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Abstract This paper considers the flow of an incompressible, viscous fluid forced by the independent rotation of
two (bounding) infinite, parallel planes. The flow field is assumed to have a radial self-similarity of Von Kármán
form and the relevant governing equations are derived with no assumptions of rotational symmetry. An exact class
of solutions to the Navier–Stokes equations is shown to exist, corresponding to nonlinear, non-axisymmetric states.
These steady, non-axisymmetric solutions appear through symmetry breaking of the classical axisymmetric steady
states. The locus of bifurcation points is determined numerically and a number of limiting cases are described
asymptotically. The initial-value problem is considered in the context of the self-similar equations. It is shown that
unsteady calculations can break down at a finite time with the development of a singularity in the (exact) system of
equations. An asymptotic description is given in the neighbourhood of the breakdown event. The structure of the
singularity consists of an inviscid core flow to which an infinity of solutions are possible within the framework of
the same asymptotic description. Whether a singularity is approached, or a steady/periodic axisymmetric state is
achieved (and even the qualitative details of the singularity) is dependent on the initial conditions for some parameter
regimes.

Keywords Finite-time singularity · Rotating disk · Symmetry breaking

1 Introduction

In this work we concentrate on a particular class of rotating-flow problem, namely the flow of a viscous fluid driven
by the action of two independently rotating infinite, parallel planes. The problem of the flow between two rotating
disks or above a single isolated disk has been a central problem in fluid dynamics for nearly 80 years. Von Kármán
[1] first showed that, in the case of the flow above a single rotating disk, the full system of Navier–Stokes equations
can be reduced exactly to a set of nonlinear, ordinary differential equations. This was achieved by assuming an
axisymmetric, radial self-similarity to the form of solution.

The first accurate solution to Von Kármán’s equations was presented by Cochran [2]. The disk was shown to
act in the manner of a centrifugal fan, drawing fluid axially towards the disk surface and transporting it radially
outwards. The contrary case to the Von Kármán solution is one in which the far-field fluid rotates at unit frequency
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260 R. E. Hewitt, M. Al-Azhari

and the plane/disk is stationary. This case was later treated by Bödewadt [3] using the same self-similar solution
structure proposed by Von Kármán.

The limiting cases presented by Von Kármán and Bödewadt were later generalized by Batchelor [4] to include
the whole range of relative rotation rates; this formulation introduces a further parameter into the equations, namely
the ratio of the angular frequencies of the far-field fluid and bounding surface.

Batchelor [4] and Stewartson [5] made further contributions to this area by extending the single-disk analysis
to encompass the flow between two parallel disks that are allowed to rotate independently. The introduction of a
lengthscale, in the form of the disk separation distance, introduces a Reynolds number (Re = �0 L2/ν), which
together with the relative angular frequencies of the disks (s = �1/�0), forms a two-dimensional parameter space
over which the solutions can be described. Here L is the gap-width of the disks, ν is the kinematic viscosity of the
fluid and �0, �1 the two angular frequencies of the bounding surfaces.

Batchelor argued that for high Reynolds numbers the flow should consist of a rigid-body core flow with a bound-
ary layer at each disk. Stewartson presented an alternative view of the two-disk problem, suggesting that for the
case of exact counter-rotation (s = −1) or when one disk is fixed (s = 0), the circumferential motion would be
confined to the boundary-layer regions. In fact, both types of solution are available to the two-disk problem and
both have been observed experimentally; intriguingly, exactly which type of solution is found can depend crucially
on the ‘edge’ (i.e., large radius) conditions (as suggested by Brady and Durlofsky [6]).

A large body of work has since been produced providing a detailed overview of the non-unique steady, radially
self-similar, axisymmetric states available to the governing system of equations. In particular, Zandbergen and
Dijkstra [7] provide an extensive survey of theoretical and numerical results concerning rotating-disk flows and
discuss the relationship between one-disk and two-disk solutions.

