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Shape Deformation in Two-Dimensional
Electrical Impedance Tomography

Alistair Boyle, Andy Adler and William R. B. Lionheart

Abstract—Electrical Impedance Tomography (EIT) uses mea-

surements from surface electrodes to reconstruct an image of

the conductivity of the contained medium. However, changes in

measurements result from both changes in internal conductivity

and changes in the shape of the medium relative to the electrode

positions. Failure to account for shape changes results in a

conductivity image with significant artifacts. Previous work to

address shape changes in EIT has shown that in some cases

boundary shape and electrode location can be uniquely deter-

mined for isotropic conductivities; however, for geometrically

conformal changes, this is not possible. This prior work has

shown that the shape change problem can be partially addressed.

In this paper, we explore the limits of compensation for boundary

movement in EIT using three approaches: first, a theoretical

model was developed to separate a deformation vector field

into conformal and non-conformal components, from which the

reconstruction limits may be determined; next, finite element

models were used to simulate EIT measurements from a domain

whose boundary has been deformed; finally, an experimental

phantom was constructed from which boundary deformation

measurements were acquired. Results, both in simulation and

with experimental data, suggest that some electrode movement

and boundary distortions can be reconstructed based on conduc-

tivity changes alone while reducing image artifacts in the process.

I. INTRODUCTION

E
LECTRICAL Impedance Tomography (EIT) applies cur-
rent and measures voltage through electrodes on the sur-

face to reconstruct a conductivity distribution for the interior
of the domain. In medical EIT, errors in knowledge of the
boundary shape are an important factor in the accuracy of
reconstructions. This is a significant factor for chest EIT where
the chest shape deforms as the patient breathes and changes
posture [1], [2].

In general terms, if a distortion is applied to a domain in
two- or three-dimensional space, the assumed isotropy (uni-
formity in all directions) of the conductivity distribution is not
preserved [3]. If the conductivity is assumed to be isotropic,
the boundary voltage and current data on the distorted domain
will generally not be consistent with an isotropic conductivity.
This means that in the isotropic case, the set of boundary
data contains information about both the conductivity and the
boundary shape.

While all distortions are equivalent to a generalized (pos-
sibly anisotropic) conductivity change on a domain with the
original shape, a subset of these distortions can be modelled
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as isotropic conductivity changes with the original shape. This
subset is exactly the distortions that are conformal maps. In
two-dimensional space, there is an infinite-dimensional space
of conformal maps, whereas in three dimensions, there is
a finite-dimensional space of conformal maps, the Möbius
transformations [4].

In many industrial applications where the dimensions of
the boundary are fixed, such as mixing vessels [5], accurately
acquiring the boundary information is practical through careful
measurements. In practise, we would not usually want to
use electrical measurements to recover the boundary shape,
as one could employ mechanical or optical measurement
devices to determine the external shape of the body and
the position of the electrodes [6], [7]. As previously noted,
in many biomedical settings and particularly in the case of
lung imaging, this boundary is continuously changing [1], [2].
Lung imaging is an important application of EIT because it
offers the opportunity to provide continuous monitoring of
patients placed on ventilation support [8]. In this application,
electrodes are attached about the circumference of the chest.
The boundary shape of the chest changes with breathing, so
it is desirable to correct the unknown boundary shape using
the EIT data so that a consistent isotropic conductivity can be
fitted to the data. To achieve this, Soleimani et al. suggested
a method where the electrode positions are perturbed in an
attempt to better fit the measurement data to the reconstruction
for small changes in the boundary [9]. This technique should
result in a distorted image due to the anisotropic nature of
chest muscle, yet still preserve useful features of the lungs.

This type of shape correction could also be interpreted
as a type of model reduction error, using the framework
developed by Kolehmainen et al. to address inexact knowledge
of the boundary shape [10], [11]. The relationship between an
exact and geometrically inexact domain is modelled [10], [12]
(which was extended to contact impedance errors [13]) and
once first- and second-order statistics are computed, combined
into the inverse formulation. This results in the addition of
a dense model error matrix to the reconstruction error term.
The approach of Soleimani et al. gives a formulation that
is structurally similar to the model reduction approach of
Kolehmainen et al. but is motivated by considering the ability
to reconstruct additional features from the data.

