runtime values shown in Table 5.8,

Table 5.9, and Table 5.10 corresponding to these cases are practically negligible for both GPU TUT

and the sequential update.

Figure 5.7: A plot of the speedup of GPU TUT for removing columns against a sequential update via

removing columns. Each line exhibits a different p value and each line shows the trend of speedup

with varying k.
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5.4.3 Removing Columns GPU TUS vs CULA Solve

GPU TUS gains speedup over the full CULA QR for all values except the smallest k, as discussed

previously however, simply increasing n would mean GPU TUS speedup over full QR for all k. For

comparison purposes however, modest values of n are used throughout this section. As can be easily

seen from Figure 4.2, m − k − p + 1 Householder reflectors are required per update. The smaller

the value of m − k therefore, the less work there is to do to complete an update. Increased values

of p also decreases the number of the m − k − p + 1 Householder reflectors required to carry out an

update, however increased p also increases the amount of overall complexity for GPU TUS by (5.4)

and decreases the overall complexity for a full QR factorisation by (5.5), due to the smaller matrix

size after column removal, this theoretically should close the gap in runtime. However, as the GPU

has exceptional instruction throughput and performance is therefore less sensitive to increased work

within a kernel and is more sensitive to an increased number of kernel calls, the overall effect of

increased p is to increase speedup of GPU TUS over full GPU QR.

Figure 5.8: A plot of the speedup of GPU TUS for removing columns against a full QR factorisation

in CULA. Each line exhibits a different p value and each line shows the trend of speedup with varying

k.
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Experiment 1 Experiment 2

k CULA Solve TUS Sequential Update TUT

0

0.662

0.601 1.260 0.640

500 0.526 0.811 0.520

1000 0.417 0.557 0.426

1500 0.312 0.315 0.318

2000 0.212 0.145 0.208

2500 0.111 0.049 0.124

2900 0.050 0.026 0.054

Table 5.8: Runtimes in seconds for p=100, m = 3000, n = 6000.

Experiment 1 Experiment 2

k CULA Solve TUS Sequential Update TUT

0

0.631

0.605 1.886 0.609

500 0.482 1.282 0.489

1000 0.387 0.796 0.392

1500 0.287 0.429 0.289

2000 0.189 0.178 0.190

2500 0.101 0.046 0.106

2800 0.047 0.024 0.048

Table 5.9: Runtimes in seconds for p=200, m = 3000, n = 6000.

Experiment 1 Experiment 2

k CULA Solve TUS Sequential Update TUT

0

0.565

0.609 3.987 0.611

500 0.479 2.358 0.481

1000 0.353 1.455 0.359

1500 0.239 0.664 0.239

2000 0.136 0.186 0.139

2500 0.042 0.025 0.055

Table 5.10: Runtimes in seconds for p=500, m = 3000, n = 6000.
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Figure 5.9: A plot of the speedup of GPU TUS for removing columns against a full QR factorisation

in CULA. The plot shows the trend of speedup with varying n. Values are given In Table 5.11.
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n CULA Solve TUS

6000 0.562 0.591

7000 0.672 0.600

8000 0.753 0.592

9000 0.871 0.596

10000 0.959 0.597

11000 1.101 0.616

12000 1.193 0.620

Table 5.11: Runtimes in seconds for removing columns GPU TUS against a full QR factorisation for

parameters m = 3000, k = 0, p = 500. The plot corresponding to these values is shown in Figure 5.9.
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5.5 Adding Rows

Unlike the other updating algorithms, the block of rows U added to the matrix A can be permuted

to the bottom of the matrix without altering the algorithm method as shown in Section 2.4, and

Figure 4.3. Given this fact we can neglect the variation of the update location parameter k for this

section and set it to 0 for all tests involving the update by adding rows. Like the update via removing

columns, the update via adding rows does not require the orthogonal matrix Q as an input.

5.5.1 Complexity

The complexity of the update by adding rows is:

O(m2p+m2) (5.6)

compared to the complexity of a full QR factorisation of an n×m matrix with p rows added:

O((n+ p)m2) (5.7)

Once again, the matrix height n does not appear within the (5.6) complexity formula. This is due to

the fact that, as shown in Figure 4.3, each Householder transformation needs only to be applied to

the added rows matrix U of dimension p×m, and a single row within the non-zero triangular part of

R. This again means that the runtime of the QR update will remain constant with increasing n while

the runtime of the full QR factorisation will increase linearly, as shown in Figure 5.13 and Table 5.16.

