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AN ALGORITHM FOR FINDING THE OPTIMAL EMBEDDING OF

A SYMMETRIC MATRIX INTO THE SET OF DIAGONAL

MATRICES∗

RÜDIGER BORSDORF†

Abstract. We investigate two two-sided optimization problems that have their application in
atomic chemistry and whose matrix of unknowns Y ∈ R

n×p (n ≥ p) lies in the Stiefel manifold.
We propose an analytic optimal solution of the first problem, and show that an optimal solution
of the second problem can be found by solving a convex quadratic programming problem with box
constraints and p unknowns. We prove that the latter problem can be solved by the active-set method
in at most 2p iterations. Subsequently, we analyze the set of the optimal solutions of both problems,
which is of the form of C = {Y ∈ R

n×p : Y T Y = Ip, Y
TΛY = ∆} for Λ and ∆ diagonal and we

address the problem how an arbitrary smooth function over C can be minimized. We find that a
slight modification of C is a Riemannian manifold for which geometric objects can be derived that
are required to make an optimization over this manifold possible. By using these geometric tools we
propose then an augmented Lagrangian-based algorithm that minimizes an arbitrary smooth function
over C and guarantees global convergence to a stationary point. Latter is shown by investigating
when the LICQ (Linear Independence Constraint Qualification) is satisfied. The algorithm can be
used to select a particular solution out of the set C by posing a new optimization problem. Finally
we compare this algorithm numerically with a similar algorithm that, however, does not apply these
geometric tools and that is to our knowledge not guaranteed to converge. Our results show that our
algorithm yields a significantly better performance.

Key words. matrix embedding, augmented Lagrangian method, active-set method, Stiefel man-
ifold, Grassmannian manifold, optimization over Riemannian manifolds, orthogonality constraints

AMS subject classifications. 65F30, 90C30, 53B20

1. Introduction. This work is motivated by two problems in atomic chemistry
[18], [20]. The aim is to determine localized atomic orbitals that satisfy certain prop-
erties and come from a large precomputed density operator. In the first problem these
atomic orbitals should reproduce occupation numbers that are closest to prescribed
values whereas in the second problem they should only reproduce the number of elec-
trons. This leads to two mathematical problems that involve minimizing an objective
function over the Stiefel manifold, whose solutions are non-unique. We will start by
introducing these two problems and we will see that their solutions can be described
by elements of the Stiefel manifold that embed a symmetric matrix into the set of
diagonal matrices. We further investigate this set of optimal solutions called C and we
will see that a slight modification of this set is a Riemannian manifold. We develop
all necessary geometric objects to be able to apply optimization routines like the non-
linear conjugate gradient (CG) method for Riemannian manifolds that have recently
been proposed. We propose then to use an augmented Lagrangian-based algorithm
to impose those constraints that we had removed to prove that the remaining set is
a Riemannian manifold. The resulting algorithm can be used to find one particular
solution out of C by posing a new optimization problem whose solution is the actual
point of interest. By analyzing the LICQ we will show that this Lagrangian-based
algorithm is guaranteed to converge to a stationary point.

We proceed as follows. In the next section we introduce the first problem and
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show how a solution can analytically be obtained. As the minimum value can be
derived [9] by exploiting the structure of the stationary points we only need to find
a point on the Stiefel manifold that attains this value. In section 3 we introduce the
second problem and show by means of the derivations arising in the first problem
that the second problem is equivalent to a convex quadratic programming problem.
We use the active-set method to solve this problem and show that it will converge
in at most 2p iterations to an optimal solution despite the lack of strict convexity of
the objective function. Since, in general, both problems are non-unique we discuss
in section 4 how one can optimize over the set of optimal solutions. We modify the
constraint set by removing p constraints and optimize over the remaining set that
we show is a Riemannian manifold. To make an optimization over this manifold
possible we develop all geometric objects needed. This yields a new algorithm that
we introduce in the following section 5 and whose convergence we show in section 6.
Finally we test the performance of this algorithm in section 7 numerically.

Let N ∈ R
n×n be a positive definite symmetric matrix, describing a block of

the density operator centered at a certain atom. Let further p ≤ n and T =
diag (t1, t2, . . . , tp) ∈ R

p×p be a diagonal matrix whose diagonal elements are the
occupation numbers of p atomic orbitals. Therefore the trace of T is the number of
electrons contributed by that atom. We define

〈A,B〉 := trace(BTA) (1.1)

as our inner product in R
n×p and the corresponding norm is the Frobenius norm

||A||2F := 〈A,A〉. Further let D(s) be the set of diagonal matrices in R
s×s with the

diagonal elements in increasing order.

2. Problem 1. To find a minimal set of localized orbitals that have occupation
numbers closest to the prescribed diagonal elements of T we seek a solution Y∗ of

min
Y TY=Ip, Y ∈Rn×p

||Y TNY − T ||2F , (2.1)

where Ip denotes the identity in R
p×p. The columns of Y∗ are then the atomic orbitals

expanded in the auxiliary basis. Without loss of generality let the diagonal elements
of T be in increasing order, i.e. t1 ≤ t2 ≤ · · · ≤ tp.

2.1. The Optimal Function Value. Now the aim is to find a solution of (2.1).
As the constraint set of (2.1) is the Stiefel manifold St(n, p) := {Y ∈ R

n×p : Y TY =
Ip} we can formulate the optimality conditions for (2.1) [9] and find that the eigen-
values δ∗1 , . . . , δ

∗
p of Y T

∗ NY∗ at the minima are given by

δ∗i =





ti if ti ∈ (λi, λi−p+n)

λi if ti ≤ λi

λi−p+n otherwise

(2.2)

for all i = 1, . . . , p where λ1, . . . , λn with λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of
N . Hence the optimal function value f(Y∗) is

p∑

i=1

(
max{0, λi − ti, ti − λi−p+n}

)2
.

Now we need to compute Y∗ that realizes these eigenvalues.
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2.2. Construction of Arrowhead Matrix With Prescribed Eigenspec-

trum. Let us first consider the special case when N = diag(n1, . . . , nn) ∈ D(n) and
∆ = diag(δ1, . . . , δn−1

)
∈ D(n − 1) satisfy n1 ≤ δ1 ≤ n2 ≤ · · · ≤ δn−1 ≤ nn. We say

N interlaces ∆. Then by the next theorem we can construct an arrowhead matrix A
such that the (n − 1)th principal minor of A is ∆ and the eigenvalues of A are the
diagonal elements of N . Hence, with A = V NV T the spectral decomposition of A
we can set Y := V T [In−1 0]T and obtain a matrix Y with orthonormal columns such
that Y TNY = ∆.

Theorem 2.1. [23, Theorem 1] or [16, Theorem 4.3.10]. Let λ1, . . . , λm interlace
θ1, . . . , θm−1, i.e.

λ1 ≤ θ1 ≤ λ2 ≤ · · · ≤ λm−1 ≤ θm−1 ≤ λm

for m > 1. Further for k ∈ N let the vectors

v1 =

(
1

v1(2)

)
, v2 =

(
v1(2) + 1
v2(2)

)
, . . . , vk =

(
vk−1(2) + 1

m− 1

)
∈ N

2

be chosen such that for all i = 1, . . . , k

λvi(1) ≤ θvi(1) = λvi(1)+1 = · · · = λvi(2) = θvi(2) ≤ λvi(2)+1

with vi(2)−vi(1) maximal. Then there exist c1, . . . , cm−1 ∈ R such that the symmetric
arrowhead matrix

A =




θ1 c1
. . .

...
θm−1 cm−1

c1 . . . cm−1

∑m−1
i=1 (λi − θi) + λm




has the eigenvalues λ1, . . . , λm. For the values of c1, . . . , cm−1 it holds that for i =
1, . . . , k

c2vi(1)
+ . . .+ c2vi(2)

= −Πj<=vi(1)(θvi(1) − λj)Πj>vi(2)(θvi(1) − λj)

Πj<vi(1)(θvi(1) − θj)Πj>vi(2)(θvi(1) − θj)
≥ 0.

Note that the condition of vi(2) − vi(1) to be maximal ensures that the vectors
v1, . . . , vk are uniquely determined. Also if vi(1) = vi(2) then c2

vi(1)
is uniquely deter-

mined. Further if λvi(1) = θvi(1) or θvi(2) = λvi(2)+1 then all the cvi(1), . . . , cvi(2) are
zero.

