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Abstract

Space-time autoregressive moving average models may be used for time series measured at

the same times in a number of locations. In this paper we propose a recursive algorithm

for estimating space-time autoregressive (AR) models. We also propose an information

criterion for estimating the model order, and prove its strong consistency. The methods are

illustrated using both simulated and real data. The real data corresponds to hourly carbon

monoxide (CO) concentrations recorded in September 1995 at four different locations in

Venice.
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1 Introduction

In many areas of research one is interested in the statistical analysis of measurements

of one quantity taken at various locations (space) and times. Examples include air

pollution concentrations at various locations in a city at different times, temperatures

in a region, wind speeds and the spread of epidemics. Different methods have been

proposed for the analysis of real data sets (see, for example, Mardia et al. (1998),

Wickle & Cressie(1999), Guttorp et al. (1994), Shaddick & Wakefield (2002), Haslett

& Raftery (1989)). (Elaborate on how they have been used? )

(First STAR or STARMA model used when? Was it the same as in (1)?) In this

paper we shall consider space-time autoregressions (Pfeifer & Deutsch (1980)). Let

X(si, t) (i = 1, ..., N, t = 1, ..., T ) denote a random variable associated with location

si and time t. Let X(t) ≡ (X(s1; t), ..., X(sN ; t))′, t ∈ Z. {X(t)} is said to be a

space-time AR process of order k if X(t) satisfies a difference equation of the form

X (t) +
k∑

j=1

(φjIN + ψjW )X (t− j) = ε (t) (1)

where the scalars φj, ψj (j = 1, ..., k) are unknown parameters. IN is the N -

dimensional identity matrix, W is a non-zero N × N known weighting matrix, with

diagonal entries 0, without loss of generality) and off-diagonal entries related to the

distances between the sites. Each row sum of W is normalised to 1, again without

loss of generality. We assume that {ε (t)} is weakly stationary, with

E {ε (t)} = 0 (2)

and

E
{
ε (t) ε (t + s)′

}
=





σ2IN ; s = 0

0 ; s 6= 0.
(3)

It is further assumed that the zeros of

det

{
IN +

k∑
j=1

(φjIN + ψjW ) zj

}
(4)
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are outside the unit circle, which ensures that there exists a weakly stationary process

which satisfies (1) .

Fields of application of the above models include meteorology (Subba Rao & An-

tunes(2004)), criminology (Pfeifer & Deutsch (1980)), ecology (Epperson (2000), Stof-

fer(1986)), transportation studies (Garrido (2000)) and many others. A space-time

AR process is a very parsimonious multivariate autoregression. It is this parsimony,

however, which prevents the use of algorithms such as the Whittle(1963) algorithm

to estimate the unknown parameters. However, we can use the principal ideas of

Whittle(1963) and Quinn (1980) (see also Hannan & Deistler (1988, sec.6, ch. 5))

to develop recursive equations for the estimation of these parameters. The Levinson-

Durbin and Whittle algorithms have a natural place in the estimation of uinvariate

and multivariate autoregressive order (references). In this paper we also introduce

an information criterion to estimate the order k of the process and demonstrate its

consistency.

In Section 2, we derive Yule-Walker relations for the space-time AR process. Using

these equations we obtain recursive relations for estimating the parameters of the

model. The sampling properties of the estimators are discussed in Section 3. The

problem of estimating the order of the model is considered in Section 4. For clarity of

explanation the proofs of the results obtained in Sections 2-4 are given in a separate

Section 5). We illustrate the methodology with simulated data in Section 6. In

Section 7 we use hourly carbon monoxide (CO) concentrations recorded in 1995 at

four locations in Venice to illustrate our estimation procedures.

2 Yule-Walker equations and recursive algorithm

Here we obtain Yule-Walker like equations for space-time AR processes. These will

be not the usually-specified ones, which represent a 1:1 relationship between autoco-

variances and system parameters, because of the fact that the autoregressive matrices
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are specified by the (2k + 1) parameters σ2 and the φk and ψk. For j ∈ Z, let

γj = E {X′ (t)X (t + j)} ,

πj = E {X′ (t) WX (t + j)} ,

λj = E {X′ (t) W ′WX (t + j)} .

Put σ2
k = σ2 and

Φ
(k)
k = [φ1, ..., φk]

′,

Ψ
(k)
k = [ψ1, ..., ψk]

′,

Uk = {γi−j}i,j=1,...,k ,

Vk = {πi−j}i,j=1,...,k ,

Fk = {λi−j}i,j=1,...,k ,

Γk =
[

γ1 · · · γk

]′
,

Λk =
[

λ1 · · · λk

]′
,

Πk =
[

π1 · · · πk

]′
,

Π−k =
[

π−1 · · · π−k

]′
.

THEOREM 1 Let {X(t)} be a space-time AR process satisfying (1) where {ε (t)}
satisfies (2) and (3) . Then


 Uk Vk

V ′
k Fk





 Φ

(k)
k

Ψ
(k)
k


 = −


 Γk

Π−k


 (5)

Nσ2
k = γ0 + Γ′kΦ

(k)
k + Π′

−kΨ
(k)
k (6)

Proof: See Section 5.

That Φ
(k)
k and Ψ

(k)
k can easily be calculated solving (5) follows from the following

lemma.
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LEMMA 2 The 2k × 2k matrix

Ωk =


 Uk Vk

V ′
k Fk




is invertible for any k.

Proof: See Section 5.

For given k, the determination of Φ
(k)
k and Ψ

(k)
k requires the inversion of the 2k

by 2k matrix Ωk. The computational load can be reduced by using the Töplitz

structure of Ωk, a fact which is utilised in the Levinson-Durbin and Whittle algorithms.

Moreover, as is the case with these algorithms, at each recursive step, information

about the system order is revealed. In the next theorem we introduce a recursive,

computationally efficient algorithm for solving (5). It should be recalled that the

Whittle recursion involves the invention of ‘forward’ autoregressive parameters. Our

recursion will need these as well as another ‘augmented’ set of parameters.

Let ∆
(k)
k , Θ

(k)
k , Φ

(k)
k , Ψ

(k)
k , ∆

(k)
k , Θ

(k)
k satisfy


 Uk Vk

V ′
k Fk





 Φ

(k)
k ∆

(k)
k

Ψ
(k)
k Θ

(k)
k


 = −


 Γk Πk

Π−k Λk




and 
 Uk V ′

k

Vk Fk





 Φ

(k)
k ∆

(k)
k

Ψ
(k)
k Θ

(k)
k


 = −


 Γk Π−k

Πk Λk


 . (7)

For k = 0, 1, . . . , put


 Φ

(k+1)
k+1 ∆

(k+1)
k+1

Ψ
(k+1)
k+1 Θ

(k+1)
k+1


 =




Φ
(k+1)
k ∆

(k+1)
k

φ
(k+1)
k+1 δ

(k+1)
k+1

Ψ
(k+1)
k Θ

(k+1)
k

ψ
(k+1)
k+1 θ

(k+1)
k+1




,


 Φ

(k+1)
k+1 ∆

(k+1)
k+1

Ψ
(k+1)
k+1 Θ

(k+1)
k+1


 =




Φ
(k+1)
k ∆

(k+1)
k

φ(k+1)

k+1
δ
(k+1)
k+1

Ψ
(k+1)
k Θ

(k+1)
k

ψ(k+1)

k+1
θ

(k+1)
k+1




,
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where Φ
(k+1)
k , Ψ

(k+1)
k , ∆

(k+1)
k , Θ

(k+1)
k , Φ

(k+1)
k , Ψ

(k+1)
k , ∆

(k+1)
k and Θ

(k+1)
k are k× 1 and

φ
(k+1)
k+1 , ψ

(k+1)
k+1 , δ

(k+1)
k+1 , θ

(k+1)
k+1 , φ(k+1)

k+1
, ψ(k+1)

k+1
, δ

(k+1)
k+1 and θ

(k+1)
k+1 are scalar. For any vector

x =
[

x1 · · · xm

]′
, let x̃ =

[
xm · · · x1

]′
, i.e. x with its elements reversed.

Let

S0 = T0 =


 γ0 π0

π0 λ0


 , P0 = Q′

0 =


 γ1 π1

π−1 λ1




and for k ≥ 1, let

Pk =


 γk+1 πk+1

π−k−1 λk+1


 +


 Γ̃′k Π̃′

k

Π̃′
−k Λ̃′k





 Φ

(k)
k ∆

(k)
k

Ψ
(k)
k Θ

(k)
k


 , (8)

Qk =


 γk+1 π−k−1

πk+1 λk+1


 +


 Γ̃′k Π̃′

−k

Π̃′
k Λ̃′k





 Φ

(k)
k ∆

(k)
k

Ψ
(k)
k Θ

(k)
k


 , (9)

Sk =


 γ0 π0

π0 λ0


 +


 Γ′k Π′

−k

Π′
k Λ′k





 Φ

(k)
k ∆

(k)
k

Ψ
(k)
k Θ

(k)
k


 , (10)

Tk =


 γ0 π0

π0 λ0


 +


 Γ′k Π′

k

Π′
−k Λ′k





 Φ

(k)
k ∆

(k)
k

Ψ
(k)
k Θ

(k)
k


 (11)

THEOREM 3 For k ≥ 0,


 φ

(k+1)
k+1 δ

(k+1)
k+1

ψ
(k+1)
k+1 θ

(k+1)
k+1


 = −T−1

k Pk,


 φ(k+1)

k+1
δ
(k+1)
k+1

ψ(k+1)

k+1
θ

(k+1)
k+1


 = −S−1

k Qk

and for k ≥ 1,


 Φ

(k+1)
k ∆

(k+1)
k

Ψ
(k+1)
k Θ

(k+1)
k


 =


 Φ

(k)
k ∆

(k)
k

Ψ
(k)
k Θ

(k)
k


 +


 Φ̃

(k)

k ∆̃
(k)

k

Ψ̃
(k)

k Θ̃
(k)

k





 φ

(k+1)
k+1 δ

(k+1)
k+1

ψ
(k+1)
k+1 θ

(k+1)
k+1


 ,


 Φ

(k+1)
k ∆

(k+1)
k

Ψ
(k+1)
k Θ

(k+1)
k


 =


 Φ

(k)
k ∆

(k)
k

Ψ
(k)
k Θ

(k)
k


 +


 Φ̃

(k)
k ∆̃

(k)
k

Ψ̃
(k)
k Θ̃

(k)
k





 φ(k+1)

k+1
δ
(k+1)
k+1

ψ(k+1)

k+1
θ

(k+1)
k+1


 .

