
Backward stability of iterations for computing
the polar decomposition

Nakatsukasa, Yuji and Higham, Nicholas J.

2012

MIMS EPrint: 2011.103

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2012 Society for Industrial and Applied Mathematics
Vol. 33, No. 2, pp. 460–479

BACKWARD STABILITY OF ITERATIONS FOR COMPUTING THE
POLAR DECOMPOSITION∗

YUJI NAKATSUKASA† AND NICHOLAS J. HIGHAM†

Abstract. Among the many iterations available for computing the polar decomposition the most
practically useful are the scaled Newton iteration and the recently proposed dynamically weighted
Halley iteration. Effective ways to scale these and other iterations are known, but their numerical
stability is much less well understood. In this work we show that a general iteration Xk+1 = f(Xk)
for computing the unitary polar factor is backward stable under two conditions. The first condition
requires that the iteration is implemented in a mixed backward–forward stable manner and the second
requires that the mapping f does not significantly decrease the size of any singular value relative to
the largest singular value. Using this result we show that the dynamically weighted Halley iteration
is backward stable when it is implemented using Householder QR factorization with column pivoting
and either row pivoting or row sorting. We also prove the backward stability of the scaled Newton
iteration under the assumption that matrix inverses are computed in a mixed backward–forward
stable fashion; our proof is much shorter than a previous one of Kie�lbasiński and Ziȩtak. We also
use our analysis to explain the instability of the inverse Newton iteration and to show that the
Newton–Schulz iteration is only conditionally stable. This work shows that by carefully blending
perturbation analysis with rounding error analysis it is possible to produce a general result that can
prove the backward stability or predict or explain the instability (as the case may be) of a wide range
of practically interesting iterations for the polar decomposition.

Key words. polar decomposition, Newton iteration, inverse Newton iteration, Newton–Schulz
iteration, dynamically weighted Halley iteration, QR factorization, row pivoting, row sorting, column
pivoting, backward error analysis, rounding error analysis, numerical stability

AMS subject classifications. 15A23, 65F30, 65G50

DOI. 10.1137/110857544

1. Introduction. Any matrix A ∈ Cs×n with s ≥ n has a polar decomposition
A = UH , where U ∈ Cs×n has orthonormal columns and H is Hermitian positive
semidefinite [14, Chap. 8]. The matrix H is unique, and U is unique when A has full
rank. Interest in the polar decomposition has principally stemmed from two key prop-
erties of U : it is the nearest matrix with orthonormal columns to A in any unitarily
invariant norm [7], [14, Thm. 8.7] and it solves the orthogonal Procrustes problem
min{ ‖B−CQ‖F : Q∗Q = I }, where B,C ∈ Cs×n, when A = C∗B [8], [14, Thm. 8.6].
We are interested in the polar decomposition for another reason: it can function as a
kernel in computing the symmetric eigenvalue decomposition and the singular value
decomposition (SVD). In [21] we use the QR-based dynamically weighted Halley
(QDWH) algorithm of Nakatsukasa, Bai, and Gygi [20], which computes U and H
via a dynamically weighted Halley iteration, to construct new algorithms for the sym-
metric eigenvalue decomposition and the SVD that have optimal communication costs
and have flop counts within a small factor of those for the best existing algorithms.

∗Received by the editors December 1, 2011; accepted for publication (in revised form) February 22,
2012; published electronically June 5, 2012.

http://www.siam.org/journals/simax/33-2/85754.html
†School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK (yuji.

nakatsukasa@manchester.ac.uk, http://www.ma.man.ac.uk/∼yuji, higham@ma.man.ac.uk, http://
www.ma.man.ac.uk/∼higham). The work of the first author was supported by Engineering and Phys-
ical Sciences Research Council grant EP/I005293/1. The work of the second author was supported
by Engineering and Physical Sciences Research Council grants EP/I006702/1 and EP/E050441/1
(CICADA: Centre for Interdisciplinary Computational and Dynamical Analysis) and European Re-
search Council Advanced Grant MATFUN (267526).

460

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BACKWARD STABILITY OF POLAR DECOMPOSITION 461

The optimal communication costs stem from the fact that QWDH requires just QR
factorizations and matrix multiplications, both of which can be implemented in a
communication-optimal manner [1], and in particular does not require any form of
pivoting.

The backward stability of the algorithms of [21] rests on the backward stability of
the computation of the polar decomposition. The question therefore arises of whether
the QDWH algorithm is backward stable. The algorithm performed in a backward
stable manner in the numerical experiments of [20], but no theoretical analysis has
been carried out. The same question has previously been asked of the scaled Newton
iteration for computing the the polar factors and has a long history. The Newton
iteration with scaling was introduced by Higham [11], who found that it performed
numerically stably in all his tests. Seventeen years later, Kie�lbasiński and Ziȩtak
[18] gave a long and complicated analysis proving backward stability of the scaled
Newton iteration under the assumption that matrix inverses are computed in a mixed
backward–forward stable way. Byers and Xu [4] subsequently obtained an alternative
proof using much simpler arguments, but some incompleteness of the analysis has
been pointed out in [19].

In this work we prove backward stability of a general iteration for computing the
polar decomposition, under two assumptions. The first is that each iterate is obtained
from the previous one in a mixed backward–forward stable way in floating point
arithmetic. The second assumption is that no singular value of an iterate significantly
decreases relative to the largest singular value from one iteration to the next, which
is a condition on the iteration function. Our analysis makes no direct reference to
acceleration parameters or implementation details of the iteration. It can therefore
be applied to a wide variety of iterations.

We use our analysis to prove backward stability of the QDWH algorithm under
the assumption that column pivoting and either row pivoting or row sorting are used
in the QR factorization. The backward error bound we derive involves a growth factor
that can be exponentially large in n but is known to be small in practice. We also
show that the algorithm can be unstable without pivoting, although such instability
appears to be rare. In addition, we

• prove that the scaled Newton iteration is backward stable—our proof is much
shorter and less laborious than the previous one of Kie�lbasiński and Ziȩtak
[18];
• give insight into why the scaled inverse Newton iteration is not backward

stable;
• show that the (scaled) Newton–Schulz iteration is backward stable if the

starting matrix has 2-norm safely less than
√

3, but can be unstable if the
norm is close to

√
3 (which is the boundary of the region of convergence).

The organization of the paper is as follows. In the next section we give a precise
definition of what we mean by backward stability of an algorithm for computing
the polar decomposition. In section 3 we summarize the QDWH algorithm and its
properties. Section 4 contains our backward error analysis, which is used in section 5
to prove the backward stability of the QDWH algorithm with pivoting. Section 5.3
gives some numerical experiments that illustrate our analysis. In section 6 the analysis
is applied to the Newton and inverse Newton iterations and to the Newton–Schulz
iteration.

2. Backward stability of the polar decomposition. We denote by ε a matrix
or scalar such that ‖ε‖ ≤ f(n)u for some modest function f depending only on n

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

462 YUJI NAKATSUKASA AND NICHOLAS J. HIGHAM

(such as a low degree polynomial) and some fixed norm, where u > 0 is a small, fixed
parameter. In this section and in section 5 onwards we take u to be the unit roundoff,
but the results in section 4 are independent of floating point arithmetic and so for
these u can be regarded as an arbitrary parameter. We are not interested in tracking
the constant f(n), so this notation suppresses it and we will freely write 2ε = ε,
nε = ε, and so on. We will also freely drop higher order terms fk(n)εk, k ≥ 2. All
terms related to the matrix of interest, such as ‖A‖ and κ(A), will be kept strictly
separate from ε.

