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1. Introduction

Piecewise linear maps with a single discontinuity have been studied from many points of

view. Renyi introduced the β−transformations (maps of the form βx (mod 1), β > 1)

to study invariant measures and properties of Diophantine approximations, and the idea

was taken up by Parry amongst others [1]. This led to a body of work on arithmetic

dynamics where arithmetic properties of the slopes (e.g. being Pisot numbers) lead to

special cases or transition points [2]. Other approaches to these maps have been recently

developed by Dajani et al. [3] and Góra [4, 5]. During the 1980s, piecewise monotonic

maps with a single discontinuity were used to model global bifurcations, leading to a

greater understanding of the dynamics through kneading theory and renormalization

(or induced maps) [6, 7]. In the last few years there has been a renewed interest due

to applications in non-smooth bifurcation theory. Avrutin et al. have described many

features of the piecewise linear cases from this point of view [8, 9, 10] and maps with

constant slope have been derived as models of nonsmooth bifurcations of flows [11, 12].

In this paper we develop a theoretical approach to understand an observation made

in [13]. The maps studied are piecewise linear with one increasing branch and one

decreasing branch. For fixed values of these slopes there is a family of maps having an

invariant interval and parametrized by the difference in the values of the maps at the

discontinuity. The numerical experiments of [13] suggest that there are values of the

slopes such that the Lyapunov exponent (and, as we will show, the topological entropy)

of the map is constant over a range of choices for the values at the discontinuity. The

reason for this turns out to be a surprising robustness in the structure of the associated

invariant measures, but there are still open questions about precisely which slopes admit

such plateaus. The answer appears to be arithmetic, involving either Pisot numbers or,

at the very least, more general algebraic integers.

Before describing the results in detail it is worth noting that it is quite easy

to construct families of maps with constant Lyapunov exponents and/or constant

topological entropy, and so we will mention a few of these constructions here to contrast

with the explanation for the phenomenon in this family. Our aim in the next few

paragraphs is to show that the results presented here are truly unexpected and cannot

be understood by trivial mechanisms.

The most simple way to ensure that entropy and Lyapunov exponents are constant

in a family is that all elements of the family are smoothly conjugate to some map,

F : I → I, say. That is, there is a continuous family of diffeomorphisms qµ : I → I,

parametrized by µ, and the family of maps considered is simply Gµ = q−1
µ ◦F ◦ qµ. The

smooth conjugation of all elements in the family Gµ to F means that provided F has

positive entropy and well-defined Lyapunov exponent, then all the functions Gµ also

have the same values of these quantities.

The β−transformations themselves provide another example. Since the slope

is always β (where defined) the Lyapunov exponent is trivially log β, and so all

β−transformations with the same value of β have the same Lyapunov exponent. Once
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again, our examples do not fall into this category, though there is a sense in which our

maps are closely related to the family of maps

Pµ,s(x) =

{

1 + sx if x < 0,

1 + µ− sx if x > 0,
(1)

with s > 1. Provided the parameters are chosen so that an interval is mapped to itself

then the entropy and the Lyapunov exponent equal log s. Milnor and Thurston prove

([6], see also Glendinning [14] for an explicit account in this case) that if a piecewise

monotonic map f with a single discontinuity and one branch increasing with the other

branch decreasing has positive entropy then it is semi-conjugate to one of the maps Pµ,s

and has entropy log s, i.e. there is a monotonic continuous but not necessarily invertible

map q such that Pµ,s ◦ q = q ◦ f . Since all the maps we consider have the properties of

such f they are each semi-conjugate to Pµ,s for some µ and s. The surprise is that over

ranges of parameters the families are semi-conjugate to maps with the same value of s

even though the dynamics is changing, i.e. the values of µ is not constant.

One further way of creating families with constant entropy is a mechanism seen in

the logistic (quadratic) map. In this case the non-wandering set, at certain values of the

parameters, can be decomposed into two parts: a fixed part, on which the dynamics has

positive entropy, and a second component whose dynamics changes with the parameters

but whose entropy is less than that of the fixed part, which is therefore the entropy

of the map for all the relevant parameter values. This is the case (for example) in

the period three window, and more generally when induced maps can be defined for

higher iterates of the map. In the period three window there are three sub-intervals

(one containing the turning point) that are permuted by the map and mapped into

themselves under the third iterate. Between these three intervals there lies an invariant

set with entropy log 1+
√
5

2
, and the maximum entropy of the third iterate is 1

3
log 2, which

is less than the entropy of the constant part of the non-wandering sets. Glendinning and

Hall [15] explore this, and the related kneading theory, for piecewise increasing maps.

A description of topological entropy for these maps is given in [16].

The point we are making is that whilst there are a number of simple ways of finding

families of maps with constant entropy and Lyapunov exponent, the example presented

here does not fit into these models. Indeed, another way of looking at our results is

that we have a two-parameter family of maps, and that we are interested in contours of

constant topological entropy. If these contours were in standard position there would

be no reason to expect there to be a simple choice of parameters such that a part of a

contour is a line parallel to a parameter axis. However, in our case this does happen,

and we believe the reasons reflect arithmetic resonances in the equations.

In this paper, we restrict ourselves to showing that the phenomenon described

really does happen. This will involve constructing invariant measures for the maps and

using these to describe the Lyapunov exponents. As such, we provide further explicit

examples of the type described more generally by Góra [5]. We will also use kneading

theory to prove the constancy of the topological entropy of the maps.
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In [13] we investigated the properties of the map introduced by Varley, Gradwell

and Hassell (VGH map) in [17] for the study of insect populations. The map has the

following form

yn+1 =

{

ryn, y ≤ c ,

ry1−b
n , y > c.