Proof: See Section 5.

The following theorem shows that Sk and Tk are covariance matrices and are

invertible.

THEOREM 4 Let εk (t) , uk (t) , εk (t) and uk (t) be the differences between X (t) and
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its predictors
∑k

j=1 (ajI + bjW )X (t− j) which respectively minimise

E

{
X (t)−

k∑
j=1

(ajI + bjW )X (t− j)

}′ {
X (t)−

k∑
j=1

(ajI + bjW )X (t− j)

}
,

E

{
WX (t)−

k∑
j=1

(cjI + djW )X (t− j)

}′ {
WX (t)−

k∑
j=1

(cjI + djW )X (t− j)

}
,

E

{
X (t)−

k∑
j=1

(ajI + bjW )X (t + j)

}′ {
X (t)−

k∑
j=1

(ajI + bjW )X (t + j)

}

and

E

{
WX (t)−

k∑
j=1

(cjI + djW )X (t + j)

}′ {
WX (t)−

k∑
j=1

(cjI + djW )X (t + j)

}
.

Then

Sk = E






 ε′k (t)

u′k (t)




[
εk (t) uk (t)

]


 ,

Tk = E






 ε′k (t)

u′k (t)




[
εk (t) uk (t)

]




and Sk and Tk are of full rank for all k. Furthermore, Nσ2
k is the (1, 1) entry of Sk.

Proof: See Section 5.

The following lemma presents recursive expressions for Sk, Tk and σ2
k. The equa-

tions (12) and (13) should be used instead of (10) and (11) when estimating, as the

former equations are expected to be less prone to rounding problems. Similar relations

exist for the Levinson-Durbin and Whittle algorithms.

LEMMA 5 Let Sk and Tk be as defined above. Then

Sk+1 = Sk



I −


 φ(k+1)

k+1
δ
(k+1)
k+1

ψ(k+1)

k+1
θ

(k+1)
k+1





 φ

(k+1)
k+1 δ

(k+1)
k+1

ψ
(k+1)
k+1 θ

(k+1)
k+1






 , (12)

Tk+1 = Tk



I −


 φ

(k+1)
k+1 δ

(k+1)
k+1

ψ
(k+1)
k+1 θ

(k+1)
k+1





 φ(k+1)

k+1
δ
(k+1)
k+1

ψ(k+1)

k+1
θ

(k+1)
k+1






 . (13)
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Proof: See Section 5.

The following lemma reduces the computations needed in solving the recursive

equations in Theorem 3.

LEMMA 6 Let Pk and Qk be as defined in (8) and (9), respectively. Then

Qk = P ′
k.

Proof: See Section 5.

3 Parameter estimation for space-time AR processes

The above results describe exact relationships between the theoretical covariance and

autocovariance matrices, and the true parameters. The above algorithm becomes

an estimation algorithm when the theoretical covariances are replaced by consistent

estimators. Let {X(t)} be a space-time process. Given {X (t) ; 1 ≤ t ≤ T} , estimate

γj, πj and λj by the obvious moment estimators

γ̂j = T−1

T−j∑
t=1

X′ (t)X (t + j) ,

π̂j = T−1

T−j∑
t=1

X′ (t) WX (t + j)

and

λ̂j = T−1

T−j∑
t=1

X′ (t) W ′WX (t + j) ,

respectively. Without loss of generality, we shall assume that the X(t) have mean

zero, for, in practice, we shall always mean-correct them. This mean-correction will

have no asymptotic effect, so we omit any further reference for notational simplicity.

The following additional weak assumptions will be made in order to develop the

asymptotic properties of the estimators:

1. {ε (t)} is strictly stationary and ergodic;

2. E {ε (t)| Ft−1} = 0;
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3. E {ε (t) ε′ (t)| Ft−1} = σ2IN ;

4. E
{
ε4

j (t)
}

< ∞, j = 1, . . . , N,

where Ft is the σ-field generated by {ε (s) ; s ≤ t} . In the following we denote

generically by θ̂ the estimator of θ obtained from the recursion by substituting γ̂j for

γj, etc.

THEOREM 7 Let {X (t)} satisfy (1) and the above assumptions. Then

1. Φ̂
(k)
k and Ψ̂

(k)
k converge almost surely to Φ

(k)
k and Ψ

(k)
k ;

2. The distribution of
√

T
[ {

Φ̂
(k)
k − Φ

(k)
k

}′ {
Ψ̂

(k)
k −Ψ

(k)
k

}′ ]′
converges, as T →

∞, to the normal with mean zero and covariance matrix

σ2


 Uk Vk

V ′
k Fk



−1

.

Proof: See Section 5.

4 Estimating k

The above presupposes the true order k to be known. In practice, however, we shall

need to estimate k. The following theorem describes the behaviour of a class of AIC-

type estimators of k and establishes conditions under which these estimators are

strongly and weakly consistent.

THEOREM 8 Let k̂ be the minimiser of

φf (k) = NT log σ̂2
k + 2kf (T )

over k = 0, 1, . . . , K, where K is known a priori to be larger than k0, the true order,

and f (T ) /T → 0 as T →∞. Then

1. k̂ converges to k0 in probability if f (T ) diverges to ∞;

9



2. If f (T ) = c, for all T, then

lim
T→∞

Pr
{

k̂ = k0 + j
}

=





0 ; j < 0

pjqK−k0−j ; 0 ≤ j ≤ K − k0,

where the pj and qj are generated by

∞∑
j=0

pjz
j = exp

{ ∞∑
j=1

j−1zj Pr
(
χ2

2j > 2cj
)
}

and ∞∑
j=0

qjz
j = exp

{ ∞∑
j=1

j−1zj Pr
(
χ2

2j ≤ 2cj
)
}

.

In particular,

lim
T→∞

Pr
{

k̂ = k0

}
= qK−k0

→ exp

{
−

∞∑
j=1

j−1 Pr
(
χ2

2j > 2cj
)
}

,

as K →∞.

3. k̂ converges to k0 almost surely if

lim inf
T

f (T )

log log T
> 1,

and only if

lim inf
T

f (T )

log log T
≥ 1.

Thus, it can be seen that, when f(T ) is constant, the asymptotic probability of

overestimating the order is greater than zero and the probability of underestimation

is zero. Also, the probability of estimating the correct order is strictly less than 1.

Hence the AIC estimator (which corresponds to the case where f(T ) = 2) is not a

consistent estimator of the order. The case

lim inf
T

f (T )

log log T
= 1

10



is of some interest but will not be dealt with here, especially as the law of the iterated

logarithm used to prove these results (see Lemma 10 in the appendix) can only be

expected to hold for extremely large values of T.

5 Proofs of theorems

Here we prove the results contained in the theorems and lemmas stated in Sections 2

- 4.

PROOF of Theorem 1

We motivate the normal equations and recursions by developing the Gaussian max-

imum likelihood procedure, i.e. the maximum likelihood estimators when {ε (t)} is

assumed to be Gaussian. We do not, however, need to assume that {ε (t)} is Gaussian

– we merely use the Gaussian likelihood to obtain the correct “normal equations”,

which will hold whether or not {ε (t)} is Gaussian. The Gaussian maximum likelihood

estimators of the parameters φj, ψj (j = 1, ..., k) and σ2 for a space-time AR process

of order k can be obtained by maximizing the Gaussian log-likelihood function

lk = −TN

2
log

(
2πσ2

)− 1

2σ2

T∑
t=1

ε′ (t) ε (t)

where ε (t) is now understood to be the function of φ1, ..., φk, ψ1, ..., ψk, σ2 and

X (1) , . . . ,X (T ) given by

ε (t) = X (t) +
k∑

j=1

(φjI + ψjW )X (t− j) .

This is equiavlent to minimizing the sum of squares

Sk (Φ, Ψ) =
T∑

t=1

ε′ (t) ε (t)

=
T∑

t=1

{
X (t) +

k∑
j=1

(φjI + ψjW )X (t− j)

}′

×
{

X (t) +
k∑

j=1

(φjI + ψjW )X (t− j)

}

11



where Φ = [φ1, ..., φk]
′ and Ψ = [ψ1, ..., ψk]

′, and then setting TNσ2 equal to the

minimum value of Sk(Φ, Ψ).

Since Sk(Φ, Ψ) is quadratic in Φ and Ψ, we can minimise Sk(Φ, Ψ) by differentiating

with respect to φm, ψm (m = 1, ..., k) and equating the derivatives to zero. Now,

∂Sk (Φ, Ψ)

∂φm

= 2
T∑

t=1

X′ (t−m)

{
X (t) +

k∑
j=1

(φjI + ψjW )X (t− j)

}

∂Sk (Φ, Ψ)

∂ψm

= 2
T∑

t=1

X′ (t−m) W ′
{

X (t) +
k∑

j=1

(φjI + ψjW )X (t− j)

}
.

