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Abstract. In this paper we investigate a case of the reachability prob-
lem in controlled o-minimal dynamical systems. This problem can be
formulated as follows. Given a controlled o-minimal dynamical system
initial and target sets, find a finite choice of time points and control pa-
rameters applied at these points such that the target set is reachable from
the initial set. We prove that the existence of a finite control strategy is
decidable and construct a polynomial complexity algorithm which gen-
erates finite control strategies for one-dimensional controlled polynomial
dynamical systems. For this algorithm we also show an upper bound on
the numbers of switches in finite control strategies.

1 Introduction

A fundamental problem in the design of biological, chemical or physical processes
is to automatically synthesise models from performance specifications. In general,
by practical and theoretical reasons, it is highly nontrivial to achieve. However,
in some cases, given by partial designs, it could be possible to automatically
complete modelling in order to get desired properties.

In this paper we consider synthesis of finite control strategies to meet reach-
ability and time requirements for partial designs given by controlled polynomial
dynamical systems (CPDS).

A controlled polynomial dynamical system is defined by a polynomial de-
pending on control parameters. The choice of a parameter determines a certain
motion. In general case, in order to achieve reachability or time requirements it
is necessary to switch between motions corresponding to various control param-
eters at certain points of time. We focus on the following problem.

Problem of finite control synthesis. For a partial design, given by CPDS, deter-
mine whether there exist finite sequences of time points and control parameters
that guide the system from an initial state to a desired state. If the answer is
positive then a finite control strategy is automatically synthesised.
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In the general class of o-minimal dynamical systems this problem is unde-
cidable as demonstrated in [1,2,6]. Indeed, it has been shown that the reacha-
bility problem is already undecidable for three-dimensional piecewise constant
derivative systems and two-dimensional o-minimal dynamical systems with non-
determinism. Moreover, for one-dimensional o-minimal dynamical systems with
non-determinism, the problem remains open. In this paper we show that it is pos-
sible to find finite control strategies for the certain broad class of one-dimensional
controlled polynomial dynamical systems.

The key results of the paper are summarised next. Firstly, we prove that
for this class of one-dimensional controlled polynomial dynamical systems the
existence of a finite control strategy is decidable and construct an polynomial
complexity algorithm which synthesises finite control strategies. Secondary, for
the algorithm we show an upper bound on the numbers of switches in finite
control strategies. Finally, we prove that finite control strategies generated by
the algorithm are time-optimal.

The paper is organised as follows. In Section 2 we define the problem of finite
control strategy synthesis for controlled polynomial dynamical systems. Section 3
contains essential relative properties of the integral curves of a given dynamics.
In Section 4 the main results are proven. We conclude with future and related
work.

2 Problem Description

In this section we formalise the problem of finite control strategy synthesis for
controlled polynomial dynamical systems. Let

γ : Y × T → X

(y, t) �→ x,

be a polynomial function, where Y ⊆ IRm, T ⊆ IR and X ⊆ IRn. We consider
γ as a controlled dynamical system with control parameters from Y . For every
fixed control value y0 ∈ Y the function γ(y0, t) : T → X describes the motion of
a point in the state space X . In what follows we will use the notation xy0(t) for
γ(y0, t), and call the function xy0(t) integral curve.

We are considering the following problem of reachability: given a point and
a subset in X , decide whether or not the subset can be reached from the point
using a combination of motions corresponding to various controls.

Definition 1. Let t0, t1, . . . , tk ∈ T be points of time and y0, y1, . . . , yk ∈ Y be
controls. Assume also that xyj (tj+1) = xyj+1(tj+1) for every j ∈ {0, . . . , k − 1}.
Then

C =
⋃

0≤j≤k−1

{(t, x) ∈ T × X | t ∈ [tj , tj+1], x = xyj (t)}

is called piecewise integral curve and the tuple < (t0, y0), . . . , (tk, yk) > is called
finite control strategy.
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Now we can reformulate the reachability problem formally as follows. Given a
polynomial function γ, initial conditions (t0, x0) ∈ T ×X and a definable target
subset Ω ⊂ X decide whether there exists a piecewise integral curve C reaching
Ω, i.e., such that Ω ∩ xyk(t) �= ∅.

If the polynomial in γ has integer coefficients while Y, T and X are “simple”
enough (e.g., open intervals on the straight line) then the reachability problem
can be considered as computational, and one can ask the natural questions about
decidability and computational complexity. An interesting weaker question is to
bound from above the number k in a reaching piecewise integral curve C in the
case when an instance of the computational problem has the positive output.