We define what we mean by backward stability of an algorithm for computing
the polar decomposition. Let Û and Ĥ denote the computed unitary and Hermitian
polar factors of A ∈ Cs×n, and assume that Ĥ is Hermitian (if it is not then we can

replace it by the nearest Hermitian matrix, (Ĥ + Ĥ∗)/2 [7], [14, Thm. 8.7]). We say
the algorithm is backward stable if

ÛĤ = A + ΔA, ‖ΔA‖ = ε‖A‖,(2.1a)

Ĥ = H + ΔH, ‖ΔH‖ = ε‖H‖,(2.1b)

Û = U + ΔU, ‖ΔU‖ = ε‖U‖,(2.1c)

where H is Hermitian positive semidefinite and U is unitary. The conditions (2.1b)

and (2.1c) allow for the fact that we cannot expect the computed Û to be exactly

unitary or the computed Ĥ to be positive semidefinite when Û and Ĥ are represented
explicitly as a single matrix.1

The condition (2.1a) is expressed in terms of Û and Ĥ rather than U and H as
in [14, (8.32)], as this is the most convenient form for our analysis. However, given
(2.1b) and (2.1c) it is easy to show that (2.1a) is equivalent to UH = A + ΔA with

‖ΔA‖ = ε‖A‖, which permits the interpretation that the computed polar factors Û

and Ĥ are close to the exact polar factors of a matrix close to A. This is mixed
backward–forward stability, and as it is the strongest form of stability we can expect
it is reasonable to refer to it as backward stability (as is done by Byers and Xu [4]).

As noted in [14, p. 209], the algorithm that computes the polar decomposition by
first computing the SVD A = PΣQ∗ and then forming U = PQ∗ and H = QΣQ∗ is
backward stable, but this is an expensive approach [14, Prob. 8.24], [21].

Note that H in (2.1b) is an arbitrary Hermitian positive semidefinite matrix and
not necessarily the Hermitian polar factor of A. However, it is easy to show that (2.1)
implies that (2.1b) holds with H the Hermitian polar factor of A, using the fact that
the Hermitian polar factor is well conditioned: the Hermitian polar factor of A+ΔA
differs from that of A by at most

√
2‖ΔA‖F in the Frobenius norm [2, p. 215], [14,

p. 200].
Finally, we note that another definition of stability, formulated in [14, sect. 4.9.4],

is applicable to iterations for computing the unitary polar factor. This definition
requires that, close to the limit, an error in one iterate has a bounded effect on later
iterates. It turns out that a wide class of iterations, including all those considered in
this paper, are stable in this asymptotic sense [14, Thm. 8.19]. A contribution of this
paper is to show how a global analysis, incorporating errors incurred throughout the
iteration, can be developed that is powerful enough to prove that some iterations are
backward stable and to correctly predict that some others are not.

1 ̂U and ̂H could alternatively be represented in product form, for example, ̂U as a product of
Givens rotations and Householder matrices. In this case we could require ̂U to be unitary and ̂H to
be positive semidefinite.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BACKWARD STABILITY OF POLAR DECOMPOSITION 463

3. QDWH for the polar decomposition. This section reviews the QDWH
algorithm for computing the polar decomposition of A ∈ Cs×n (s ≥ n) proposed in
[20]. The algorithm is mathematically expressed as

(3.1) Xk+1 = Xk(akI + bkX
∗
kXk)(I + ckX

∗
kXk)−1, X0 = A/α,

where α > 0 is an estimate2 of ‖A‖2, a safe choice of which is ‖A‖F . The iter-
ation (3.1) can be regarded as a generalized version of Halley’s iteration Xk+1 =
Xk(3I + X∗

kXk)(I + 3X∗
kXk)−1, which is a member of the Padé family of iterations

[14, sect. 8.5]. The parameters ak, bk, ck are dynamically chosen to accelerate conver-
gence. They are computed by

(3.2) ak = h(�k), bk = (ak − 1)2/4, ck = ak + bk − 1,

where

(3.3) h(�) =
√

1 + γ +
1

2

√
8− 4γ +

8(2− �2)

�2
√

1 + γ
, γ =

3

√
4(1− �2)

�4
.

Here, �k is a lower bound for the smallest singular value of Xk. Fortunately, once
�0 ≤ σmin(X0) is obtained (for example, via a condition number estimator), effective
and sharp bounds can be obtained at no cost from the recurrence

(3.4) �k = �k−1(ak−1 + bk−1�
2
k−1)/(1 + ck−1�

2
k−1), k ≥ 1.

With such parameters, the iteration (3.1) needs at most six iterations for conver-
gence to the unitary polar factor U of A with the tolerance u = 2−53 � 1.1 × 10−16

(the unit roundoff for IEEE double precision arithmetic) for any matrix A with
κ2(A) ≤ u−1.

Iteration (3.1) can be implemented in an inverse-free form by using a QR factor-
ization:

X0 = A/α,(3.5a) [√
ckXk

I

]
=

[
Q1

Q2

]
R, Xk+1 =

bk
ck

Xk +
1√
ck

(
ak − bk

ck

)
Q1Q

∗
2, k ≥ 1.(3.5b)

The main costs of a QDWH iteration (3.5) are one QR factorization of an (s+n)×n
matrix and a matrix multiplication, both of which can be done in a communication-
minimal manner [1].

Intuitively, one would expect that for (3.5) to be numerically stable the coefficients
of Xk and Q1Q

∗
2 should be of order 1, in order to minimize the possibility of subtractive

cancellation. In fact, this is the case. From (3.2),

ck = ak + (ak − 1)2/4− 1 =
1

4
((ak − 1)2 + 4(ak − 1)) =

1

4
(ak − 1)(ak + 3),

and hence bk/ck = (ak − 1)/(ak + 3). Since we have ak ≥ 3 [20] (and see (5.6b)),

(3.6)
1

3
≤ bk

ck
≤ 1.

2We note that while [20] assumes α ≥ ‖A‖2 one can easily prove convergence of QDWH for
any α > 0. The speed of QDWH is not severely affected if α is an estimate of ‖A‖2 such that
β‖A‖2 ≤ α ≤ f(n)‖A‖2 for β ≈ 0.5 and some function f(n) that grows moderately with n.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

464 YUJI NAKATSUKASA AND NICHOLAS J. HIGHAM

Furthermore,

1√
ck

(
ak − bk

ck

)
=

2√
(ak − 1)(ak + 3)

(
ak − ak − 1

ak + 3

)
=

2(ak + 1)2

(ak + 3)
√

(ak − 1)(ak + 3)
.

Using ak ≥ 3 again, we obtain

(3.7) 1.53 ≤ 1√
ck

(
ak − bk

ck

)
≤ 2.

The inequalities (3.6) and (3.7) will be needed in section 5.
Once the iteration (3.5) has been terminated, yielding a computed unitary polar

factor Û , we compute Ĥ by [14, sect. 8.8]

(3.8) Ĥ =
1

2
(Û∗A + (Û∗A)∗).

The numerical experiments with QWDH in [20] demonstrate excellent backward
stability. In section 5 we prove that QWDH is backward stable when the QR factor-
izations in (3.5) are carried out with row sorting (or pivoting) and column pivoting.
In the next section we give the more general backward error analysis that will be
needed.

4. Backward error analysis. Let A ∈ Cs×n with s ≥ n have the SVD A =
PΣQ∗, where P ∈ Cs×n and Q ∈ Cn×n have orthonormal columns and Σ =
diag(σi) ∈ Rn×n is diagonal. For an arbitrary function f : [0,∞) → [0,∞) with
f(x) = 0 only if x = 0, we define f(A) = Pf(Σ)Q∗, where f(Σ) = diag(f(σi)). It
is easy to show that f(A) does not depend on the particular choice of the SVD of
A. Note that this definition of f(A) is nonstandard and differs from the more usual
definition that can be phrased in terms of the eigensystem [14].

The unitary polar factors of f(X) and X are identical for all X , as f preserves
the unitary SVD factors. We begin with a lemma that gives a sufficient condition for
the unitary polar factor of a computed approximation to f(X) to provide a backward
stable polar decomposition of X .

Lemma 4.1. Let X ∈ Cs×n with s ≥ n. Let Ŷ be a computed approximation to
Y = f(X) obtained in a mixed backward–forward stable manner, so that there is an

X̃ ∈ Cs×n such that

(4.1) Ŷ = f(X̃) + ε‖Ŷ ‖2, X̃ = X + ε‖X‖2.