“Least squares” estimators may be obtained by solving these equations, which com-

prise a set of 2k linear equations in 2k unknowns. We wish, however, to develop a

recursive algorithm such as the Levinson-Durbin and Whittle algorithms, and so need

to obtain the correct formulation for the Yule-Walker relations for space time autore-

gressions. These equations, which are theoretical “normal equations”, are obtained

by equating the expectations of the right hand sides of the above to 0. We thus have

for each m = 1, . . . , k

γm +
k∑

j=1

(φjγm−j + ψjπm−j) = 0

π−m +
k∑

j=1

(φjπj−m + ψjλm−j) = 0.

Stacking these equations from m = 1 to k, we obtain (5) . Note that γ−m = γm and

λ−m = λm but that π−m 6= πm. It is straightforward to verify that these equations

hold true for any weakly stationary process {X (t)} satisfying (1) . Moreover, from the

12



above,

Nσ2 = E

{
T−1

T∑
t=1

ε′ (t) ε (t)

}

= γ0 +
k∑

j=1

(φjγj + ψjπ−j) +
k∑

j=1

φj

(
γj +

k∑
i=1

φiγj−i +
k∑

i=1

ψiπj−i

)

+
k∑

j=1

ψj

(
π−j +

k∑
i=1

φiπi−j +
k∑

i=1

ψiλj−i

)

= γ0 +
k∑

j=1

(φjγj + ψjπ−j) .

This completes the proof of the theorem.

PROOF of Lemma 2

Let α and β be arbitrary constant k×1 vectors, with
[

α′ β′
]
6= 0. The quadratic

form
[

α′ β′
]
Ωk


 α

β




is the expectation of

k∑
i,j=1

{αiX
′ (t− i) + βiX

′ (t− i) W ′} {αjX (t− j) + βjWX (t− j)}

= Z ′Z

where

Z =
k∑

j=1

Zj

and

Zj = αjX (t− j) + βjWX (t− j) .

Thus Ωk is non-negative definite and it is invertible unless Z = 0 almost everywhere,

which occurs only when there is a linear relation amongst X (t− 1) , . . . ,X (t− k) and

therefore amongst the ε (t) . However, we have assumed that {X (t)} satisfies (1) and

is weakly stationary, and that {ε (t)} is an uncorrelated process. There can therefore

be no linear relations and so Ωk is invertible and positive definite.

13



PROOF of Theorem 3

From (5) , the normal equations of order k + 1 may be written, using the notation

in Theorem 3, as




Uk Γ̃k

Γ̃′k γ0

Vk Π̃−k

Π̃′
k π0

V ′
k Π̃k

Π̃′
−k π0

Fk Λ̃k

Λ̃′k λ0







Φ
(k+1)
k

φ
(k+1)
k+1

Ψ
(k+1)
k

ψ
(k+1)
k+1




= −




Γk

γk+1

Π−k

π−k−1




.

We now proceed to derive the recursions for calculating Φ
(k+1)
k+1 and Ψ

(k+1)
k+1 in terms

of Φ
(k)
k and Ψ

(k)
k . The above equations may be written as the two equations


 Uk Vk

V ′
k Fk





 Φ

(k+1)
k

Ψ
(k+1)
k


 +


 Γ̃k Π̃−k

Π̃k Λ̃k





 φ

(k+1)
k+1

ψ
(k+1)
k+1


 = −


 Γk

Π−k


 (14)

and 
 Γ̃′k Π̃′

k

Π̃′
−k Λ̃′k





 Φ

(k+1)
k

Ψ
(k+1)
k


 +


 γ0 π0

π0 λ0





 φ

(k+1)
k+1

ψ
(k+1)
k+1


 = −


 γk+1

π−k−1


 . (15)

Equations (14) and (5) give


 Φ

(k+1)
k

Ψ
(k+1)
k




= −

 Uk Vk

V ′
k Fk



−1 

 Γk

Π−k


−


 Uk Vk

V ′
k Fk



−1 

 Γ̃k Π̃−k

Π̃k Λ̃k





 φ

(k+1)
k+1

ψ
(k+1)
k+1




=


 Φ

(k)
k

Ψ
(k)
k


−


 Uk Vk

V ′
k Fk



−1 

 Γ̃k Π̃−k

Π̃k Λ̃k





 φ

(k+1)
k+1

ψ
(k+1)
k+1


 .

Thus, from (15) , we have





 γ0 π0

π0 λ0


−


 Γ̃′k Π̃′

k

Π̃′
−k Λ̃′k





 Uk Vk

V ′
k Fk



−1 

 Γ̃k Π̃−k

Π̃k Λ̃k








 φ

(k+1)
k+1

ψ
(k+1)
k+1




= −




 γk+1

π−k−1


 +


 Γ̃′k Π̃′

k

Π̃′
−k Λ̃′k





 Φ

(k)
k

Ψ
(k)
k





 ,

14



or


 φ

(k+1)
k+1

ψ
(k+1)
k+1




= −




 γ0 π0

π0 λ0


−


 Γ̃′k Π̃′

k

Π̃′
−k Λ̃′k





 Uk Vk

V ′
k Fk



−1 

 Γ̃k Π̃−k

Π̃k Λ̃k






−1

Pk1

= −




 γ0 π0

π0 λ0


−


 Γ′k Π′

k

Π′
−k Λ′k





 Uk V ′

k

Vk Fk



−1 

 Γk Π−k

Πk Λk






−1

Pk1 (16)

where Pk1 is the first column of Pk. The above simplification results using the following

reasoning: Suppose


 Uk Vk

V ′
k Fk





 a b

c d


 =


 Γ̃k Π̃−k

Π̃k Λ̃k


 , (17)

where a, b, c and d are of the same dimension. We can obtain


 Γk Π−k

Πk Λk




on the right hand side of (17) by reversing the rows of

[
Uk Vk

]

and [
V ′

k Fk

]
.

To obtain recognisable matrices, we then need to reverse the relevant columns. Uk and

Fk remain unchanged, after reversal of both rows and columns, as they are Töplitz,

while Vk is changed to V ′
k . We preserve (17) by reversing a, b, c and d. Thus (17) is

the same as 
 Uk V ′

k

Vk Fk





 ã b̃

c̃ d̃


 =


 Γk Π−k

Πk Λk


 ,

15



and we therefore have


 Γ̃′k Π̃′

k

Π̃′
−k Λ̃′k





 Uk Vk

V ′
k Fk



−1 

 Γ̃k Π̃−k

Π̃k Λ̃k




=


 Γ̃′k Π̃′

k

Π̃′
−k Λ̃′k





 a b

c d




=


 Γ′k Π′

k

Π′
−k Λ′k





 ã b̃

c̃ d̃




=


 Γ′k Π′

k

Π′
−k Λ′k





 Uk V ′

k

Vk Fk



−1 

 Γk Π−k

Πk Λk


 .

Noting the differences between

−

 Uk V ′

k

Vk Fk



−1 

 Γk Π−k

Πk Λk




and the solution to (5) :


 Uk Vk

V ′
k Fk



−1 

 Γk

Π−k


 = −


 Φ

(k)
k

Ψ
(k)
k


 ,

it is clear that we need a double recursion and that we also need to augment the

equations. Using the notation defined in the statement of the theorem, we augment

(5) to the equation


 Uk Vk

V ′
k Fk





 Φ

(k)
k ∆

(k)
k

Ψ
(k)
k Θ

(k)
k


 = −


 Γk Πk

Π−k Λk


 (18)

and in the light of (16) , define the ‘forward’ equations


 Uk V ′

k

Vk Fk





 Φ

(k)
k ∆

(k)
k

Ψ
(k)
k Θ

(k)
k


 = −


 Γk Π−k

Πk Λk


 . (19)
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Using similar methods as used to obtain (14) and (15) , we obtain


 Φ

(k+1)
k ∆

(k+1)
k

Ψ
(k+1)
k Θ

(k+1)
k




=


 Φ

(k)
k ∆

(k)
k

Ψ
(k)
k Θ

(k)
k


−


 Uk Vk

V ′
k Fk



−1 

 Γ̃k Π̃−k

Π̃k Λ̃k





 φ

(k+1)
k+1 δ

(k+1)
k+1

ψ
(k+1)
k+1 θ

(k+1)
k+1


 (20)

=


 Φ

(k)
k ∆

(k)
k

Ψ
(k)
k Θ

(k)
k


 +


 Φ̃

(k)

k ∆̃
(k)

k

Ψ̃
(k)

k Θ̃
(k)

k





 φ

(k+1)
k+1 δ

(k+1)
k+1

ψ
(k+1)
k+1 θ

(k+1)
k+1


 , (21)


 Φ

(k+1)
k ∆

(k+1)
k

Ψ
(k+1)
k Θ

(k+1)
k




=


 Φ

(k)
k ∆

(k)
k

Ψ
(k)
k Θ

(k)
k


−


 Uk V ′

k

Vk Fk



−1 

 Γ̃k Π̃k

Π̃−k Λ̃k





 φ(k+1)

k+1
δ
(k+1)
k+1

ψ(k+1)

k+1
θ

(k+1)
k+1


 (22)

=


 Φ

(k)
k ∆

(k)
k

Ψ
(k)
k Θ

(k)
k


 +


 Φ̃

(k)
k ∆̃

(k)
k

Ψ̃
(k)
k Θ̃

(k)
k





 φ

(k+1)
k+1 δ

(k+1)
k+1

ψ
(k+1)
k+1 θ

(k+1)
k+1


 ,


 φ

(k+1)
k+1 δ

(k+1)
k+1

ψ
(k+1)
k+1 θ

(k+1)
k+1




= −




 γ0 π0

π0 λ0


−


 Γ′k Π′

k

Π′
−k Λ′k





 Uk V ′

k

Vk Fk



−1 

 Γk Π−k

Πk Λk






−1

Pk

= −




 γ0 π0

π0 λ0


 +


 Γ′k Π′

k

Π′
−k Λ′k





 Φ

(k)
k ∆

(k)
k

Ψ
(k)
k Θ

(k)
k






−1

Pk

= −T−1
k Pk,

and





 γ0 π0

π0 λ0


−


 Γ̃′k Π̃′

−k

Π̃′
k Λ̃′k





 Uk V ′

k

Vk Fk



−1 

 Γ̃k Π̃k

Π̃−k Λ̃k








 φ(k+1)

k+1
δ
(k+1)
k+1

ψ(k+1)

k+1
θ

(k+1)
k+1




= −




 γk+1 π−k−1

πk+1 λk+1


 +


 Γ̃′k Π̃′

−k

Π̃′
k Λ̃′k





 Φ

(k)
k ∆

(k)
k

Ψ
(k)
k Θ

(k)
k





 ,
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i.e.