Remark 1. It is worth noting that in this case, by quantifier elimination for
the first order theory of the reals, the finite control strategy problem is semi-
decidable.

Remark 2. If we fix an upper bound on the number of switches k then the finite
control strategy problem become to be decidable.

Now we assume that Y, T, X ⊂ IR are open intervals, and

Γ := {(y, t, x)|x = γ(y, t)} ⊂ Y × T × X ⊂ IR3

is the graph of the function γ. Denote by π : Γ → T ×X the projection map, and
let U be one of the connected open sets into which the set of all critical values
of π divides π(Γ ). Then all fibres π−1(x, t) for (x, t) ∈ U are finite and have
the same cardinality �. Moreover, by the implicit function theorem, π−1(U) is
a union of � smooth surfaces (graphs of smooth functions) Γ 1, . . . , Γ � such that
the restriction of π on each Γ i is a diffeomorphism.

Observe that for any Γ i and y1 �= y2, the projections xy1(t) and xy2(t) of
the two non- empty intersections Γ i ∩ {y = y1} and Γ i ∩ {y = y2} respectively
on T × X , have the empty intersection, xy1(t) ∩ xy2(t) = ∅, because Γ i ∩ {y =
y1}, Γ i∩{y = y2} are two different level sets of a function. On the other hand, for
Γ i1 , Γ i2 , where i �= j, the projections xy1(t), xy2(t) of non-empty intersections
Γ i1 ∩{y = y1}, Γ i2 ∩{y = y2}, being smooth real algebraic curves may intersect,
either by coinciding or at a finite number of points.

It follows, that in any piecewise integral curve C, restricted on U , any two
subsequent integral curves xyj (t), xyj+1(t) are projections on T ×X of intersec-
tions Γ i1 ∩ {y = yj}, Γ i2 ∩ {y = yj+1} with i1 �= i2. In particular, at any point
(x, t) ∈ U there is a finite number of possible choices of the control.

It seems unavoidable to consider, as a part of the general reachability problem,
its following restriction. Given γ, an open connected subset U of regular values of
the projection π, initial conditions (t0, x0) ∈ U and the target point ω ∈ X decide
whether there exists a piecewise integral curve C ⊂ U such that ω ∈ xyk(t). In
this paper we consider, in essence, this restricted version of reachability.

Let U be the square (−1, 1) × (0, 1) with coordinates (t, x). Consider � fami-
lies xi

α(t) of disjoint graphs of functions in U , where i ∈ {1, . . . , �} enumerates
families and α ∈ IR parametrises continuously functions within the family.
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Fig. 1. The pictures illustrate Example 1. In Picture 1a the first family of integral
curves corresponds to y ∈ (0, 1), and the second family of integral curves correspons
to y ∈ (−1, 0). The piescewise integral curve in Picture 1b correspons to the strategy
< (t0, y0), (t1, y1) >=< (− 3

5
,− 3

4
), (0, 3

4
) > which solves the reachability problem for

(t0, x0) = (− 3
5
, 117

400
) and Ω = {x|1 > x ≥ ω}.

More precisely, there are � surjective Nash functions Γ i : U → IR, 1 ≤ i ≤ �
(i.e., real analytic functions such that P (t, x, Γ i(t, x)) = 0 for some polynomial
P ∈ IR[z1, z2, z3] and every (t, x) ∈ U , see [3]). Assume that for every i and for
every α ∈ IR the level set xi

α(t) := {(t, x) ∈ U | Γ i(t, x) = α} is either empty or
a graph of a smooth function on a subinterval of (−1, 1) of the t-axis. It follows
that for each point (t0, x0) ∈ U and every i ∈ {1, . . . , �} there is α ∈ IR such
that xi

α(t0) = x0.
The aim is, having the initial point (t0, x0) ∈ U to find the points of time

t1, . . . , tk ∈ (−1, 1) and the corresponding controls i1, . . . , ik such that the piece-
wise integral curve

C =
⋃

0≤j≤k−1

{(t, x) ∈ U | t ∈ [tj , tj+1], x = x
ij

j (t)}

reaches the set Ω ⊆ X . (Here the notation xi
r(t) is used for the integral curve

belonging to the family i and passing through the point (xr , tr) under the control
i ∈ {1, . . . , �}.) Of course, if x0 ∈ Ω then the problem solves trivially.