Let the singular values of X̃ be M := σ1 ≥ σ2 ≥ · · · ≥ σr =: m > σr+1 = · · · = σn = 0.
Suppose that the function f(x) satisfies

(4.2)
f(x)

maxm≤x≤M f(x)
≥ x

dM
, x ∈ [m,M],

where d is a positive constant that necessarily satisfies3 d ≥ 1. If X̃ is rank deficient,
suppose further that f(0) = 0. Then any unitary polar factor U of Ŷ and Ĥ =

3By taking x = M in (4.2).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BACKWARD STABILITY OF POLAR DECOMPOSITION 465

1
2 ((U∗X) + (U∗X)∗) satisfy

UĤ = X + dε‖X‖2,(4.3)

Ĥ = H + dε‖H‖2,(4.4)

where H is the Hermitian polar factor of X.
Proof. We first consider the square case, s = n. For X̃ in (4.1), let X̃ = P̃ Σ̃Q̃∗

be an SVD, where Σ̃ = diag(σi), so that f(X̃) = P̃ f(Σ̃)Q̃∗. Also let H̃ = Q̃Σ̃Q̃∗,

which is the Hermitian polar factor of X̃.
The Hermitian polar factor is very well conditioned, as we noted in section 2.

Hence by f(X̃) = Ŷ + ε‖Ŷ ‖2 we must have H
̂Y = f(H̃) + ε‖Ŷ ‖2, where H

̂Y
is the

Hermitian polar factor of Ŷ and f(H̃) = Q̃f(Σ̃)Q̃∗ is the Hermitian polar factor of

f(X̃). Hence we have

Ŷ = UH
̂Y = Uf(H̃) + ε‖Ŷ ‖2 = UQ̃f(Σ̃)Q̃∗ + ε‖Ŷ ‖2.

Since also, from (4.1), Ŷ = P̃ f(Σ̃)Q̃∗ + ε‖Ŷ ‖2, and ‖Ŷ ‖2 = ‖f(Σ̃)‖2 + ε‖Ŷ ‖2 =

(1 + ε)‖f(Σ̃)‖2, we obtain

(4.5) P̃ f(Σ̃)Q̃∗ = UQ̃f(Σ̃)Q̃∗ + ε‖f(Σ̃)‖2.
Now, with a superscript “+” denoting the pseudoinverse, we right-multiply (4.5) by

Q̃f(Σ̃)+Σ̃Q̃∗ = Q̃diag(σ1/f(σ1), . . . , σr/f(σr), 0, . . . , 0)Q̃∗ to obtain

(4.6) X̃ = P̃ Σ̃Q̃∗ = UQ̃Σ̃Q̃∗ + dε‖X̃‖2,
where for the last term we have used the bound

‖Q̃f(Σ̃)+Σ̃Q̃∗‖2 = max
i≤r

σi

f(σi)

≤ max
m≤x≤M

x

f(x)
(because σi ∈ [m,M])

≤ dM

maxm≤x≤M f(x)
(by (4.2))

≤ dM

maxi f(σi)
=

d‖X̃‖2
‖f(Σ̃)‖2

.

Left-multiplying (4.6) by U∗ and using X̃ = X + ε‖X‖2, by (4.1), we obtain

(4.7) U∗X = H̃ + dε‖X‖2.
Therefore the residual of U and Ĥ as approximate polar factors of X is

X − UĤ = X − U · 1

2

(
U∗X + (U∗X)∗

)
=

1

2
U
(
U∗X − (U∗X)∗

)
=

1

2
U
(
H̃ + dε‖X‖2 − (H̃ + dε‖X‖2)∗

)
= dε‖X‖2.

This proves (4.3).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

466 YUJI NAKATSUKASA AND NICHOLAS J. HIGHAM

To prove (4.4), first note that since H̃ is the (well conditioned) Hermitian polar

factor of X̃ = X + ε‖X‖2, we must have H = H̃ + ε‖X‖2. Combining this with (4.7)

and Ĥ = 1
2 ((U∗X) + (U∗X)∗) we conclude that

Ĥ −H =
1

2

(
U∗X + (U∗X)∗

)−H

=
1

2

(
H̃ + dε‖X‖2 + (H̃ + dε‖X‖2)∗

)− (H̃ + ε‖X‖2)
= dε‖X‖2 = dε‖H‖2.

Finally, consider the rectangular case, s > n. In this case we append s−n columns
of zeros to X , X̃, and Ŷ , making them s× s, and apply the argument above to s× s
matrices. If A = UH is a polar decomposition then [A 0] = [U U2] [H 0

0 0] is a
polar decomposition, where U2 is any matrix such that [U U2] ∈ Cs×s is unitary.

From this it follows that the expanded matrices H , H̃ , f(H), f(H̃) take the form[× 0n,s−n

0s−n,n 0s−n,s−n

]
,

while Ĥ = 1
2 ((U∗X) + (U∗X)∗) has the form[× E∗

E 0s−n,s−n

]
.

The conditions (4.1) and (4.2) can be seen to hold for the expanded matrices, and

therefore (4.3) and (4.4) hold. Since (4.4) holds for the expanded Ĥ it also holds for

the original n × n Ĥ , and this same equation implies ‖E‖2 = ε‖H‖2, which ensures
that (4.3) holds for the original matrices.

Recalling that σi denotes the ith singular value of X̃, we note that (4.2) implies

(4.8)
f(σi)

‖f(X̃)‖2
≥ 1

d

(
σi

‖X̃‖2

)
.

Thus if d is not too large then no singular value can significantly reduce in size relative
to the largest singular value under the mapping f . In particular, any singular value can
be mapped to a large value close to ‖f(X̃)‖2, but no large singular value σi ≈ ‖X̃‖2
can be mapped to a value much less than ‖f(X̃)‖2. But if f(σi)/‖f(X̃)‖2 � σi/‖X̃‖2
for some i then d � 1 by (4.8) and the backward error terms in (4.3) and (4.4) are
then large.

A simple example illustrates the effect of “unstable mappings” of singular values—
those that require a large value of d. Let μ = 10−10 and define A (representing X̃
in Lemma 4.1) by A = P diag(1, μ1/2, μ)QT , where P and Q are orthogonal matrices
generated randomly using gallery(’qmult’) in MATLAB; A has the polar factors
U = PQT and H = UTA. Now let f(x) be a function for which f(1) = μ, f(μ1/2) = μ,
and f(μ) = 1, which is an unstable mapping because (4.2) holds only for d ≥ 1/μ =

1010. In MATLAB we compute the SVD f(A) + θE = P̃ Σ̃Q̃T , where E is a random
matrix from the normal (0,1) distribution scaled so that ‖E‖2 = 1, and then form

Ũ = P̃ Q̃T and H̃ = 1
2 (ŨTA+ (ŨTA)T). The θE term represents the forward error in

Lemma 4.1. We take two values of θ: θ = 104u ≈ 1 × 10−12, which corresponds to a
forward perturbation substantially larger than the rounding level, and θ = 0, which

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BACKWARD STABILITY OF POLAR DECOMPOSITION 467

corresponds to backward and forward perturbations at the rounding level. We find
that ‖A−ŨH̃‖2/‖A‖2 is approximately equal to ‖H−H̃‖2/‖H‖2 and takes the values
7 × 10−8 for θ = 0 and 5 × 10−6 for θ = 104u; both values are much larger than the
underlying perturbation and reveal a large backward error for the factorization and
hence instability of the mapping. Now consider another function such that f(1) = 1,
f(μ1/2) = 10−1, and f(μ) = 0.01, for which we can take d = 1 in (4.2) (since the
proof shows that it suffices to take the maximum in (4.2) over the singular values).
When we ran the same process for 104 randomly generated P , Q, and E we found that
max(‖A− ŨH̃‖2/‖A‖2, ‖H − H̃‖2/‖H‖2) was no larger than 3× 10−15 for θ = 0 and
9 × 10−13 for θ = 104u. Now the backward errors are no larger than the underlying
perturbations, demonstrating the stability of the mapping.

Such an unstable mapping of singular values does not happen in the QDWH or
scaled Newton iterations, which we will show in sections 5 and 6.1 to be backward
stable, but does happen in the inverse Newton iteration, as we will show in section 6.2.