(2)

The map (2) has an exact linearization in terms of the new parameters

z ≡ 2 log(y)/ log(r), ξ ≡ 2 log(c)/ log(r), (3)

with y 6= 0 and r > 1, that turns it into a piecewise linear map

zn+1 =

{

zn + 2, zn ≤ ξ,

(1− b)zn + 2, zn > ξ.
(4)

A further change of variable (x = z − ξ) leaves the map in the form

xn+1 = T (xn) =

{

xn + 2, xn ≤ 0,

−sxn + β, xn > 0,
(5)

with β = 2− bξ and s = b− 1.

As we showed in [13] the map T (x) is chaotic for s > 1. In the rest of the paper

we consider only this chaotic regime and restrict our attention to the invariant set

which is [(1 − s)β, β] if β ≥ 2, and [β − 2s, 2] if β < 2. In figure 1 the bifurcation

diagram as a function of parameter β and the corresponding Lyapunov exponent are

shown for the particular case s = 2. The dynamics is chaotic with positive Lyapunov

exponent. Interestingly, the numerically computed Lyapunov exponent shows a plateau

in the parameter range 2 ≤ β ≤ 5 on which the Lyapunov exponent appears to be

constant. The goal of this paper is to show that this is a real phenomenon and not

a mere numerical artifact. To do so we calculate the Lyapunov exponent analytically

which in this case reduces to finding a solution of the Perron-Frobenius equation for the

invariant density. Moreover, we also prove that there is a corresponding plateau for the

topological entropy; numerical experiments suggest that this coincides with the plateau

of Lyapunov exponents.

By kneading theory arguments it is possible to show that the dynamics of the

map change across the plateau. And also, that none of the simple mechanisms causing

Lyapunov exponent plateaus that were described above apply in our case.

The structure of the paper is as follows. In Section 2 we describe the Lyapunov

exponent plateaus. In Section 3 we explain how to calculate them analytically via

the Perron-Frobenius equation. We illustrate this method with two simple examples

and leave the complete proofs to Appendix A and Appendix B. Similarly, in Section

4 we show that the Lyapunov exponent plateaus are accompanied by plateaus of the

topological entropy and we also prove these making use of kneading theory. In Section

5 we summarize our results and propose a list of open challenges to stimulate further

work.
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s=2

Figure 1. Bifurcation diagram (bottom panel) and numerical estimation of the

Lyapunov exponent (upper panel) as a function of β for s = 2. The Lyapunov exponent

appears to be constant in the range 2 6 β 6 5.

2. Lyapunov exponent

The Lyapunov exponent measures the average exponential rate of divergence of two

initially close orbits of a dynamical system, with a positive exponent indicating chaotic

behaviour. In the case of a discrete map f , the Lyapunov exponent of x0 is

λ(x0, f) = lim
n→∞

{

1

n

n−1
∑

k=0

ln |f ′(xk)|
}

(6)

provided the limit exists.

If µ is an invariant measure for f then the Lyapunov exponent of f with respect to

µ is

λµ =

∫

ln |f ′(x)|dµ(x), (7)

and for µ-almost all points this equals (6). For our map, ln |f ′(x)| = 0 if x < 0 so (6)

becomes

λ = ln |s| lim
n→∞

{

1

n

n−1
∑

k=0

θ(xk)

}

, (8)

where θ(x) stands for the Heaviside step function. Similarly, equation (7) becomes

λµ = ln |s|
∫ ∞

0

dµ(x). (9)

It is clear from expressions (8) and (9) that what determines the exact value of the

Lyapunov exponent is the fraction of time (or number of iterations) an orbit spends,
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on average, in the region x > 0. Therefore, proving the constancy of the Lyapunov

exponent in the plateau reduces to proving the constancy of µ([0,∞]).

Figure 2 shows different plateaus for different values of s. Apparently, only some

special values of s show a plateau of constant value of the Lyapunov exponent. In

fact, as figure 3 illustrates, this plateau disappears if we vary the value of s slightly.

When s ∈ N the Lyapunov exponent remains constant in a range of β of varying length

(depending on the specific value of s) but starting in all cases at β = 2. When s takes

other algebraic integer values, like Pisot numbers (including the golden ratio, the silver

ratio, etc.), plateaus of constant Lyapunov exponent can also be observed (figure 4).

1 2 3 4 5 6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ 
/ l

n|
s|

β
 

 

s = φ

s = 2

s = 3

s = 4

s = 5

Figure 2. Lyapunov exponents as a function of β for different values of s ∈ N and

s = φ ≡ 1+
√
5

2
.
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0.45

0.5
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s = 2.1

s = 2.01

s = 2

s = 1.99

s = 1.9

Figure 3. Lyapunov exponents as a function of β for different values of s close to the

integer value s = 2.
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13

2

Figure 4. Lyapunov exponents as a function of β for the case of s taking the value of

different quadratic Pisot numbers.

We have been able to prove that these plateaus are not a numerical artifact by

determining analytically the Lyapunov exponent for two particular values of s (s = 2

and s = φ ≡ 1+
√
5

2
). Taking into account (9) the determination of the Lyapunov

exponent is reduced to finding the natural invariant measure µ(x) of the attractor. To

do this, it is necessary to solve the Perron-Frobenius equation for the invariant density.

This process is explained in the next section.