2.3. Construction of a Solution of Problem 1. The idea is now to generalize
the procedure in section 2.2 to be able to compute for general N and ∆ a Y such that
Y TNY has the eigenvalues (2.2). After diagonalizing N with N = PΛPT we will see
that we apply two permutation matrices U and Q to Λ and T , respectively such that
we obtain smaller diagonal matrices Λi and Tj for i = 1, . . . , q + 1 and j = 1, . . . , q,
satisfying

(i). Λi interlaces Ti for i = 1, . . . , q,
(ii). UTΛU = diag(Λ1, . . . , Λq, Λq+1) and
(iii). QTTQ = diag(T1, . . . , Tq), respectively.

This allows us to apply the Theorem 2.1 to the smaller diagonal matrices and thus
to find a solution of (2.1). Let us now construct these permutation matrices. Let Q
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and U be two permutation matrices that are chosen such that when applied to Λ and
T , respectively, the eigenvalues of Λ and diagonal elements T are reordered in the
following way. Let q := min{p, n− p}. By using the floor operator ⌊ ⌋ : R 7→ Z with

⌊x⌋ = max
y∈Z,y≤x

y

we define additionally q numbers si :=
⌊

n−i
n−p

⌋
+ 1 for i = 1, . . . , q. Then let

Λi := diag(λi, λi+n−p, . . . , λi+(si−1)(n−p)),

Ti := diag(ti, ti+n−p, . . . , ti+(si−2)(n−p))
(2.3)

and let Λq+1 be the diagonal matrix having all the eigenvalues of Λ on its diagonal that
do not occur in (2.3). This definition of Q and U is well defined and as the matrices
Λi interlace Ti for i = 1, . . . , q these permutation matrices satisfy the conditions (i)-
(iii). Then by virtue of Theorem 2.1 we obtain a Yi for all i = 1, . . . , q such that
Y T
i ΛiYi = Ti. Hence the matrix

Ŷ := diag (Y1, Y2, . . . , Yq) (2.4)

solves Ŷ TUTΛUŶ = QTTQ and consequently a solution of Y TNY = T is obtained
by setting Y := PUŶ QT .

3. Problem 2. Now we are interested in determining a minimal set of local-
ized orbitals that reproduce the number of electrons. Let c ∈ N be defined as this
prescribed number. Then we seek a solution of

min
Y TY=Ip, Y ∈Rn×p

(trace(Y TNY )− c)2. (3.1)

3.1. Reformulation Into a Convex Quadratic Programming Problem.

To solve this problem we apply [13, Theorem 1], giving us a relation between the
eigenvalues θ = (θ1, . . . , θp)

T of Y TNY with θ1 ≤ · · · ≤ θp and the eigenvalues of N .
That is, there exists a Y with orthonormal columns and Y TNY = diag(θ) if and only
if θi ∈ [λi, λn−i+p]. We use this theorem to reformulate (3.1) into a convex quadratic
programming problem with inequality constraints.

As trace(Y TNY ) =
∑p

i=1 θi we have with cp := c/p and µ = (µ1, . . . , µp)
T that

minY (trace(Y TΛY )− c)2

s.t. Y TY = Ip
⇐⇒ minµ (

∑p
i=1 µi)

2

s.t. µi ∈ [λi − cp, λi+n−p − cp].

If we rewrite the box constraints as inequality constraints we obtain

minµ∈Rp (µT e)2

s.t. eTi µ ≥ λi − cp,
−eTi µ ≥ −λi+n−p + cp

(3.2)

where e ∈ R
p is the vector of ones. As the feasible set of this problem is closed,

convex and not empty and the objection function is convex, but not strictly convex,
a solution of (3.2) exists but may not be unique. If µ∗ is an optimal solution of (3.2)
then to solve (3.1) it remains to determine a Y such that Y TNY = diag(µ + cpe),
which is obtained by the solution of (2.1) with T = diag(µ+ cpe).
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3.2. Solving the Convex Quadratic Programming Problem. To solve
(3.2) we consider to apply the active-set method described in [22, Algorithm 16.3]
and we will show that this method terminates in at most 2p iterations and returns an
optimal solution despite the lack of strictly convexity of the objective function. First,
we assume that λi 6= λi+n−p for all i = 1, . . . , p. This is no restriction as all elements
of µ with λi = λi+n−p are fixed so that the programming problem can be reduced to
an equivalent programming problem that satisfies the assumption.

3.2.1. The Active-Set Method. The primal active-set method finds solutions
of convex quadratic programming problems with linear equality and inequality con-
straints by iteratively solving a convex quadratic subproblem with only equality con-
straints. These constraints include all equality constraints and a subset of the active
set A(xk) at the iterate xk with the inequality constraints transformed into equality
constraints. The set of the constraints considered is usually called working set Wk at
iteration k. By solving the subproblem a direction dk of the overall problem is found
along which the objective function is not increasing and then a step length αk ∈ [0, 1]
is maximally chosen such that the new point xk+1 = xk + αkdk is feasible. If there
is a blocking constraint this constraint will be added to the new working set Wk+1.
If the direction dk is zero and all Lagrange multipliers of the current subproblem
corresponding to inequality constraints are nonnegative xk will be a global solution.
If one of these multipliers is negative the corresponding constraints is removed from
the working set and the iteration is continued until a global solution is found. If the
convex quadratic objective function is strictly convex the active-set method converges
to a unique global solution in a finite number of iterations [22, Section 16.5].

3.2.2. Applying the Active-Set Method. Now we are ready to apply the
active-set method to (3.2). Let µk be the current iterate in the active-set method.
Then the subproblem of (3.2) at iteration k reads with d = µ−µk and ai the constraint
gradients of (3.2) for all i ∈ Wk

mind dT eeT d+ 2dT eeTµk

s.t. aTi d = 0 for all i ∈ Wk
(3.3)

where d is the direction that we are looking for. Let r := |Wk|. The next lemma gives
us an constructive optimal solution of the subproblem (3.3).

Lemma 3.1. Let Ak ∈ R
p×r be the matrix whose columns are the constraint

gradients of the subproblem. From (3.3) we can assume that they are all of the form
of ei for i ∈ {1, . . . , p}. Therefore there exists a permutation matrix Pk ∈ R

p×p such
that PT

k Ak = [ Ir 0 ]T . Then in MATLAB notation

dk :=

{
−Pk(:, r + 1 : p) e

Tµk

p−r
e for r < p

0 otherwise
(3.4)

is an optimal solution of (3.3). If r < p all Lagrange multipliers corresponding to the
inequalities in Wk will be zero.

Proof. The proof follows by applying the Lagrangian method to (3.3). See also
[7, Lemma 4.5.3].

The statement of the next lemma is needed to show subsequently that the active-
set method terminates at most 2p iterations for (3.2).

Lemma 3.2. Let j be a blocking constraint that is added to Wk in iteration k in
the active-set method for (3.2). Then this constraint will not be removed from Wk
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in the algorithm under the assumption that (3.4) is used for the direction in every
iteration.

Proof. Assume that at iteration l > k the constraint j is removed from Wl. By
Lemma 3.1 a constraint is only removed if r = p. Therefore by [22, Theorem 16.5]
and the second part of the proof we have that

aTj dl+1 > 0. (3.5)

Further, as j was a blocking constraint at iteration k it holds that aTj dk = −aTj Pk(:

, r + 1 : p) e
Tµk

p−r
e ≤ 0. As we minimize (eTµ)2, eTµk and eTµl+1 must have the same

sign. Thus from

aTj dl+1 = −aTj Pl+1(:, r + 1 : p)eTµl+1e ≤ 0,

which contradicts (3.5).
We are ready to state our main result of this section.
Theorem 3.3. If the directions dk are chosen as in (3.4) then the active-set

method converges to a global solution of (3.2) and terminates in at most 2p iterations.

Proof. We need to show that after at most 2p iterations the active-set method
reaches a point µ∗ where the convex quadratic subproblem (3.2) has the solution d = 0
and all Lagrange multipliers λi with i ∈ Wk are nonnegative [22, Section 16.5]. Let
us first assume r < p.

At iteration k, either dk is nonzero or dk is zero, which implies according to
Lemma 3.1 that µk is an optimal solution of (3.2). In the former case a constraint
will be added to Wk or the new direction dk+1 = 0. Latter implies, unless r = p, that
an optimal solution is found. Therefore, for r < p in every iteration one constraint
is added to the working set and no constraint is removed until r = p or an optimal
solution has been found. Let m be the number of iterations until r = p. Note that
m ≤ p.