5.5.2 Adding Rows GPU TUT vs Sequential Update

The trend in speedup of GPU TUT over the sequential update is given in Figure 5.10, for varying

update size p. As expected we can see increased speedup over the sequential version for increased p as

this increases the amount of computation to be done per Householder transform, and therefore in the

GPU TUT implementation, more computation per kernel invocation. As previously discussed, more

work per kernel invocation increases efficiency on the GPU due to its large instruction bandwidth.

Increasing the matrix width parameter m also increases GPU TUT speedup over the sequential al-

gorithm. This can be attributed to the increased size of the trailing submatrix that the blocked

Householder matrix is applied to, pictured on the right of Figure 4.3 shaded in red. The application of

a blocked Householder matrix to another matrix is a BLAS level 3 operation, so as large BLAS level 3

operations achieve high instruction throughput on the GPU, the efficiency and speedup is increased.
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Figure 5.10: A plot of the speedup of GPU TUT for adding rows against a sequential update via

adding rows. Each line exhibits a different m value and each line shows the trend of speedup with

varying p. Values are given in Table 5.12, Table 5.13, and Table 5.14.

5.5.3 Adding Rows GPU TUS vs CULA Solve

Now, considering Figure 5.11 involving speedup of GPU TUS over CULA Solve. We observe the

opposite trend in speedup compared to the observations in Figure 5.10 against the sequential update,

with speedups decreasing with increased p and m. The trend involving p however is not surprising as

the relative complexities (5.6)
(5.7) → 1 as p → ∞, this however suggests that it should be the case that

speedup→ 1 as p→∞ as well, which is not the case as observed by the crossover on Figure 5.12 for

p = 1500, at m = 7000. This can be explained in part by the fact that, in the process of avoiding

multiplication by zero, pictured in Figure 4.3, the application of Householder transformations was split

into twice the number of CUBLAS calls than is required in an efficient blocked full QR factorisation

such as the one presented in [5]. This cost seems to be amortised by the reduced amount of complexity

in the update for low p values, for higher values of p however, this is not the case.

The main purpose of Figure 5.12 is to fully illustrate the trend of speedup of GPU TUS over CULA

Solve with varying matrix width m. Efficiency of GPU TUS decreases with increasing m due to the

fact that, for each of the m Householder reflections, multiple CUBLAS calls take place sequentially

as described in Section 4.3. This is not as efficient as implementing just one kernel per Householder

reflection at the expense of a longer development time. It can be observed by Table 5.15 that runtimes
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of both GPU TUS and CULA Solve increase super linearly with increased m, as expected from (5.6)

and (5.7).

Figure 5.11: A plot of the speedup of GPU TUS for adding rows against a full GPU CULA QR

factorisation. Each line exhibits a different m value and each line shows the trend of speedup with

varying p. Values are given in Table 5.12, Table 5.13, and Table 5.14.
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Figure 5.12: A plot of the speedup of GPU TUS for adding rows against a full GPU CULA QR

factorisation. Each line exhibits a different p value and each line shows the trend of speedup with

varying m. Values are given in Table 5.15.
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Experiment 1 Experiment 2

p CULA Solve TUS Sequential Update TUT

100 0.316 0.194 0.375 0.203

300 0.322 0.200 1.020 0.203

500 0.328 0.205 1.622 0.218

700 0.341 0.214 2.181 0.227

900 0.343 0.223 2.953 0.233

1100 0.359 0.239 3.501 0.244

1300 0.367 0.245 4.240 0.251

1500 0.370 0.249 4.840 0.267

Table 5.12: Runtimes in seconds for m=1000, k = 0, n = 8000.

Experiment 1 Experiment 2

p CULA Solve TUS Sequential Update TUT

100 0.611 0.393 1.296 0.408

300 0.627 0.409 3.506 0.422

500 0.641 0.433 5.727 0.443

700 0.658 0.458 7.960 0.476

900 0.673 0.485 10.255 0.499

1100 0.687 0.518 12.493 0.526

1300 0.690 0.536 14.839 0.545

1500 0.717 0.574 17.578 0.591

Table 5.13: Runtimes in seconds for m=2000, k = 0, n = 8000.