Lemma 4.1 shows that if f(x)
maxm≤x≤M f(x) lies above (or not much below) x/M then

the mapping is stable. To illustrate the idea, we show in Figures 4.1–4.4 plots of
f(x)

maxm≤x≤M f(x) = f(x)
‖f(x)‖∞

and x/M for these three methods and the Newton–Schulz

iteration. The plots show the case when κ2(X) = 20 and optimal scaling/weighting
parameters are used. Observe that f(x)/‖f(x)‖∞ lies above x/M in the interval
[m,M] in Figures 4.1 and 4.2 (indicating that (4.2) holds with d = 1), but not in
Figures 4.3 and 4.4, which represent unstable mappings.

We note that in the rank-deficient case we will usually have m = ε‖X‖2. In this
case, if f(0) = 0 and f(x) is continuous at x = 0, then d in (4.2) essentially satisfies

f(x)
max0≤x≤M f(x) ≥ x

dM in the interval [0,M], so d does not depend sensitively on the

exact value of ε. This argument holds for all the known iterations applicable for rank-
deficient matrices, but not for the scaled Newton iteration applicable only for square
nonsingular matrices, for which f(x) is not continuous at x = 0.

Now we state the main result of this section.
Theorem 4.2. Let the nonzero matrix A ∈ C

s×n with s ≥ n. Consider an
iteration

(4.9) Xk+1 = fk(Xk), X0 = A/α,

for computing a unitary polar factor UA of A, with α > 0, and denote the computed
iterates by X̂k, where X̂0 = X0. Suppose that, for some integer �, X̂∗

� X̂� = I + ε, and

let Û = X̂� and Ĥ = 1
2 (Û∗A + (Û∗A)∗). Suppose, furthermore, that for k = 0 : �− 1

the following two conditions hold:
(a) X̂k+1 is computed from X̂k in a mixed backward–forward stable manner, so

that there is an X̃k ∈ Cn×n such that

(4.10) X̂k+1 = fk(X̃k) + ε‖X̂k+1‖2, X̃k = X̂k + ε‖X̂k‖2;

(b) the function fk satisfies

(4.11)
fk(x)

maxmk≤x≤Mk
fk(x)

≥ x

dMk
, x ∈ [mk,Mk],

where mk is the smallest positive singular value of X̃k, Mk = σmax(X̃k), and d ≥ 1.

If X̃k is rank deficient suppose also that fk(0) = 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

468 YUJI NAKATSUKASA AND NICHOLAS J. HIGHAM

0

0.25

0.5

0.75

1

m M

f(x)
‖f(x)‖∞

x
M

Fig. 4.1. QDWH iteration, f(x) =

x a+bx2

1+cx2 : a stable mapping because (4.2) holds

with d = 1.

0

0.25

0.5

0.75

1

m M

f(x)
‖f(x)‖∞ x

M

Fig. 4.2. Scaled Newton iteration, f(x) =
1
2

(μx + (μx)−1): a stable mapping because (4.2)
holds with d = 1.

0

0.25

0.5

0.75

1

m M

f(x)
‖f(x)‖∞

x
M

Fig. 4.3. Inverse Newton iteration, f(x) =
2μx(1 + μ2x2)−1: an unstable mapping.

Fig. 4.4. Newton–Schulz iteration, f(x) =
1
2
x(3 − x2): an unstable mapping if M ≈ √

3.

Then

ÛĤ = A + dε‖A‖2,(4.12)

Ĥ = H + dε‖H‖2,(4.13)

where H is the Hermitian polar factor of A. Furthermore, if A has full rank then

(4.14) Û = UA + dεκ2(A).

Proof. To simplify the notation we will assume, without loss of generality, that
α = 1. Let X̂j have a polar decomposition X̂j = UjHj for j = 1, 2, We first show

that for any given k, any unitary polar factor Uk of X̂k satisfies

(4.15) X̂j − UkĤj = dε‖X̂j‖2, Hj − Ĥj = dε‖Hj‖2, j = 0: k,

where Ĥj = 1
2 ((U∗

k X̂j)+(U∗
k X̂j)

∗); in other words, an exact unitary polar factor of X̂k

serves as an approximate unitary polar factor of all the previous computed iterates.
We prove (4.15) by induction. For j = k, (4.15) is trivial, because Ĥk = Hk and

so (4.15) holds with ε = 0. For j = k− 1, (4.15) follows immediately from Lemma 4.1

(substituting X̂k−1 for X and X̂k for Ŷ) and the assumptions (4.10) and (4.11).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BACKWARD STABILITY OF POLAR DECOMPOSITION 469

Next we consider j = k − 2. Since (4.15) holds for j = k − 1 and ‖Hk−1‖2 =

‖X̂k−1‖2 we have

(4.16) X̂k−1 = UkĤk−1 + dε‖X̂k−1‖2 = UkHk−1 + dε‖X̂k−1‖2.
By the assumption (4.10) for the case k := k − 2 we also have

(4.17) X̂k−1 = fk−2(X̃k−2) + ε‖X̂k−1‖2,
and by equating (4.16) and (4.17) we obtain

UkHk−1 = fk−2(X̃k−2) + dε‖UkHk−1‖2.
This equation is of the form (4.1) with Ŷ = UkHk−1 (a polar decomposition) and X =

X̂k−2. Hence we can invoke Lemma 4.1 to conclude that (4.15) is satisfied for j = k−2.
By repeating the same argument we can prove (4.15) for j = k − 3, k − 4, . . . , 0.

Setting k = � and j = 0 in (4.15), and using X̂0 = X0 = A, yields

(4.18) A− UĤ0 = dε‖A‖2, H − Ĥ0 = dε‖H‖2,
where U is a unitary polar factor of X̂� = Û , Ĥ0 = 1

2 (U∗A + (U∗A)∗), and H is the
Hermitian polar factor of A.

There are two differences between (4.18) and (4.12): in the latter we have Û

instead of U and Ĥ = 1
2 (Û∗A+(Û∗A)∗) instead of Ĥ0. The differences are reconciled

by using the fact that Û∗Û = I + ε implies Û = U + ε, by [14, Lem. 8.17]. Thus

A− ÛĤ = A− UĤ + (U − Û)Ĥ

= A− UĤ0 + U(Ĥ0 − Ĥ) + (U − Û)Ĥ

= dε‖A‖2 + ε‖A‖2 + ε‖A‖2 = dε‖A‖2,
which is (4.12).

Finally, using Û = U + ε again,

Ĥ −H =
1

2
(Û∗A + (Û∗A)∗)−H

=
1

2

(
Û∗A + (Û∗A)∗)− (U∗A + (U∗A)∗

)
+

1

2
(U∗A + (U∗A)∗)−H

= ε‖A‖2 + Ĥ0 −H

= ε‖A‖2 + dε‖H‖2 = dε‖H‖2,
where we have used the second equation in (4.18). This proves (4.13).

It remains to prove (4.14). Since (4.12), (4.13) and Û = U +ε mean A+dε‖A‖2 =
UH and A = UAH are both polar decompositions, it follows from standard pertur-
bation theory [14, Thm. 8.9] that for full rank A, ‖U − UA‖F ≤ dεκ2(A), and hence

Û = U + ε = UA + dεκ2(A).
To summarize, Theorem 4.2 shows that the conditions (4.10) and (4.11), with d

of order 1, are sufficient for the iteration (4.9) to produce a backward stable computed
polar decomposition, assuming that the computed iterates converge to a matrix with
numerically orthonormal columns. Note that the theorem gives (2.1b) in the appar-
ently stronger—but equivalent, as noted in section 2—form with H the Hermitian
polar factor of A.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

470 YUJI NAKATSUKASA AND NICHOLAS J. HIGHAM

Theorem 4.2 does not require that A has full rank. A difficulty is that the known
iterations applicable to rank-deficient matrices (including QDWH, the inverse Newton
iteration, and Newton–Schulz, but not the scaled Newton iteration) preserve the rank
of the iterates in exact arithmetic (hence X∞ is the partial isometry in the canonical

polar decomposition [14, Chap. 8]), so the condition X̂∗
� X̂� = I + ε will not hold.

However, as noted in [14, p. 205], rounding errors usually perturb the zero singular

values (this means X̃k or X̂k+1 has more positive singular values than X̂k), which

eventually converge to 1. Hence in practice we usually have X̂∗
� X̂� = I + ε for large

enough �, even if A is rank-deficient.
Finally, it is worth emphasizing that our analysis exploits the key facts that (a) the

Hermitian polar factor H is very well conditioned and (b) if XTX is close to I then
X is close to its unitary polar factor. Crucially, we did not use perturbation bounds
for the unitary polar factor, whose condition number is inversely proportional to the
one or two smallest singular values of A [14, Thm. 8.9].