3. Lyapunov exponents and the Perron-Frobenius equation

In general, note that if an invariant measure µ exists with a density ρ(x) such that

µ([a, b]) =

∫ b

a

dµ(x) =

∫ b

a

ρ(x)dx, (10)

then this density satisfies the Perron-Frobenius equation

ρ(x) =
∑

{y|T (y)=x}

ρ(y)

|T ′(y)| . (11)

This is a functional equation for the density and there is no standard procedure to solve

it. However, for some parameter ranges we have been able to pose an ansatz for ρ(x)

that we can prove satisfies the Perron-Frobenius equation and is therefore a solution. In

particular, we find a partition such that by assuming the invariant density is piecewise

constant, we are able to turn de Perron-Frobenius equation into a simple system of

algebraic equations.
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For the case β > 2 the Perron-Frobenius equation can be written as

ρ(x) =











1
s
ρ(1

s
(β − x)) if x ∈ ((1− s)β, (1− s)β + 2),

ρ(x− 2) + 1
s
ρ(1

s
(β − x)) if x ∈ ((1− s)β + 2, 2),

1
s
ρ(1

s
(β − x)) if x ∈ (2, β).

(12)

We will now illustrate this general method by solving two simple examples for

particular values of the parameters.

3.1. Two simple examples for s = 2.

3.1.1. β = 2. If β = 2 then the map is continuous and one of the regions in (12) is

trivial, so

ρ(x) =

{

1
2
ρ(1

2
(2− x)) if x ∈ (−2, 0),

ρ(x− 2) + 1
2
ρ(1

2
(2− x)) if x ∈ (0, 2).

(13)

Considering now the preimages of the intervals I1 = (−2, 0) and I2 = (0, 2)

T−1(I1) = (1, 2), T−1(I2) = (−2, 0) ∪ (0, 1), (14)

and assuming the invariant density is piecewise constant as an ansatz,

ρ(x) =

{

A if x ∈ (−2, 0),

B if x ∈ (0, 2),
(15)

the Perron-Frobenius equation (13) gives

A =
1

2
B, B = A+

1

2
B. (16)

It is easy to verify the simple piecewise constant solution

ρ(x) =

{

1
6

if x ∈ (−2, 0),
1
3

if x ∈ (0, 2),
(17)

where the normalization has been chosen so that
∫ 2

−2
ρ(x)dx = 2(A + B) = 1. Hence,

the invariant measure for x > 0 reduces to

µ([0, 2]) =

∫ 2

0

1

3
dx =

2

3
, (18)

and (9) gives

λ =
2

3
ln 2. (19)
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3.1.2. β = 4. The previous case was so easy that the solution could be presented with

no explanation at all. The case β = 4 is a little more complicated and serves to illustrate

how the complexity of the calculation increases with more complicated dynamics. The

Perron-Frobenius equation (12) becomes

ρ(x) =











1
2
ρ(1

2
(4− x)) if x ∈ (−4,−2),

ρ(x− 2) + 1
2
ρ(1

2
(4− x)) if x ∈ (−2, 2),

1
2
ρ(1

2
(4− x)) if x ∈ (2, 4).

(20)

We consider in this case the following intervals

I1 = (−4,−2),

I2 = (−2, 0),

I3 = (0, 2),

I4 = (2, 4),

(21)

whose preimages are

T−1(I1) = (3, 4),

T−1(I2) = (−4,−2) ∪ (2, 3),

T−1(I3) = (−2, 0) ∪ (1, 2),

T−1(I4) = (0, 1).

(22)

This suggests that we solve (20) by posing the piecewise constant solution

ρ(x) =



















A if x ∈ (−4,−2),

B if x ∈ (−2, 0),

C if x ∈ (0, 2),

D if x ∈ (2, 4),

(23)

in which case (20) implies

A = 1
2
D, B = A+ 1

2
D, C = B + 1

2
C, D = 1

2
C. (24)

The normalization requirement
∫

ρdx = 1 in this case reads

2(A+B + C +D) = 1. (25)

An elementary calculation shows that this is solved by

A = 1
18
, B = 1

9
, C = 2

9
, D = 1

9
, (26)

and so the invariant measure in x > 0 is

µ([0, 4]) =

∫ 2

0

2

9
dx+

∫ 4

2

1

9
dx =

4

9
+

2

9
=

2

3
, (27)

and the Lyapunov exponent is

λ =
2

3
ln 2, (28)

which is equal to the Lyapunov exponent of the previous example.
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3.2. Analytical proofs of two plateaus

Following the same methodology as in the previous examples it is possible to solve

the Perron-Frobenius equation as a function of β. This is possible mainly due to the

robustness of the invariant density ρ(x) with varying β. This allows us to find finite

partitions of phase space on which the value of ρ(x) in each interval remains constant

although the size of the intervals can vary with β. The robustness of ρ(x) can be

observed in figure 1 where the different shades of grey indicate different values of the

invariant density. Between β = 2 and β = 3 for instance, we can see that the number of

intervals remains constant and also does the density in each of the intervals. Moreover,

the borders of the intervals as a function of β are straight lines which further facilitates

the partitioning of phase space and finding an appropriate ansatz for ρ(x).

1 1.5 2 2.5 3 3.5 4 4.5 5
0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

β

λ

λ =
2
3 ln2

λ =
2

5−β
ln2

s=2

Figure 5. Lyapunov exponent as a function of β for s = 2. The circles represent

the numerical estimation of the Lyapunov exponent. The solid line stands for the

analytical Lyapunov exponent calculated from the Perron-Frobenius equation.

2 2.5 3 3.5 4 4.5 5
0.33

0.335

0.34

0.345

0.35

0.355

0.36

0.365

0.37

0.375

0.38

β

λ

λ =
2(3−φ)

βφ−2(β+φ−4)lnφ

λ =
3−φ
5−2φ

lnφ
s = φ

Figure 6. Lyapunov exponent as a function of β for s = φ. The circles represent

the numerical estimation of the Lyapunov exponent. The solid line stands for the

analytical Lyapunov exponent calculated from the Perron-Frobenius equation.
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h

β
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Figure 7. Plots of numerically calculated topological entropy as a function of β using

terms up to and including t100 in (33) for different values of s ∈ N and s = φ = 1+
√
5

2
.