In this paper, we explore the ability and limits of EIT to
resolve conductivity changes and reject boundary distortion.
First, we show that the particular behaviour of conformal
deformations in EIT given in previous theoretical work [3]
still holds in the case of a finite number of electrodes and
a finite element discretization of the forward problem. Our
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Fig. 1: A change of coordinate systems transforms the point
(x, y) to the new coordinates (u, v); the old coordinates (x, y)
relative to the original x-, y-axes are at the same location as the
new coordinates relative to the new axes where in this case, a
translation and rotation have been applied. The transformation
need not lead to a rectilinear coordinate system.

example simulations in two dimensions, using a linearization
of the forward problem, suggest that the boundary shape and
electrode positions can be recovered up to an infinitesimal
conformal map. This provides an adequate and necessary
correction for acceptable reconstruction of the conductivity.
We also observe the effect of the size of the electrodes
and note that the area (or length in two dimensions) of the
electrodes is not preserved by conformal mappings [14]. In
addition, we observe that conformal deformations modelled
by translating nodes on a Finite Element Method (FEM) mesh
with a piecewise linear discretization of the domain, fail to
locally preserve angles in the mesh. These changes in angle
introduce voltage changes at interior mesh nodes where none
would be otherwise expected. In order to validate these results
experimentally, we develop a deformable phantom from which
we test the theoretical and simulated results.

II. FINITE ELEMENT DEFORMATIONS

We are motivated by the question: when a boundary defor-
mation occurs, is it possible for the conductivity to change to
allow the voltages over the domain to remain the same? The
result is well known amongst mathematicians, but we here
include an explanation we hope will be easily accessible to
the broader impedance imaging community.

To explore this question, the weak form of EIT’s constitutive
equation is examined as it is applied in the EIT FEM model:

�

Ω
w∇ · σ∇φ dV = 0 (1)

where w is a test function selected to achieve a minimal resid-
ual, σ is a tensor conductivity (isotropic or anisotropic) and
φ is potential throughout the domain Ω. In two dimensions,
a deformation is defined by some coordinate transformation
from (x, y) to (u, v) coordinates:

(u, v) = f(x, y) (2)

This can be thought of as a transformation of the coordinate
system from a Euclidean (x, y) to (u, v) in a new coordinate
system (Figure 1). When a deformation occurs, it results in
a new conductivity σ� and potential distribution φ� over the

domain as well as some change in the volume dV � over
which the integral is calculated. A new test function w� is
also introduced.

�

Ω
w∇ · σ∇φ dV =

�

Ω�
w�∇ · σ�∇φ� dV � (3)

A linear transformation can be represented by a set of partial
derivatives of the transformation function

� ∂
∂x
∂
∂y

�
=

�
a b
c d

� �
∂
∂u
∂
∂v

�
(4)

where a = ∂u
∂x , b = ∂v

∂x , c = ∂u
∂y , and d = ∂v

∂y . The inverse of
the transformation gives

�
∂
∂u
∂
∂v

�
=

1

ad− bc

�
d −b
−c a

�

� �� �
T

� ∂
∂x
∂
∂y

�
(5)

where T is the two-by-two inverse of the transformation
matrix (4). The volume derivative of the transformation scales
by the determinant.

dV � =
1

det(T)
dV (6)

Using (3), the new conductivity σ� must be modified in
some way if the voltages throughout the domain are to be
equal (φ = φ�). The test functions can be chosen arbitrarily
and are set equal (w = w�). Expanding (3) into a matrix of
partial derivatives gives

�
∂
∂x

∂
∂y

�
σ

� ∂
∂x
∂
∂y

�
φ dV =

�
∂
∂u

∂
∂v

�
σ�

�
∂
∂u
∂
∂v

�
φ� dV � (7)

where potential is equal (φ = φ�), though in different locations
due to the transformation. This implies that the boundary data
φ∂Ω are the same, though the boundary measurement locations
may differ, because the energy integrals (3) are equal. Using
the chain rule with (5) (6) into (7) gives

�
∂
∂x

∂
∂y

�
σ

� ∂
∂x
∂
∂y

�
φ dV =

�
∂
∂x

∂
∂y

�
TTσ�T

� ∂
∂x
∂
∂y

�
φ

1

det(T)
dV (8)

Simplifying (8) leaves

σ = TTσ�T
1

det(T)
(9)

and rearranging for the new conductivity σ�, gives

σ� = T−TσT−1 det(T) (10)

which is a result (the push forward of the diffeomorphism) at-
tributed by Kohn to Luc Tatar: a distortion that fixes points on
the boundary leaves the Dirichlet-to-Neumann map invariant
[15], [16].

Therefore, for an arbitrary conductivity tensor σ, for any
transformation T, the conductivity can be adjusted in some
manner such that the new boundary data will match the old.