Experiment 1 Experiment 2

p CULA Solve TUS Sequential Update TUT

100 0.958 0.609 2.904 0.629

300 1.008 0.660 7.894 0.674

500 1.025 0.698 12.909 0.723

700 1.039 0.757 18.179 0.781

900 1.089 0.824 23.764 0.827

1100 1.115 0.876 28.877 0.872

1300 1.140 0.925 34.577 0.935

1500 1.136 0.968 41.810 0.995

Table 5.14: Runtimes in seconds for m=3000, k = 0, n = 8000.
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p=200 p=1500

m CULA Solve TUS CULA Solve TUS

1000 0.321 0.192 0.373 0.253

2000 0.611 0.398 0.730 0.589

3000 0.981 0.627 1.137 0.986

4000 1.383 0.908 1.654 1.482

5000 1.802 1.200 2.219 2.075

6000 2.265 1.551 2.807 2.754

7000 2.746 1.931 3.414 3.485

Table 5.15: Runtimes in seconds for GPU TUS for adding rows against a full GPU CULA QR fac-

torisation at parameter values: n = 8000, k = 0. Speedups of GPU TUS over CULA QR factorisation

are plotted in Figure 5.12.

Figure 5.13: A plot of the speedup of GPU TUS for adding rows against a full QR factorisation in

CULA. The plot shows the trend of speedup with varying n. Values are given In Table 5.16.
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n CULA Solve TUS

8000 1.174 1.006

9000 1.300 0.991

10000 1.440 1.021

11000 1.583 1.015

12000 1.717 1.019

13000 1.845 0.999

14000 2.002 1.040

Table 5.16: Runtimes in seconds for GPU TUS for adding rows against a full QR factorisation in

CULA for parameters m = 3000, k = 0, p = 500. The plot corresponding to these values is shown in

Figure 5.13.
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5.6 Removing Rows

As in the update for adding columns, updating by removing rows requires the orthogonal matrix Q as

an input. First, Figure 5.17 and Table 5.20 show the improvement in runtime of the removing rows

TUS using the composite matrix, as proposed in Section 4.4 and illustrated in Figure 4.5, against

the application of Givens rotation kernels to the matrices Q, R, and the vector d separately using

streams. The method involving streams was used previously for the adding columns update algorithm.

An approximate 45% speedup is observed by using the composite matrix method and reducing 3 lower

complexity kernel calls to apply the Givens rotations to one, higher complexity kernel invocation. This

further demonstrates the importance of reducing the number of kernel calls to increase performance.

Regardless of this performance improvement, GPU TUS still performed poorly overall compared to

the full QR factorisation.

5.6.1 Complexity

The updating algorithm by removing rows is entirely implemented using Givens rotations. The fact

that updating by removing rows requires Q, coupled with the fact that Givens transformations must

be applied to introduce a strip of zeros of p width directly into the matrix Q, make an update by

removing rows the most computationally complex of all four updates. The complexity formula is:

O(pn(n+m+ 1)) (5.8)

compared to the complexity of a full QR factorisation of an n×m matrix with p rows removed:

O((n− p)m2) (5.9)

As can be seen from (5.8), the complexity of the removing rows update is not dependent on the update

location parameter k. This is due to the fact that all Givens transformations must be applied to the

entire length n of the matrix Q and the entire width m of the matrix R, regardless of the value of k,

this is discussed in Section 4.4.

5.6.2 Removing Rows GPU TUT vs Sequential Update

First of all, the GPU TUT by removing rows gains extremely large speedups over the sequential

update. This is largely due to the high complexity of the algorithm causing runtimes of the sequential

update to become extremely large for fairly small problem sizes. We can see from Table 5.17 that the

runtime of the sequential update increases linearly with p as expected from (5.8), but at a much higher

rate than the GPU implementation which is evidence that the algorithm parallelises well. However

with increased n, even though both algorithms experience a quadratic increase in runtime and speedup

of GPU TUT over the sequential algorithm tends to increase with n, we see that speedup slows its

increase with higher n values by Figure 5.14. This could be due to the fact that the number of kernels

invoked per GPU update increases with n and the maximum number of Givens rotations applied

per kernel is capped by p, as shown in Figure 3.1. No further tests were done involving sequential
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updates due to the large execution times and poor performance for all parameters compared to the

GPU implementation.