Detailed numerical calculations have been provided by numerous authors; see, for example, [8] and [9]. These
latter authors treat the parameter range of s ∈ [−1, 1]1 with a Reynolds number (as defined above) up to 103.
It was suggested that the axisymmetric solution structure is unique for Reynolds numbers in the range Re � 55.
Furthermore, as the Reynolds number is increased, the solution structure becomes increasingly complex, and as
many as 19 steady states to the governing equations have been located in this regime.

Despite the large number of radially self-similar states, only a single bifurcation point (not of saddle-node type)
was located, corresponding to the development of a new state at Re ≈ 120, s = −1. This bifurcation is related
to a breaking of the reflectional mid-plane symmetry of the flow and has been classified as supercritical, with the
symmetric state losing stability to the asymmetric state as the Reynolds number is increased. Many of the solution
branches that have been located numerically, correspond to unusual (perhaps unphysical) velocity profiles, and a
linear temporal stability analysis has suggested that, at sufficiently low Reynolds numbers, the unique state is stable
to infinitesimal disturbances of the same radially self-similar form.

More recently, Hewitt and Duck [10] (subsequently referred to as HD) have shown that, in the case of a single
rotating disk in an infinite fluid, there exist non-axisymmetric, stationary states that bifurcate from the axisymmetric
solution branches at a number of critical ratios of the far-field and disk angular frequencies. HD noted that these
states correspond to an exact reduction of the Navier–Stokes equations. It was also shown that the stationary states
are in fact just one sub-class of a more general family of nonlinear, non-axisymmetric, travelling-wave solutions,
although these more general solutions are not exact and rely upon a formal boundary-layer approximation. The
exact, stationary, state described by HD was shown to appear subcritically and the analysis is therefore closely
connected to the finite-amplitude instability described by Hall et al. [11].

The solution presented by HD for the boundary layer above a single rotating disk is unusual in that, although the
radial and azimuthal velocity components are dependent on the azimuthal coordinate, the axial component remains
axisymmetric. This feature suggests that a generalization may be expected in the form of analogous non-axisym-
metric solutions to the flow between two parallel rotating disks, since at high Reynolds numbers a non-axisymmetric
boundary layer at one of the disks can likely be matched to a similar structure at the other disk with an appropriate
axial flow. It is this possibility that is investigated in this paper together with the corresponding initial-value problem.

1 This may be assumed without loss of generality since the equations can be rescaled if s lies outside this region.
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Non-axisymmetric self-similar flow between two rotating disks 261

The format of this paper is as follows. In Sect. 2 we derive the appropriate system of governing equations and
show the form of the exact non-axisymmetric solution. Section 2.1 also provides details of the multiplicity of axi-
symmetric steady states available in the regime s ∈ [−1, 0). In Sect. 3 we locate (numerically) those bifurcation
points in the range Re ∈ [0, 103] which give rise to non-axisymmetric states. The numerical results prompt asymp-
totic investigations of the limiting cases of Re → 0 and s → 0−. Section 4 provides details of the corresponding
initial-value problem for various parameter values and shows that evolutions that terminate in a breakdown can
be achieved; an asymptotic description valid in the neighbourhood of the finite-time singularity is given. Finally,
Sect. 5 provides some discussion and conclusions.

2 Formulation

We consider two parallel planes of infinite extent separated by a distance L with the gap filled by a viscous fluid
of kinematic viscosity ν and constant density ρ. The flow between the disks is described in terms of a cylindrical
polar coordinate system (r∗, z∗, θ) centred at the axis of rotation of one of the disks. The disk at z∗ = 0 rotates with
an angular frequency �0 and the disk at z∗ = L has an angular frequency of �1. We non-dimensionalize using the
gap-width of the disks, L , as the natural lengthscale, �0 L as the velocity scale and �−1

0 as the timescale. Following
the approach of von Kármán, we assume a radial self-similarity to the velocity field in the form