 φ(k+1)

k+1
δ
(k+1)
k+1

ψ(k+1)

k+1
θ

(k+1)
k+1




= −




 γ0 π0

π0 λ0


−


 Γ′k Π′

−k

Π′
k Λ′k





 Uk Vk

V ′
k Fk



−1 

 Γk Πk

Π−k Λk






−1

Qk

= −




 γ0 π0

π0 λ0


 +


 Γ′k Π′

−k

Π′
k Λ′k





 Φ

(k)
k ∆

(k)
k

Ψ
(k)
k Θ

(k)
k






−1

Qk

= −S−1
k Qk.

The above equations are valid for k ≥ 1. The recursion commences with the matrices


 φ

(1)
1 δ

(1)
1

ψ
(1)
1 θ

(1)
1




and 
 φ(1)

1
δ
(1)
1

ψ(1)

1
θ

(1)
1


 .

From above, these are, respectively, given by

−

 U1 V1

V1 F1



−1 

 Γ1 Π1

Π−1 Λ1


 = −


 γ0 π0

π0 λ0



−1 

 γ1 π1

π−1 λ1




= −T−1
0 P0

and

−

 U1 V1

V1 F1



−1 

 Γ1 Π−1

Π1 Λ1


 = −


 γ0 π0

π0 λ0



−1 

 γ1 π−1

π1 λ1




= −S−1
0 Q0

This completes the proof.

PROOF of Theorem 4
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Let εk (t) be X (t) −∑k
j=1 (ajI + bjW )X (t− j) , where the aj and bj are chosen

to minimise

E

{
X (t)−

k∑
j=1

(ajI + bjW )X (t− j)

}′ {
X (t)−

k∑
j=1

(ajI + bjW )X (t− j)

}
.

Then, since all relevant covariances exist, by differentiating and equating to zero we

obtain

0

= −1

2

∂

∂ai

E

{
X (t)−

k∑
j=1

(ajI + bjW )X (t− j)

}′ {
X (t)−

k∑
j=1

(ajI + bjW )X (t− j)

}

= E

[
X′ (t− i)

{
X (t)−

k∑
j=1

(ajI + bjW )X (t− j)

}]

= γi −
k∑

j=1

(ajγi−j + bjπi−j)

and

0

= −1

2

∂

∂bi

E

{
X (t)−

k∑
j=1

(ajI + bjW )X (t− j)

}′ {
X (t)−

k∑
j=1

(ajI + bjW )X (t− j)

}

= E

[
X′ (t− i) W ′

{
X (t)−

k∑
j=1

(ajI + bjW )X (t− j)

}]

= π−i −
k∑

j=1

(ajπj−i + bjλj−i) .

Similarly, we obtain

0 = E

[
X′ (t− i)

{
WX (t)−

k∑
j=1

(cjI + djW )X (t− j)

}]

= πi −
k∑

j=1

(cjγi−j + djπi−j)
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and

0 = E

[
X′ (t− i) W ′

{
WX (t)−

k∑
j=1

(cjI + djW )X (t− j)

}]

= λ−i −
k∑

j=1

(cjπj−i + djλj−i) .

Thus, from (18) , if a =
[

a1 · · · ak

]′
, b =

[
b1 · · · bk

]′
, c =

[
c1 · · · ck

]′

and d =
[

d1 · · · dk

]′
, then


 a c

b d


 = −


 Φ

(k)
k ∆

(k)
k

Ψ
(k)
k Θ

(k)
k


 .

Hence, letting φ
(k)
j and ψ

(k)
j be the jth components of Φ

(k)
k and Ψ

(k)
k , we obtain, using

(5),

E {ε′k (t) εk (t)}

= E

{
X (t) +

k∑
j=1

(
φ

(k)
j I + ψ

(k)
j W

)
X (t− j)

}′ {
X (t) +

k∑
j=1

(
φ

(k)
j I + ψ

(k)
j W

)
X (t− j)

}

= γ0 +
k∑

j=1

(
φ

(k)
j γj + ψ

(k)
j π−j

)
+

k∑
j=1

φ
(k)
j

{
γj +

k∑
i=1

(
φ

(k)
i γj−i + ψ

(k)
j πi−j

)}

+
k∑

j=1

ψ
(k)
j

{
πj +

k∑
i=1

(
φ

(k)
i πj−i + ψ

(k)
j λj−i

)}

= γ0 + Γ′kΦ
(k)
k + Π′

−kΨ
(k)
k .

The above expression is just the (1, 1) element of Sk which is also equal to Nσ2
k. The

same reasoning shows that E {ε′k (t) uk (t)} and E {u′k (t) uk (t)} are the (1, 2) and

(2, 2) elements of Sk. The result for Tk follows using an identical argument, but using

‘prediction’ using the future, rather than the past.

We now show that Sk and Tk are (strictly) positive definite for each k. Suppose

Sk has a zero eigenvalue. Then there exist scalars α and β, not both 0, such that

αεk (t) + βuk (t) = 0,
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a.e. But, letting k0 be the true order, we have

αεk (t) + βuk (t) = α

{
X (t)−

k∑
j=1

(ajI + bjW )X (t− j)

}

+ β

{
WX (t)−

k∑
j=1

(cjI + djW )X (t− j)

}

= (αI + βW )X (t)−
k∑

j=1

{(αaj + βcj) I + (αbj + βdj) W}X (t− j)

= (αI + βW ) ε (t)− (αI + βW )

k0∑
j=1

(φjI + ψjW )X (t− j)

−
k∑

j=1

{(αaj + βcj) I + (αbj + βdj) W}X (t− j) .

However, the last two terms (the sums) are linear in X (t− 1) , . . . and therefore

uncorrelated with ε (t) . Thus αεk (t) + βuk (t) is zero, a.e. only if (αI + βW ) ε (t) is

zero. This in turn implies that

Σ = E


 ε′ (t)

ε′ (t) W ′




[
ε (t) Wε (t)

]

is not of full rank. But

Σ = σ2


 N tr W

tr W tr (W ′W )




= σ2


 N 0

0 tr (W ′W )


 .

Thus the Sk (and in turn the Tk, since det Tk = det Sk) are invertible as long as

tr (W ′W ) 6= 0.

But

tr (W ′W ) =
N∑

i,j=1

W 2
ij.
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Thus

tr (W ′W ) > 0,

with equality if and only if the Wij are zero for all i and j. But we have ruled out this

case, for otherwise {X (t)} would be a vector of uncorrelated autoregressions.

PROOF of Lemma 5

Although (10) and (11) define Sk and Tk, these formulae can sometimes cause

problems in practice. Just as the Levinson-Durbin (Durbin (1960)) algorithm and

Whittle(1963) recursions have alternative, more numerically stable formulae for the

innovation variances and covariance matrices (see Quinn (1980), for example), there

are alternative recursive formulae for the Sk and Tk. From (10) and (21) we have

Sk+1

=


 γ0 π0

π0 λ0


 +


 Γ′k+1 Π′

−k−1

Π′
k+1 Λ′k+1





 Φ

(k+1)
k+1 ∆

(k+1)
k+1

Ψ
(k+1)
k+1 Θ

(k+1)
k+1




=


 γ0 π0

π0 λ0


 +


 Γ′k Π′

−k

Π′
k Λ′k





 Φ

(k+1)
k ∆

(k+1)
k

Ψ
(k+1)
k Θ

(k+1)
k




+


 γk+1 π−k−1

πk+1 λk+1





 φ

(k+1)
k+1 δ

(k+1)
k+1

ψ
(k+1)
k+1 θ

(k+1)
k+1




=


 γ0 π0

π0 λ0


 +


 Γ′k Π′

−k

Π′
k Λ′k





 Φ

(k)
k ∆

(k)
k

Ψ
(k)
k Θ

(k)
k




+


 Γ′k Π′

−k

Π′
k Λ′k





 Φ̃

(k)

k ∆̃
(k)

k

Ψ̃
(k)

k Θ̃
(k)

k





 φ

(k+1)
k+1 δ

(k+1)
k+1

ψ
(k+1)
k+1 θ

(k+1)
k+1




+


 γk+1 π−k−1

πk+1 λk+1





 φ

(k+1)
k+1 δ

(k+1)
k+1

ψ
(k+1)
k+1 θ

(k+1)
k+1



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= Sk + Qk


 φ

(k+1)
k+1 δ

(k+1)
k+1

ψ
(k+1)
k+1 θ

(k+1)
k+1




= Sk − Sk


 φ(k+1)

k+1
δ
(k+1)
k+1

ψ(k+1)

k+1
θ

(k+1)
k+1





 φ

(k+1)
k+1 δ

(k+1)
k+1

ψ
(k+1)
k+1 θ

(k+1)
k+1




= Sk


I −


 φ(k+1)

k+1
δ
(k+1)
k+1

ψ(k+1)

k+1
θ

(k+1)
k+1





 φ

(k+1)
k+1 δ

(k+1)
k+1

ψ
(k+1)
k+1 θ

(k+1)
k+1





 .