IEEE TRANSACTIONS ON MEDICAL IMAGING 3

I

�

I

��

J � = I/��

Fig. 2: Electrode current density under deformation

However, this equation provides no guarantee that an initially
isotropic conductivity will map to a new conductivity that is
also isotropic.

In a practical EIT system, the boundary voltage and currents
are measured through electrodes. When the boundary deforms,
these electrodes may deform to match the boundary or change
shape depending on their mechanical properties. If the total
current In through an electrode does not change, the current
density Jn must change when a deformation changes the
surface area of the electrode. In two dimensions, intuitively,
the current density for an electrode must scale with the change
in the length of the boundary associated with the electrode 1/�.
For a single electrode n,

In =

�
Jn dS =

�
J �

n dS
� (11)

J �
n = Jn

dS

dS� (12)

This observation clarifies one source of the artifacts observed
due to movement of the boundary [14].

If the measurements φ remain constant when a deformation
occurs and the initial conductivity is isotropic, when is the new
conductivity σ� isotropic? Taking the conductivity equivalence
(10) and assuming isotropic conductivity σ� gives

σ = σ�T−TT−1 det(T) (13)

If conductivities, both before and after, are isotropic then

T−TT−1 det(T) = kI (14)

Expanding and then simplifying the equation

1

ad− bc

�
a2 + c2 ab+ cd
ab+ cd b2 + d2

�
= kI (15)

shows that ab + cd = 0, a2 + c2 = b2 + d2 and therefore
a = ±d, c = ∓b, hence k = 1.

The first solution a = +d and c = −b turns out to be the
Cauchy-Riemann equations,

∂u

∂x
− ∂v

∂y
= 0 (16a)

∂u

∂y
+

∂v

∂x
= 0 (16b)

which shows that conformal deformations, and only conformal
deformations, can result in a new isotropic conductivity if the
original conductivity was isotropic. The alternative solution
a = −d and c = +b corresponds to switching from a right-
hand rule coordinate system to a left-hand rule coordinate
system (Figure 3).

x̂

ŷ ûv̂

a

b

c

d

(a) a = d, b = −c

x̂

ŷ û

v̂

a

b

c
d

(b) a = −d, b = c

Fig. 3: The two conformal solutions; (a) and (b) are solutions
for conformal transformations that will maintain an isotropic
conductivity. Note that (b) is a solution that flips the û-axis.

Ω
x+X

Ω�

Fig. 4: A mapping of the domain Ω to Ω� by the vector field
X

For an initially isotropic domain to remain isotropic after a
deformation, that deformation must be conformal. To see why
only a conformal deformation is acceptable, we examine the
situation for an “infinitesimal” deformation X which maps
x �→ x + X . (Figure 4). A conformal map is one that
preserves the angles but not necessarily the lengths between
vectors on the domain (Figure 5). An infinitesimal conformal
map (infinitesimal conformal motion, conformal Killing field

or more simply a conformal vector field) represents a small
distortion that may be represented as a vector field X [17].

If the distorted domain is to have an isotropic field (e.g.
conductivity in EIT) consistent with the boundary conditions,
for a small change in the boundary of the domain Ω, the vector
field X must be conformal and sufficiently smooth. Therefore,
X must satisfy the conformal Killing field equation (i.e. the
symmetrized derivative of X is a multiple of the identity) (17).
[18, §3.7] [19, §1.3]

∂Xi

∂xj
+

∂Xj

∂xi
= αδij (17)

where α is a scalar on the domain Ω [18, (3.7.3)] and
shows how a change in dimension i is related to a change
in dimension j.

If two tensors are equal, their traces are equal. In two
dimensions, summing over i and j, α must be the divergence



IEEE TRANSACTIONS ON MEDICAL IMAGING 4

−15 −10 −5 0 5 10 15
−2

0
2

 

 

20 40 60 80 100 120

100 200 300 400
−300

−250

−200

−150

−100

−15 −10 −5 0 5 10 15
−2

0
2  

 

−14 −12 −10 −8 −6 −4 −2 0

100 200 300 400
−300

−250

−200

−150

−100

Fig. 5: A conformal mapping of a rectangular grid with the
conformal map z → exp((z − 20− i80)/100) · (z+i20) · (z−
i10), top – rectangular region with electrodes across the ends
and L-shaped inhomogeneity, bottom – conformal deformation
applied to FEM mesh prior to simulation, left – FEM mesh and
inhomogeneity, right – simulated voltage distributions. Lines
still intersect at 90◦ after deformation. Voltages at individual
nodes remain the same despite the deformation.