Let now r = p. Then the solution of (3.2) is dk = 0. Assume that there exists
a Lagrange multiplier with λj < 0 for j ∈ Wk that is removed from the working set
Wk. Since in the next iteration r = p − 1 < p we obtain for dk+1 either zero and an
optimal solution is found or according to [22, Theorem 16.5] a direction for q(·) along
which the inequality j is satisfied. If a blocking constraint exists then this constraint
will be added to the new working set and r = p, otherwise an optimal solution is
found. By Lemma 3.2 this procedure can happen at most p −m times, requiring at
most 2(p −m) additional iterations. Thus, in total we have at most 2(p −m) + m
iterations and as m can be zero, the algorithm terminates after at most 2p iterations.
Note that the factor 2 results from the iteration where r = p and one constraint is
removed from the working set, and the subsequent iteration where a reduction of the
objective function is achieved.

4. Optimization over a Modified Set of Solutions.

4.1. Strategy to Select one Optimal Solution. In the previous sections we
solved the problems that were introduced at the beginning of section 2 and 3. However,
the solutions obtained might not be unique. For (2.1) we have shown that the set of
optimal solutions is equivalent to

C :=
{
Y ∈ St(n, p) : Y TΛY = ∆

}
(4.1)
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with ∆ = diag(δ1, . . . , δp) as defined in (2.2) and Λ the diagonal matrix with the
eigenvalues of N on its diagonal. Moreover, we have seen in section 3.1 that this set
also plays an important role in solving (3.1). To select a particular solution out of the
set in (4.1) the idea is to pose a new optimization problem. We therefore establish
a new framework in this section that allows the optimization of an arbitrary smooth
function f over the set (4.1). Depending on the application, this function should then
be chosen such that the minimum value of f is attained at the points of interest in
(4.1). Our approach assumes that the diagonal elements of ∆ are distinct and in
increasing order.

We will first consider a set that imposes p fewer constraints on Y ∈ St(n, p) than
C but can easily been proven to be a Riemannian manifold. We will then show that
all geometric objects can be developed to make an optimization over this manifold
possible by using optimizing algorithms that are applicable over Riemannian manifolds
[2]. Therefore to optimize over C it remains to impose the p constraints that we have
disregarded. We tackle this problem by applying the augmented Lagrangian method
[6, Section 4.2] in the next section 5.

The motivation for this approach is that optimization over smooth manifolds has
recently become more popular and it has been shown that for certain applications
the algorithms that optimize over these manifolds can outperform the conventional
state-of-the-art algorithms [1], [2], [3], [28]. Examples for the successful applications
of optimization algorithms over smooth manifolds can be found in many areas of
science. Image processing is one example where segmentation and registration algo-
rithms often rely on these optimization algorithms [10], [25]. Blind source separation
is another application where efficient algorithms were proposed [24]. See also [4].
Another example is the low rank nearness problems as they can be transformed into
optimization problem over manifolds [21]. An extension to tensors was proposed in
[17] where their algorithm achieves superlinear convergence. Other candidates are
the algorithm described in [27] for multilevel optimization of rank constraint matrix
problems applied to find the low rank solution of Lyapunov equations and the nearest
weighted low rank correlation matrix algorithm proposed in [14]. The latter algorithm
can also compute the nearest correlation matrix for an element-wise weighting of the
matrix that is not supported by algorithms that rely on the projection onto the set
of positive semidefinite matrices [15], [8]. A popular application is also to compute
eigenvalues of a given matrix by minimizing the Rayleigh quotient over the sphere in
R

n, which is a smooth manifold [2, Section 2].

For definitions and an introduction to smooth manifold and related geometric
objects we refer to [19], [7, Chapter 3] and in particular for the optimization over
matrix manifolds to [12], [2]. Our notation for the geometric objects is mainly taken
from [2], [7].

4.2. Formulation as a Riemannian Manifold. Let DY := Y TΛY and di :=
(DY )ii for all i. Note that di depends on Y but for simplicity we leave out the
subscript Y . Further let us now define the new constraint set as

B(n, p) = {Y ∈ St(n, p) : offdiag(DY ) = 0 and d1 < · · · < dp }

where offdiag : Rp×p 7→ R
p(p−1) is the operator that stacks the off-diagonals into a

long vector starting from the most upper right. Note that B(n, p) does not impose
the constraints that the diagonal elements of DY coincide with the diagonal elements
of ∆. The idea is to impose these constraints separately in our optimization routine.
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Let further Sp be the set of symmetric and K(p) the set of skew-symmetric matrices
in R

p×p. Now we are ready to show that B(n, p) is an embedded submanifold of Rn×p.
Lemma 4.1. B(n, p) is an embedded submanifold of Rn×p with dimension np−p2.
Proof. Let Y ∈ B(n, p). Then there exists an open neighbourhood UY of Y in

R
n×p such that the diagonal elements of DX := XTΛX are distinct for all X ∈ UY .

Let U =
⋃

Y ∈B(n,p) UY . As UY is an open subset of R
n×p U is clearly an open

submanifold of Rn×p of dimension np.
Consider F : U 7→ Sp × Sp0 with

F (X) =

[
XTX − Ip

DX − diag (DX)

]
, (4.2)

where Sp0 := {Z ∈ Sp : diag(Z) = 0}. Then by construction it holds that F−1(0) =
B(n, p). Now the idea is to apply Theorem [2, Proposition 3.3.3], which says that
set F−1(0) is an embedded submanifold of U if 0 is a regular point of F . See [7,
Section 3.3.1] for a definition.

Let S =
[
S1 S2

]T ∈ Sp ×Sp0 be arbitrary and Ẑ = 1
2X(S1 +K) with K ∈ K(p)

and

Kij =

{
(DXS1+S1DX−2S2)ij

(DX)jj−(DX)ii
for i 6= j

0 otherwise.

Then from

DF (X)[Z] =

[
XTZ + ZTX

2sym(XTΛZ)− 2 diag
(
sym

(
XTΛZ

))
]

we have that DF (X)[Ẑ] =
[
S1 S2

]T
. As the matrix S was chosen arbitrarily F is

of full rank at all X ∈ B(n, p), which implies that 0 is a regular value of F . Hence,
by Theorem [2, Proposition 3.3.3] B(n, p) is an embedded submanifold of U with
dimension dim(U)−dim(Sp0 ) = np− p2. As U covers B(n, p) by [2, Proposition 3.3.2]
B(n, p) is an embedded submanifold of Rn×p.

Note that the Riemannian manifold B(n, p) is bounded as each column of Y ∈
B(n, p) has 2-norm one, implying that ||Y ||F =

√
p, but it is not closed as demon-

strated by the following example. Let {εk}k≥0 be a sequence with εk ց 0 as k →∞.
Let Λ = diag(1, 1, 2) and {Yk}k≥0 be a sequence with

Yk =



1 0
0 (1− εk)/sk
0 εk/sk


 where sk =

√
ε2k + (1− εk)2.

Then Yk is in B(3, 2) for all k as Yk
TΛYk = diag

(
1,

2ε2k+(1−εk)
2

ε2
k
+(1−εk)2

)
. However Y∗ =

limk→∞ Yk 6∈ B(3, 2) as Y T
∗ ΛY∗ = diag(1, 1).

4.3. Geometric Objects. When optimizing a smooth function f : Rn 7→ R over
R

n the usual procedure to find stationary points, i.e. points x ∈ R
n with ∇f(x) = 0

and ∇f the derivative of f , is to generate a sequence with

xk+1 = xk + αkdk, (4.3)

starting from a given point x0. If dk is a gradient-related descent direction and αk

is suitably chosen one can show that the sequence converges to a stationary point.
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However, if xk is on a manifold M then a direct generalization of this procedure is
not possible as for instance xk+1 might not be in the manifold. Let us briefly explain
how this can be generalized to manifolds that are embedded in R

n×p in a simplified
manner. We refer to [19] and [2] for more details.