5. Numerical stability of QDWH with row and column pivoting. In this
section we use Theorem 4.2 to prove that the QDWH algorithm is backward stable
provided that the QR factorizations are computed by Householder transformations
with column pivoting and either row pivoting or row sorting.

In view of Theorem 4.2, it suffices to prove that the two conditions (4.10) and
(4.11) are satisfied throughout the QDWH iterations. We treat these separately in
the following two subsections.

5.1. Mixed backward–forward stability of a QDWH iteration. The goal
of this subsection is to prove that the mixed backward–forward stability condition
(4.10) is satisfied in QDWH. For simplicity we will assume that α = ‖A‖2 in (3.5),
which implies, using f(1) = 1 and 0 ≤ f(x) ≤ 1 on [0, 1] (as shown in [20, sect. 3]),
that ‖Xk‖2 ≡ 1. This assumption is not fundamental, as the argument below holds
with slight modifications as long as ‖A‖2/f1(n) ≤ α ≤ f2(n)‖A‖2 for f1(n) and
f2(n) of modest size such that our convention fi(n)ε = ε holds. In practice, even if

‖Xk‖2 = 1, we will have ‖X̂k‖2 = 1 + ε, but this again does not affect the argument.
If we express a general QDWH iteration step as Y = f(X), where f(x) = x(a +

bx2)/(1 + cx2), then we need to show that the computed Ŷ satisfies (4.10). Thus,
since ‖X‖2 = ‖Y ‖2 = 1, our goal is to show that

(5.1) Ŷ = f(X̃) + ε, where X̃ = X + ε.

We need the following result that describes the row-wise stability of Householder
QR factorization with column pivoting and either row pivoting (analogous to partial
pivoting for Gaussian elimination) or row sorting (which initially orders the rows by
decreasing order of∞-norm); see [13, sect. 19.4] for details of these pivoting strategies.

Theorem 5.1 (see [5], [13, sect. 19.4]). Let Q̂ ∈ Rs×n and R̂ ∈ Rn×n be the com-
puted QR factors of A ∈ Rs×n (s ≥ n) obtained from Householder QR factorization
with column pivoting and row pivoting or row sorting. Then there exists a Q ∈ Rs×n

with orthonormal columns such that (A + ΔA)Π = QR̂, where Π is a permutation
matrix and ‖ΔA(i, :)‖2 ≤ cs,nρiu‖A(i, :)‖2 for all i, where cs,n is a polynomial in s
and n and ρi is a row-wise growth factor.

The growth factors ρi in Theorem 5.1, whose precise definition is given in [5], [13,
sect. 19.4], are bounded by

√
s(1 +

√
2)n−1, and while this bound is approximately

attainable they are usually small in practice [13, sect. 19.4]. The practical implication
of the theorem is therefore that row pivoting or sorting together with column pivoting

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BACKWARD STABILITY OF POLAR DECOMPOSITION 471

ensures a small row-wise backward error for Householder QR factorization, and this
is what we will need for our analysis. In what follows we will assume ρi to be of
moderate size, and hence write ρiε = ε.

Now we use this theorem to prove (5.1). If the QR factorization of
[√

cX
I

]
in (3.5b)

is computed by Householder transformations with column pivoting and row pivoting
or row sorting then by Theorem 5.1 the computed upper triangular R̂ satisfies

(5.2)

[√
c (X + ε)
I + ε1

]
Π =

[
Q1

Q2

]
R̂,

for some Q1 and Q2 such that Q = [QT
1 QT

2]T has orthonormal columns (recall that
‖X‖2 = 1). Our convention is that a subscripted ε is an instance of ε that takes a
fixed value in all appearances. We rewrite (5.2) as

(5.3)

[√
cX̃

I + ε1

]
:=

[√
c(X + ε)
I + ε1

]
=

[
Q1

Q2

]
R̂Π∗.

The proof of Theorem 5.1 shows that Q is equal to the first n columns of (PnPn−1 · · ·
P1)T , where Pi is a Householder matrix defined in terms of the computed quantities

from the ith stage of the factorization. The computed version Q̂ is precisely the first
n columns of fl(P1P2 · · ·Pn) and it is easy to show [13, p. 360] that

(5.4) Q = Q̂ + ε =

[
Q̂1 + ε11

Q̂2 + ε21

]
.

Now we note the general result that if B = [BT
1 BT

2]T has full column rank and QR

factorization B =
[
V1

V2

]
G then BG−1 =

[
V1

V2

]
and hence V1V

∗
2 = B1G

−1G−∗B∗
2 =

B1(G∗G)−1B∗
2 = B1(B∗B)−1B∗

2 . Using this fact with (5.3) and (5.4) we obtain

(Q̂1 + ε11)(Q̂2 + ε21)∗ =
√
cX̃
(
(I + ε1)∗(I + ε1) + cX̃∗X̃

)−1
(I + ε1)∗,

and hence

Q̂1Q̂
∗
2 =
√
cX̃
(
(I + ε1)∗(I + ε1) + cX̃∗X̃

)−1
(I + ε1)∗ − Q̂1ε

∗
21 − ε11Q̂

∗
2 − ε11ε

∗
21.

Now −Q̂1ε
∗
21 − ε11Q̂

∗
2 − ε11ε

∗
21 = ε, and the rounding errors in forming fl(Q̂1Q̂

∗
2) can

also be represented by ε, so

(5.5) fl(Q̂1Q̂
∗
2) =

√
cX̃
(
(I + ε1)∗(I + ε1) + cX̃∗X̃

)−1
(I + ε1)∗ + ε.

Therefore the floating point evaluation of (3.5b) yields

Ŷ = fl

(
b

c
X +

1√
c

(
a− b

c

)
Q̂1Q̂

∗
2

)
=

b

c
X +

(
a− b

c

)
X̃
(
(I + ε1)

∗(I + ε1) + cX̃∗X̃
)−1

(I + ε1)∗ + ε,

where the last term ε includes the last term in (5.5) and the rounding error caused by
performing the addition, and we have used the fact that both terms in the addition
are of order 1, which follows from (3.6) and (3.7).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

472 YUJI NAKATSUKASA AND NICHOLAS J. HIGHAM

Now (
(I + ε1)∗(I + ε1) + cX̃∗X̃

)−1
=
(
I + cX̃∗X̃ + (ε∗1 + ε1 + ε∗1ε1)

)−1

= (I + cX̃∗X̃)−1 + ε,

since the singular values of I + cX̃∗X̃ are all larger than 1. Therefore we obtain

Ŷ =
b

c
X +

(
a− b

c

)
X̃(I + cX̃∗X̃)−1(I + ε1)∗ + ε.

Since the norms of the first two terms are O(1), and X = X̃ + ε, we conclude that

Ŷ =
b

c
X̃ +

(
a− b

c

)
X̃(I + cX̃∗X̃)−1 + ε

= X̃(aI + bX̃∗X̃)(I + cX̃∗X̃)−1 + ε,

which is (5.1).

5.2. The requirement on f . We now show that the iteration function fk(x) =
x(ak + bkx

2)/(1 + ckx
2) for the general kth iteration satisfies (4.11). To ease the

notation we will drop the subscripts k in this subsection when this can be done
without loss of clarity.

We first note the following properties of f and the parameters a, b, c, �:

b = (a− 1)2/4, c = a + b− 1,(5.6a)

3 ≤ a ≤ 2 + �

�
,(5.6b)

x ≤ f(x) ≤ 1 = f(1) for 0 < x < 1,(5.6c)

f ′(x) ≥ 0 for x ≥ 1,(5.6d)

g(x) =
f(x)

x
satisfies g(0) = a, g(1) = 1, and g′(x) < 0 for x > 0,(5.6e)

0 ≤ f ′(1) = (a− 3)2/(a + 1)2 < 1 for a ≥ 3.(5.6f)

These properties are obtained as follows. Property (5.6a) is a restatement of (3.2).
Property (5.6b) is from [20, Rem. 1]. The upper bound in (5.6c) follows from the
derivation of the parameters in [20]. To obtain the lower bound in (5.6c) we compute,
using (5.6a) and (5.6b),

f(x)− x =
ax + bx3

1 + cx2
− x =

(a− 1)x + (b− c)x3

1 + cx2

=
(a− 1)x + (1− a)x3

1 + cx2
=

(a− 1)x(1 − x2)

1 + cx2
≥ 0 for x ∈ (0, 1).