Figure 5.14: A plot of the speedup of GPU TUT for removing rows against the sequential update for

m = 1000, k = 0. Each line exhibits a different n value and each line shows the trend of speedup of of

GPU TUT over the sequential update with varying p. Values are given in Table 5.17.
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n = 2000 n = 4000 n = 6000

p Sequential Update TUT Sequential Update TUT Sequential Update TUT

20 1.954 0.218 6.605 0.519 12.439 0.904

40 3.850 0.271 11.296 0.663 24.538 1.245

60 5.740 0.319 16.847 0.838 36.669 1.557

80 7.642 0.363 23.769 1.001 48.711 1.889

100 9.483 0.414 32.244 1.158 60.760 2.213

Table 5.17: Runtimes in seconds of GPU TUT for removing rows and the sequential update for

parameters m = 1000, k = 0. A plot of speedups is shown in Figure 5.14.

5.6.3 Removing Rows GPU TUS vs CULA Solve

Even though the GPU removing rows updating algorithm performs well compared to the sequential

version of the same algorithm, GPU TUS performs poorly compared to the full CULA QR factorisa-

tion and solve. The trends in speedup values of the runtime of GPU TUS against the CULA solve with

varying p, n and m parameter values are illustrated in Figure 5.15 and Figure 5.16. The general trend

with increasing n and p illustrated in both plots is a marked decrease in performance of the GPU

TUS algorithm. This observation is further evidence towards the conclusion that the performance

issues exhibited by this implementation of Givens rotations on the GPU is due to kernel invocation

overhead as, in big-O notation, the number of kernel invocations within GPU TUS is:

O(n+ p) (5.10)

kernels. The trend of decreased efficiency in GPU TUS with n however is not quite as severe as is

suggested by the pn2 complexity from (5.8) and the conclusion drawn previously from (5.10), with

only a 10% decrease in relative speedup in response to a 100% increase in the n parameter from 8000

to 16000 in Figure 5.16. Referring to the Table 5.19 however it is shown that the runtime of full

CULA QR factorisation more than doubles between matrix height n = 8000 and n = 16000 as by

(5.9), complexity of a full QR factorisation increases linearly with n. This, paired with the fact that

complexity of full QR decreases with increased p, also by (5.9), means that the slowdown rate of GPU

TUS over full CULA QR factorisation is more sensitive to increased p than to increased n.

The effect of m is illustrated in Figure 5.15 and, with m close to n, runtimes of GPU TUS that are

faster than the full QR factorisation are observed. Complexity of the full QR factorisation increases

with m quadratically by (5.9) and illustrated as runtimes in Table 5.18. The complexity added by

increased m in TUS on the other hand is linear and the corresponding m operations are executed

within a larger kernel call, this results in an overall increase in speedup of TUS relative to full CULA

QR with increased m.

69



Figure 5.15: A plot of the speedup of GPU TUS for removing rows against a full GPU CULA QR

factorisation. Each line exhibits a different m value and each line shows the trend of speedup with

varying p. Values are given in Table 5.18.

m = 6000 m = 8000 m = 10000

p CULA Solve TUS CULA Solve TUS CULA Solve TUS

20 2.999 3.068 4.240 3.325 5.680 3.592

40 2.895 4.646 4.185 5.189 5.563 5.631

60 2.963 6.417 4.202 6.989 5.631 7.674

80 2.921 8.111 4.088 8.851 5.435 9.679

100 2.954 9.752 4.144 10.706 5.575 11.742

Table 5.18: Runtimes in seconds of GPU TUS for removing rows and a full CULA QR factorisation

for parameters n = 12000, k = 0. A plot of speedups is shown in Figure 5.15.
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Figure 5.16: A plot of the speedup of GPU TUS for removing rows against a full GPU CULA QR

factorisation. Each line exhibits a different n value and each line shows the trend of speedup with

varying p. Values are given in Table 5.19.

n = 8000 n = 12000 n = 16000

p CULA Solve TUS CULA Solve TUS CULA Solve TUS

20 1.745 1.736 2.999 3.068 4.197 4.587

40 1.775 2.635 2.895 4.646 4.176 7.266

60 1.773 3.501 2.963 6.417 4.205 10.064

80 1.757 4.371 2.921 8.111 4.116 12.773

100 1.713 5.181 2.954 9.752 4.116 15.335

Table 5.19: Runtimes in seconds of GPU TUS for removing rows and a full CULA QR factorisation

for parameters m = 6000, k = 0. A plot of speedups is shown in Figure 5.16.
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Figure 5.17: Speedup of a GPU TUS removing rows update algorithm using a composite matrix over

a GPU TUS removing rows update algorithm which makes use of CUDA streams as opposed to a

composite matrix, see Figure 4.5. Values are given in Table 5.20.