(U∗, V ∗, W ∗) = �0 L (rÛ (z, θ, t), V̂ (z, θ, t), r Ŵ (z, θ, t)), (1a)

where r and z are the non-dimensional coordinates defined by

r∗ = Lr, z∗ = Lz, (1b)

and t∗ = t�−1
0 . The pressure field is assumed to be in the form

P∗ = ρ(�0 L)2
(

r2 K

2
+ Q̂(z, θ, t)

)
, (1c)

where K is a constant.
Given this form of solution, we may reduce the Navier–Stokes equations to

Ût + Û 2 + ŴÛθ + V̂ Ûz − Ŵ 2 = −K + 1

Re

(
Ûzz + Ûθθ − 2Ŵθ

r2

)
, (2a)

Ŵt + 2Û Ŵ + V̂ Ŵz + Ŵ Ŵθ = − Q̂θ

r2 + 1

Re

(
Ŵzz + Ŵθθ + 2Ûθ

r2

)
, (2b)

V̂t + Ŵ V̂θ + V̂ V̂z = −Q̂z + 1

Re

(
V̂zz + V̂θθ

r2

)
, (2c)

2Û + V̂z + Ŵθ = 0, (2d)

where the subscripts denote differentiation and Re = �0 L2/ν. The appropriate boundary conditions are no-slip
and impermeability of the two disks:

Û (0, θ, t) = V̂ (0, θ, t) = 0, Ŵ (0, θ, t) = 1, (2e)

Û (1, θ, t) = V̂ (1, θ, t) = 0, Ŵ (1, θ, t) = s, (2f)

where s = �1/�0.

2.1 A multiplicity of axisymmetric flow states

For axisymmetric flows (∂/∂θ = 0) an exact solution to system (2) exists and is well known. The term “exact” here
is used to indicate that there are no terms neglected in the reduced system of equations that one obtains. Here we
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Fig. 1 A schematic of the axisymmetric steady solution structure at fixed values of the rotation ratio s. The labels (a)–(e) denote the
fold points illustrated in Fig. 2 and the scenarios (I)–(VI) represent typical values of s ∈ [−1, 0), as given in Fig. 2. The open/filled
circles denote unstable/stable solutions in the sense that these states can be reached by an axisymmetric initial-value calculation. Hopf
bifurcations occur at higher Reynolds number and are not shown here

shall concentrate primarily on the case of counter-rotating disks, s ∈ [−1, 0), since it is in this regime that the main
features of this work are most prominent. Some comments on the corresponding case of co-rotation, s ∈ (0, 1] will
be given in the Sect. 4.

A numerical procedure is used to compute the steady axisymmetric solutions of the governing system, which
together with pseudo arc-length continuation allows a picture of the multiple states to be constructed. It is well
recognized that the number of steady solutions increases with the Reynolds number, and here we present details only
for Reynolds numbers in the range Re ∈ [0, 1000], clarifying the structure of the solutions that play the dominant
roles in affecting the unsteady response.

In Fig. 1 we illustrate how the sequence of bifurcations affects the solution structure for values of the rotation
ratio, s, increasing from s = −1 in Fig. 1(I) to near zero in Fig. 1(VI). There is a supercritical bifurcation near
Re = 120 at s = −1, which leads to the appearance to two solutions that break the reflectional mid-plane symme-
try. For s �= −1 this bifurcation is obviously structurally unstable, giving rise to the fold point (a). At higher values
of s an isola occurs over a fixed range of Re with two associated fold points (b) and (c).

As s is increased we eventually encounter a cusp in the parameter space, giving rise to hysteretic behaviour and
the fold points denoted by (d) and (e) in Fig. 1. At higher values of s the limit point (c), denoting the fold of the
isolated branch of states, tends to higher values of Re.
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Non-axisymmetric self-similar flow between two rotating disks 263

On increasing s yet further, a transcritical bifurcation is encountered as the fold points (d) and (b) merge, recon-
necting the available flow states in a clearly different manner. Throughout this procedure, the fold point (a) persists
and appears at higher Reynolds number.