Example 1. Let a polynomial function γ := y2 + yt2 be defined on (−1, 1) ×
(−1, 1) and Ω = {x|x ≥ ω}. The set of all critical values, {(t, x)| x = −t4/4}, of
the projection map π : {(y, t, x) ∈ IR3| x = y2 + yt2} → IR2 lies outside U , and
� = 2.
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Let Γ 1(U) = (0, 1) and Γ 2(U) = (−1, 0). Observe that for every y ∈ (0, 1) (re-
spectively, y ∈ (−1, 0)) the integral curve x1

y(t) (respectively, x2
y(t)) is a parabola

having a minimum (respectively, maximum) at t = 0.
Assume that x0 < ω. It is easy to see that there is a piecewise integral curve

reaching ω ∈ (0, 1) if and only if the initial point (t0, x0) satisfies either the
conjunction of inequalities x0 ≥ α2 − αt20, t0 ≤ 0 or of inequalities x0 ≥ α2 +
αt20, t0 ≥ 0, where α := (−1 +

√
1 + 4ω)/2.

Suppose that x0 ≥ α2 − αt20 and t0 ≤ 0, and let β ≥ α be such that x2
−β(t)

passes through (t0, x0). If ω > β2 then the target ω is reached by the piecewise
integral curve

{(t, x) ∈ U | t ∈ [t0, 0], x = x2
−β(t)} ∪ {(t, x) ∈ U | t ∈ [0, t2], x = x1

β(t)},
where x1

β(t2) = ω. If ω ≤ β2 then ω is reached by the piecewise integral curve

{(t, x) ∈ U | t ∈ [t0, t1], x = x2
−β(t),

where x2
−β(t1) = ω.

Suppose that x0 ≥ α2 + αt20 and t0 ≥ 0, and let δ ≥ α be such that x1
δ(t)

passes through (t0, x0). If ω > δ2 then ω is reached by

{(t, x) ∈ U | t ∈ [t0, t1], x = x1
δ(t)},

where x1
δ(t1) = ω. Otherwise, x0 is already in Ω.

Note that under any of these suppositions there may be other piecewise inte-
gral curves reaching the target. On the other hand, it is easy to prove that the
described above motion is the fastest one.

3 Relative Properties of Integral Curves

In this section we prove basic properties of integral curves of CPDS which we
use later in the synthesis of finite control strategies.

Observe that any integral curve xi
α(t), being a graph of a continuous function,

divides U into two disjoint subsets, U+(i, α) which contains a point (t′, x′) ∈ U
such that x′ > xi

α(t′), and U−(i, α) which contains a point (t′′, x′′) ∈ U such
that x′′ < xi

α(t′′).

Definition 2. 1. A point (t′, x′) ∈ U is called above an integral curve xi
α(t) if

(t′, x′) ∈ U+(i, α).
2. For two integral curves xi

α(t) and xi
β(t) from the same family i, xi

β(t) is
called above xi

α(t) if xi
β(t) ⊂ U+(i, α).

3. For two integral curves xi
α(t) and xj

β(t) from two different families i �= j,
xj

β(t) is called locally above xi
α(t) at (t0, x0) ∈ U if there is a neighbourhood

U0 of (t0, x0) in U such that xi
β(t) ∩ U0 ⊂ U+(i, α) ∩ U0.

4. We say that (t0, x0) is a local minimum point of xj
β(t) relative to xi

α(t) if
xi

α(t) and xj
β(t) are tangent at (t0, x0), and xj

β(t) is locally above xi
α(t).
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Lemma 1. Let (t0, x0) be a local minimum point of xj
β(t) relative to xi

α(t).
There are no other local minimum points of xj

λ(t) relative to xi
α(t) in a neigh-

bourhood of (t0, x0) on xi
α(t) for any λ. In particular, there is a finite number of

local minima relative to xi
α(t).

Proof. If the claim is not true then there is a point (t′, x′) ∈ xi
α(t) and an

integral curve xj
λ(t), having a local minimum at (t′, x′) relative to xi

α(t), such
that xj

β(t) ∩ xj
λ(t) �= ∅. This contradicts to the condition that integral curves in

the same family do not intersect.

Definition 3. Let Gi,j denote the set of all points (t, x) ∈ U such that (t, x) is
a point of local minimum of xj

β(t) relative to xi
α(t) for some i, j.

Corollary 1. 1. Gi,j is a curve in U .
2. Gi,j ∩ Gj,i = ∅.

Proof. (1) According to Lemma 1, for every fixed α there is a finite number of
minima relative to xi

α(t). Considering α as a parameter, we obtain a semialge-
braic curve.
(2) Obvious from the definition of Gi,j .