m composite non-composite

1000 1.001 1.441

2000 1.116 1.583

3000 1.244 1.762

4000 1.363 2.048

Table 5.20: Runtimes in seconds for TUS where n = 5000, k = 0, p = 50. The plot is in Figure 5.17.
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5.7 Stability

Throughout all of the experiments carried out for this project, various checks for correctness and

stability were carried out after timing had ceased, against the output of a model QR factorisation

calculated via CULA. The first of the correctness tests is the comparison of the least squares solution

calculated from the output of the given algorithm x, to a model least squares solution x̂ by:

||x− x̂||2
||x||2

= ex (5.11)

which is the relative error of the least squares solution after an update. The second test outputs the

least squares residual of both the reference solution d = QT b and the solution following the update d̃:

||d(m+ 1 : n)||2 = r and ||d̃(m+ 1 : n)||2 = r̃ (5.12)

which are compared visually to ensure correctness of the update. Some of the ex values calculated as

in (5.11) for GPU and sequential implementations of all four update algorithms are shown in Table

5.21 and Table 5.22. All relative errors presented in this table are approximately of the order of the

unit round off for single-precision floating point accuracy, this suggests the algorithms implemented

in this project are accurate for the application they were intended.

Adding Rows Removing Columns

p TUT Sequential Update TUT Sequential Update

100 0.000002 0.000003 0.000003 0.000003

300 0.000002 0.000002 0.000003 0.000003

500 0.000002 0.000003 0.000002 0.000002

700 0.000001 0.000003 0.000002 0.000002

900 0.000003 0.000003 0.000002 0.000002

Table 5.21: Table of (5.11) values n = 4000,m = 2000, k = 0.

Removing Rows Adding Columns

p TUT Sequential Update TUT Sequential Update

100 0.000005 0.000004 0.000003 0.000003

300 0.000004 0.000004 0.000005 0.000005

500 0.000005 0.000004 0.000006 0.000006

700 0.000006 0.000005 0.000006 0.000006

900 0.000006 0.000005 0.000007 0.000008

Table 5.22: Table of (5.11) values n = 4000,m = 2000, k = 0.

For all updating algorithms that form Q during their operation, namely removing rows and adding

columns, two further accuracy tests were implemented. The first of which is an orthogonality test of

the matrix Q̃ via:

||Q̃T Q̃− I||2 = eQ (5.13)

and values for some tests are given in Table 5.23. Unfortunately, the error values in this case are not

of the order of the unit roundoff. As the GPU based errors are comparable to the sequential ones, the
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errors are accounted for as they are inherent to compounding multiple transformations into a single

matrix. The second error check involving Q is the normwise relative backwards error:

||Q̃R̃− Ã||2
||A||2

= eA (5.14)

and the values are given in Table 5.24. The errors again are larger than the unit roundoff but again are

comparable between the sequential and GPU implementations so are acceptable. Note that there is a

general increase of error with the value of p, this is due to the fact that the number of transformations

applied during an update increase with p.

Removing Rows Adding Columns

p TUT Sequential Update TUT Sequential Update

100 0.000234 0.000162 0.000242 0.000168

300 0.000339 0.000176 0.000367 0.000467

500 0.000364 0.000185 0.000500 0.000600

700 0.000389 0.000190 0.000479 0.000229

900 0.000470 0.000193 0.000564 0.000246

Table 5.23: Table of (5.13) values n = 4000,m = 2000, k = 0.

Removing Rows Adding Columns

p TUT Sequential Update TUT Sequential Update

100 0.000139 0.000074 0.000095 0.000050

300 0.000374 0.000187 0.000156 0.000061

500 0.000581 0.000304 0.000202 0.000069

700 0.000733 0.000412 0.000234 0.000077

900 0.000902 0.000500 0.000251 0.000083

Table 5.24: Table of (5.14) values n = 4000,m = 2000, k = 0.
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Chapter 6

Conclusion

The aim of this project was to accelerate updating algorithms presented in [4] on the GPU using a

popular and widely used massively parallel GPU programming interface, CUDA. The challenge in

this case was to develop QR updating algorithms on the GPU that achieve speedups over both QR

updating algorithms executed sequentially on the CPU, and QR factorisations computed from scratch

on the GPU. To achieve this end, a practical knowledge of the underlying architecture of the GPU as

well as an awareness of the subtleties of the software interface was required.