We have proved the existence of plateaus for the cases s = 2 and s = φ. However, we

have not been able to prove them in its entirety because the structure of the invariant

density gets increasingly complex as β grows. The results are shown in figure 5 and

figure 6. To be specific, the calculations detailed in Appendix A and Appendix B prove

the following lemma.

Lemma 1 Consider the maps defined by (5) with β ≥ 2. If s = 2 and 2 < β < 9
2
then

the Lyapunov exponent is constant and equal to 2
3
ln 2. If s = φ = 1+

√
5

2
and 2φ < β < 4

then the Lyapunov exponent is a constant and equal to 3−φ

5−2φ
lnφ.

4. Topological entropy and kneading theory

Figures 7 and 8 shows the numerically calculated topological entropy h of the maps

as a function of β for different values of s. They present plateaus in precisely the

same positions as the Lyapunov exponent plateaus of figure 2 as shown in figure 9.

Thus we conjecture that the Lyapunov plateaus are also parameter intervals with

constant topological entropy. This assumption makes it possible to investigate other

possible plateaus in more detail, but before presenting the results we will sketch how

the topological entropy is calculated.

Milnor and Thurston [6] developed kneading theory for unimodal maps, and noted

that by considering the kneading invariant of the map as a power series then if the map

has positive topological entropy this is equal to minus the logarithm of the smallest

positive zero of the kneading invariant. Moreover, the kneading sequence (seen as

power series evaluated at this smallest zero of the kneading invariant) then provides

a semi-conjugacy to a tent map with slopes having constant absolute value equal to the

reciprocal of the smallest zero. Glendinning and Hall [15] showed how these results could

be extended to Lorenz maps (piecewise increasing maps with a single discontinuity) and
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Figure 8. Plots of numerically calculated topological entropy as a function of β using

terms up to and including t100 in (33) for different values of s close to the integer value

s = 2.

Glendinning [14] describes the theory for maps with a single discontinuity, one branch

of which is increasing and the other decreasing. Proofs of the results described here can

be found in [6, 14].

Suppose that f : [−a, b] → [−a, b] with a, b > 0, is a map with a single discontinuity

at x = 0, continuous and increasing on (−a, 0) and continuous and decreasing on (0, b).

Then the standard symbolic description (e.g. [18]) assigns an address to each point

x 6= 0 by A(x) = 1 if x > 0 and A(x) = −1 if x < 0. The itinerary of a point that is

not a preimage of zero is then just the sequence

I(x) = A(x)A(f(x))A(f 2(x))A(f 3(x)) . . . . (29)

Whilst the itinerary is easy to interpret, Milnor and Thurston [6] observed that the

same information is contained in a sequence of coordinates that monitor the slope of

iterates of the map. It is natural to use a plus sign for an increasing slope and a minus

for decreasing slope, so let

θ0(x) = −A(x), θn(x) = −A(fn(x))θn−1(x), n ≥ 1 (30)

for points that are not preimages of zero. Thus the sign of θn(x) is the sign of the slope

of fn+1 at x. Moreover, rather than sequences we can work with formal power series

P (x, t) =
∞
∑

k=0

θk(x)t
k (31)

which is called the kneading sequence of x. For points that are preimages of zero, two

kneading sequences (the lower and upper kneading sequences) can be defined:

P (x−, t) = lim
y↑0

P (y, t), P (x+, t) = lim
y↓0

P (y, t) (32)

where limits are taken through points that are not preimages of zero.
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Figure 9. Plots of numerically calculated topological entropy and Lyapunov exponent

as a function of β.

With the standard lexicographical order, (
∑

akt
k <

∑

bkt
k if ar = br, r =

0, . . . , j − 1, and aj < bj) the sequences P (x, t) are decreasing functions of x and

by looking at the difference P (x−, t) − P (x+, t) this function becomes monotonic and

continuous as a function of x if t = t∗, where t∗ < 1 is the smallest positive zero of

P (0−, t)− P (0+, t) = 0. (33)

Such a value of t∗ always exists if the topological entropy of f is positive and the entropy

actually equals h = − log t∗ (see below).

The seminal result of Milnor and Thurston [6], which carries over to discontinuous

maps of the kind considered here [14], is that if f has positive topological entropy then

the function

q(x) =
P (x±, t

∗)− P (−a+, t
∗)

P (b−, t∗)− P (−a+, t∗)
(34)

is a semi-conjugacy (monotonic and continuous) from f to a piecewise continuous map

with slopes having modulus 1/t∗ and the topological entropy of f is h = − log t∗.

Details can be found in [6, 14], but from the point of view of this paper the important

point is that the entropy can be calculated by looking at the zeroes of (33) by truncating

the series at order n. Keeping only polynomial terms up to tn, the maximum error is
tn+1

1−t
, and since t ∈ [1

2
, 1) (as the entropy of a two branch map of an interval into itself

cannot be greater than log 2) this gets small as n gets large. This is how figure 7 and 8

were calculated.