We also note that supercritical Hopf bifurcations may also be located in this system. For example, the two stable
solution branches that arise from the symmetry breaking bifurcation shown in Fig. 1 eventually lose stability and
give rise to axisymmetric periodic states. Clearly, the Hopf bifurcation at s = −1 can be located on both branches
of the solutions of Fig. 1(I) since they are merely reflections of each other in the mid-plane of the flow. These Hopf
bifurcations persist for the full range of s illustrated by Fig. 1. However, the appearance of these periodic states
occurs only at much higher Reynolds number than we are concerned with in this work. In particular, for s = −1
the two Hopf bifurcations are located at Re ≈ 2660.

The definition of stable and unstable in the context of Fig. 1 (as denoted by the filled/open circles) is based on a
linear stability analysis for axisymmetric perturbations. As we shall see, in the broader class of non-axisymmetric
states that we describe in the next section these stability classifications can be altered. Furthermore, in the context
of the initial-value problem to be considered in Sect. 3, we shall see that each of the three stable states shown in
Fig. 1 can be reached by time-marching the governing equations from three classes of initial condition, provided
that the axisymmetry remains unbroken.

2.2 Exact non-axisymmetric flow states

To construct an exact, self-similar solution to system (2) one must consider only axisymmetric states or, alternatively,
non-axisymmetric states that satisfy

Q̂θ = V̂θ = Ûθθ − 2Ŵθ = Ŵθθ + 2Ûθ = 0; (3)

thereby removing terms that would otherwise destroy the radial self similarity. Therefore, a solution to the system
exists in the form

Û (z, θ, t) = U (z, t) + �(z, t) cos(2θ + �), (4a)

V̂ (z, θ, t) = V (z, t), (4b)

Ŵ (z, θ, t) = W (z, t) − �(z, t) sin(2θ + �), (4c)

for which it is self-consistent to take Q̂ as a function of the axial coordinate, z, and time only. Here � is an arbitrary
phase constant that we shall subsequently take to be zero without any loss of generality.

The resulting system of equations for this class of non-axisymmetric solutions is therefore

Ut + U 2 + V Uz + �2 − W 2 = Re−1Uzz − K , Wt + 2U W + V Wz = Re−1Wzz, (5a,b)

2U + Vz = 0, �t + 2U� + V �z = Re−1�zz, (5c,d)

together with the boundary conditions

U (0, t) = V (0, t) = �(0, t) = U (1, t) = V (1, t) = �(1, t) = 0, (5e)

and

W (0, t) = 1, W (1, t) = s. (5f)

The unsteady problem can be closed by the formulation of appropriate initial conditions, details of which are
provided in Sect. 4.

Hewitt and Duck [10] have shown that steady solutions of this special form exist in the case of a single rotating
disk in a semi-infinite body of fluid; the appropriate parameter in their case is We = �∞/�disk. The non-axisymmet-
ric state arises subcritically at We ≈ −0.14485 and continues nonlinearly to We = 0− at which point a breakdown
of the steady solution structure is found involving a growing lengthscale. Prompted by the one-disk results, here
we continue by seeking points in the two-dimensional parameter space at which a symmetry breaking bifurcation
gives rise to non-axisymmetric steady states. The locus of these points in the s–Re plane will be used to choose
suitable parameter values for a subsequent discussion of the initial-value problem.

123



264 R. E. Hewitt, M. Al-Azhari

3 Bifurcations to steady, non-axisymmetric states

Bifurcations to steady states for which

||�(z)|| ≡
√∫ 1

0
|�(z)|2 dz �= 0 (6)

(that is, non-axisymmetric states) are easily located in the standard manner. If ‖�(z)‖ 	 1, the coupling term �2

in (5a) can be neglected, and the leading-order equations are the classical, steady, rotating-disk equations combined
with the steady form of (5d). A bifurcation point is then found at those steady axisymmetric states for which U
and V are such that a steady solution to (5d) can be found that satisfies �(0) = �(1) = 0. Further details of this
procedure are given in the appendix to the paper by Hewitt et al. [12].