of X .

tr




∂X1
∂x1

+ ∂X1
∂x1

∂X1
∂x2

+ ∂X2
∂x1

∂X2
∂x1

+ ∂X1
∂x2

∂X2
∂x2

+ ∂X2
∂x2



 = tr




α 0

0 α



 (18)

α =
∂X1

∂x1
+

∂X2

∂x2
= ∇ ·X (19)

Setting i = j = 1 or 2 gives the first Cauchy-Riemann
equation,

2
∂X1

∂x1
=

∂X1

∂x1
+

∂X2

∂x2

∂X1

∂x1
− ∂X2

∂x2
= 0 (20a)

and setting i = 1, j = 2 or i = 2, j = 1 gives the second
Cauchy-Riemann equation,

∂X1

∂x2
+

∂X2

∂x1
= 0 (20b)

Thus, if a function X is differentiable, 1) its derivative is
continuous and it satisfies the Cauchy-Riemann equations, and
2) it is complex analytic on the part of the plane that satisfies
the Cauchy-Riemann equations. With any complex analytic
function, the real and imaginary parts are harmonic conjugate
[20]. Specifically, the components of a conformal vector field
interpreted as a complex function X1 + iX2 are complex
analytic and satisfy ∇X1 · ∇X2 = 0, |∇X1|2 = |∇X2|2, and
Laplace’s equation ∇2X1 = ∇2X2 = 0. The components of
the vector field (X1, X2) are perpendicular, but furthermore,
∇X2 is 90◦ anti-clockwise from ∇X1 and equal in magnitude
(Figure 6).

This relationship matches our previously derived relation-
ship (16a) (16b) for a two-dimensional deformation where the
conductivity remains isotropic throughout. This can be seen

∇X2 · t̂

∇X1 · n̂

Fig. 6: Derivatives of the components of a conformal vector
field at the boundary

by performing a change of variables on (16a) (16b) so that
we are instead operating on an “infinitesimal” deformation
x �→ x + X in two dimensions. Using x → x1, y → x2, so
that u → x1 +X1, v → x2 +X2, then

∂u

∂x
− ∂v

∂y
= 0

1 +
∂X1

∂x1
− 1− ∂X2

∂x2
= 0 (21)

Thus, (20a) matches (16a),
∂u

∂y
+

∂v

∂x
= 0

0 +
∂X1

∂x2
+ 0 +

∂X2

∂x1
= 0 (22)

and (20b) matches (16b) as well. This shows the correspon-
dence between our initial FEM-based description and the
vector field based derivation but also illustrates why there are
many conformal deformations possible in two dimensions: the
initial conditions of the deformation cancel (21) (22) while in
higher dimensions this may not be the case.

Using the Cauchy-Riemann equations (20a) (20b) and the
Dirichlet-to-Neumann map Λσ , a further observation for a
known conductivity distribution can be drawn: knowing one
portion of a conformal deformation on the boundary X1 dic-
tates the other X2. Recall the conductivity equation ∇·σ∇φ =
0 and that a Dirichlet-to-Neumann map Λσ takes a potential
φ restricted to the boundary of the domain ∂Ω and maps it
to a current density J = σ∂φ/∂n̂ where n̂ is the outward
unit normal on the boundary. In particular, the Dirichlet-to-
Neumann map Λ1 is a solution for Laplace’s equation with
conductivity σ = 1. In EIT, this map Λ1 : φ|∂Ω �→ J is
solved using an FEM over any arbitrarily shaped domain. This
same map can be used to solve Laplace’s equation such that
Λ1 : φ|∂Ω �→ X , where the operator Λ1 is no longer acting
as a transconductance operator but instead as a voltage-to-
movement operator.

The Dirichlet-to-Neumann operator Λ1 is used to convert
Dirichlet data on the boundary X1|∂Ω to Neumann data normal
to the boundary (∇X1 · n̂) which is the same as the tangential
Neumann boundary data for X2 (∇X2 · t̂).

Λ1φ
���
∂Ω

= ∇φ · n̂ =
Jn
σ

(23)

Λ1X1

���
∂Ω

= ∇X1 · n̂ = ∇X2 · t̂ (24)

where t̂ is the tangent vector and n̂ is the normal vector on
the boundary ∂Ω.

Knowing the tangential derivative of X2 at the boundary
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is essentially the same as knowing the Dirichlet data for X2

since it can be integrated along the boundary.