Figures 7 and 9 provide strong evidence that the constant Lyapunov exponent

plateaus described above, and which we have proved exist if the slopes are (1,−s) for
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Figure 10. Plots of numerically calculated topological entropy as a function of β with

slopes 1.1 and -2.2 in 5 using terms up to and including t100 in (33).

a variety of choices of s (integers, some Pisot numbers) are concurrent with plateaus

in the topological entropy of the maps. This conjecture provides a way to attempt

a further investigation into ambiguous ‘almost plateaus’ observed for the Lyapunov

exponents in, for example, the case with slopes (1.1,−2.2). Iteration and root-finding

algorithms make it relatively easy to compute roots of (33) to high accuracy. The

entropy obtained for the case for slopes (1.1,−2.2) is shown in figure 10. In this figure

the possibility of a plateau is apparent, as it was for the Lyapunov exponent. However,

a close up of parameter values in the apparent plateau demonstrates that there is

actually a great deal of structure in the variation of the topological entropy, and so

we believe that this is not a plateau for the topological entropy of the maps. Assuming

that the conjectured connection between plateaus in the entropy and plateaus in the

Lyapunov exponent holds, this implies that the Lyapunov exponent plateaus only exist

at interesting resonances of the form (1,−s) and are not due to resonances associated

with the ratio of the slopes more generally.

We will prove the existence of plateaus for the topological entropy in two cases:

s = 2 and s = φ. The proof in both cases relies on the algebraic properties of the slope,

and this should provide a clue to the answer to the more general question about which

values of s have Lyapunov plateaus. As with the Lyapunov exponents we do not prove

the existence of the plateau for the largest possible range of values of β – to consider the

entire interval using our techniques would require the separate consideration of more

and more complicated cases precisely as with the Lyapunov plateaus – but we do prove

the existence of a plateau. Recall that our numerical results appear to show that the

Lyapunov plateaus and the plateaus of topological entropy are equal.

Lemma 2 Consider the map T of (5) with s = 2. If 2 ≤ β ≤ 4 then the topological

entropy of T is log
(

1+
√
5

2

)

.
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Proof: We begin by considering the iterates of x = 0 approached from above and

below respectively, denoting these by 0+ and 0− respectively. If β = 2 or β = 4 then

the iterates of 0− and 0+ are in a finite set which makes it straightforward to use these

points to create a Markov partition for which the entropy is straightforward to calculate

(cf. [19]). So assume that 2 < β < 4. Then by direct calculation

T (0+) = β > 0, T (β) = −β < 0, T (−β) = 2− β < 0, T (2− β) = 4− β > 0; (35)

and

T (0−) = 2 > 0, T (2) = β−4 < 0, T (β−4) = β−2 > 0, T (β−2) = 4−β > 0;(36)

so in particular

T 4(0+) = T 4(0−). (37)

This makes it possible to compute the difference of the kneading polynomials (33)

explicitly without knowing the full details of each individual series and hence compute

the zeros. To be specific: using (30) we find

P+(t) = −1 + t + t2 + t3 + t4P (4− β, t) (38)

and

P−(t) = 1− t− t2 + t3 + t4P (4− β, t) (39)

(strictly speaking the unknown polynomial is P ((4− β)−, t)) and hence using (33) the

entropy is minus the logarithm of the smallest positive zero of 1− t− t2.

�

The proof for the plateau with s being the golden mean is similar:

Lemma 3 Consider the map T of (5) with s = φ ≡ (1+
√
5)/2. If 2φ ≤ β < 2φ+1 then

the topological entropy of T is − log t∗ where t∗ is the smallest positive zero of 1− t− t3.

Proof: Again, the end-point is easy to deal with separately so assume that

2φ < β < 2φ + 1 and write β = 2φ + ǫ, 0 < ǫ < 1. Then by direct calculation

using the relation φ2 = 1 + φ to simplify nonlinear terms in φ:

T (0+) = 2φ+ ǫ > 0, T 2(0+) = −2− ǫ(φ− 1) < 0, T 3(0+) = −ǫ(φ − 1) < 0,

T 4(0+) = 2− ǫ(φ − 1) > 0, T 5(0+) = 2ǫ > 0; (40)

and

T (0−) = 2 > 0, T 2(0−) = ǫ > 0, T 3(0−) = 2φ− ǫ(φ − 1) > 0,

T 4(0−) = −2(1− ǫ) < 0, T 5(0−) = 2ǫ > 0; (41)

so

T 5(0+) = T 5(0−). (42)

Thus

P+(t) = −1 + t + t2 + t3 − t4 − t5P (2ǫ, t) (43)
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Figure 11. (a) Plot of numerically obtained relation between β′ and β for the case

s = 2. The dashed line corresponds to the linear regression β′
0 = 0.79116 + 0.60802β.

(b) Detail of the fluctuation ∆ = β′ − β′
0. (c) and (d) Successive zooms of the framed

areas.

and

P−(t) = 1− t+ t2 − t3 − t4 − t5P (2ǫ, t) (44)

where strictly speaking we should have checked that 2ǫ is approached from the same

side in both cases. Hence using (33) the entropy is minus the logarithm of the smallest

positive zero of the difference of the two power series, i.e. of 1− t− t3.

�

In the introduction we claimed that there are some fairly straightforward ways

of creating families with plateaus of Lyapunov exponents and topological entropy.

Figure 11 and figure 12 provide evidence for our claim that our results do not fall

into these ‘simple’ categories.

By the kneading theory developed above, any two-branch map such as we are

considering which has positive entropy is semi-conjugate to a map with slopes having

fixed modulus equal to 1/t∗, where t∗ is the smallest positive zero of the kneading

difference (33). Thus each map in the plateau with entropy − log t∗ is semi-conjugate

via the function q defined in (34) to a map of the form

Fβ′,s∗(x) =

{

2 + s∗x if x < 0,

β ′ − s∗x if x > 0,
(45)

where s∗ = 1/t∗ and we have rescaled (1) to match our parametrization for T . Thus for

each β in the plateau, s∗ is known and fixed, so there is one parameter to be matched

and the relationship between β and the associated β ′ describes reveals the way in which
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(b) Detail of the fluctuation ∆ = β′ − β′
0. (c) and (d) Successive zooms of the framed

areas.

the dynamics of the maps in the plateaus change with the parameter β. Note that

we believe that in the plateaus the semi-conjugacy is actually a conjugacy, and the

computer programme which generates figures 11 and 12 provides some evidence for

this. The diagrams show the relationship between the two parameters β for T and β ′

for F . It is computed by calculating the kneading sequence of 0+ and 0− for different

values of β in the plateau and then uses a bisection algorithm based on the natural

order for these sequences [6, 14] for each such β to find the value of β ′ for which the

kneading sequence of 0+ equals the known sequence of 0+ for β. We then check that the

sequences for 0− in both cases are the same to good accuracy which provides evidence

that the two maps have the same kneading series and that there is indeed a topological

conjugacy (and not just a semi-conjugacy) between the two maps.