In general, these bifurcation points will form a path in the s–Re parameter space. Furthermore, a weakly non-
linear description of the bifurcated non-axisymmetric state can be obtained in the usual manner (see Stuart [13])
by introducing an expansion valid near the bifurcation point. In this manner a Stuart–Landau type equation can be
developed for the amplitude of the � component. We do not present such a description here since such an approach
is entirely standard and numerical results for nonlinear states are easily obtained.

In Fig. 3 we show the locus of bifurcation points in the s–Re parameter space. These points are determined in the
manner described above, and are associated with the primary axisymmetric state that extends from the limit of low
Reynolds number. It can be seen from the figure that, as the Reynolds number is increased, two of the bifurcation
points approach s = 0− while the other approaches a constant s ≈ −0.088.

The bifurcation near s ≈ −0.088 is easily described in terms of the previous analysis presented for the corre-
sponding case of a single rotating disk. HD showed that a bifurcation to non-axisymmetric states can be found for
a single disk when the ratio of the angular frequencies of the disk and far-field fluid is �∞/�disk ≈ − 0.1449.
Obviously, at sufficiently large Reynolds numbers, if the axisymmetric flow in the two-disk problem resembles a
core-flow with two ‘boundary layers’ at each disk (i.e., it is of Batchelor type), then a bifurcation is obtained when
�core/�disk ≈ −0.1449. Such a state exists in the high Reynolds number limit for the two-disk geometry when
s ≈ −0.088.

We note that a temporal, linear, stability analysis of the steady state that extends from zero Reynolds number
shows that the bifurcation points displayed in Fig. 3 are subcritical. Therefore, for a fixed s, we expect a threshold
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Non-axisymmetric self-similar flow between two rotating disks 265

amplitude response for Reynolds numbers below the critical value Recrit(s) and a linear instability for Reynolds
numbers larger than this critical value.

3.1 Numerically determined states

In Fig. 4 we show a measure of the amplitude (the L2-norm) of the non-axisymmetric component, �, as the Reynolds
number is increased in the case of exact counter-rotation (s = −1). The (axial) symmetry breaking bifurcation
is clearly visible, with the nonlinear, non-axisymmetric state arising near Re ≈ 48.55 and continuing nonlinearly
as Re → 0. A further bifurcation is located at Re ≈ 119.8; however, the bifurcated state breaks the reflectional
mid-plane symmetry in this case, rather than the axial symmetry.

In Fig. 6 we show the nonlinear states arising from the critical points illustrated in Fig. 3 for cross-sections of the
parameter space at Re = 75, Re = 95 and Re = 105. It is readily observed from the figure that these states cannot
be continued into the co-rotating (s > 0) half of the s–Re parameter space.

3.2 The limit Re → 0 with s = −1

It is clear from the form of Fig. 4 that, in this formulation, the nonlinear bifurcated state is singular as Re → 0. In
this limit, an asymptotic description of the non-axisymmetric states can be developed in the form:

(U (z), V (z),�(z)) = (U0(z), V0(z),�0(z))Re−1 + · · · , (7a)
W (z) = W0(z) + · · · , K = K0 Re−2 + · · · . (7b,c)

The leading-order equations as Re → 0 are therefore

U 2
0 + V0U ′

0 + �2
0 = U ′′

0 − K0, 2U0W0 + V0W ′
0 = W ′′

0 , (8a,b)
2U0 + V ′

0 = 0, 2U0�0 + V0�
′
0 = �′′

0, (8c,d)

with boundary conditions

U0 = V0 = �0 = 0, on z = 0, 1, (8e)

and

W0(0) = 1, W0(1) = s = −1. (8f)