Property (5.6d) follows from (5.6f) together with the fact that f is a (3, 2)-degree odd
rational function, which can have at most one local maximum and one local minimum
in (0,∞), both of which lie in (0, 1) as shown in the appendix of [20]. To prove (5.6e)
we note that g′(x) = (2x(b − ac))/(1 + cx2)2 and b − ac = (−a3 − a2 + a + 1)/4 < 0
since a ≥ 3.

Figure 5.1 plots the functions y = f(x) and y = x for the case � = 0.1 (where
� ≡ �k is the lower bound for the smallest singular value of X from the recurrence

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BACKWARD STABILITY OF POLAR DECOMPOSITION 473

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y = f(x)

y = x

Fig. 5.1. Plot of f(x) for the QDWH iteration for � = 0.1.

(3.4)); the plot corresponds to m = � and M = 1 in (4.11) and shows the typical
behavior of f(x).

Identifying (4.10) with (5.1), we now consider (4.11). We consider separately two

cases: ‖X̃‖2 ≥ 1 and ‖X̃‖2 < 1. When ‖X̃‖2 ≥ 1 we have M = ‖X̃‖2 and by (5.6c)
and (5.6d), (4.11) is satisfied if

f(x)

x
≥ f(M)

dM
, x ∈ [0,M].

This holds with d = 1 because by (5.6e), f(x)/x is decreasing on (0,∞). Hence (4.11)
is satisfied in this case.

Next, when ‖X̃‖2 < 1 we have M = ‖X̃‖2 < 1. From (5.6c), with d = 1/M , we
have

f(x)

x
≥ 1 =

1

dM
≥ maxm≤x≤M f(x)

dM
, x ∈ [0,M],

so (4.11) holds. By (5.6c) and (5.6d), in exact arithmetic ‖X‖2 < 1 only when
‖A‖2/α < 1, in which case ‖X‖2 ≥ ‖A‖2/α. Thus d1 = 1/‖X‖2 is of modest size
unless α is a severe overestimate of ‖A‖2. But since we can always take α = ‖A‖F ≤√
n‖A‖2, we will have d1 ≤ √n. The same bound for d1 holds to within ε for the

computed X̂.
We conclude that in all cases (4.11) is satisfied with a modest d.
Note that the above analysis does not involve �0, suggesting that the estimate of

σmin(X0) has no effect on the backward stability of QDWH. Of course, it does play
a fundamental role in the speed of convergence.

The results of this subsection and the previous one combined with Theorem 4.2
prove that QDWH, implemented using Householder QR factorization with column
pivoting and either row sorting or row pivoting, is backward stable.

5.3. Numerical experiments. To obtain insight into the analysis above we
carried out an experiment using a set of 105 n× n matrices with n = 10, 50, 100, 250
drawn from the MATLAB gallery function and the Matrix Computation Tool-
box [9], and including gallery(’randsvd’) matrices with 2-norm condition num-
bers 103, 106, 109, 1012, 1015, and 5 different singular value distributions. This set
excludes matrices with 2-norm condition numbers exceeding u−1/2, since the QDWH

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

474 YUJI NAKATSUKASA AND NICHOLAS J. HIGHAM

Table 5.1

Results for QDWH using no pivoting, column pivoting, and row sorting and column pivoting
for 105 matrices. Each pair of numbers comprises the maximum values of ‖A − ̂U ̂H‖F /‖A‖F ,

‖̂U∗
̂U − I‖F /

√
n over all matrices of the particular dimension.

Pivoting n = 10 n = 50 n = 100 n = 250
None 4.5e-15, 8.3e-16 2.3e-15, 8.7e-16 2.7e-15, 1.1e-15 8.3e-15, 1.7e-15
Col 1.2e-15, 1.2e-15 1.2e-15, 1.2e-15 1.9e-15, 1.7e-15 4.0e-15, 3.9e-15

Row & col 1.2e-15, 8.9e-16 1.2e-15, 1.1e-15 1.8e-15, 1.6e-15 3.5e-15, 3.5e-15

algorithm was originally designed for matrices of full rank (as are all the other it-
erations we discuss). We applied QDWH using three forms of pivoting in the QR
factorization: no pivoting, column pivoting, and row sorting and column pivoting.
Table 5.1 reports the relative residuals for the computed polar decomposition and
a measure of the orthonormality of Û . In addition we also computed the quantity
−min{λmin(Ĥ), 0 }/‖A‖F , which measures the closeness of Ĥ to positive semidefinite-
ness; it had maximum value 6.1× 10−17. We see that the QDWH algorithm performs
in a backward stable manner with row sorting and column pivoting, as expected. The
algorithm also performs stably with column pivoting and with no pivoting. Indeed
the algorithm as proposed in [20] uses QR factorization without pivoting and was
observed there to perform in a backward stable way.

One reason that QWDH performs so well without pivoting can be seen from the
structure of the matrix

[√
cX
I

]
in (3.5). From (5.6a) and (5.6b) we have c ≥ 3 and

c can be arbitrarily large. Therefore the matrix whose QR factorization we compute
is already row-sorted in the block sense. Experiments show that swapping the order
of the two blocks so that

[
I√
cX

]
is factorized makes the algorithm without pivot-

ing unstable (and column pivoting does not help), even though it is mathematically
equivalent to (3.5).

Despite the unexpectedly good stability of QDWH without pivoting, using the
direct search optimization techniques described in [12], [13, Chap. 26] it is possible to
generate matrices for which the algorithm is unstable: for example, we found a 6× 6
matrix with κ2(A) ≈ 1010 such that ‖A− ÛĤ‖F/‖A‖F = 9× 10−12.

The use of column pivoting is undesirable for high-performance computing be-
cause of its high communication costs. A possible remedy for instability when no
pivoting is used is to generate a random unitary matrix W , form B = AW , compute
the polar decomposition B = UH , and then recover the unitary polar factor from the
polar decomposition A = UW ∗ ·WHW ∗. This cures the instability in all the cases
we have tried.

6. Backward stability of other polar decomposition iterations. Theo-
rem 4.2 is sufficiently general that it can be used to investigate the backward stability
of a wide range of polar decomposition iterations. In this section we use the theorem
to show that the scaled Newton iteration is backward stable provided that matrix
inverses are computed in a mixed backward–forward stable manner. This condition is
not always satisfied if the inverses are computed in the usual way, by Gaussian elimina-
tion with partial pivoting, but it is if the inverses are computed by bidiagonalization,
as shown by Byers and Xu [4].

We also give an explanation of why the scaled inverse Newton iteration [20], which
is mathematically equivalent to the scaled Newton iteration, fails to be backward
stable. Finally, we show that the Newton–Schulz iteration is stable away from, but
not very close to, the boundary of its region of convergence.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BACKWARD STABILITY OF POLAR DECOMPOSITION 475

6.1. The scaled Newton iteration is backward stable. The scaled Newton
iteration is a well known and very effective method for computing the unitary polar
factor of a nonsingular matrix A ∈ Cn×n [11], [14]. The iteration has the form

(6.1) Xk+1 =
1

2

(
μkXk + μ−1

k X−∗
k

)
, X0 = A,

where μk > 0 is a scaling factor. The optimal scaling μopt
k =

(
σ1(Xk)σn(Xk)

)−1/2

minimizes a natural measure of error on each iteration and ensures convergence in
at most n iterations [14, sect. 8.6], [16], but is too expensive to compute. Practical
alternatives include the (1,∞)-norm [11] and Frobenius-norm [6], [10] scalings

μ1,∞
k =

(‖X−1
k ‖1‖X−1

k ‖∞
‖Xk‖1‖Xk‖∞

)1/4

,(6.2)

μF
k =

(‖X−1
k ‖F

‖Xk‖F

)1/2

,(6.3)

and the suboptimal scaling in [4].
We will establish backward stability of the scaled Newton iteration for all the

scaling strategies above by using Theorem 4.2. We need to show that the conditions
(4.10) and (4.11) are both satisfied.