To generalize the conventional optimization over R
n×p to matrix manifolds we

first need to derive the tangent space Txk
M of M at xk. This space has the same

dimension as the manifold and can be equipped with an inner product 〈·, ·〉, allowing
the generalization of the gradient of f at xk that is the vector grad f ∈ Txk

M that
satisfies

〈grad f, x〉 = ∇fTx for all x ∈ Txk
M. (4.4)

A descent direction is then a vector dk ∈ Txk
M that satisfies 〈dk, grad f〉 < 0 and a

stationary point is a point x ∈M with grad f(x) = 0. We generalize then the iteration
in (4.3) by using a smooth mapping Rxk

: Txk
M 7→M called retraction that satisfies

Rxk
(0) = xk and that γ′(0) = d for the curve γ(t) := Rxk

(td) for all d ∈ Txk
M. The

generalization for (4.3) is then to compute xk+1 as xk+1 = Rxk
(αkdk) ∈ M. This

iterations allows to develop globally convergent algorithms over Riemannian manifolds
[2, Chapter 4]. Note that a retraction is a first order approximation of the geodesic.
It is often also required to compare vectors of tangent spaces at different points for
instance in the nonlinear CG method [26]. Therefore one needs to transport the
vector from one tangent space into another. For manifolds this is realized by concept
of vector transports; see [2, Definition 8.1.1]. To transport a vector ξx ∈ TxM into
TRx(ηx)M for ηx ∈ TxM we will use later the vector transport [2, Section 8.1.3]

Tξxηx = PRx(ηx)ξx (4.5)

where PRx(ηx)ξx is the orthogonal projection of ξx onto the tangent space TRx(ηx)M.

4.3.1. Tangent and Normal Space. Let us now introduce the tangent space
of B(n, p). We start with the definition of an operator A : Rn×p 7→ K(p) at Y ∈ B(n, p)
with

Aij(Z) =
2sym(Y TΛZ)ij

dj − di

for i 6= j and Aii = 0 for all i = 1, . . . , p.
Lemma 4.2. [7, Lemma 4.6.3] The tangent space TY B(n, p) of B(n, p) at Y ∈

B(n, p) is

TY B(n, p) =
{
Z = Y A(Y⊥B) + Y⊥B : B ∈ R

(n−p)×p free
}
. (4.6)

The symbol Y⊥ in Lemma 4.2 denotes a matrix in R
n×(n−p) that has orthonormal

columns and are complementary to the columns of Y . Let us endow all tangent spaces
TY B(n, p) with the inner product defined in (1.1). This allows us also to define the
normal space NY B(n, p) that is of dimension p2.

Lemma 4.3. [7, Lemma 4.6.4] The normal space of B(n, p) at Y is given by

NY B(n, p) =
{
Z ∈ R

n×p : Z = ΛY sym(C)− Y sym(CDY ) + Y T )

for C, T ∈ R
p×p with Cii = 0 and T diagonal

}
.
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4.3.2. Projection onto Tangent and Normal Space. Not only for comput-
ing the vector transport in (4.5) but also for determining the gradient in (4.4) the
projection onto the tangent space TY B(n, p) is needed. As TY B(n, p) is of dimension
p(n − p) the projection of an element Z ∈ R

n×p onto this space generally requires
to solve a linear system of dimension p(n − p). Assuming p ≪ n it is significantly
less expensive to compute the projection onto NY B(n, p) at Y instead and subtract
it from Z as this involves solving only a linear system of dimension p2. Therefore
we devote yourselves to this projection. It will turn out that solving a sparse linear
system of dimension q := p(p− 1)/2 will be sufficient.

Let Q : {X ∈ R
p×p : diag(X) = 0} 7→ R

n×p be an operator with

Q(C) = ΛY (CT + C)− Y (CDY +DY C
T ). (4.7)

Then to find the projection of Z onto NY B(n, p) we need to determine the element
Zn ∈ NY B(n, p) that satisfies

〈Z − Zn, Q(eie
T
j )〉 = 0 for all i 6= j and 〈Z − Zn, Y eie

T
i 〉 = 0 for all i = 1, . . . , p.

Let H ∈ R
p×p×p×p be a tensor and B ∈ R

p×p with

Hi,j,k,l =





〈Q(ekel), Q(eie
T
j )〉 for i 6= j, k 6= l

〈Q(eke
T
l ), Y eie

T
j 〉 for i = j, k 6= l

〈Y eke
T
l , Q(eie

T
j )〉 for i 6= j, k = l

〈Y eke
T
l , Y eie

T
j 〉 for i = j, k = l

, bij =

{
〈Z,Q(eie

T
j )〉 for i 6= j

〈Z, Y eje
T
i 〉 for i = j.

(4.8)

Then with H ∈ R
p2×p2

being the unfolding of the tensor H in mode 1 and 2 along
the rows and mode 3 and 4 along the columns and b ∈ R

p2

the mode 1 unfolding
of B the linear system that needs to be solved to compute Zn is Hz = b. The
vector z ∈ R

p2

is related to Zn as follows. Let C ∈ R
p×p, T ∈ R

p×p be defined as
C :=

∑
i6=j z((j−1)p+i)eie

T
j and T :=

∑p
i=1 z((i−1)p+i)eie

T
i then Zn = Q (C) + Y T .

Note that only the right-hand side b depends on Z. Hence, a multiple projecting onto
the same normal space is not of much higher cost than a single projection. Then by
noticing that for k 6= l

H(i, j, k, l)−H(i, j, l, k) = trace
(
(eke

T
l + ele

T
k )(dl − dk)(dj − di)eie

T
j

)

=





(dl − dk)
2 for j = l, i = k

−(dl − dk)
2 for j = k, i = l

0 otherwise,

and k = l

H(i, j, k, l) =
{
1 for i = j

0 for i 6= j

we can transform Hz = b into an equivalent system H̃z̃ = b̃ with

z̃ =

[
z̃1
z̃2

]
, b̃ =

[
b̃1
b̃2

]
∈ R

p2

, and H̃ = PcL
−1HLPr =

[
S H̃1

0 H̃2

]
∈ R

p2×p2

, (4.9)

where Pc, Pr are permutation matrices, S ∈ R
(q+p)×(q+p) diagonal and H̃1 ∈ R

(q+p)×q,
H̃2 ∈ R

q×q. The matrix L ∈ R
p2×p2

is an invertible lower triangular matrix that
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corresponds to subtracting the ((k− 1)p+ l)st column of H from the ((l− 1)p+ k)st
column for all k > l. Similarly, L−1 corresponds to adding the ((i − 1)p + j)st row
of H to the ((j − 1)p+ i))st row for j > i. These rows and columns operations yield
together with the permutation matrices Pc, Pr the diagonal matrix S in the upper
left corner in (4.9). Hence, the major cost is to solve H̃2z̃2 = b̃2, which is of order q.

Fortunately, H̃2 has additional structure shown by the next lemma that we might be
able to exploit when solving the linear system.

Lemma 4.4. The matrix H̃2 is symmetric and sparse for p large whereas the ratio
R of the number of zeros to the total number of elements in H̃2 is

R ≥ 1− 4

p− 1
+

6

p(p− 1)
, p 6= 1.

Proof. The proof can be found in [7, Lemma 4.6.6].

4.3.3. A Retraction. It remains to define a retraction on B(n, p). Let R̂Y (H)
be a retraction on the Stiefel manifold St(n, p) at Y ∈ B(n, p) with H ∈ TY B(n, p) ⊂
TY St(n, p). Let RY : TY B(n, p) 7→ B(n, p) be a map with

RY (H) = R̂Y (H)P, (4.10)

where PΘPT is the spectral decomposition of F (H) := R̂Y (H)TΛR̂Y (H) with the
diagonal elements of Θ in increasing order. Then by the next lemma RY (H) is a
retraction on B(n, p) at Y .

Lemma 4.5. The map RY (H) defined in (4.10) is a retraction on B(n, p).
Proof. We need to check the conditions for RY (H) to be a retraction. We men-

tioned these conditions at the beginning of section 4.3. For a definition of a retraction
see [2, Definition 4.1.1].

For H in the neighbourhood of 0Y ∈ TY B(n, p) RY (H) is clearly smooth as the
diagonal elements of F (0Y ) are distinct. Furthermore as F (0Y ) is diagonal we have
that P = Ip for H = 0Y and

RY (0Y ) = Y.