The correspondence between β and β ′ appears strictly monotonic, indicating that

no two maps in the plateau have the same dynamics. Moreover, there is a linear scaling

and the variation about this linear trend certainly appears very complicated if not

fractal. This suggests that maps in the plateaus have a very rich dynamic structure

despite having the same Lyapunov exponents and topological entropy.

5. Discussion

In this paper we have proved that the plateaus in the Lyapunov exponent observed in

piecewise linear families of maps in [13] really do exist and have extended the results to

different slopes (using slopes s = 2 and s = φ) and we have also shown that the plateau is
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also present in the topological entropy of the maps. We have provided strong numerical

evidence in figures 11 and 12 that the dynamics varies in a complicated fashion within

the plateaus and, in particular, that the dynamics is certainly not constant within the

plateaus, which would have been an obvious but somewhat trivial way to obtain the

plateaus. Numerical experiments also suggest that this phenomenon is associated only

with maps having one branch with slope equal to unity and not with a simple resonance

(where one slope is an integer multiple of the other for example). Finally we have also

obtained exact expressions for the Lyapunov exponent at the lower end of the plateaus

as it becomes different from the constant function on the plateaus.

The proof of the existence of the plateaus for the Lyapunov exponent uses the

fact that we are able to calculate invariant densities for the maps explicitly. These are

piecewise constant on a finite union of intervals similar to those calculated for some

related examples by Góra [5], and the structure is robust within the plateaus: the

number of intervals remains constant over several sub-intervals of the plateau, as does

the value of the density. Only the lengths of the intervals vary. What makes this striking

is that (as noted earlier) the dynamics changes with changing parameter even though

the structure of the invariant density does not. The number of intervals on which the

density changes at discrete values of the parameter, and these appear to accumulate on

the right hand end point of the plateau.

The proof of the plateaus for the topological entropy of the maps suggests that one

of the reasons for the existence of the plateaus is a robust relation between iterates of

the discontinuity approached from above and from below. This is almost certainly the

origin of the algebraic properties of those slopes for which we observe plateaus: they

are Pisot numbers. We conjecture that if a family of maps has a plateau then the slope

s is a Pisot number. The relations between the iterates of the discontinuity typified

by (37) and (42) also change within the plateaus, and we conjecture that these robust

relationships are related to the robust structure of the invariant densities.

As well as the conjectures made above there remain a number of questions which

would help illuminate this phenomenon.

• Is it true that the plateaus only occur if one of the slopes equals one? If so, can the

set of slopes which produce plateaus be characterized completely?

• What characterizes the end-points of the plateaus? Interestingly, it is possible to

set all the plateaus for the case s ∈ N to the same length and in the same parameter

range by parametrizing the map with α = s
s+1

(β + 2
s
) instead of β. As figure 13

shows, the Lyapunov plateaus for integer s occur in the range 2 < α < 4.

• Góra [4, 5] provides a general expression for the invariant density of such maps.

When do these densities have the robust structure described above (what is their

‘bifurcation theory’)? Our results also show that the existence of robust structure

continues to hold below the lower limit of the plateaus, so the robust structure with

a finite set of intervals is not in itself enough to guarantee the existence of plateaus.

How are the two cases different?
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• Do plateaus exist in other piecewise linear models with positive topological entropy

and a single discontinuity?

This latter suggestion deserves a little more examination. The piecewise linear models

described here have one increasing branch and one decreasing branch. There are two

other possibilities (increasing-increasing and decreasing-decreasing) and in the non-

increasing case the bifurcation structures are interrelated [20]. However, there is reason

to believe that neither of the other cases can have plateaus – essentially because initial

considerations suggest that the only way to have fn(0+) = fn(0−) is to have symmetric

maps, and hence to be in the trivial cases we have effectively ruled out here, where both

branches have the same absolute value. If this is really the case then the coincidence

here becomes even more surprising, and lends credence to the suggestion that this

phenomenon is an example of the interplay of arithmetic with dynamics in similar ways

to which certain other properties of the general β−transformations are considered in

the area of arithmetic dynamics (e.g. [2]).
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Appendix A. Lyapunov exponent plateau for s = 2

Appendix A.1. 2 < β < 9
2

The Perron-Frobenius equation (12) in this case reads

ρ(x) =











1
2
ρ(1

2
(β − x)) if x ∈ (−β,−β + 2),

ρ(x− 2) + 1
2
ρ(1

2
(β − x)) if x ∈ (−β + 2, 2),

1
2
ρ(1

2
(β − x)) if x ∈ (2, β).

(A.1)

We start by considering the parameter range 2 < β < 5/2. We will do the calculation

for this case in detail. Consider nine intervals

I1 = (−β, β − 4),

I2 = (β − 4,−β + 2),

I3 = (−β + 2, 0),

I4 = (0, β − 2),

I5 = (β − 2, β
2
),

I6 = (β
2
, β − 1),

I7 = (β − 1,−β + 4),

I8 = (−β + 4, 2),

I9 = (2, β).