Proving (4.10). We assume that the inverses are computed by a mixed backward–

forward stable algorithm, so that the computed Ẑ = fl(X−1) satisfies Ẑ = (X +

ε‖X‖2)−1 + ε‖Ẑ‖2 =: X̃−1 + ε‖Ẑ‖2. Therefore the computed approximation Ŷ to
Y = 1

2

(
μX + μ−1X−∗) satisfies

Ŷ =
1

2

(
μX + μ−1Ẑ∗)+ εmax{‖μX‖2, ‖μ−1Ẑ‖2}

=
1

2

(
μX + μ−1(X̃−∗ + ε‖Ẑ‖2)

)
+ ε max{‖μX‖2, ‖μ−1Ẑ‖2}

=
1

2

(
μ(X̃ + ε‖X‖2) + μ−1X̃−∗)+ ε max{‖μX‖2, ‖μ−1Ẑ‖2}

=
1

2

(
μX̃ + μ−1X̃−∗)+ ε max{‖μX‖2, ‖μ−1Ẑ‖2}.

This implies (on considering the SVD of X̃) that

‖Ŷ ‖2 ≥ 1

2
max{‖μX̃‖2, μ−1‖X̃−1‖2}+ ε max{‖μX‖2, ‖μ−1Ẑ‖2}

≈ 1

2
max{‖μX‖2, ‖μ−1Ẑ‖2},

so we conclude that Ŷ = 1
2

(
μX̃ + μ−1X̃−∗) + ε‖Ŷ ‖2. Hence the iteration (6.1) is

evaluated in a mixed backward–forward stable manner.
Proving (4.11). The condition (4.11) for the scaled Newton iteration is g(μx)/

maxm≤x≤M g(μx) ≥ x/dM on [m,M], where g(x) = 1
2 (x + x−1), m = σmin(X̃), and

M = σmax(X̃). Note that maxm≤x≤M g(x) = max(g(μm), g(μM)), because on a
closed positive interval the function g(μx) takes its maximum only at the endpoints.
Hence we need to show

(6.4)
g(μx)

max(g(μm), g(μM))
≥ x

dM
on [m,M],

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

476 YUJI NAKATSUKASA AND NICHOLAS J. HIGHAM

for a modest constant d ≥ 1. We distinguish two cases: g(μm) ≤ g(μM), which
happens when μ ≥ μopt, where μopt = (mM)−1/2 is the optimal scaling parameter
which satisfies ‖μoptX‖2 = ‖(μoptX)−1‖2, and g(μm) > g(μM).

When g(μm) ≤ g(μM), the condition (6.4) becomes g(μx)
g(μM) ≥ x

dM on [m,M],

which can be rewritten as

g(μx)

μx
≥ 1

d
· g(μM)

μM
, x ∈ [m,M].

This inequality holds with d = 1, because g(μx)
μx = 1

2 (1 + (μx)−2) is a decreasing

function on (0,M] and equality holds when x = M .
In the second case (when g(μm) > g(μM)), similar arguments show that (6.4)

is equivalent to the condition g(μx)
μx ≥ g(μm)

dμM on [m,M]. The function g(μx)
μx takes its

minimum on [m,M] at x = M , at which

g(μM)

μM
=

(
g(μM)

g(μm)

)
g(μm)

μM
,

so g(μx)
μx ≥ g(μm)

dμM holds with d = g(μm)
g(μM) . Hence backward stability can be lost only

if g(μM)� g(μm), which happens when 1/(μm)� μM , or μ � (mM)−1/2 = μopt.
We note that this danger of choosing μ too small was pointed out in [17]. Fortunately,
for all the practical scaling strategies mentioned above, namely the (1,∞)-norm (6.2)
and Frobenius-norm (6.3) scalings and the suboptimal scaling in [4], μ� μopt cannot

occur. Indeed X̃ = X + ε‖X‖ and the first two scalings differ from μopt by a factor
at most n1/4. The suboptimal scaling takes μ = (σ̃maxσ̃min)−1/2, where σ̃max ≥ σmax

and σ̃min ≤ σmin are bounds for the extremal singular values (which are computed
via scalar iterations after the first iteration). Since in practice we always have σ̃max ≤
n1/2σmax, it follows that we always have μ ≥ μopt.

Thus (4.11) holds in all cases. Since we have shown that the conditions (4.10)
and (4.11) are both satisfied, we conclude that the scaled Newton iteration is back-
ward stable under the assumption that the matrix inverses are computed in a mixed
backward–forward stable way.

As noted in section 1, Kie�lbasiński and Ziȩtak [19] point out some incompleteness
of the analysis of Byers and Xu [4]. The main observation in [19] is that ‖Uk−U‖2 can
be arbitrarily larger than ε when κ2(A) � 1, where Uk and U are the unitary polar

factors of X̂k and A, respectively, as in the proof of Theorem 4.2. The analysis in [4]
uses ‖Uk − U‖2 = ε, which may not hold. Our (more general) analysis in section 4
overcomes the issue because it does not refer to ‖Uk − U‖2; it shows that Uk yields
a backward stable polar decomposition of A, even though Uk might be very different
from U .

6.2. The inverse Newton iteration is not backward stable. Byers and Xu
[3] and Nakatsukasa, Bai, and Gygi [20] observe that a QR-based implementation of
the inverse Newton iteration, called QSNV in [20], is not backward stable. We can
explain this instability by showing that d in (4.11) must be large when κ2(A)� 1.

The iteration function for the scaled inverse Newton iteration is f(x) = 2μx(1 +
μ2x2)−1 (the inverse of the iteration function for the Newton iteration). For simplicity,
suppose that the optimal scaling factor μ = (σmin(X)σmax(X))−1/2 is used. The
condition (4.11) at x = σmax(X) becomes maxσmin≤x≤σmax f(x)/f(σmax) ≤ d. Since
maxσmin≤x≤σmax f(x) = f(1/μ) = 1, we need d ≥ 1/f(σmax) ≈ κ2(X)1/2/2, and this
lower bound is large for ill conditioned matrices.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BACKWARD STABILITY OF POLAR DECOMPOSITION 477

Table 6.1

Residual ‖|A−̂U ̂H‖F /‖A‖F and numbers of iteration for varying δ with initial matrices X0 = A
and X0 = A/‖A‖2, for A = P diag(1,

√
3 − δ,

√
3 − δ)Q∗ with orthogonal P and Q.

δ 0.5 10−2 10−5 10−10 10−15

X0 = A res 2.5e-16 5.8e-16 8.7e-13 2.1e-7 1.5e-3
iter 6 15 32 61 90

X0 = A
‖A‖2 res 2.8e-16 2.5e-16 3.7e-16 1.7e-16 2.6e-16

iter 6 7 7 7 7

Our analysis suggests that the instability is a fundamental feature of the inverse
Newton iteration, independent of any particular implementation. Indeed numerical
experiments show that even if row sorting and column pivoting is used in the House-
holder QR-based implementation of the inverse Newton iteration (note that pivoting
was not considered in [3], [20]), instability is still present.

6.3. The Newton–Schulz iteration is conditionally backward stable.
The Newton–Schulz iteration

(6.5) Xk+1 =
1

2
Xk(3I −X∗

kXk) =: f(Xk), X0 = A,

converges quadratically to the unitary polar factor for full rank A ∈ Cs×n (s ≥ n) with
‖A‖2 <

√
3 [14, sect. 8.3]. To make the iteration converge for a general full rank A we

can simply change X0 to X0 = A/α, where α > ‖A‖2/
√

3. Higham and Schreiber [15]
propose an algorithm that starts with the scaled Newton iteration and switches to the
Newton–Schulz iteration once fast convergence of the latter is ensured. The Newton–
Schulz is also of practical interest as a tool to improve the numerical orthogonality
of the computed unitary polar factor. For example, in the experiments in Table 5.1,
running one Newton–Schulz iteration on the converged X̂� as a postprocessing step
yielded a polar decomposition with ‖Û∗Û − I‖F /√n ≤ 5.5 × 10−16 in every case (it
also typically improves the backward errors, but to a lesser extent).