Let us now consider the curve RY (tH) = R̂(tH)P (t), which exists for all t sufficiently
small [11, Section 2.2], where P (t) is the orthogonal matrix that diagonalizes F (tH).
Then

d

dt
RY (tH)

∣∣∣∣
t=0

= HIp + Y
d

dt
P (t)

∣∣∣∣
t=0

. (4.11)

From [11, Section 2.2] we obtain that d
dt
P (t)

∣∣∣∣
t=0

= P (0)T with T skew-symmetric

and

Tij =

(
P (0)T d

dt
(F (tH))

∣∣∣∣
t=0

P (0)

)

ij

dj − di
for i 6= j, i = 1, . . . , p,

where di = (Y TΛY )ii. As offdiag

(
d
dt

(F (tH))

∣∣∣∣
t=0

)
= offdiag

(
HTΛY + Y TΛH

)
= 0

and T skew-symmetric we have that T = 0. This implies that the left-hand side of
(4.11) is H. Therefore all conditions for RY (H) to be a retraction are satisfied.
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4.4. Connection to Grassmannian Manifold. Let us now briefly investigate
the connection of B(n, p) with the Grassmannian manifold Gr(n, p), which is a quotient
manifold and can be described as the set of all p-dimensional subspaces of Rn. It can
be defined as the collection of all equivalent classes

[Y ] := {Y Q : Q ∈ O(p)}

for Y ∈ St(n, p). See [7, Section 3.8.2], [2], [12]. This manifold has the same dimension
p2 as B(n, p) and its horizontal space is HY = {Y⊥B : B ∈ R

(n−p)×p}. It is easy to
see that each Y ∈ B(n, p) corresponds to exactly one element in Gr(n, p) and is a
representative of the equivalence class. Similarly, there exists a bijective mapping
hY (Z) : TY B(n, p) 7→ HY with hY (Z) = (I − Y Y T )Z and h−1

Y (Z) = Y [Aij(Z)]ij + Z
for all Y ∈ B(n, p). However, not for all elements in Gr(n, p) exist a corresponding
element in B(n, p). Let Y be a representative of an element in Gr(n, p) such that
Y TΛY has an eigenvalue with a multiplicity greater than one. Then all elements in
[Y ] have this property and therefore there exists no element in B(n, p) that represents
[Y ] and hence, there is also no corresponding element to Y in B(n, p). Thus, B(n, p)
is isomorphic to an open submanifold of Gr(n, p) that has the same dimension.

5. The Algorithm. Now we have developed all necessary tools to apply first-
order optimization algorithms over manifolds like the nonlinear CG method [7, Algo-
rithm 3.9.1] to optimize a smooth function f over B(n, p).

However, the aim is to optimize f over C as defined in (4.1). Therefore, in order
to incorporate the p constraints of C that are disregarded in B(n, p) we are interested
in solving

minY ∈B(n,p) f(Y )
s.t. ci(Y ) = 0 for all i = 1, . . . , p,

(5.1)

where ci(Y ) are the p equality constraints with

ci(Y ) = di − δi for all i = 1, . . . , p.

and di = yTi Λyi. The symbol yi denotes the ith columns of Y . In the following we
will consider to optimize the function f(Y ) for ε > 0 over

BC(ε) := {Y ∈ B(n, p) : di+1 − di ≥ ε for all i = 1, . . . , p− 1}

subject to the constraints ci(Y ) = 0 since BC(ε) is compact and for ε small this
problem is equivalent to (5.1).

We propose to use the augmented Lagrangian method for solving

minY ∈BC(ε) f(Y )
s.t. ci(Y ) = 0 for all i = 1, . . . , p,

(5.2)

which can be stated as follows. Let us first define the augmented Lagrangian function
of (5.2), that is

Gµ,θ(Y ) = f(Y )−
p∑

i=1

θici(Y ) +
µ

2

p∑

i=1

ci(Y )2 (5.3)

where Y ∈ BC(ε), θ ∈ R
p are the Lagrange multipliers and µ > 0 is the penalty

parameter. Let θ0 ∈ R
p be the initial estimate of the Lagrange multipliers and
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µ0 > 0. Then the augmented Lagrangian method is to determine at the kth iteration

Yk+1 ∈ argmin
Y ∈BC(ε)

Gµk,θk(Y ) (5.4)

and, according to some rules [22, Algorithm 17.4], to update the Lagrange multipliers
by

θk+1
i := θki − µkci(Yk+1) or θk+1

i := θki

and to update the penalty parameter by

µk+1 := µk or µk+1 > µk.

We use the nonlinear CG method [7, Algorithm 3.9.1] to solve (5.4). However,
when applying the geometric optimization tools to find a local minimum of (5.4) we
need to make sure that the generated iterates in the nonlinear CG method lie in
BC(ε). Another problem is that in order to show convergence we require that the
LICQ is satisfied at the limit point of a subsequence of {Yk}k≥0. Let us therefore first
define the LICQ on a Riemannian manifold and then investigate when it holds for our
problem.

Definition 5.1. Let M be a Riemannian manifold and let ci(Y ) = 0 for i =
1, . . . , p be p equality constraints with Y ∈M. Then the LICQ onM at Y ∈M holds
if grad c1(Y ), . . . , grad cp(Y ) ∈ TYM are linearly independent. The next lemma
characterizes the points of (5.2) at which the LICQ holds.

Lemma 5.2. Let ci(Y ) := yTi Λyi − δi for i = 1, . . . , p and Y ∈ B(n, p). Then the
LICQ holds at Y iff yi is not an eigenvector of Λ for all i.

Proof. By the definition of grad ci(Y ) it holds for all Z(B) = Y A(Y⊥Y T
⊥ B) +

Y⊥Y T
⊥ B ∈ TY B(n, p) and B ∈ R

n×(n−p) with ∇ci(Y ) = 2[01×(i−1), Λyi, 01×(p−i)] that

p∑

i=1

xi〈grad ci(Y ), Z(B)〉

=

p∑

i=1

xi 〈∇ci(Y ), Z(B)〉

=

p∑

i=1

xi


〈∇ci(Y ), Y A(Y⊥Y

T
⊥ B)〉︸ ︷︷ ︸

=0

+〈∇ci(Y ), Y⊥Y
T
⊥ B〉




=

p∑

i=1

xi〈2[01×(i−1), Λyi, 01×(p−i)], Y⊥Y
T
⊥ B〉 = 2

p∑

i=1

xiy
T
i Λ(In − Y Y T )bi

=2

p∑

i=1

xiy
T
i (Λ− diIn)bi.

(5.5)

Now assume that yi is not an eigenvector of Λ for all i. Then yTi (Λ−diIn) 6= 0 and for

B̂ ∈ R
n×(n−p) with B̂i := (Λ−diIn)yixi it follows that

〈∑p
i=1 xi grad ci(Y ), Z(B̂)

〉
=

0 iff xi = 0 for all i. Hence, the LICQ is satisfied at Y . Conversely, assume that
the LICQ is satisfied at Y and that yj is an eigenvector of Λ for j ∈ {1, . . . , p}.
Then it follows that yTj (Λ − djIn)bj = 0 for all B ∈ R

n×(n−p). Hence, (5.5) implies
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for all xi = 0 with i 6= j and xj 6= 0 that 〈∑p
i=1 xi grad ci(Y ), Z(B)〉 = 0 for all

B ∈ R
n×(n−p), which contradicts our assumption that the LICQ is satisfied at Y .

Note that from the proof of Lemma 5.2 it follows that all grad ci(Y ) are linearly
independent where yi is not an eigenvector of Λ. Furthermore, if yi is an eigenvector
of Λ then grad ci(Y ) = 0. Hence, it may occur during the iteration that the iterates
Yk do not move away from a point at which the constraints are not satisfied, even
for arbitrarily large µ. We have observed this in our numerical tests. Therefore if a
column i of Y is an eigenvector of Λ our idea is to replace this column by a vector
ŷ that lies in span{[Ȳ ΛȲ ]⊥} with Ȳ = [y1, . . . , yi−1, yi+1, . . . , yp] such that ŷ is an
eigenvector of Λ and di−1 + ε ≤ ŷTΛŷ ≤ di+1 − ε. If, however, ci(Y ) = 0 we do not
need to modify the ith column of Y as the constraint i is satisfied. We will see that
these replacements will lead to an algorithm that generates a convergent subsequence
whose limit point is a stationary point of (5.2). Moreover, if in the nonlinear CG
method a step size cannot be taken due to the new iterate being outside of BC(ε)
we will also apply this replacement strategy. To find the vector ŷ we will use the
algorithm that we introduced in section 2 to solve (2.1). We state this replacement
strategy in Algorithm 5.1.