Similarly,

Tk+1 = Tk


I −


 φ

(k+1)
k+1 δ

(k+1)
k+1

ψ
(k+1)
k+1 θ

(k+1)
k+1





 φ(k+1)

k+1
δ
(k+1)
k+1

ψ(k+1)

k+1
θ

(k+1)
k+1





 .

PROOF of Lemma 6

By definition,

Pk =


 γk+1 πk+1

π−k−1 λk+1


 +


 Γ̃′k Π̃′

k

Π̃′
−k Λ̃′k





 Φ

(k)
k ∆

(k)
k

Ψ
(k)
k Θ

(k)
k




=


 γk+1 πk+1

π−k−1 λk+1


−


 Γ̃′k Π̃′

k

Π̃′
−k Λ̃′k





 Uk Vk

V ′
k Fk



−1 

 Γk Πk

Π−k Λk




=


 γk+1 πk+1

π−k−1 λk+1


−


 Γ′k Π′

k

Π′
−k Λ′k





 Uk V ′

k

Vk Fk



−1 

 Γ̃k Π̃k

Π̃−k Λ̃k




=


 γk+1 πk+1

π−k−1 λk+1


 +


 Φ

(k)
k ∆

(k)
k

Ψ
(k)
k Θ

(k)
k



′ 
 Γ̃k Π̃k

Π̃−k Λ̃k




=





 γk+1 π−k−1

πk+1 λk+1


 +


 Γ̃′k Π̃′

−k

Π̃′
k Λ̃′k





 Φ

(k)
k ∆

(k)
k

Ψ
(k)
k Θ

(k)
k






′

= Q′
k.

PROOF of Theorem 7

From (5) , 
 Φ̂

(k)
k

Ψ̂
(k)
k


 = −


 Ûk V̂k

V̂ ′
k F̂k



−1 

 Γ̂k

Π̂−k


 .
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Thus


 Φ̂

(k)
k

Ψ̂
(k)
k


−


 Φ

(k)
k

Ψ
(k)
k


 = −


 Ûk V̂k

V̂ ′
k F̂k



−1 





 Γ̂k

Π̂−k


 +


 Ûk V̂k

V̂ ′
k F̂k





 Φ

(k)
k

Ψ
(k)
k






 .

Now the jth component of

Γ̂k +
[

Ûk V̂k

]

 Φ

(k)
k

Ψ
(k)
k




is

T−1

T−j∑
t=1

X′ (t)X (t− j) +
k∑

i=1

φiT
−1

T−|i−j|∑
t=1

X′ (t)X (t + |i− j|)

+
k∑

i=1

ψiT
−1

T−|i−j|∑
t=1

X′ (t) WX (t + |i− j|)

= T−1

T∑
t=1

{
X (t) +

k∑
i=1

φiX (t− i) +
k∑

i=1

ψiWX (t− i)

}′

X (t− j) + o
(
T−1+δ

)
,

almost surely, for any δ > 0, since the difference involves only a finite number of

quadratic terms in the components of X (t) ,X (t− 1) , . . . . Thus the jth component

is

T−1

T∑
t=1

ε (t)′X (t− j) + o
(
T−1+δ

)
,

almost surely as T →∞. Similarly, the jth component of

Π̂−k +
[

V̂−k F̂k

]

 Φ

(k)
k

Ψ
(k)
k




is

T−1

T∑
t=1

ε (t)′ WX (t− j) + o
(
T−1+δ

)
.

But both

T−1

T∑
t=1

ε (t)′X (t− j)
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and

T−1

T∑
t=1

ε (t)′ WX (t− j)

converge almost surely to 0 by the ergodic theorem. Also, since


 Ûk V̂k

V̂ ′
k F̂k




converges almost surely to 
 Uk Vk

V ′
k Fk


 ,

again by the ergodic theorem, the first part of the theorem follows. Now, letting a

and b be arbitrary N -dimensional vectors, we have from the above,

[
a′ b′

]





 Γ̂k

Π̂−k


 +


 Ûk V̂k

V̂ ′
k F̂k





 Φ

(k)
k

Ψ
(k)
k








= T−1

T∑
t=1

ε (t)′
k∑

j=1

(ajIN + bjW )X (t− j) + o
(
T−1+δ

)
.

But, letting

ξ (t) = ε (t)′
k∑

j=1

(ajIN + bjW )X (t− j) ,

we have

E {ξ (t)| Ft−1} = 0

E
{

ξ2 (t)
∣∣Ft−1

}
= σ2

{
k∑

i=1

X′ (t− i) (aiIN + biW
′)

k∑
j=1

(ajIN + bjW )X (t− j)

}
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and

E
{
ξ2 (t)

}
= σ2E

{
k∑

i=1

X′ (t− i) (aiIN + biW
′)

k∑
j=1

(ajIN + bjW )X (t− j)

}

= σ2

k∑
i=1

k∑
j=1

(aiajγi−j + aibjπi−j + biajπj−i + bibjλi−j)

= σ2
[

a′ b′
]

 Uk Vk

V ′
k Fk





 a

b


 .

Thus, by Billingsley’s martingale central limit theorem (Billingsley (1961)), it follows

that
√

T
[ {

Φ̂
(k)
k − Φ

(k)
k

}′ {
Ψ̂

(k)
k −Ψ

(k)
k

}′ ]′

is asymptotically normal with mean zero and covariance matrix

σ2


 Uk Vk

V ′
k Fk



−1 

 Uk Vk

V ′
k Fk





 Uk Vk

V ′
k Fk



−1

= σ2


 Uk Vk

V ′
k Fk



−1

.

PROOF of Theorem 8 The derivations of conditions for weak and strong con-

sistency of the minimiser of φf (k) each depend on the asymptotic properties of

φf (k + 1)− φf (k) = NT log
σ̂2

k+1

σ̂2
k

+ 2f (T ) .

Now,

σ̂2
k+1

σ̂2
k

= 1 +
σ̂2

k+1 − σ̂2
k

σ̂2
k

= 1 +
ŝk+1 − ŝk

ŝk

,
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where ŝk denotes the (1, 1) element of Ŝk. From (12) ,

Sk+1 − Sk = −Sk


 φ(k+1)

k+1
δ
(k+1)
k+1

ψ(k+1)

k+1
θ

(k+1)
k+1





 φ

(k+1)
k+1 δ

(k+1)
k+1

ψ
(k+1)
k+1 θ

(k+1)
k+1




= Qk


 φ

(k+1)
k+1 δ

(k+1)
k+1

ψ
(k+1)
k+1 θ

(k+1)
k+1




= −QkT
−1
k Pk

= −P ′
kT

−1
k Pk,

by Lemma 6. Thus,

ŝk+1 − ŝk = −P̂ ′
k1T̂

−1
k P̂k1

= −
[

φ̂
(k+1)
k+1 ψ̂

(k+1)
k+1

]
T̂k


 φ̂

(k+1)
k+1

ψ̂
(k+1)
k+1




It follows from Theorem 7 that T̂k converges almost surely to Tk, which is positive

definite, and that φ̂
(k+1)
k+1 and ψ̂

(k+1)
k+1 converge almost surely to φ

(k+1)
k+1 and ψ

(k+1)
k+1 , which

are both zero when k ≥ k0, but not when k = k0 − 1. Thus, when k ≥ k0, we have

ŝk+1 − ŝk = −T−1σ2z′kzk {1 + o (1)} ,

almost surely as T →∞, where zk is defined in Lemma 10 and

φf (k + 1)− φf (k) = NT log

(
1 +

ŝk+1 − ŝk

ŝk

)
+ 2f (T )

= NT log

[
1− T−1σ2z′kzk

Nσ2
{1 + o (1)}

]
+ 2f (T )

= −z′kzk {1 + o (1)}+ 2f (T ) .
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Also, when k < k0, we have, almost surely as T →∞,

ŝk+1 − ŝk →





−
[

φk+1 ψk+1

]
Tk


 φk+1

ψk+1


 ≤ 0 ; k < k0 − 1

−
[

φk0 ψk0

]
Tk0−1


 φk0

ψk0


 < 0 ; k = k0 − 1.

It follows that

T−1 {φf (k + 1)− φf (k)}

converges almost surely to

N log


1− s−1

k+1

[
φk+1 ψk+1

]
Tk


 φk+1

ψk+1





 ≤ 0,

if k < k0 − 1, to

N log


1− s−1

k0

[
φk0 ψk0

]
Tk0−1


 φk0

ψk0





 < 0,

if k = k0 − 1, and is asymptotically equivalent to

T−1 {−z′kzk + 2f (T )} (23)

if k ≥ k0.

Hence φf (k) is asymptotically non-increasing when k < k0 − 1, and strictly de-

creasing at k = k0 − 1. Since by Lemma 10 the z′kzk are asymptotically independent

and χ2
2 when k ≥ k0, φf (k + 1) − φf (k) is asymptotically positive (in probability)

if f (T ) diverges to ∞ with T. Thus, k̂ will be weakly consistent if f (T ) diverges to

∞. Of course, consistency is an asymptotic concept, and criteria with larger values

of f (T ) yield estimators which are equal or smaller. Thus in small samples, we may

in fact underestimate the order. It is of interest therefore to choose f so as to fix the

(asymptotic) probability of overestimation at some acceptable level. We proceed as
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in Quinn (1988). Put f (T ) = c and note from above that

Pr
{

k̂ < k0

}
→ 0.