The main components of the QR updating algorithms that were implemented in this project are

Householder reflections and Givens rotations. In order to efficiently implement the updating algo-

rithms on the GPU, we were first required to efficiently implement GPU Givens and Householder

methods.

A full description of the method of application of Householder reflections used in this project is de-

scribed in Section 3.1. The application of Householder reflections in their simplest form requires many

BLAS level 2 operations. As BLAS level 2 operations do not achieve the highest throughput on the

GPU, an implementation of a BLAS level 3 variant of the standard algorithm was found, as imple-

mented in [5], namely a blocked Householder factorisation. All BLAS subroutines were implemented

in a CUDA BLAS library, CUBLAS. To avoid expensive data transfer between the GPU and host,

Householder vectors were calculated within a kernel.

A full description of the Givens rotation method used in this project on the other hand is given

in Section 3.2. A possible method of parallelising the application of Givens rotations was given in

[2]. Though this paper was is aimed at parallelising in an explicit message passing environment,

the analysis of dependencies between Givens rotations was relevant. The main adjustment in the

algorithm presented in [2] was to reduce the granularity of the parallelism to maximise the number

of independent Givens transformations executed per kernel. This method is explained graphically in

Figure 3.1, Figure 3.2, and Figure 3.3.

These developed methods to apply Givens and Householder transformations in parallel were then ap-

plied to attempt to efficiently parallelise each of the four updating algorithms in turn, adding columns,

removing columns, adding rows, and removing rows. Runtime results were reported against both a

sequential implementation of the respective algorithm and a full GPU QR factorisation calculated

from scratch. The first experiment for each update involved a timed memory transfer to the GPU,
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update, and subsequent memory transfer back, (or TUT) specifically for comparison with a sequential

update. The second experiment involved again a timed transfer and update, but this time, the update

is followed by a back-substitution solve on the GPU, (or TUS) specifically for comparison with a full

QR factorisation and subsequent least squares solve on the GPU. Trends in relative runtimes were

recorded and commented upon while varying input parameters such as the matrix A dimensions n in

rows and m in columns, the location of the update k within the matrix A, and finally the update size

p.

QR update by adding columns in GPU TUT greatly outperformed the sequential update achieving

approximately 45 times speedup observed for parameter values such as n = 4000,m = 8000, and

p = 200. QR update by adding columns in GPU TUS on the other hand theoretically does not

perform well in comparison to the existing full QR factorisation. Performance is worsened mainly by

increasing (m−k), and p shown in Figure 5.3 and Figure 5.6. This was found to be due to the Givens

rotations procedure in of the adding columns algorithm, with its large complexity and high rate of

kernel invocations. GPU TUS runtime was also found to be increased with n in relation to the CULA

solve.

All performance problems with QR adding columns update can be in some way attributed to the

involvement of the matrix Q, required by the updating algorithm, and the parallel application of

Givens rotations. In practical applications however, due to the nature of the commutativity of linear

equations, there is little reason for k < m. This is due to the fact that adding a linear combination of

variables to a linear system practically has the same effect wherever in the system you add them. Also,

as p represents a number of variables added to the linear system, p is in practice is often small. So by

the findings in this section therefore, this GPU implementation of QR update by adding columns is

an often efficient, viable alternative to a full QR factorisation for practical applications. With low p

values and high k values, n = 8000,m = 6000, p = 200 and k = m, adding columns on the GPU gained

observed speedups of up to 3.5 times over a full QR factorisation. It was concluded by the runtime

chart of the various components of the adding columns algorithm in Figure 5.5 that the application of

the Givens rotations in the algorithm was a bottleneck to performance in GPU TUT as k decreased.

This was concluded to be due to the fact that the number of kernel invocations per update increases

with decreased k, causing large amounts of kernel invocation overhead.