Algorithm 5.1 Algorithm that implements the replacement strategy

Require: Y,Λ,∆ = (δ1, . . . , δp), ε, n, p.
1 I = ∅
2 repeat

3 ds changed= false
4 for i = 1 : p do

5 if ((yi, di) is an eigenpair of Λ and |ci(Y )| > 0)
or (i 6= 1 and di − di−1 < ε) or (i 6= p and di+1 − di < ε) then

6 di :=





max{δi, (di−1 + di)/2} for di > δi ∧ (i 6= 1 ∧ di−1 > δi − ε)

min{δi, (di+1 + di)/2} for di < δi ∧ (i 6= p ∧ di+1 < δi + ε)

δi otherwise.
7 ds changed= true
8 I = I ∪ {i}
9 end if

10 end for

11 until ds changed= false
12 if I 6= ∅ then
13 In MATLAB notation set IC := {1, . . . , p} \ I and Z :=

[
ΛY

(
:, IC

)
Y
]
⊥ and

Q := [Z Y (:, I)].
14 Solve (2.1) with N = QTΛQ and T = diag(dj) for j ∈ I. Set solution to X∗.
15 Y (:, I) := QX∗
16 if Y 6∈ BC(ε) or ∃ yi that is an eigenvector of Λ with |ci(Y )| > 0) then
17 Solve (2.1) with N = Λ and T = ∆. Set solution to Y .
18 end if

19 end if

20 return Y

At first on line 6 of Algorithm 5.1 the value of di will be changed if it is close to
di−1 or di+1, respectively, meaning that Y 6∈ BC(ε). The value will also be modified
if (yi, di) is an eigenvector of Λ due to the reasons explained above. This procedure
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continues until the if-clause on line 5 is false for all i. If mini∈{2,...,p} δi − δi−1 > ε
then it is clear that Algorithm 5.1 will leave the loop on line 2 in a finite number
of iterations. If changes have been made to the dis the new columns Y (:, I) are
determined on line 14 by solving (2.1) as in section 2. If X∗ attains the function value
of zero in (2.1) on line 14, i.e. diag(XT

∗ NX∗) = diag(dj), then Y on line 16 will be in
BC(ε) and for all columns of Y that are eigenvectors of Λ the corresponding equality
constraints will satisfy ci(Y ) = 0. If the latter conditions are not fulfilled the trivial
solution discussed in section 2 is returned on line 17, which is feasible, however, does
not depend on the input parameter Y . Hence, this algorithm returns a point in BC(ε)
at which all equality constraints that are not satisfied have gradients that are linearly
independent. The next lemma shows that under some assumptions the conditions for
the if-clause on line 16 are always false. Hence, Algorithm 5.1 does not return the
trivial solution from section 2.

Lemma 5.3. Let r := |I| > 0 with I as defined in Algorithm 5.1. If all di-
agonal elements of ∆ satisfy δi ∈ [λ2(p−r)+i, λn−2(p−r)−p+i] ⊃ [λ3p−2, λn−3p+3] for
i = 1, . . . , p then the optimal solution of (2.1) on line 14 in Algorithm 5.1 attains the
function value zero.

Proof. Let m ≥ n−2(p−r) be the number of columns of Q in Algorithm 5.1. For
T = diag(t1, . . . , tr) = diag(di) and i ∈ I it is enough to show that for j ∈ {1, . . . , r}
arbitrary tj ∈ [µj , µm+j−r] where µ1, . . . , µm are the eigenvalues of QTΛQ on line
14. Let σ : {1, . . . , r} 7→ I be defined as the map that satisfies tk = dσ(k) for all
k = 1, . . . , r. Now without loss of generality we can assume that dσ(j) ≤ δσ(j). Then
from Algorithm 5.1 on line 6 it follows that yT

σ(j)Λyσ(j) ≤ dσ(j) = tj ≤ δσ(j). Since

µj ≤ yT
σ(j)Λyσ(j) we obtain µj ≤ tj . From our assumption it holds that δσ(j) ≤

λn−2(p−r)−p+σ(j) ≤ λm−r+j ≤ µm−r+j as µm−r+j ∈ [λm−r+j , λn−r+j ] and σ(j) ≤
p− r + j.

Therefore if the assumption of Lemma 5.3 is satisfied the major cost of Algo-
rithm 5.1 is to compute once the eigenvalues of QTΛQ and only if needed. Now we
are ready to state Algorithm 5.2 that minimizes an arbitrary smooth function over
C. In the next section we will show the convergence of a subsequence of the iterates
generated by this algorithm to a stationary point of (5.2).

6. Convergence. In order to show convergence of Algorithm 5.2 we need the
following lemma, showing that for µk large enough the iterate that is returned by Al-
gorithm 5.1 on line 9 in Algorithm 5.2 will attain a smaller function value in Gµk,θk(·)
than Ŷ under the assumption that the iterate has been altered by Algorithm 5.1.

Lemma 6.1. Let γ > 0, ε > 0, and Ŷ be the iterate in iteration k that is returned
by the nonlinear CG on line 3 in Algorithm 5.2. Further assume that Ŷ 6∈ BC(ε/2)
or it exists an index s with (ŷs, ds) an eigenpair of Λ and |cs(Ŷ )| > 0. Let Ỹ be the
point that is returned by Algorithm 5.1 on line 9. Then there exists a µ̄ > 0 such that
for µk ≥ µ̄ it holds that

Gµk,θk(Ŷ )−Gµk,θk(Ỹ ) ≥ γ.

Proof. Let

α :=

{
min

{
ε
4 , η

}
if there exists an index s,

ε
4 otherwise,
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Algorithm 5.2 Algorithm to solve (5.2) based on [22, Framework 17.3] of the aug-
mented Lagrangian method.

Require: smooth function f defined on B(n, p), N , ∆, n, p, ε.
1 Generate a starting point Y0 ∈ B(n, p), set initial values for µ0 > 0, θ0, γ > 0,

tolerance τ , initial tolerance τ0, and constraint violation tolerance ν. k = 0.
2 while || gradGµk,θk(Yk)||F ≥ τ or ||c(Yk)||2 ≥ ν do

3 Find an approximate minimizer of Gµk,θk(·) in BC(ε/2), starting at Yk, by
applying the nonlinear CG-method in [7, Algorithm 3.9.1] with a modified
Armijo-backtracking strategy: if the new iterate Y i

k that yields sufficient de-
scent lies outside of BC(ε/2) then, if needed, the step size is reduced such that
Y i
k ∈ B(n, p) and Y i

k 6∈ BC(ε/2). The iterate Y i
k in the nonlinear CG-method is

returned. If the latter does not occur terminate when || gradGµk,θk(Y i
k )||F ≤ τk.

Set the returned point to Ŷ .
4 if Ŷ ∈ BC(ε/2) then
5 ε̂← ε/2
6 else

7 ε̂← ε
8 end if

9 Apply Algorithm 5.1 with Y = Ŷ , ∆ = ∆, ε = ε̂; set returned point to Yk+1.

10 if Ŷ = Yk+1 then

11 θk+1 = θk − µkc(Yk).
12 Select tolerance τk+1 ≤ τk.
13 end if

14 if || gradGµk,θk(Yk+1)||F > τk and Gµk,θk(Ŷ )−Gµk,θk(Yk+1) > γ then

15 µk+1 ← µk

16 else

17 Select µk+1 > µk.
18 end if

19 k ← k + 1
20 end while

21 return Yk

where η := min{|λj − δi| : |λj − δi| > 0 and i ∈ {1, . . . , p}, j ∈ {1, . . . , n}}. Then α is
a lower bound for the minimal change in modulus in one of the constraint functions
cj(·) when going from Ŷ to Ỹ . To explain more in detail, if Ŷ 6∈ BC(ε/2) then

after applying Algorithm 5.1 Ỹ ∈ BC(ε) therefore the minimal change in one of the
constraint function must be at least ε/4. On the other hand, if there exists an index

s and Ŷ ∈ BC(ε/2) either the change in cs(·) is greater than or equal to ε/4 or
ds in Algorithm 5.1 will be set to δs where |ds − δs| ≥ η as cs(Y ) > 0. Hence,

it exists an index j so that |cj(Ỹ ) − cj(Ŷ )| =: αj ≥ α > 0, which implies that

cj(Ỹ ) = cj(Ŷ )− sgn(cj(Ŷ ))αj . Note that α > 0 is a constant that is independent of

the iteration k and the point Ŷ . As f(Y ) −∑p
i=1 θ

k
i ci(Y ) is smooth there exists a
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Lipschitz constant L with |f(Ŷ )− f(Ỹ )| ≤ L||Ŷ − Ỹ ||F and we have

Gµk,θk(Ŷ )−Gµk,θk(Ỹ ) = f(Ŷ )− f(Ỹ )−
p∑

i=1

θki (ci(Ŷ )− ci(Ỹ ))

+
µk

2

∑

i6=j

(
ci(Ŷ )2 − ci(Ỹ )2︸ ︷︷ ︸

≥0

)
+

µk

2

(
cj(Ŷ )2 − cj(Ỹ )2

)

≥ −L||Ŷ − Ỹ ||F +
µk

2

(
2sgn(cj(Ŷ ))αjcj(Ŷ )− α2

j

)

≥ −L√p+ µk

2
α2
j ≥ −L

√
p+

µk

2
α2.