Then, noting that the z′kzk − 2c are asymptotically independent and distributed as

χ2
2 − 2c for k = k0, . . . , K − 1, we have

lim
T→∞

Pr
{

k̂ = k0 + j
}

=





Pr {W1 < 0, . . . , WK−k0 < 0} ; j = 0

Pr {0 < Wj,W1 < Wj, . . . , Wj−1 < Wj,Wj+1 < Wj, . . . , WK−k0 < Wj} ; j ≥ 1,

where

Wj =

j∑
i=1

Ui

and the Ui are independent and identically distributed with Ui +2c distributed as χ2
2.

Now

Pr {0 < Wj, W1 < Wj, . . . , Wj−1 < Wj,Wj+1 < Wj, . . . , WK−k0 < Wj}
= Pr {U1 + · · ·+ Uj > 0, . . . , Uj > 0, Uj+1 < 0, . . . , Uj+1 + · · ·+ UK−k0 < 0}
= Pr {U1 + · · ·+ Uj > 0, . . . , Uj > 0}Pr {Uj+1 < 0, . . . , Uj+1 + · · ·+ UK−k0 < 0}
= Pr {W1 > 0, . . . ,Wj > 0}Pr {W1 < 0, . . . , WK−k0−j < 0}
= pjqK−k0−j,

where

pj = Pr {W1 > 0, . . . ,Wj > 0}

and

qj = Pr {W1 < 0, . . . , Wj < 0} .

Note that in the above we have relabelled the Ui in order to obtain expressions in terms

of probabilities involving the Wi. Setting p0 = q0 = 1, and using Sparre-Andersen’s

theorems (see, for example, Sparre-Andersen(1954), Spitzer(1956) and Feller (1971)),
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we have

lim
T→∞

Pr
{

k̂ = k0 + j
}

= pjqK−k0−j,

where the pi and qi may be obtained from the generating functions

∞∑
i=0

piz
i = e

P∞
j=1 j−1zj Pr{χ2

2j>2cj}

and ∞∑
i=0

qiz
i = e

P∞
j=1 j−1zj Pr{χ2

2j<2cj}.

When K is moderately large, we can approximate limT→∞ Pr
{

k̂ = k0 + j
}

by pjq,

where q = limk→∞ qk. Let τj = qj−1 − qj. Then

k∑
j=1

τjz
j =

k∑
j=1

(qj−1 − qj) zj

= 1 + z

k−1∑
j=0

qjz
j −

k∑
j=0

qjz
j.
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Hence

1− q = lim
k→∞

(1− qk)

= lim
k→∞

lim
z→1−

k∑
j=1

(qj−1 − qj) zj

= lim
z→1−

lim
k→∞

k∑
j=1

(qj−1 − qj) zj

= lim
z→1−

∞∑
j=1

τjz
j

= 1 + lim
z→1−

(
z

∞∑
j=0

qjz
j −

∞∑
j=0

qjz
j

)

= 1− lim
z→1−

{
(1− z) e

P∞
j=1 j−1zj Pr{χ2

2j<2cj}}

= 1− lim
z→1−

elog(1−z)+
P∞

j=1 j−1zj Pr{χ2
2j<2cj}

= 1− lim
z→1−

e
P∞

j=1 j−1zj[Pr{χ2
2j<2cj}−1]

= 1− e
P∞

j=1−j−1 Pr{χ2
2j>2cj}.

Thus

q = e−
P∞

j=1 j−1 Pr{χ2
2j>2cj}.

Note that when c > 1, q > 0, since by the central limit theorem as j →∞,

Pr
{
χ2

2j > 2cj
}

= Pr

{
χ2

2j − 2j√
4j

> (c− 1)
√

j

}

∼ Pr
{

Z > (c− 1)
√

j
}

∼ 1√
2πj

e−
1
2
(c−1)j.

Finally, we establish the conditions for strong consistency. From (23) , the min-

imiser of φf depends on the behaviour of the terms

−z′kzk + 2f (T ) ,
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k = k0, . . . , K − 1. From Lemma 10, we have for k = k0, . . . , K − 1,

lim sup
T

z′kzk

2 log log T
= 1.

If

lim inf
T

f (T )

log log T
> 1,

then

lim inf
T

−z′kzk + 2f (T )

2 log log T
> 0,

and consequently k̂ → k0, almost surely. If, on the other hand,

lim inf
T

f (T )

log log T
< 1,

then we have

lim inf
T

−z′kzk + 2f (T )

2 log log T
< 0,

and so the event

φf (k + 1)− φf (k) < 0

occurs infinitely often, for each k ≥ k0. Hence k̂ will not converge almost surely to k0.

The condition

lim inf
T

f (T )

log log T
≥ 1

is thus necessary for strong consistency.

6 Empirical analysis of the properties of k̂

Let φf (k) = NT log σ̂2
k + 2kf (T ) be the criterion for selecting the order of the space-

time AR process. AIC, BIC and the Hannan & Quinn Criterion (HQIC) are obtained

by putting f (T ) = 2, log T and 2 log (log T ) (Quinn (1980)), respectively. In order

to compare the performance of the three criteria, the procedures developed in the

previous sections were implemented in MATLAB and tested on simulated data. The

performance is compared only for relatively small values of T . All the simulations

reported were performed using pseudo-normal random numbers.
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Data was simulated from a system of nine sites with weighting matrix:

W =




0 .2192 .1109 .1173 .1485 .1101 .0928 .1197 .0816

.1674 0 .1661 .0958 .1352 .1016 .0852 .1614 .0873

.0759 .1488 0 .0815 .1054 .0981 .0890 .2688 .1325

.0601 .0642 .0610 0 .2201 .2701 .1665 .0869 .0710

.0753 .0898 .0782 .2180 0 .2156 .1252 .1219 .0759

.0470 .0568 .0612 .2252 .1816 0 .2514 .0964 .0804

.0489 .0588 .0686 .1714 .1302 .3103 0 .1006 .1113

.0666 .1175 .2185 .0944 .1336 .1256 .1061 0 .1377

.0616 .0863 .1462 .1047 .1130 .1421 .1593 .1869 0




and the errors were pseudo-N(0, 1). Each table below shows the results of 100 repli-

cations of each model for varying sample sizes T and different parameters. Tables 1

and 2 show the frequencies of the orders estimated by each criterion for space-time

AR processes of order 1. Results for Space-Time AR processes of order 2 are shown

in Tables 3 and 4.

From the following tables it can be seen that, for small Φ and Ψ and small T ,

AIC overestimates the order of the process more often than the other two criteria and

BIC underestimates the order more often. HQIC lies between these two criteria by

underestimating to a lesser degree than BIC and overestimating to a lesser degree than

AIC. On the basis of this we prefer. Negative values of the parameters do not seem

to give different results than positive values. When considering different values of the

parameters, the correct order seems to be found more often when the value of Φ is

larger than when the value of Ψ is larger. This can be observed in sub tables 3, 4 and

5 of Table 2. This observation seems to indicate a stronger weight of Φ in the model

and reflects the fact that the influence of Ψ is somewhat weakened by the existence of

the weighting matrix W . Although the performance of AIC improves, as T increases,

for small Φ and Ψ, this improvement stops after a certain value of T . Also, for larger

values of the coefficients, the performance does not appear to improve with T . This

is easily explained by the inconsistency of AIC, shown in Theorem 8. Particularly

bad performance from all criteria is observed in Table 3 for Φ = Ψ = [0.5 0.5]′. The
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Φ = Ψ = [0.1]

T=50 T=100 T=150 T=500

bk 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2

AIC 31 52 10 7 4 75 3 3 1 82 9 8 0 81 12 7

HQIC 48 48 1 3 18 79 3 0 2 94 3 1 0 95 4 1

BIC 74 25 1 0 42 57 1 0 13 87 0 0 0 100 0 0

Φ = Ψ = [0.2]

T=50 T=100 T=150 T=500

bk 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2

AIC 0 81 10 9 0 83 8 9 0 82 13 5 0 80 12 8

HQIC 1 92 5 2 0 97 3 0 0 95 4 1 0 94 4 2

BIC 3 96 1 0 0 100 0 0 0 100 0 0 0 100 0 0

Φ = Ψ = [0.3]

T=50 T=100 T=150 T=500

bk 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2

AIC 0 85 10 5 0 87 9 4 0 83 11 6 0 81 11 8

HQIC 0 95 4 1 0 99 1 0 0 97 3 0 0 99 1 0

BIC 0 97 3 0 0 100 0 0 0 99 1 0 0 100 0 0

Φ = Ψ = [−0.1]

T=50 T=100 T=150 T=500

bk 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2

AIC 38 49 8 5 11 68 9 12 0 83 7 10 0 82 10 8

HQIC 53 43 4 0 17 79 2 2 2 95 2 1 0 98 1 1

BIC 64 36 0 0 36 63 1 0 13 86 1 0 0 99 1 0

Φ = Ψ = [−0.2]

T=50 T=100 T=150 T=500

bk 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2

AIC 0 88 10 2 0 82 11 7 0 80 11 9 0 83 8 9

HQIC 2 94 4 0 0 98 1 1 0 96 4 0 0 100 0 0

BIC 6 93 1 0 0 100 0 0 0 100 0 0 0 100 0 0

Table 1: Frequency of correct order selection, for simulated data from Space −
Time AR models of order 1.
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Φ = [0.2] Ψ = [−0.2]

T=50 T=100 T=150 T=500

bk 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2

AIC 1 87 5 7 0 83 8 9 0 84 11 5 0 75 16 9

HQIC 3 94 2 1 0 97 2 1 0 96 4 0 0 95 5 0

BIC 7 92 1 0 0 99 1 0 0 100 0 0 0 100 0 0

Φ = [−0.2] Ψ = [0.2]