∇X2 · t̂ =
∂X2

∂s
(25)

where s is the anti-clockwise arc length along the boundary
∂Ω.

Combining (24) (25) and integrating along ds gives

X2 =

� s

0
Λ1X1 ds+ const (26)

such that X1 and X2, within the domain Ω, are determined
by values on the boundary ∂Ω, and the boundary values of a
conformal X are exactly those with

X2 −
� s

0
Λ1X1 ds = const (27)

or
∂

∂s
X2 − Λ1X1 = 0 (28)

and in matrix form
�
−Λ1 L1

� � X1

X2

�
= 0 (29)

where L1 is the difference operator along the boundary ∂
∂s .

Thus, X1 can be specified arbitrarily on the boundary, and
its tangential derivative dX2/ ds is determined. X2 is the
solution of a Neumann problem for Laplace’s equation and
is determined up to a constant. Constants added to X1 and
X2 correspond to a translation which would not be expected
in EIT data.

This means that, in the discrete setting of the FEM, spec-
ifying a distortion on the boundary nodes will give a unique
conformal map. In the FEM setting, the infinitesimal vector
field X becomes a vector that translates each node of the finite
element mesh. Simply applying the vector field to the mesh
will result in a globally conformal transformation, but locally
about the nodes, the angles between edges joining elements
will have changed. The vector field X is continuous, and
therefore, an accurate application of the field will “bend” the
shape of the mesh elements to maintain the local angles about
each node.

Applying this new knowledge to an EIT problem using the
FEM, we can expect that an approximately conformal discrete
deformation of a body with an isotropic conductivity will
result in the same measurements at the boundary. Conversely,
other deformations that exclude conformal changes will result
in different measurements at the boundary unless the conduc-
tivity is changed to some specific anisotropic distribution.

III. SIMULATED CONFORMAL MOTION

In the previous section, we explored the analytic solution for
complete boundary data. In EIT, we have discrete electrodes
and so must deal with incomplete boundary data that does not
exactly match the analytic solution. Our example simulations
using a two-dimensional linearization of the forward problem
(simulations in EIDORS [21]) suggest that the boundary shape
and electrode positions can be recovered up to an infinitesimal

conformal map. This testing shows that despite conformal
effects, boundary shape correction provides an adequate and
necessary correction for acceptable reconstruction of the con-
ductivity.

To test the behaviour of an isotropic conductivity when
a conformal deformation was applied, a convergence study
was undertaken where a conformal deformation was selected
and the difference between the undeformed and deformed
simulations was observed to converge as the number of nodes
in the FEM model was increased. The undeformed simulation
consisted of a rectangular domain with an electrode extending
across either end. An L-shaped non-conductive region was
set in the middle between the two electrodes (conductivity
σ = 0.01 S/m, background 1 S/m). To exactly control the
boundary conditions, a Complete Electrode Model (CEM) for
each of the two electrodes was approximated using Point
Electrode Models (PEMs) at individual nodes and current was
distributed across these to achieve the appropriate current den-
sity boundary condition. When the deformation was applied,
the current density was adjusted by the deformation, and no
further manipulation of the PEM currents was required.

At each step, the forward simulation of the conductivity
distribution shown in Figure 7(a) was computed to find the
voltage on the domain at the nodes. The voltage at the FEM
nodes was compared to the voltage after the FEM nodes
were conformally deformed. As an example, the following
conformal deformation was selected for these simulations:

z → z − 20 + 80i

100
(z + 20i)(z − 10i), z = x+ yi (30)

(shown in Figure 7(b)).
The number of nodes in the simulations ranged from 217

nodes to 455,000 nodes. Throughout this range, the triangular
elements remained approximately equilateral. Convergence
was measured as the 2-norm of the difference between the
original voltages and the voltages on the mesh after the
conformal deformation was applied and normalized against
the average of the original voltages (||V2−V1||/||V1||). As the
number of nodes increased and consequently, the element size
was reduced towards a differential approximation, convergence
of the undeformed and deformed voltages was observed.
(Figure 7(c))

In order to explore the effect of reconstructing EIT images
from media with conformal and non-conformal conductivity
changes, two-dimensional simulations were constructed. Mea-
surements were simulated for two distortion fields using a
576 element unit circular FEM mesh with adjacent stimulation
and measurement on 16 point electrodes. Representing each
boundary point by a complex z = x+ iy, the distortions were

z →0.99x+ i1.01y Non-conformal (31)
z →z + 0.01z2 Conformal (32)

Additionally, one small conductive target and one small non-
conductive target were simulated.