Hence, the claim holds for µk ≥ 2
L
√
p+γ

α2 .
Now we can state our convergence result, which is based on [5, Proposition 2.3].
Theorem 6.2. Let ε > 0 and let Λ ∈ R

n×n and ∆ ∈ R
p×p be diagonal and

suppose there exists a Y ∈ BC(δ) with Y TΛY = ∆ and δ > ε. Let further f be a
bounded real smooth function over B(n, p). If the Lagrange multipliers {θk}k≥0 in
Algorithm 5.2 are bounded, the sequence {µk}k≥0 satisfies µk →∞, and for {τk}k≥0

holds that τk ≥ 0 for all k with τk → 0, then a subsequence of the iterates generated
by Algorithm 5.2 converges to a stationary point of (5.2). Hence, for ν > 0 this
algorithm terminates.

Proof. Let {Yk}k≥0 be the sequence generated by Algorithm 5.2 with Yk ∈
B(ε/2). If on line 3 of Algorithm 5.2 the nonlinear CG fails to find a point Y i

k with

|| gradGµk,θk(Y i
k )||F ≤ τk then on line 10 Yk 6= Ŷ so that the Lagrange multipliers θk

and the tolerance parameter τk will not be altered. Hence, either gradGµk,θk(Yk) will
become zero as k further increases or µk will be large enough so that for all further k
it holds that Gµk,θk(Yk−1) − Gµk,θk(Yk) ≥ γ. As in the latter case µk is not further
increased, Gµk,θk(·) is bounded from below, and BC(ε/2) compact, we must have for
k large enough

|| gradGµk,θk(Yk)||F ≤ τk.

Therefore, there exists a subsequence {l}l≥0 of {k}k≥0, for which it holds that for all
l in this sequence

|| gradGµl,θl(Yl)||F ≤ τl and 0 < µl < µl+1 with µl →∞.

As BC(ε/2) is bounded there exists a subsequence {Ys}s≥0 of {Yl}l≥0 that converges
to a point Y∗. From Lemma 5.2 and Algorithm 5.1 it must hold that at this point
the constraint gradients grad ci(Y∗) with ci(Y∗) 6= 0 are linearly independent and all
other constraint gradient are zero. Let J := {i : ci(Y∗) 6= 0} and ĉ(Y ) := [ci(Y )]i∈J .
We define for all s

θ̂s := [θsi ]i∈J − µsĉ(Ys).

Then we have that

gradGµs,θs(Ys) = grad f(Ys)−
s∑

i=1

(θsi − µsci(Ys)) grad ci(Ys)

= grad f(Ys)−
∑

i∈J
grad ĉi(Ys)θ̂

s
i + ζs,
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with ζs → 0, and for all s such that grad ĉ(Ys) := [vec(grad ci(Ys))]i∈J ∈ R
np×|J | has

full column rank

θ̂s =
(
grad ĉ(Ys)

T grad ĉ(Ys)
)−1

grad ĉ(Ys)
T (grad f(Ys) + ζs − gradGµs,θs(Ys)).

As gradGµs,θs(Ys)→ 0, it follows that θ̂s → θ̂∗ with

θ̂∗ =
(
grad ĉ(Y∗)

T grad ĉ(Y∗)
)−1

grad ĉ(Y∗)
T grad f(Y∗).

Since θs is bounded and {[θsi ]i∈J − µsĉ(Ys)}s≥0 → θ̂∗, it follows that {µsĉ(Ys)}s≥0 is
bounded and hence as µs →∞ grad f(Y∗) = grad c(Y∗)θ∗ and c(Y∗) = 0.

7. Numerical Tests. As the initial eigenvalue decomposition of N is the major
cost to compute the optimal solution of problem (2.1) and the active-set method for
problem (3.1) converges in at most 2p iterations we do not expect to gain further
insight in the performance of the corresponding algorithms by applying them to test
examples. Therefore we focus in this section on investigating the performance of
Algorithm 5.2. For our tests we use a machine with 32 AMD Opteron(TM) Processors
(2999MHz) and 256GB RAM, on Linux 64bit in MATLAB R2010a. Let us now specify
our test examples.

7.1. Test Problem and Test Matrices. As we currently do not have an objec-
tive function available that can be used in our application in atomic chemistry for (5.1)
we use only a test function, which is a convex quadratic function with randomly gen-
erated coefficients. Let f(Y ) := 〈Y,AY 〉+〈B, Y 〉 be a function from B(n, p) 7→ R with
A ∈ R

n×n, and B ∈ R
n×p. To generate A and B we use the MATLAB function rand

where we ensure that A is symmetric positive semidefinite by runnig A=rand(n,n);

A=A’*A/2. In order to apply Algorithm 5.2 to (5.1) we also need test matrices for ∆
and Λ. We look at two different classes whereas the first is more for demonstrating
purposes.

• ldchem: A. Sax provided us with a small example for N ∈ R
11×11 in (2.1).

If we prescribe two orbitals with occupation numbers 1.5 and 0.1 then from
(2.2) we find that ∆ is ∆ = diag(0.1, 1.5). For more details on this test
example see [7, Section 4.7.3]

• ldrand: For the second class we randomly generate a symmetric matrix N ∈
R

n×n and a diagonal matrix T ∈ D(p), respectively by means of the MATLAB
commands N=rand(n,n);N=N+N’; and diag(sort(rand(p,1)*p));, respec-
tively. Then we set, accordingly to (2.2), ∆ to the closest diagonal matrix
that is embeddable in N . If one diagonal element of ∆ is within the range of
0.01 of another we repeat the process of generating ∆.

For our starting matrix Y0 in Algorithm 5.2 we randomly generate a matrix Y ∈
St(n, p) by applying rand again and computing theQ-factor of the randomly generated
matrix by means of qr. Thereafter we set Y0 = Y P where P ∈ O(p) computed by eig

diagonalizes Y TΛY with the diagonal elements increasing. If the distance between
two diagonal elements is less than 0.01 we repeat the procedure, making sure that
Y0 ∈ B(n, p).

7.2. Numerical Methods. In addition to Algorithm 5.2 we use the following
algorithm for comparing purposes. We will refer to this algorithm as ALS. Let cij :
R

n×p 7→ R be defined as cij(Y ) = (Y TΛY )ij for i > j and cii(Y ) = (Y TΛY )ii −Dii

for i = j and i, j = 1, . . . , p. We reformulate (5.1) as

minY ∈St(n,p) f(Y )
s.t. cij(Y ) = 0 i, j = 1, . . . , p and i ≥ j

(7.1)
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and apply, similarly to Algorithm 5.2, the augmented Lagrangian method [22, Algo-
rithm 17.4] to (7.1). The inner problem is then to minimize the following augmented
Lagrangian function

Gµ,θ(Y ) = f(Y )−
∑

i≥j

θijcij(Y ) +
µ

2

∑

i≥j

cij(Y )2 (7.2)

over the Stiefel manifold. In (7.2) θij are the Lagrange multipliers for i ≥ j. To
minimize Gµ,θ(Y ) we use again the nonlinear CG method.

7.3. Chosen Specifications in Tested Algorithms. We now list the most
important specifications that we used in both methods. Most often we refer to Al-
gorithm 5.2 in this context as we choose the parameters for ALS analogously. For
more details on these configurations including the reasons why we have chosen them
as specified we refer to [7, Section 4.7.4].

• We use ε = 0.01, τ = np210−5 , θ0 = 0, γ = 10−10||Λ||F , ν = 10−4np, and
µ0 = 10 and if µk needs to be enlarged we increase it by a factor of 2.

• The parameter τk in Algorithm 5.2 is chosen as follows. We start with τ0 :=
npµ0 and tighten it by setting τk+1 := max{τ, τk/µk} if the current violation
satisfies ||c(Yk)||2 ≤ νk, and otherwise, by setting τk+1 := np/µk.