QR update by removing columns on the GPU performed very well compared to the sequential version

with increased p values and decreased k. This trend is shown in Figure 5.7 and is due to the increased

complexity of the algorithm at increased p and (m−k) taking advantage of the instruction throughput

of the GPU. At higher values of k for all values of p however we observe that GPU TUT has up to

double the runtime of the sequential version, this is due to memory transfer overhead dominating

algorithm runtime due to extremely low computational complexity.

QR update TUS on the other hand was observed to perform arbitrarily better than the full QR

factorisation with arbitrarily high n values, shown in Figure 5.9. This is due to the amount of

computations per update staying constant for increasing n. Increasing k and p produced increased

speedups of TUS over the full factorisation due to a decreasing number of kernel invocations per

update in both cases, shown in Figure 5.8. Speedups for the GPU update were observed for all but

the smallest k values achieving as much as 13 times speedup for k = m− p, for n = 6000,m = 3000.
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Also due to increasing instruction throughput on the GPU via increased complexity, the GPU QR

update TUT for adding rows increases speedup over the sequential version with increased m and p,

shown in Figure 5.10. GPU TUT gains observed speedups of over 40 times over the sequential update

with m = 3000, n = 8000, k = 0, and p = 1500.

Complexity of the adding rows update does not vary with both k, and n, this provides a performance

advantage for GPU TUS over the full QR factorisation with increasing n, as shown in Figure 5.13.

There is also observed, if fairly minor, speedups for all but the larger values of m and p for GPU TUS

over the full factorisation. Approximately 1.5 times speedup was observed in Figure 5.11 for values

p = 200 and m = 3000, however runtimes were approximately the same for m = 6000 and p = 1500.

The GPU TUT algorithm for removing rows performs extremely well compared to the sequential

version of the algorithm, with speedups of over 25 times observed for n = 6000,m = 1000, k = 0, and

p = 100, by Figure 5.14. However for larger values of n and p increase in speedups seem to level out,

this is possibly due to the increased number of kernel invocations per update with an increase in both

n and p.

Again, as in the adding rows case, complexity and therefore runtime of the removing rows updating

algorithm is invariant upon k. Following the poor performance of applying Givens factorisations in the

adding columns update on the GPU, an alternative data structure was sought in an attempt to reduce

the number of kernel invocations per update. A ‘composite’ representation of the two input matrices Q,

R and the input vector d was tested, shown graphically in Figure 4.5. The results of the runtime test of

the composite representation over the alternative are shown in Figure 5.17, a speedup of approximately

1.45 is observed after the change. However, even with this improvement in runtime, the GPU TUS

algorithm performs poorly in general compared to the full GPU QR factorisation. Speedups decrease

harshly with increases in both p and n, leading to longer runtimes of the GPU update compared to a

full QR factorisation with p values as small as 40, with n = 12000 and m = 6000, from Figure 5.15.

Complexity of the full factorisation however increases quadratically with the parameter m whereas

the complexity of the updating algorithm increases only linearly. This produces speedup of the GPU

TUS algorithm over the full factorisation for higher values of m, as observed in Figure 5.15, with a

speedup value of approximately 1.6 for p = 20, n = 1200 and m = 1000.

In conclusion, the GPU updating algorithms implemented in this project outperform their respective

sequential implementations for almost all update sizes, and dimensions of the overdetermined system.

However, the GPU updating algorithms only outperform a full GPU QR factorisation for certain

values of the input parameters k, p, m and n. This is especially relevant when a large number of

kernel invocations are required, such the application of Givens transformations.
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6.1 Future Work

Most of the performance issues presented in the investigation were linked to the high frequency of

kernel invocations and the overhead that this incurs. A future area of work could therefore be to

devise methods for decreasing the number of kernel invocations within an update procedure. A

possible method for reducing the number of kernels invoked in applying Givens rotations for example,

would be to increase the strip size to a number of rows greater than 2. It might then be possible

to apply multiple dependent rotations per thread block by looping and synchronisation statements

within the kernel code. Alternatively, a development currently specific only to the Nvidia Kepler

architecture called ‘dynamic parallelism’ is introduced in [9]. It would be worth investigating whether

this could be the answer to the problem of large kernel invocation overhead as kernels can be spawned

dynamically on the GPU in volume, without involving the CPU.

Due to the exhibited difficulties in parallelising the application of Givens rotations, and the effective-

ness of GPU Householder reflections, it may be worth investigating the use of Householder reflections

throughout an adding column update despite the prospect of the increased work created by non-zero

fill-in.
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