The conductivity images were reconstructed in a typi-
cal manner for EIT using a Tikhonov regularized single-
step Gauss-Newton solver appropriate for small conductivity
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changes

x̂0 = (JT
0J0 + λL0)

−1JT
0y = R0y (33)

where [y]i = [vt2]i/[vt1]i − 1 is the normalized difference
between boundary voltage measurements at an initial time
vt1 and a later time vt2 due to a set of stimulation currents.
The Jacobian J0 was calculated as the sensitivity of the
measurements y to perturbations of the conductivity given an
initial homogeneous conductivity x1.

J0 =
∂y

∂x

����
x1

(34)

A regularization matrix L0 was formed from an estimate
of the image covariance [22]. The Tikhonov factor λ was
selected heuristically as a compromise between noise and
image resolution.

In the time interval between when the two measurements
vt1 and vt2 are acquired, both the boundary shape and the
conductivity of the interior may have changed. This can occur
when a subject is breathing during lung EIT measurements. To
account for this, the method of Soleimani et al. was adopted
[9]. This uses the same reconstruction technique of (33) but
adds to the equations to account for small movements of the
electrodes. The reconstruction becomes

x̂m = (JT
mJm + λLm)−1JT

my = Rmy (35)

where the Jacobian matrix Jm, regularization matrix Lm

and the resulting solution x̂m contain additional components
related to the electrode movement. The Jacobian is augmented
with a model of the data variance due to electrode movement
calculated as a Jacobian due to linear electrode displacements
using the approach of Soleimani et al. [9] where

Jm =

�
J0 0
0 Je

�
; Je =

∂y

∂m

����
x1

(36)

where Je is the change in measurements y due to small

changes in electrode location m given an initial homogeneous
conductivity x1. The new components of the Jacobian can be
calculated through perturbing each electrode in the x and y
directions. A more efficent algorithm is presented by Gómez-
Laberge et al. [23]. Similarly, regularization was applied to the
new electrode movement component of the Jacobian so that

Lm =

�
L0 0
0 µ

λLe

�
(37)

Le(i,j) =






2.1 if i = j
−1 for adjacent electrodes
0 otherwise

(38)

The values of the regularization matrix were selected by
Soleimani et al. to model the correlation between adjacent
electrodes and ignores the correlation between all other elec-
trodes. The value 2.1 was used to impose a penalty on global
movement. The new regularization parameter µ was used to
adjust the relationship between the conductivity and movement
regularization. The new parameter is required because the two
components of the regularization matrix are in different units.
The parameter does have a practical relationship between the
magnitude of expected conductivity changes and electrode
movement, but in this case, the value was selected heuristi-
cally to minimize noise at the boundary while maintaining
reasonably minimal electrode movement.

The results are shown in Figure 8. For the case of non-
conformal movements, there are dramatic artifacts in the
conductivity only reconstruction, and there is a clear benefit
to movement reconstruction. In the case of conformal move-
ments, no such benefit is seen, and the movement reconstruc-
tion is unable to detect movement. Combined conformal and
non-conformal deformation showed only the non-conformal
components of the deformation in the reconstructions.

IV. PHANTOM

Having shown that the movement compensation algorithm
of Soleimani et al. [9] reduces artifacts for non-conformal de-
formations in simulation, while not being significantly affected
by conformal deformations, experiments using a phantom
were designed to test whether it is possible to reconstruct
the conformal component of a deformation and that artifacts
are indeed reduced by employing movement compensation. A
deformable phantom was developed and used to obtain in vitro

EIT measurements.
The phantom was constructed of a sponge rubber plumbing

gasket placed in a shallow pan. The gasket formed a thick
rubber ring that was easily compressed yet rigid enough to
return to its original shape. Sixteen electrodes were constructed
from stainless-steel wire pressed into the gasket and then
looped over the edge of the gasket such that they lay along the
inner wall of the gasket in a vertical orientation. An additional
stainless-steel electrode placed roughly in the geometric centre
of the gasket formed the ground connection. A shallow layer
of saline solution was employed to limit conductivity in
the vertical direction which presented an approximately two-
dimensional section for the experimental measurements. The
electrodes were each wired to a terminal bolted to the plastic
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Fig. 8: Images reconstructed from three different movement
patterns, illustrating that conformal distortion fields cannot
be distinguished from conductivity changes. Green arrows
indicate electrode movement (40× exaggeration).
A: Non-conformal distortion field z → 0.99x+ i1.01y.
B: Conformal distortion field z → z + 0.01z2.
A+B: Combined conformal and non-conformal distortion field.
SIM: Simulation movement and conductivity change pattern.
R0: Reconstruction assuming only conductivity change.
Rm: Reconstruction of conductivity change and movement.

pan providing connectivity to the EIT system (Figure 9). The
thickness of the gasket allowed the electrodes to be securely
attached to the phantom as it was deformed.