(A.2)

The inverses or preimages of these intervals are

T−1(I1) = I9,

T−1(I2) = (β − 1, 2),

T−1(I3) = (−β,−2) ∪ I6,

T−1(I4) = (−2, β − 4) ∪ (1, β
2
),

T−1(I5) = (β − 4, β−4
2
) ∪ (β

4
, 1),

T−1(I6) = (β−4
2
, β − 3) ∪ (1

2
, β

4
),

T−1(I7) = (β − 3,−β + 2) ∪ (β − 2, 1
2
),

T−1(I8) = (−β + 2, 0) ∪ (β−2
2
, β − 2),

T−1(I9) = (0, β−2
2
).

(A.3)

We assume the following ansatz for the invariant density

ρ(x) = Ai, if x ∈ Ii, i = 1, . . . , 9, with A7 = A8 (A.4)

Considering (A.18) this gives the equations

A1 = 1
2
A9,

A2 = 1
2
A7,

A3 = A1 +
1
2
A6,

A4 = A1 +
1
2
A5,

A5 = A2 +
1
2
A5,

A6 = A2 +
1
2
A5,

A7 = A2 +
1
2
A5,

A8 = A3 +
1
2
A4,

A9 = 1
2
A4.

(A.5)
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It is already clear from these equations that A5 = A6 = A7 = A8 and A3 = A4.

The additional normalization requirement reads

(2β − 4)A1 + (6− 2β)A2 + (β − 2)A3 + (β − 2)A4

+ (2− β

2
)A5 + (

β

2
− 1)A6 + (5− 2β)A7 + (β − 2)A8

+ (β − 2)A9 = 1. (A.6)

From here it is trivial to obtain the solution

A1 = 1
4
A4,

A2 = 3
4
A4,

A3 = A4,

A4 = 2
9
,

A5 = A6 = A7 = A8 =
3
2
A4,

A9 = 1
2
A4,

(A.7)

which is independent of β. Finally, the measure of the interval [0, β]

µ([0, β]) = (β − 2)A4 + (2− β

2
)A5 + (

β

2
− 1)A6

+ (5− 2β)A7 + (β − 2)A8 + (β − 2)A9

= (β − 2)A4 + (4− β)A8 + (β − 2)A9

= [(β − 2) +
3

2
(4− β) +

1

2
(β − 2)]A4

=
2

3
, (A.8)

which is also independent of β and produces therefore a constant Lyapunov exponent.

Using the same method it is straightforward to prove that the invariant density is

the same for the whole range 2 < β < 3. Therefore, we can write

ρβ∈(2,3)(x) =



























1
18

if x ∈ (−β, β − 4)
1
6

if x ∈ (β − 4,−β + 2)
2
9

if x ∈ (−β + 2, β − 2)
1
3

if x ∈ (β − 2, 2)
1
9

if x ∈ (2, β)

. (A.9)

We can check that the measure µ([0, β]) for this invariant density is again 2
3

µβ∈(2,3)([0, β]) = (β − 2)
2

9
+ (4− β)

1

3
+ (β − 2)

1

9
=

2

3
. (A.10)

By looking at the bifurcation diagram in figure 1 it is possible to see that the invariant

density changes at β = 3. At this particular value the density is

ρβ=3(x) =



















1
18

if x ∈ (−3,−1),
2
9

if x ∈ (−1, 1),
1
3

if x ∈ (1, 2),
1
9

if x ∈ (2, 3),

(A.11)
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and again µβ=3([0, β]) =
2
9
+ 1

3
+ 1

9
= 2

3
.

In the range 3 < β < 4 the density is given by

ρβ∈(3,4)(x) =



























1
18

if x ∈ (−β,−β + 2),
1
9

if x ∈ (−β + 2, β − 4),
2
9

if x ∈ (β − 4, β − 2),
1
3

if x ∈ (β − 2, 2),
1
9

if x ∈ (2, β).

(A.12)

The point β = 4 is again an special point where the density changes. At this

particular point the density is given by

ρβ=4(x) =



















1
18

if x ∈ (−4,−2),
1
9

if x ∈ (−2, 0),
2
9

if x ∈ (0, 2),
1
9

if x ∈ (2, 4).

(A.13)

Finally, the density in the range 4 < β < 9
2
is

ρβ∈(4, 9
2
)(x) =































































1
27

if x ∈ (−β, 3β − 16),
1
18

if x ∈ (3β − 16,−β + 2),
5
54

if x ∈ (−β + 2, 3β − 14),
1
9

if x ∈ (3β − 14,−β + 4),
4
27

if x ∈ (−β + 4, β − 4),
2
9

if x ∈ (β − 4,−β + 6),
7
27

if x ∈ (−β + 6, 2),
1
9

if x ∈ (2,−β + 8),
2
27

if x ∈ (−β + 8, β).

(A.14)

It is straightforward to check that the invariant measure µ([0, β]) for all the densities

ρ(x) we have just defined is 2
3
. Therefore we have been able to prove the constancy of

the Lyapunov exponent for the case s = 2 in the range 2 < β < 9
2
. The Lyapunov

exponent takes the constant value

λ =
2

3
ln 2. (A.15)

For β > 9
2
the number of pieces of the invariant density increases considerably

and its calculation becomes much more involved. In particular, it is very difficult to

find an appropriate partition on which we can define an ansatz of ρ(x) that solves the

Perron-Frobenius equation.