T=50 T=100 T=150 T=500

bk 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2

AIC 0 85 12 3 0 78 11 11 0 79 11 10 0 86 3 11

HQIC 0 93 7 0 0 94 6 0 0 97 2 1 0 97 3 0

BIC 3 95 2 0 0 97 3 0 0 100 0 0 0 100 0 0

Φ = [0.3] Ψ = [−0.1]

T=50 T=100 T=150 T=500

bk 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2

AIC 0 85 9 6 0 82 13 5 0 82 12 6 0 79 11 10

HQIC 0 95 3 2 0 95 5 0 0 97 3 0 0 96 2 2

BIC 0 99 1 0 0 98 2 0 0 98 2 0 0 100 0 0

Φ = [0.1] Ψ = [−0.3]

T=50 T=100 T=150 T=500

bk 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2

AIC 4 79 9 8 0 80 15 5 0 80 11 9 0 81 12 7

HQIC 10 85 3 2 1 93 6 0 1 94 5 0 0 97 2 1

BIC 24 76 0 0 6 94 0 0 1 99 0 0 0 100 0 0

Φ = [0.1] Ψ = [0.3]

T=50 T=100 T=150 T=500

bk 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2

AIC 7 79 8 6 1 84 9 6 0 87 7 6 0 82 12 6

HQIC 18 76 6 0 1 91 5 2 0 96 4 0 0 98 2 0

BIC 29 68 3 0 4 95 1 0 0 100 0 0 0 100 0 0

Table 2: Frequency of correct order selection, for simulated data from Space −
Time AR models of order 1.
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Φ = Ψ = [0.1 0.1]

T=50 T=100 T=150 T=500

bk 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2

AIC 25 19 40 16 2 3 80 15 0 3 81 16 0 0 86 14

HQIC 43 15 31 11 9 9 81 1 1 9 86 4 0 0 99 1

BIC 62 13 24 1 36 15 49 0 5 21 74 0 0 0 100 0

Φ = Ψ = [0.2 0.2]

T=50 T=100 T=150 T=500

bk 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2

AIC 0 1 84 15 0 0 83 17 0 0 81 19 0 0 90 10

HQIC 0 1 96 3 0 0 97 3 0 0 95 5 0 0 100 0

BIC 0 3 96 1 0 0 99 1 0 0 100 0 0 0 100 0

Φ = Ψ = [0.3 0.3]

T=50 T=100 150 T=500

bk 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2

AIC 0 0 83 17 0 0 79 21 0 0 89 11 0 0 79 21

HQIC 0 0 96 4 0 0 97 3 0 0 96 4 0 0 96 4

BIC 0 0 98 2 0 0 100 0 0 0 100 0 0 0 100 0

Φ = Ψ = [0.5 0.5]

T=50 T=100 T=150 T=500

bk 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2

AIC 0 0 36 57 0 0 26 74 0 0 19 81 0 0 20 80

HQIC 0 0 45 55 0 0 32 68 0 0 34 66 0 0 31 69

BIC 0 0 54 46 0 0 40 60 0 0 42 58 0 0 37 63

Table 3: Frequency of correct order selection, for simulated data from Space −
Time AR models of order 2.
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Φ = [0.5 0.1] Ψ = [0.5 0.1]

T=50 T=100 T=150 T=500

bk 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2

AIC 0 33 54 13 0 5 77 18 0 3 85 12 0 0 83 17

HQIC 0 51 45 4 0 20 76 4 0 6 91 3 0 0 97 3

BIC 0 64 35 1 0 39 59 2 0 14 86 0 0 0 100 0

Φ = [0.5 0.1] Ψ = [0.1 0.5]

T=50 T=100 T=150 T=500

bk 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2

AIC 0 0 88 12 0 0 85 16 0 0 81 19 0 0 79 21

HQIC 0 0 97 3 0 0 93 7 0 0 92 8 0 0 97 3

BIC 0 4 96 0 0 0 98 2 0 0 99 1 0 0 100 0

Φ = [0.1 0.3] Ψ = [−0.2 − 0.2]

T=50 T=100 T=150 T=500

bk 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2 0 1 2 > 2

AIC 0 0 80 20 0 0 87 13 0 0 86 14 0 0 82 18

HQIC 0 0 90 10 0 0 99 1 0 0 94 6 0 0 98 2

BIC 0 0 95 5 0 0 100 0 0 0 99 1 0 0 100 0

Table 4: Frequency of correct order selection, for simulated data from Space −
Time AR models of order 2.
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reason for this is that for these values, 2 of the zeros in (4) are 0. (Something wrong

here. Two zeros appear to be outside the unit circle. Could you do the simulations

again with 0.45 instead of 0.5?)

7 Data Analysis: Space-time AR models for Carbon monoxide

concentrations in Venice

The atmospheric concentration of carbon monoxide (CO) is a central issue in en-

vironmental monitoring, because of the direct relationship between excess CO and

global warming (greenhouse effect). The problem is spatio-temporal in nature and

given time series from different monitoring stations, we expect better insights into the

dynamics of the process by fitting a spatio-temporal model to the data rather than

analysing the spatial and temporal features separately.

The data consist of 300 hourly carbon monoxide (CO) concentrations (in micro-

grams per cubic meter) recorded in September 1995 at four different locations in Venice

(see Figure 1). The data were considered in Tonellato(2001) and are available at

http://www.blackwellpublishers.co.uk/rss/datasets/tonellato.ZIP. In Tonellato(2001)

a multivariate time series model is fitted to the data using Bayesian methods. Tonel-

lato assumes that the process is isotropic, which may be difficult to justify. With

data available at only four locations it is also difficult to model the spatial covariance

structure of the system. Hence, we believe that the space-time autoregressive model

is suitable for modelling this data.
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Figure 1: Original series of hourly carbon monoxide in 4 stations in Venice
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Site 2 3 4
1 1.680 1.420 1.356
2 0.624 1.176
3 0.672

Table 5: Distances between sites (in km)

7·1 Analysis

We follow Tonellato(2001) by replacing the missing data with the means of the val-

ues at the same site and same hour over the whole sample period. We analyse the

logarithms of the data, depicted in Figure 2. (This figure seems wrong. Compare

with the one I’ve attached. In particular, compare the first ten values in the first pic-

ture. I’m worried that the analysis might not be correct.) There is evidence that this

transformation stabilises the variance but we believe the data is still non-gaussian.

The distances between the sites (Table 5) are used to construct the weighting

matrix. The weights are taken as the inverse of the corresponding distances between

the sites. The weighting matrix is standardised such that each row sum is 1:

W =




0 0.2922 0.3457 0.3621

0.1946 0 0.5274 0.2780

0.1856 0.4223 0 0.3921

0.2398 0.2764 0.4838 0



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Figure 2: Logarithm of series of hourly carbon monoxide in 4 stations in Venice

Following Tonellato, we subtract the seasonal component present in each time
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series individually prior to modelling. Assuming that the length of each cycle is 24

hours and denoting by Y(t) the logarithm of the original observations, we write

Y(t) = S(t)ξ + X(t) (24)

where

S(t) =
[

cos(πt/12) · · · cos(6πt/12) sin(πt/12) · · · sin(6πt/12)
]
⊗ I4

and

ξ =
[

ξ1,1 · · · ξ1,6 · · · ξ4,1 · · · ξ4,6 ξ∗1,1 · · · ξ∗1,6 · · · ξ∗4,1 · · · ξ∗4,6

]′

and X(t) is the deseasonalised process in Figure 3, which will be used for fitting a

space-time AR model. In practice, X(t) are the residuals obtained after fitting the

model (24) by least squares to the transformed data.
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Figure 3: Deseasonalised series(using harmonics) of log-hourly carbon monoxide in 4
stations in Venice.

Using our methodology for order determination and using the recursive estimation

techniques, we found that the best order for the space-time AR model is 1 and the

corresponding estimated parameters are φ̂ = −0.5202, ψ̂ = −0.1173, σ̂2 = 0.1341.

The graph of the residuals obtained after fitting the space-time AR model (Figure 4)

does not present any specific pattern. The residual autocorrelation functions are not

significantly different from zero and the cross correlations are also very close to zero .
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Figure 4: Residual after fitting a space-time AR(1) model to the data in Figure 3.
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Appendix A. Application of the Law of the iterated logarithm

The following lemmas are needed for the proof of Theorem 8.

LEMMA 9 Let P̂k1 denote the first column of P̂k, where Pk is defined in Theorem

3. Then, when k ≥ k0, the true order,

P̂k1 =


 T−1

∑T
t=1 ε′k (t− k − 1) ε (t)

T−1
∑T

t=1 u′k (t− k − 1) ε (t)


 {1 + o (1)} ,

almost surely as T →∞.

LEMMA 10 Let

zk = T 1/2σ−1T
−1/2
k P̂k1,

where T
−1/2
k is any matrix whose square is T−1

k . Then

1. For k = k0, . . . , K, where K is fixed, the zk are asymptotically independent and

normally distributed with zero means and identity covariance matrices.
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2. For k ≥ k0, if α is any 2-dimensional vector,

lim sup
T

√
1

2α′α log log T
|α′zk| = 1,

almost surely.

3. For k = k0, . . . , K, where K is fixed,

lim sup
T

z′kzk

2 log log T
= 1,

almost surely.