A 16 electrode Goe-MF II EIT system (CareFusion, San
Diego, USA) was used to take measurements from the de-
formable phantom. The ring was submerged in a saline bath
where the bottom of the ring was in contact with the bottom
of the container, and the top of the ring broke the surface
to provide insulation between the saline solution inside and
outside of the ring. The salinity was 0.68% (NaCl) which
gave a nominal electrical impedance of 250Ω between adjacent
electrodes.

Measurements were taken with the phantom in an ap-
proximately circular (relaxed) arrangement, with a side-to-
side compression from two points, and with the ring under
three points of compression (Figure 10). For each of these
deformations, measurements were obtained where a circular
conductive target was moved within the phantom.

The physical displacements of the electrodes were found by
taking a digital photograph from above the phantom. A piece
of graph paper was placed under the phantom and was taped
to the bottom of the pan. The locations of the electrodes were

measured from the photograph and normalized using the graph
paper grid.

The square root of the sum of squared errors (the 2-norm)
in initial electrode location relative to a circular model of a
radius matching the mean radius of the true electrode locations
was found to be 0.0662mm. This indicated a fairly good match
between the initial state of the phantom and the circular model
in the reconstruction. The majority of the error norm was
found to be related to errors in the angular location of the
electrodes rather than the radial displacement. The mean of
angular electrode error was found to be 1.3◦, where electrodes
were expected every 22.5◦: a 5.8% mean angular error.

The estimated electrode displacements were found using
the electrode perturbation algorithm as described earlier [9].
Boundaries were fitted to both the estimated and true electrode
displacements using a Fourier series which allowed both
rotation and radial displacements:

θ� = θ +
N�

n=0

aθ,n cos(nθ) + bθ,n sin(nθ) (39a)

r� = r
N�

n=0

ar,n cos(nθ) + br,n sin(nθ) (39b)

With N = 5, reasonable fits to the displaced electrode
locations were obtained. Using the fitted boundary, the norm of
the error in the parameters was found (Figure 11, Figure 12).

For all cases except where no deformation occurred, it was
found that the majority of the error was in the ar,0 term which
corresponds to a simple dilation.

These results are show in Table I, where a homogeneous
undeformed first measurement vt1 was used as a reference
against the second measurement vt2 taken under the defor-
mation condition (Figure 10) and target type indicated in the
table. The resulting error norm was calculated as described
above for all 5 terms of (39a), (39b) and for only the first
term. The last two rows of the table provide figures as
representative examples of a conductive and insulating target
under deformation (Figure 11 and Figure 12 respectively).

Fig. 9: Photograph of the phantom, built from a rubber gasket
and stainless steel electrodes. The yellow dish is filled with a
saline solution.
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TABLE I: Boundary Reconstruction Accuracy

Parameter Errors

Deformation Target All Errors ar,0 Errors ∗ Comment

None none 0.004 0.000
conductor 0.290 0.000
insulator 1.180 0.000

2-point none 0.296 0.156
conductor 0.706 0.503
insulator 1.241 0.674

3-point none 0.246 0.161
conductor 0.144 0.079 Figure 11
insulator 0.336 0.241 Figure 12

∗ ar,0 parameter from the Fourier series (39b)

V. SUMMARY AND DISCUSSION

This work explores shape deformations and their effect
on EIT measurements from three perspectives. A continuum
model shows how conductivity can be modified to maintain
the same boundary measurements through a shape deformation
and furthermore, that only conformal shape deformations are
possible when conductivity is restricted to isotropic values.
This was tested in two ways: in simulations and with a
deformable phantom. Results from simulations and the de-
formable phantom show that conformal deformations cannot
be reconstructed from EIT measurements alone but do not af-
fect reconstruction quality, while non-conformal deformations
do cause significant artifacts but can be corrected to some
degree by movement compensation algorithms such as that of
Soleimani et al. [9].