Lemma 2. Each connected component of the curve Gi,j is homeomorphic to the
interval (0, 1) and is intersected by each curve xi

α(t) at most once, and by each
curve xj

β(t) at most once.

Proof. Suppose that a connected component G of Gi,j is intersected by a certain
integral curve xi

α(t) at more than one point. Let A and B be some two neigh-
bouring among them. Then there will be curves xi

λ(t) in the family i each having
at least two intersection points with G between A and B, say Aλ, Bλ, as close to
one another as needed. By the definition of Gi,j , at points Aλ, Bλ, some curves
xj

μ(t) and xj
η(t) have local minima relative to xi

λ(t). We get a contradiction with
the fact that curves in the same family j do not intersect.

Suppose that Gi.j is not homeomorphic to (0, 1). Then one can find a curve
xi

α(t) intersecting Gi,j more than twice which we proved to be impossible.

4 An Algorithm Synthesising Finite Control Strategies

Without loss of generality let us assume � = 2. Consider the following piece-
wise integral curve C passing through (t0, x0) ∈ U . Choose at (t0, x0) a control
i ∈ {1, 2} realising the maximal possible speed ẋi

0(t0). There are two possible
cases.

1. ẋ1
0(t0) �= ẋ2

0(t0) (assume for definiteness that ẋ1
0(t0) > ẋ2

0(t0));
2. ẋ1

0(t0) = ẋ2
0(t0).

In case (1), for every point (t′, x′) on the curve x1
0(t) sufficiently close to (t0, x0),

the inequality ẋ1
0(t

′) > ẋ2
α(t′) holds true for any x2

α(t) such that

x1
0(t

′) ∩ x2
α(t′) = (t′, x′).
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This follows from the transversely of x1
0(t) and x2

0(t) at (t0, x0). Therefore, in
case (1), at any such point (t′, x′) there is no reason to switch from 1 to 2.

In case (2), there are the following possibilities.

(i) (t0, x0) is an inflection point of x2
0(t) relative to x1

0(t). In this case x2
0(t) starts

above x1
0(t) (see Definition 2, (1)), is tangent to x1

0(t) at (t0, x0) and then
goes below x1

0(t). For any point (t′, x′) on x1
0(t) sufficiently close to (t0, x0)

there is no reason to switch from 1 to 2.
(ii) (t0, x0) is an inflection point of x1

0(t) relative to x2
0(t). This case is analogous

to (i).
(iii) (t0, x0) is a local minimum point of x2

0(t) relative to x1
0(t) (see Definition 2,

(3)). We choose the control i = 2 in this case.
(iv) (t0, x0) is a local minimum point of x1

0(t) relative to x2
0(t). We choose the

control i = 1 in this case.

Assume, for definiteness, that we have either case (1), or (2, i), or (2, iii). Ac-
cording to Lemma 1, in case (iii) (t0, x0) is an isolated local minimum point on
x1

0(t). It follows that the nearest point to (t0, x0) on x1
0(t) at which there may

be a reason to switch to the family 2 is the nearest point at which some curve
x2

α(t) has a local minimum relative to x1
0(t). According to Lemma 1, there is a

finite number of such points on x1
0(t). Moreover, since these points are definable

in the first order theory of the reals, we can bound their number from above via
the format of γ.

Algorithm

1. If at (t0, x0) the integral curves xi
0(t0), i = 1, 2 intersect transversely then

choose at (t0, x0) a control i ∈ {1, 2} realising the maximal possible slope
ẋi

0(t0). Let it be for definiteness i = 1.
If (t0, x0) is an inflection point of the integral curves (for definiteness, let

(t0, x0) be an inflection point of x2
0(t) relative to x1

0(t)) choose the control
i = 1.

If (t0, x0) is a local minimum of one integral curve relative another (for
definiteness, let x1

0(t) have local minimum relative to x2
0(t)) then choose the

control i = 1.
2. The curve x1

0(t) has the finite number of local minima relative to it of curves
of the type x2

α(t). Choose the right-closest to (t0, x0) on x1
0(t) such minimum,

and let it correspond to α = 1. Denote the minimum point by (t1, x1).
Observe that for the smallest j > 0 for which the jth derivative x2,j

1 (t1) of
x2

1(t1) is larger than ẋ1
0(t1) = ẋ2

1(t1) we have x2,j
1 (t1) > x1,j

0 (t1).
3. The curve x2

1(t) has the finite number of local minima relative to it of curves
of the type x1