We note first that Newton–Schulz converges slowly when ‖X0‖2 =
√

3 − δ with
0 < δ � 1 or κ2(X0) � 1. In the former case, X1 has a small singular value
f(‖X0‖2) ≈ 3δ, which needs many iterations to converge to 1. When κ2(X0)� 1, X0

must have a small singular value (given that ‖X0‖2 <
√

3), so again many iterations
are needed.

Consider 3×3 matrices of the form A = P diag(1,
√

3−δ,
√

3−δ)Q∗, where P and
Q are random orthogonal matrices. They are very well conditioned, with κ2(A) ≤ √3
for δ ≤ 0.5. Table 6.1 shows relative residuals for two choices of starting matrix:
X0 = A and X0 = A/‖A‖2. With X0 = A/‖A‖2 we observe small backward error
and convergence within seven iterations. However, with X0 = A we see a large number
of iterations and instability. The Newton–Schulz iteration is clearly unstable close to
the boundary of its region of convergence.

We can explain this behavior using Theorem 4.2. Specifically, we prove that the
Newton–Schulz iteration is backward stable if ‖X0‖2 is safely less than

√
3, but can

be unstable if ‖X0‖2 =
√

3− δ for 0 < δ � 1.
First we show the mixed backward–forward stability condition (4.10) always holds

for any ‖X0‖2 <
√

3. We consider the computed approximation Ŷ to Y = 1
2X(3I −

X∗X), where ‖X‖2 <
√

3 (this bound holds in all iterations; in fact ‖Xk‖2 ≤ 1 for

k ≥ 1). If we compute Ŷ by first forming XX∗X , then performing the subtraction

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

478 YUJI NAKATSUKASA AND NICHOLAS J. HIGHAM

(other ways of computing Ŷ yield similar results), we have

(6.6) Ŷ =
3

2
X − 1

2
(XX∗X + ε1) + ε2,

where ε1 represents the forward error in forming XX∗X and ε2 is the error from
the subtraction. Since ‖X‖2 <

√
3 and ‖XX∗X‖2 = ‖X‖32 < 3

√
3 we can write

ε1 = ε‖X‖2 and ε2 = ε‖X‖2, so overall Ŷ = 1
2X(3I − X∗X) + ε‖X‖2 = 1

2X(3I −
X∗X) + ε‖Ŷ ‖2, that is, Y is computed with a small forward error. Hence (4.10) is
satisfied.

We next investigate the condition (4.11) on the mapping function f(x) = 1
2x(3−

x2). The condition for k = 0 is f(x)/x ≥ maxm≤x≤M f(x)/(dM) for x ∈ [m,M],

where m = σmin(X̃0) and M = σmax(X̃0). Since f(x)/x is a decreasing function
on [0,

√
3] the condition becomes f(M)/M ≥ maxm≤x≤M f(x)/(dM), that is, d ≥

maxm≤x≤M f(x)/f(M). Since M = σmax(X0) + ε and f is increasing on [0, 1], we
have d = 1 for ‖X0‖2 < 1. If ‖X0‖2 ≥ 1 then d is certainly of modest size if ‖X0‖2 is
not too close to

√
3. If ‖X0‖2 =

√
3− δ with 0 < δ � 1 then d ≈ 1/(3δ)� 1. For the

matrix X0 = A in Table 6.1, u/(3δ) is a reasonable estimate for the backward errors in
the first row of the table. Our conclusion, from Theorem 4.2, is that Newton–Schulz
is stable if ‖X0‖2 is safely less than

√
3, but that for ‖X0‖2 ≈

√
3 it can be unstable.

Note that the instability arises only on the first iteration, because ‖Xk‖2 ≤ 1 for
k ≥ 1.

It is natural to consider using scaling Xk ← γkXk during the Newton–Schulz
iteration, just as in the scaled Newton iteration. The optimal scaling factor γk satisfies
‖γkXk‖2 =

√
3κ2(Xk)/

√
1 + κ2(Xk) + κ2(Xk)2, because it maximizes σmin(Xk+1)

and minimizes κ2(Xk+1), which we can verify through a detailed analysis of f(x).
Unfortunately, using this optimal scaling results in an unstable iteration, because
such a γk yields ‖γkXk‖2 ≈

√
3 if Xk is ill conditioned.

Our conclusion is that in order for Newton–Schulz to combine stability with fast
convergence we need X0 to have norm safely less than

√
3 and to be not too ill

conditioned (which is the case for its usage in [15]).

Acknowledgment. We thank the referees for their helpful comments and sug-
gestions.

REFERENCES

[1] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz, Minimizing communication in nu-
merical linear algebra, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 866–901.

[2] R. Bhatia, Matrix Analysis. Springer-Verlag, New York, 1997.
[3] R. Byers and H. Xu, An Inverse Free Method for the Polar Decomposition, unpublished

manuscript, 2001.
[4] R. Byers and H. Xu, A new scaling for Newton’s iteration for the polar decomposition and

its backward stability, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 822–843.
[5] A. J. Cox and N. J. Higham, Stability of Householder QR factorization for weighted least

squares problems, in Numerical Analysis 1997, in Proceedings of the 17th Dundee Biennial
Conference, D. F. Griffiths, D. J. Higham, and G. A. Watson, eds., Pitman Res. Notes
Math. Ser. 380, Longman, Harlow, UK, 1998, pp. 57–73.

[6] A. A. Dubrulle, An optimum iteration for the matrix polar decomposition, Electron. Trans.
Numer. Anal., 8 (1999), pp. 21–25.

[7] K. Fan and A. J. Hoffman, Some metric inequalities in the space of matrices, Proc. Amer.
Math. Soc., 6 (1955), pp. 111–116.

[8] B. F. Green, The orthogonal approximation of an oblique structure in factor analysis, Psy-
chometrika, 17 (1952), pp. 429–440.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BACKWARD STABILITY OF POLAR DECOMPOSITION 479

[9] N. J. Higham, The Matrix Computation Toolbox, http://www.ma.man.ac.uk/∼higham/
mctoolbox.

[10] N. J. Higham, Nearness Problems in Numerical Linear Algebra, Ph.D. thesis, University of
Manchester, Manchester, England, 1985.

[11] N. J. Higham, Computing the polar decomposition—with applications, SIAM J. Sci. Statist.
Comput., 7 (1986), pp. 1160–1174.

[12] N. J. Higham, Optimization by direct search in matrix computations, SIAM J. Matrix Anal.
Appl., 14 (1993), pp. 317–333.

[13] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia,
2002.

[14] N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, 2008.
[15] N. J. Higham and R. S. Schreiber, Fast polar decomposition of an arbitrary matrix, SIAM

J. Sci. Statist. Comput., 11 (1990), pp. 648–655.
[16] C. S. Kenney and A. J. Laub, On scaling Newton’s method for polar decomposition and the

matrix sign function, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 688–706.
[17] A. Kie�lbasiński, P. Zieliński, and K. Ziȩtak, Numerical Experiments with Higham’s Scaled

Method for Polar Decomposition, Technical Report I18/2006/P-013, Institute of Mathe-
matics and Computer Science, Wroclaw University of Technology, Wroclaw, Poland, 2006.

[18] A. Kie�lbasiński and K. Ziȩtak, Numerical behaviour of Higham’s scaled method for polar
decomposition, Numer. Algorithms, 32 (2003), pp. 105–140.

[19] A. Kie�lbasiński and K. Ziȩtak, Note on “A new scaling for Newton’s iteration for the polar
decomposition and its backward stability” by R. Byers and H. Xu, SIAM J. Matrix Anal.
Appl., 31 (2010), pp. 1538–1539.

[20] Y. Nakatsukasa, Z. Bai, and F. Gygi, Optimizing Halley’s iteration for computing the matrix
polar decomposition, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2700–2720.

[21] Y. Nakatsukasa and N. J. Higham, Stable and efficient spectral divide and conquer algorithms
for the symmetric eigenvalue decomposition and the SVD, MIMS EPrint, Manchester In-
stitute for Mathematical Sciences, The University of Manchester, UK, 2012, in preparation.