• The parameter νk is determined by ν0 := 1/µ0.1
0 and νk+1 := νk/µ

0.9
k if

||c(Yk)||2 ≤ νk, and otherwise, νk+1 := 1/µ0.1
k . These specifications are based

on [22, Algorithm 17.4].
• We limit the number of iterations in the augmented Lagrangian method to
100.

• In the nonlinear CG method we set the maximal number of iterations to
150, 000 and use a conventional Armijo-backtracking procedure where we
compute a guess for the initial step length as follows. Let Y i

k be the cur-
rent iterate and ξ be the current direction then we take the largest solution
of

min
t∈(0,1]

Gµk,θk(Y
i
k + tξYi

), (7.3)

as our initial step length.
• For the retraction on the Stiefel manifold in ALS we use the Q-factor as
described in [2, Example 4.1.3]. For Algorithm 5.2 we use the retraction that

we introduced in Lemma 4.5 and choose for R̂Y (H) again the Q-factor.
• For the vector transport we apply for both algorithms the one proposed in
[7, Eq. (3.10)] that uses the projection onto the tangent space. To compute
the latter for Algorithm 5.2 we will use the approach discussed in Section 4.3
and will solve the linear system by applying chol provided by MATLAB to
compute the Cholesky factorization as we observed in our numerical tests
that the coefficient matrix is often strictly diagonal dominant. If it fails we
will use the routine ldl in MATLAB for the LDLT decomposition. We also
tried to exploit the sparsity property of the coefficient matrix in Lemma 4.4
but our tests have shown that for the matrix sizes tested no benefit can be
gained by using sparse linear solvers [7, Section 4.7.4].

7.4. Test 1. Our first test is more for demonstrating purposes. We first generate
a convex quadratic function f(Y ) and apply then Algorithm 5.2 to minimize it for
the matrices Λ and ∆ of type ldchem. We generate 100 different starting points Y0
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Table 7.1

Output of Algorithm 5.2 for test matrices ldchem.

Test 1a Test 1b

Outer iterations 22 24
Total number of iterations in CG 145 34
Total number of backtracking steps in CG 3 3
gradGµ∗,θ∗ (Y∗) 1.258e-7 1.4e-13
µ∗ 80 80
Computational time in seconds 1 0.4
f(Y0) 10.96 0
f(Y∗) -0.78321 0
f(Yana) 1.21393 0
Constraint violation ||c(Y∗)||2 3.8e-10 9.15e-16
Calls of Algorithm 5.1 where D was modified 0 1
Number of independent gradients grad ci(Y∗) 2 2
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Fig. 7.1. Function value at final iterate of Algorithm 5.2 for different starting values.

and apply our algorithm starting for each of them. In Figure 7.1 we plot the function
value at the final iterate for all 100 different starting values and we present in the
second column of Table 7.1 the output of Algorithm 5.2 for the point with smallest
function value where we use for this test a violation tolerance of ν = 10−10 and a
tolerance of τ = 4.4×10−8. Note that we call Y∗ the final iterate of Algorithm 5.2, µ∗
the corresponding penalty parameter, and θ∗ the Lagrange multipliers. We denote the
point that we discussed in section 2 and that can be analytically computed by Yana.
In Figure 7.1 we see that we converge to different points when we use different starting
values so that we could apply Algorithm 5.2 to find different stationary points. In
Table 7.1 we see that the optimization was successful as the function value has been
reduced and the gradient norm is small. Notice that the parameter µ∗ is relatively
small. Interesting is that during the iteration there was no need in Algorithm 5.1 to
modify the dis. Therefore, let us apply this algorithm for f(Y ) = 0 and for the starting
point Y0 = [Ip 0]T . As at this point the LICQ does not hold, the gradGµk,θk(Y ) is
zero, and the constraints are not satisfied. Our results are present in the last column of
Table 7.1. We observe that due to the modification in Algorithm 5.1 the Algorithm 5.2
overcomes the point Y0 where the LICQ does not hold and does not break down. Let
us now look at the performance of Algorithm 5.2 for larger matrix sizes.
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Table 7.2

Results for the randomly generated matrices Λ and D.

Algorithm 5.2 ALS

f0 t it fv gradn crp t it fv gradn

n = 50
p = 10 325 119 2480 -9.49 0.04 1.4 368 9553 -9.42 0.05
p = 20 344 785 9615 53.24 0.20 0 8465 2.1e5 54.55 0.20
p = 30 397 580 3376 127.29 0.41 0.2 5004 1.2e5 124.26 0.43
p = 40 1.2e3 875 2242 163.45 0.71 0.2 6183 1.4e5 181.54 0.77

n = 150
p = 10 2.8e3 181 3536 -12.53 0.14 1.4 145 3533 -12.57 0.13
p = 20 2.9e3 377 4312 -26.91 0.53 1 1121 2.6e4 -27.16 0.53
p = 30 3.0e3 433 2581 -32.22 1.28 0 1981 4.3e4 -32.10 1.32
p = 40 4.9e3 1121 2913 -12.54 2.09 0 1947 3.7e4 -12.53 2.13

n = 250
p = 10 7.8e3 318 5856 -7.63 0.25 2 209 4877 -7.58 0.23
p = 20 8.0e3 706 7762 -23.52 0.89 2.2 871 1.8e4 -23.32 0.88
p = 30 8.1e3 1067 6012 -46.19 2.19 1.4 3093 5.4e4 -46.57 2.23
p = 40 11e4 1228 2854 -58.53 3.51 0.2 3832 5.7e4 -59.08 3.73

7.5. Test 2. We compare the performance of Algorithm 5.2 with ALS. For this
reason we first generate randomly 5 instances of Λ and T of type ldrand and coefficient
matrices for the convex quadratic function f(Y ) for n = 50, 100, . . . , 300 and p =
10, . . . , 40. Then we apply Algorithm 5.2 and ALS to our problem (5.1) with these
matrices. A selection of our results is shown in Table 7.2 where we use the following
abbreviations:

• t: mean computational time in seconds to compute the final iterate Y∗,
• it: mean total number of iterations in the nonlinear CG method,
• fv: mean function value at Y∗,
• gradn: mean || grad f(Y∗)||F ,
• crp: mean number of calls of Algorithm 5.1.

We see in Table 7.2 that in most tests Algorithm 5.2 outperforms ALS in terms
of the computational time. The main reason is that the Algorithm 5.2 needs much
fewer iterations in the nonlinear CG method to satisfy the stopping criterion. We do
not report the number of the outer iterations as this number does not vary much with
n or p and is on average in the range of 5 to 13. The penalty parameter lies for both
algorithms on average between 80 and 4000, which is of moderate size.

We also observe that the cost per iteration is more expensive in Algorithm 5.2
than in ALS and the relative difference is increasing with p. An explanation is clearly
that the cost to compute the projection onto the normal space of B(n, p) is of order
O(p6). To demonstrate this more illustratively we plot the fraction of the time taken
to compute the projection to the total time in Figure 7.2 for n = 200 and p =
5, 10, . . . , 50. For p = 50 approximately 81% of the runtime of the code is spent to
compute projection onto TY B(n, p).

8. Conclusion. Motivated by an application in atomic chemistry we addressed
the problem of embedding a symmetric matrix into the set of diagonal matrices. We
started with investigating two two-sided optimization problems and showed that they
generally do not have unique optimal solutions. We proposed algorithms to find opti-
mal solutions of either problems whose major cost are a few eigenvalue decompositions.
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Fig. 7.2. Ratio of time spent on computing the projection to total time.

Then we analyzed the optimal set C of solutions of the first problem and gained deeper
theoretical understanding of this set by analyzing the geometric properties of a sim-
ilar set. We proposed an augmented Lagrangian-based algorithm that can optimize
a smooth objective function over C by using geometric tools and showed convergence
to a stationary point. The latter property can generally not be guaranteed for the
augmented Lagrangian method ALS that we used for our comparison. Moreover, our
numerical tests demonstrated a convincing performance of our new algorithm as it
outperformed the latter approach. Surprisingly, this even holds for moderate sized
p, although the computation of the projection onto TY B(n, p), which is required by
the new algorithm, is of O(p6) and hence, expensive. We conclude therefore that for
moderate sized p this new algorithm is a good choice for optimizing a smooth function
over C as it guarantees global convergence and performs well.
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