β(t). Choose the right-closest to (t1, x1) on x2
1(t) such minimum,

and let it correspond to β = 2. Denote the minimum point by (t2, x2).
Observe that for the smallest j > 0 for which the jth derivative x1,j

2 (t2) of
x1

2(t2) is larger than ẋ2
1(t2) = ẋ1

2(t2) we have x1,j
2 (t2) > x2,j

1 (t2).
4. Continue recursively until at a point (tk, xk) a control ik ∈ {1, 2} will be

chosen realising the local minimum of some xik

k (t) relative x
ik−1
k−1 (t), and there
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will be no right-closest tangent points of curves from the complement family.
If xik

k (t) = ω for some tk < t ≤ 1 then ω is reachable, otherwise not.

Theorem 1. The number of steps in the Algorithm is finite, moreover, in alge-
braic case it is bounded from above via the format of γ.

Proof. Let (t�, x�) be a switching point of the piecewise integral curve C con-
structed in the Algorithm, for definiteness from i�−1 = 1 to i� = 2. Let G be
a connected component of G1,2 such that (t�, x�) ∈ G. According to Lemma 2,
(t�, x�) is the unique point of intersection of G and xi�

� (t). Recall from the be-
ginning of Section 3 that the integral curve xi�

� (t) divides U into the upper part
U+(i�, �) and the lower part U−(i�, �).

If G∩U+(i�, �) = ∅ then there will be no point (tm, xm) ∈ C with � < m such
that (tm, xm) ∈ G. So, suppose that G+ := G∩U+(i�, �) is non-empty. Since, by
Lemma 2, G is homeomorphic to (0, 1), so is G+. One endpoint of G+ is (t�, x�),
while for the other endpoint, denoted by A, we have three possibilities:

(i) A ∈ {t = −1, x < 1}, i.e., A belongs to the left-hand vertical side of the
square U ;

(ii) A ∈ {x = 1}, i.e., A belongs to the upper side of U ;
(iii) A ∈ {t = 1}, i.e., A belongs to the right-hand vertical side of the U .

In any case G+ divides U+(i�, �) into two domains. In case (i) the left domain is
the one which is adjacent to {t = −1} and not adjacent to {x = 1}, the other is
the right domain. In case (ii) the left domain is adjacent to the left interval into
which A divides {x = 1}, the other is the right domain. In case (iii) the right
domain is the one which is adjacent to {t = 1} and not adjacent to {x = 1}, the
other is the left domain.

Note that the point (t�+1, x�+1) ∈ C belongs to the right domain otherwise
xi�

� (t) would have at least two intersection points with G which is impossible by
Lemma 2.

Suppose there is a switching point (tm, xm) ∈ C with � < m such that
(tm, xm) ∈ G+, and let this be the first such point between � and m. The curve
x

im−1
m−1 (t) “approaches G+ from the right” (this means that x

im−1
m−1 (t), restricted to

[tm−1, tm], lies in the right domain). There are two possibilities: either x
im−1
m−1 (t)

is “tangent” to G+ (i.e., after passing (tm, xm) remains in the right domain) or
enters the left domain. In case the first possibility realises, G+ remains under
the graph x

im−1
m−1 (t) and never appears again.

Consider the second possibility. Suppose we have case (i) (see above). If the
origin of the integral curve x

im−1
m−1 (t) belongs to the right domain, then after

entering the left domain at (tm, xm) it has to leave the left domain at some time
point t′ > tm in order to reach either {t = 1} or {x = 1}. This contradicts to
the uniqueness of the intersection point G ∩ x

im−1
m−1 (t). If the origin of x

im−1
m−1 (t)

belongs to the left domain, then x
im−1
m−1 (t) already intersected G at some time

point t′′ < tm in order to reach the right domain, and we have a contradiction
again.



Reachability in One-Dimensional Controlled Polynomial Dynamical Systems 259

In cases (ii) or (iii), the curve x
im−1
m−1 (t) always enters the right domain by

crossing G+ (rather than xi�

� (t)). Indeed, x
i�+1
�+1 (t) has a local minimum at the

point (x�+1, t�+1) and is the closest to (t�, x�) with this property, and therefore
x

i�+1
�+1 (t) enters the right domain by crossing G+. But x

im−1
m−1 (t) is either above

xi�

� (t) or above x
i�+1
�+1 (t). So we get the same contradiction as before.