PROOF of Lemma 9 From (8) ,

P̂k1 =


 γ̂k+1

π̂−k−1


 +




˜̂
Γ
′
k

˜̂
Π
′
k

˜̂
Π
′
−k

˜̂
Λ
′
k





 Φ̂

(k)
k

Ψ̂
(k)
k




=


 γ̂k+1

π̂−k−1


 +




˜̂
Γ
′
k

˜̂
Π
′
k

˜̂
Π
′
−k

˜̂
Λ
′
k





 Φ

(k)
k

Ψ
(k)
k




+




˜̂
Γ
′
k

˜̂
Π
′
k

˜̂
Π
′
−k

˜̂
Λ
′
k








 Φ̂

(k)
k

Ψ̂
(k)
k


−


 Φ

(k)
k

Ψ
(k)
k





 .
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When k ≥ k0,


 γ̂k+1

π̂−k−1


 +




˜̂
Γ
′
k

˜̂
Π
′
k

˜̂
Π
′
−k

˜̂
Λ
′
k





 Φ

(k)
k

Ψ
(k)
k




=


 T−1

∑T
t=1 X′ (t)X (t + k + 1)

T−1
∑T

t=1 X′ (t) W ′X (t + k + 1)




+

k0∑
j=1

φj


 T−1

∑T
t=1 X′ (t)X (t + k + 1− j)

T−1
∑T

t=1 X′ (t) W ′X (t + k + 1− j)




+

k0∑
j=1

ψj


 T−1

∑T
t=1 X′ (t) W ′X (t + k + 1− j)

T−1
∑T

t=1 X′ (t) W ′WX (t + k + 1− j)




= T−1




∑T
t=1 X′ (t) ε (t + k + 1)

∑T
t=1 X′ (t) W ′ε (t + k + 1)


 .

Now, from the proof of Theorem 7,




˜̂
Γ
′
k

˜̂
Π
′
k

˜̂
Π
′
−k

˜̂
Λ
′
k








 Φ̂

(k)
k

Ψ̂
(k)
k


−


 Φ

(k)
k

Ψ
(k)
k







= −

 Γ̃′k Π̃′

k

Π̃′
−k Λ̃′k





 Uk Vk

V ′
k Fk



−1 



 Γ̂k

Π̂−k


 +


 Ûk V̂k

V̂ ′
k F̂k





 Φ

(k)
k

Ψ
(k)
k





 {1 + o (1)}

= −




 Uk Vk

V ′
k Fk



−1 

 Γ̃k Π̃−k

Π̃k Λ̃k






′ 



 Γ̂k

Π̂−k


 +


 Ûk V̂k

V̂ ′
k F̂k





 Φ

(k)
k

Ψ
(k)
k





 {1 + o (1)}

= −




 Uk V ′

k

Vk Fk



−1 

 Γk Π−k

Πk Λk






′ 



 Γ̂k

Π̂−k


 +


 Ûk V̂k

V̂ ′
k F̂k





 Φ

(k)
k

Ψ
(k)
k





 {1 + o (1)}

=


 Φ̃

(k)

k ∆̃
(k)

k

Ψ̃
(k)

k Θ̃
(k)

k



′ 



 Γ̂k

Π̂−k


 +


 Ûk V̂k

V̂ ′
k F̂k





 Φ

(k)
k

Ψ
(k)
k





 {1 + o (1)} .
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Thus

P̂k1 =


 T−1

∑T
t=1 X′ (t− k − 1) ε (t)

T−1
∑T

t=1 X′ (t− k − 1) W ′ε (t)




+


 Φ̃

(k)

k ∆̃
(k)

k

Ψ̃
(k)

k Θ̃
(k)

k



′ 


{
T−1

∑T
t=1 X′ (t− i) ε (t)

}
i=1,...,k{

T−1
∑T

t=1 X′ (t− i) W ′ε (t)
}

i=1,...,k


 {1 + o (1)}

=


 T−1

∑T
t=1 ε′k (t− k − 1) ε (t)

T−1
∑T

t=1 u′k (t− k − 1) ε (t)


 {1 + o (1)} .

PROOF of Lemma 10 The asymptotic behaviour of P̂k1 is, from the above, the

same as that of 
 T−1

∑T
t=1 ε′k (t− k − 1) ε (t)

T−1
∑T

t=1 u′k (t− k − 1) ε (t)


 .

Now

E






 ε′k (t− k − 1)

u′k (t− k − 1)


 ε (t) ε′ (t)

[
εk (t− k − 1) uk (t− k − 1)

]




= E


E






 ε′k (t− k − 1)

u′k (t− k − 1)


 ε (t) ε′ (t)

[
εk (t− k − 1) uk (t− k − 1)

]∣∣∣Ft−1








= σ2E






 ε′k (t− k − 1)

u′k (t− k − 1)




[
εk (t− k − 1) uk (t− k − 1)

]




= σ2Tk,

by Theorem 4, since both ε′k (t− k − 1) and u′k (t− k − 1) are constructed from X (t− k − 1) , . . . ,

X (t− 1) and are thus fixed given Ft−1. Again using Billingsley’s martingale central

limit theorem (Billingsley (1961)), α′zk is asymptotically normal with zero mean and

variance α′α. In fact, if αk, k = k0, . . . , K are arbitrary 2-dimensional vectors, then

α′kzk, k = k0, . . . , K are asymptotically independent. To see this, without loss of
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generality choose k and l with k > l ≥ k0. Then

E








∑T
t=1 ε′k (t− k − 1) ε (t)

∑T
t=1 u′k (t− k − 1) ε (t)




[ ∑T
t=1 ε′ (t) εl (t− l − 1)

∑T
t=1 ε′ (t) ul (t− l − 1)

]




= σ2E




∑T
t=1 ε′k (t− k − 1) εl (t− l − 1)

∑T
t=1 ε′k (t− k − 1) ul (t− l − 1)

∑T
t=1 u′k (t− k − 1) εl (t− l − 1)

∑T
t=1 u′k (t− k − 1) ul (t− l − 1)


 .

Now, using (7) and since, for i = 0, 1, . . . , l

1 ≤ k − l + i ≤ k,

we obtain

E {ε′k (t− k − 1) εl (t− l − 1)}

= E




{
X (t− k − 1) +

k∑
j=1

(
φ(k)

j
IN + ψ(k)

j
W

)
X (t− k − 1 + j)

}′

{
X (t− l − 1) +

l∑
i=1

(
φ(l)

i
IN + ψ(l)

i
W

)
X (t− l − 1 + i)

}]

=

{
γk−l +

k∑
j=1

(
φ(k)

j
γk−l−j + ψ(k)

j
πj+l−k

)}

+
l∑

i=1

φ(l)

i

{
γk−l+i +

k∑
j=1

(
φ(k)

j
γk−l+i−j + ψ(k)

j
πj−i+l−k

)}

+
l∑

i=1

ψ(l)

i

{
πk−l+i +

k∑
j=1

(
φ(k)

j
πk−l+i−j + ψ(k)

j
λk−l+i−j

)}

= 0.
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Similarly,

E {u′k (t− k − 1) ul (t− l − 1)}

= E




{
WX (t− k − 1) +

k∑
j=1

(
δ
(k)
j IN + θ

(k)
j W

)
X (t− k − 1 + j)

}′

{
WX (t− l − 1) +

l∑
i=1

(
δ
(l)
i IN + θ

(l)
i W

)
X (t− l − 1 + i)

}]

=

{
λk−l +

k∑
j=1

(
δ
(k)
j πk−l−j + θ

(k)
j λk−l−j

)}

+
l∑

i=1

δ
(l)
i

{
πl−k−i +

k∑
j=1

(
δ
(k)
j γk−l+i−j + θ

(k)
j πl−k+j−i

)}

+
l∑

i=1

θ
(l)
i

{
λk−l+i +

k∑
j=1

(
δ
(k)
j πk−l+i−j + θ

(k)
j λk−l+i−j

)}

= 0,

E {ε′k (t− k − 1) ul (t− l − 1)}

= E




{
X (t− k − 1) +

k∑
j=1

(
φ(k)

j
IN + ψ(k)

j
W

)
X (t− k − 1 + j)

}′

{
WX (t− l − 1) +

l∑
i=1

(
δ
(l)
i IN + θ

(l)
i W

)
X (t− l − 1 + i)

}]

=

{
πk−l +

k∑
j=1

(
φ(k)

j
πk−l−j + ψ(k)

j
λk−l−j

)}

+
l∑

i=1

δ
(l)
i

{
γk−l+i +

k∑
j=1

(
φ(k)

j
γk−l+i−j + ψ(k)

j
πl−k+j−i

)}

+
l∑

i=1

θ
(l)
i

{
πk−l+i +

k∑
j=1

(
φ(k)

j
πk−l+i−j + ψ(k)

j
λk−l+i−j

)}

= 0
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and

E {u′k (t− k − 1) εl (t− l − 1)}

= E




{
WX (t− k − 1) +

k∑
j=1

(
δ
(k)
j IN + θ

(k)
j W

)
X (t− k − 1 + j)

}′

{
X (t− l − 1) +

l∑
i=1

(
φ(l)

i
IN + ψ(l)

i
W

)
X (t− l − 1 + i)

}]

=

{
πl−k +

k∑
j=1

(
δ
(k)
j γl−k+j + θ

(k)
j πl−k+j

)}

+
l∑

i=1

φ(l)

i

{
πl−k−i +

k∑
j=1

(
δ
(k)
j γl−k+j−i + θ

(k)
j πl−k+j−i

)}

+
l∑

i=1

ψ(l)

i

{
λk−l+i +

k∑
j=1

(
δ
(k)
j πk−l+i−j + θ

(k)
j λk−l+i−j

)}

= 0.

The zk are thus jointly asymptotically normal and independent.

Using Stout’s law of the iterated logarithm (Stout(1970)), we also have

lim sup
T

√
1

2α′α log log T
|α′zk| = 1

almost surely. Using the methods in Hannan (1980), which we do not reproduce here,

it is also the case that

lim sup
T

z′kzk

2 log log T
= 1.
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