We describe the mathematical constraints under which
conformal deformations occur in EIT images. A conformal
deformation is one in which angles are preserved (but not
necessarily lengths) and thus, has some special behaviour
in the context of EIT. A non-conformal deformation is one
that is explicitly not conformal such that angles are not
preserved. The results show that for any boundary deformation
a corresponding conformal map can be found, and hence, any
boundary deformation can be decomposed into its conformal
and non-conformal components. For the interpretation of EIT
images this means, while movement compensation such as
that provided by the algorithm of Soleimani et al. can provide
a strong benefit in reducing or removing significant artifacts,
reduced artifacts do not lead to correctly located conductivity
distributions without a correct boundary configuration. Recent
studies have shown the importance of shape in locating the
conductivity distribution correctly [24].

(a) (b) (c)

Fig. 10: Compressions: none (a), 2 points (b), 3 points (c)
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Fig. 11: Boundary reconstruction from electrode movement
for 3-point compression with a conductive target; (a) the true
displacements as measured from a digital photo with fitted
boundary (dashed line), (b) a naı̈ve reconstruction (x̂0 = R0y)
without the electrode perturbation algorithm; note the signifi-
cant artifacts where the two images (b) and (c) are to the same
colour scale, (c) the reconstructed electrode movement (green
arrows) (x̂m = Rmy) with fitted boundary (blue dashed line),
(d) error in parameter values from fitted boundary between
true and reconstructed images; parameters from (39a) (blue)
(39b) (red)

Knowledge of this behaviour is useful when evaluating the
performance of algorithms that correct for boundary movement
because any boundary adaptive algorithm cannot detect the
conformal component of the boundary movement if using
electrical measurements alone and therefore, should not be
penalized for their lack of performance on the conformal com-
ponent of boundary movements. A conformal/non-conformal
movement decomposition approach could be applied rather
than the method used in the phantom experiments to take
the true deformation of the phantom’s boundary from the
photographs and decompose it into its conformal and non-
conformal components. The work here suggests that the con-
formal component should not match the reconstructed elec-
trode movement while the non-conformal component should
match up to a limit where the FEM mesh structure near
the translated electrodes interferes with the free movement
of those electrodes. This requires an implementation of the
conformal/non-conformal decomposition which has not been
achieved at this time.

In the convergence test, applying conformal deformations
to the FEM mesh by translating nodes as described by the
conformal vector field will not result in a locally conformal
transformation because the actual shape of the element should
bend to maintain the relative angle of the edges about each
node. Convergence to machine precision is not achieved, but
with a reduction in the size of elements, this inaccuracy was
reduced and showed convergence towards an ideal conformally
transformed mesh. Considering the effect of a conformal
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deformation on a single element of the FEM mesh when using
triangular two-dimensional linear expansion functions gives
some insight into the behaviour of the entire FEM system
under conformal deformations. The conformal deformations
can be classified as translation, rotation, dilation, and inver-
sion. These transformations are defined in infinitesimal terms
while the FEM nodes exist as a discrete mesh. As a result,
when the conformal transformation is applied to the FEM
nodes, the element is not necessarily deformed in an exactly
conformal manner. As the element size is reduced, the amount
of discrepancy at a local level between an idealized deforma-
tion of the element, where its sides are bent, and the actual
implementation, where the sides of the elements are always
straight, approaches zero. This is not a new consideration.
Treating a conformal map as a pair of conjugate discretely
harmonic functions is deficient because the inverse of such a
map, and the composition of two such maps, are no longer
discretely conformal [25], [26].

This observation helps to explain why the convergence
study presented here does not converge more rapidly. The
convergence plot shows a trend toward convergence, but when
the number of nodes is large, there is still a significant gap
between the observed results (an error norm of 10−6) and the
hypothetical convergence towards machine precision (10−16)
that might be explained by the strictly triangular nature of
the FEM elements. Using higher-order shape functions would
not aid convergence unless the sides of the mesh elements
were carefully aligned to the conformal deformation so that
the angles at the corners of the elements were preserved.
Isoparametric shape functions [27], [28] are capable of this
type of shape distortion.

A linear reconstruction algorithm has been used in this
work. A non-linear reconstruction algorithm would have only
a small effect on the quality of the reconstructions because
the problem has been selected to exhibit nearly linear be-
haviour through choosing small conductivity changes and
small boundary movements. With larger conductivity changes
a non-linear reconstruction algorithm may prove beneficial,
but the boundary movement of algorithms such as that of
Soleimani et al. are still restricted to small movements. The
algorithm only moves the boundary nodes and therefore, is
limited by the size of the mesh elements near that boundary.

In conclusion, this work illustrates the advantages and limits
of reconstructing boundary shape for EIT. This work shows
that selecting an appropriate boundary can significantly reduce
the quantity of artifacts in a reconstructed image.
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