We conclude that G is intersected by C at most twice. Since the switching
points of C belong to the connected components G the number of these points
does not exceed twice the number of the connected components. The latter is
finite, and in algebraic case estimated from above via the format of γ.

Theorem 2. Let the polynomials P defining Nash functions Γ i have degrees
not exceeding d. Then for the piecewise integral curve C, constructed in the
Algorithm, k = dO(1).

Proof. It follows from the proof of Theorem 1 that it is sufficient to estimate the
number of connected components of the curve G1,2. This curve is definable by a
formula (with quantifiers) of the first order theory of the reals with some fixed
finite number of variables. According to [4], the number of connected components
of G1,2 does not exceed k = dO(1).

Definition 4. A piecewise integral curve Copt reaching Ω from (x0, t0) at the
time point topt is called time-optimal if topt

k ≤ tk for any C reaching Ω from
(x0, t0) at some time point tk. If topt

k < tk, we say that Copt is faster than C.

Theorem 3. The piecewise integral curve C, constructed in the Algorithm, is
time-optimal. In particular, the Algorithm is correct.

Proof. Let

C =
⋃

0≤j≤k−1

{(t, x) ∈ U | t ∈ [tj , tj+1], x = x
ij

j (t)}.

We prove the theorem by induction on k.
If k = 1 (the base of the induction), then C is the integral curve xi

0(t) restricted
on [t0, t1], i.e., C = {(t, x) ∈ U | [t0, t1], x = xi

0(t)}, and there are no other
integral curve xj

α(t) and a point (t′, x′) ∈ C, such that j �= i and xj
α(t) has a

local minimum relative to xi
0(t) at (t′, x′). If C was not time-optimal then there

would be at least one integral curve xj
β(t) whose restriction on a subinterval

[t′, t′′] of [t0, t1] included in a faster piecewise integral curve. Then there would
be an integral curve xj

α(t) in the family j (possibly, with α = β) having a local
minimum relative to xi

0(t) at some (t′, x′) ∈ C. We got a contradiction.
Let k > 1. Suppose there is a faster than C piecewise integral curve C′. Let

x1 := xi1
1 (t1). The line {(t, x)| x = x1} is reached by C′ at some time point t′. If

t′ < t1 then we get the case as in the base of the induction (replacing ω by x1)
which we led to a contradiction.

If t′ = t then by the inductive hypothesis the piecewise integral curve C
restricted on [t1, tk] is time-optimal for the initial point (t1, x1), hence C′ is not
faster than C and we get a contradiction.
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If t′ > t then, since C′ is faster than C, there exists a point (t′′, x′′) ∈ C ∩C′,
where t′′ > t′, and by the inductive hypothesis C restricted on [t′′, tk] is time-
optimal for the initial point (t′′, x′′). It follows that C′ is not faster than C and
we get a contradiction.

Remark 3. The number tk in the piecewise integral curve, computed by the Al-
gorithm, is the minimal time required to reach Ω from the initial point (t0, x0).
Thus, the Algorithm solves the optimal control problem of finding a time mini-
mization strategy.

5 Conclusion, Related, and Future Work

O-minimality is an fruitful theoretical concept for formal verification of dynam-
ical and hybrid systems. It has been successfully used for proving that cer-
tain classes of dynamical and hybrid systems admit finite-state bisimilar models
[10,5,8]; for computing combinatorial types of trajectories [9]; for mode switching
synthesis [7], etc. In this paper we investigated synthesis of finite control strat-
egy for one-dimentional controlled polynomial dynamical systems while setting
up the framework for synthesis of finite control strategies for wider classes of
controlled dynamical systems and studying related problems.

The main interesting future development would be to consider the domains
of integral curves to be more general than a rectangle, and possibly to include
critical values of the projection π. Of course, generalizations of the problem to
higher dimensions are of great interest.

Finally, let us mention a two-person zero-sum game version of our problem.
In a game the right of the first move is prescribed. When it’s a player’s turn to
move, at a time point ti, it chooses a control yi+1 ∈ γ−1(x) ∩ {t = ti} and a
stopping time ti+1. At the time point ti+1 the other player makes a move. The
player 1 wins (player 2 looses) if and only if Ω is reached. In the Example 1,
let ω > α2. The player 1 always looses, independently of who is prescribed to
make the first move if x0 < α2 + αt20. If x0 ≥ α2 + αt20 then the player 1 wins if
and only if it has the first move, or it has the second move but x0 ≥ ω −√

ωt20
and t0 < 0. It would be interesting to construct a general efficient algorithm for
computing optimal strategies in dynamical games from this class.
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