Appendix A.2. β < 2

Using the same method it is also possible to study the dependence on β of the Lyapunov

exponent just before the start of the plateau. In this case the Perron-Frobenius equation

reads

ρ(x) =

{

1
2
ρ(1

2
(β − x)) if x ∈ (β − 4, β − 2),

ρ(x− 2) + 1
2
ρ(1

2
(β − x)) if x ∈ (β − 2, 2),

(A.16)
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Making use of the following ansatz

ρ(x) =

{

A if x ∈ (β − 4, β − 2),

B if x ∈ (β − 2, 2),
(A.17)

and taking into account the normalization we get

ρβ<2(x) =

{

1
2(5−β)

if x ∈ (β − 4, β − 2),
1

5−β
if x ∈ (β − 2, 2).

(A.18)

This results in the following Lyapunov exponent for β < 2

λ =
2

5− β
ln 2. (A.19)

Appendix B. Lyapunov exponent plateau for s = φ = 1+
√
5

2

Appendix B.1. 2φ < β < 4

Similarly to the case studied in the previous appendix, the Perron-Frobenius equation

(12) is given by

ρ(x) =











1
φ
ρ( 1

φ
(β − x)) if x ∈ (β(1− φ), β(1− φ) + 2),

ρ(x− 2) + 1
φ
ρ( 1

φ
(β − x)) if x ∈ (β(1− φ) + 2, 2),

1
φ
ρ( 1

φ
(β − x)) if x ∈ (2, β).

(B.1)

We consider now a partition in eight intervals

I1 = (β(1− φ), 2(β − 2φ− 1)),

I2 = (2(β − 2φ− 1), β(1− φ) + 2),

I3 = (β(1− φ) + 2, β − 2φ),

I4 = (β − 2φ, 2β − 4φ),

I5 = (2β − 4φ, β(1− φ) + 4),

I6 = (β(1− φ) + 4, 2),

I7 = (2, β(1− φ) + 2φ2),

I8 = (β(1− φ) + 2φ2, β).

(B.2)

The preimages of these intervals are

T−1(I1) = I8,

T−1(I2) = ( 1
φ
(βφ− 2), β(1− φ) + 2φ2),

T−1(I3) = (β(1− φ), β − 2φ− 2) ∪ (2, 1
φ
(βφ− 2)),

T−1(I4) = (β − 2φ− 2, 2(β − 2φ− 1)) ∪ I6,

T−1(I5) = I2 ∪ (β + 4(1− φ), β(1− φ) + 4),

T−1(I6) = (β(1− φ) + 2, 0) ∪ (β−2
φ
, β + 4(1− φ)),

T−1(I7) = (β − 2φ, β−2
φ
),

T−1(I8) = (0, β − 2φ).

(B.3)
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Assuming the following ansatz for the invariant density

ρ(x) = Ai, if x ∈ Ii, i = 1, . . . , 8, with A4 = A5. (B.4)

(B.1) gives the equations

A1 = 1
φ
A8,

A2 = 1
φ
A7,

A3 = A1 +
1
φ
A7,

A4 = A1 +
1
φ
A6,

A5 = A2 +
1
φ
A5,

A6 = A3 +
1
φ
A5,

A7 = 1
φ
A5,

A8 = 1
φ
A3.

(B.5)

The additional normalization requirement reads

(β(1 + φ)− 2(1 + 2φ))A1 + (4− β)(φ+ 1)A2

+ ((β − 2)φ− 2)A3 + (β − 2φ)A4 + (4− β)(φ+ 1)A5

+ (−2− β(1− φ))A6 + (β(1− φ) + 2φ)A7

+ ((β − 2)φ− 2)A8 + (β − 2)A9 = 1. (B.6)

From here it is trivial to obtain the solution

A1 = 1
φ3A5,

A2 = 1
φ2A5,

A3 = 1
φ
A5,

A4 = A5,

A5 = 1
10−4φ

A6 = ( 1
φ3 + 1)A5,

A7 = 1
φ
A5,

A8 = 1
φ2A5,

(B.7)

which is independent of β. Finally, the measure of the interval [0, β] is

µ([0, β]) =
3− φ

5− 2φ
, (B.8)

which is also independent of β and results in the constant Lyapunov exponent

λ =
3− φ

5− 2φ
lnφ (B.9)
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Appendix B.2. β < 2φ

To obtain the analytical form of the Lyapunov exponent before the plateau, we consider

the same Perron-Frobenius equation (B.1). However, now we divide the phase space in

five intervals

I1 = (β(1− φ), β − 2φ),

I2 = (β − 2φ, β(1− φ) + 2),

I3 = (β(1− φ) + 2, β − 2φ+ 2),

I4 = (β − 2φ+ 2, 2),

I5 = (2, β),

(B.10)

with inverses

T−1(I1) = I5,

T−1(I2) = I4,

T−1(I3) = I1 ∪ (2(2− φ), β − 2φ+ 2),

T−1(I4) = (β − 2φ, 0) ∪ (β−2
φ
, 2(2− φ)),

T−1(I5) = (0, β−2
φ
).

(B.11)

Using the following ansatz for the invariant density

ρ(x) = Ai, if x ∈ Ii, i = 1, . . . , 5, with A2 = A3 (B.12)

the Perron-Frobenius equation produces the following set of equations

A1 = 1
φ
A5,

A2 = 1
φ
A4,

A3 = A1 +
1
φ
A3,

A4 = A2 +
1
φ
A3,

A5 = 1
φ
A3.

(B.13)

Considering the normalization it is straightforward to find

A1 = 1
φ2A3,

A2 = A3,

A3 = 1
βφ−2(β+φ−4)

,

A4 = φA3,

A5 = 1
φ
A3.

(B.14)

The measure of the interval [0, β] is therefore

µ([0, β]) = 2(3− φ)A3, (B.15)

and the Lyapunov exponent is

λ =
2(3− φ)

βφ− 2(β + φ− 4)
lnφ. (B.16)
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