Solution of the system (8) is relatively straightforward, with the component W0(z) decoupled from the remaining
three equations. However, it must be noted from the form of the equations satisfied by W0 and �0, that a general
solution can be given in the form

W0(z) = W ∗
0 (z) + A�0(z), (9)

where W ∗
0 is antisymmetric about z = 1/2 and satisfies W ∗

0 (0) = 1, and W ∗
0 (1) = −1. Here A is an amplitude

constant that remains undetermined at leading order. However, it can be shown that A = 0 for this case of s = −1.
Nevertheless, the introduction of an asymmetry at higher order can allow for a non-zero amplitude A and it is in
this manner that the expansions in the more general case may be connected to this description near s = −1.

3.3 The limit Re → 0 with s = −1 + γ Re, γ = O(1)

In this intermediate case the scaling for the axisymmetric azimuthal component is altered by the introduction of a
small asymmetry proportional to the Reynolds number. The appropriate expansions are

(U (z), V (z), W (z),�(z)) = (U0(z), V0(z), W0(z),�0(z))Re−1 (10a)

+(U1(z), V1(z), W1(z),�1(z)) + (U2(z), V2(z), W2(z),�2(z))Re + · · · , (10b)

K = K0 Re−2 + K1 Re−1 + K2 + · · · , (10c)
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266 R. E. Hewitt, M. Al-Azhari

and the leading-order system in this case reduces to

U 2
0 + V0U ′

0 + �2
0 − W 2

0 = U ′′
0 − K0, (11)

together with (8b)–(8c) and W0(0) = W0(1) = 0. Note that we have maintained the same zero index for the
leading-order terms despite the different scaling for W in this regime.

A solution can be sought in the form

W0(z) = A F0(z), �0(z) = B F0(z), (12a)

where

2U0 F0 + V0 F ′
0 = F ′′

0 , U 2
0 + V0U ′

0 + F2
0 = U ′′

0 − K0, 2U0 + V ′
0 = 0. (12b,c,d)

Here we have introduced two amplitude constants A and B under the assumption that

B2 − A2 = 1. (12e)

In fact, (12a)–(12e) is a sixth-order system with the four no-slip boundary conditions on U0, F0 and two imper-
meability conditions on V0. Hence, the amplitude of F0(z) (i.e., F ′

0(0)) is fixed at leading-order but the two constants
A and B remain undetermined at this stage, but can be computed at the order in which the asymmetry in boundary
conditions is first introduced.

At next order in the expansion, the amplitudes A and B remain undetermined, with a general solution existing
in the form

(U1, V1, K1) = A(U∗
1 , V ∗

1 , K ∗
1 ), W1 = W ∗

1 + A2 F1, �1 = AB F1, (13,14,15)

where U∗
1 = V ∗

1 = F1 = 0 on z = 0, 1 and W ∗
1 (0) = 1, W ∗

1 (1) = −1.
At the following order the amplitude term A (and therefore B) are determined by a solvability condition applied

to the resulting system. The solvability constraint determines the amplitude constant A to be

A(γ ) ≈ 9.167 γ. (16)

Thus for γ = 0 we match this intermediate description with that provided in Sect. 3.2 and when γ = O(Re−1) to
the more general case discussed in the next section.

3.4 The limit Re → 0, at general s

Examination of the intermediate case of Re → 0 with s = −1 + γ Re, suggests that the amplitude of the leading-
order terms in the expansions for W and � grow linearly with γ . Therefore, the low Reynolds number limit in the
general case proceeds as above but with the replacement expansions

W (z) = W0(z)Re−2 + · · · , �(z) = �0(z)Re−2 + · · · . (17,18)

We can therefore derive a leading-order system of equations as Re → 0 in the form

�2
0 − W 2

0 = 0, (19)

together with (8b)–(8d). The appropriate boundary conditions are U0 = V0 = W0 = �0 = 0 at z = 0, 1.
Equation 19, together with (8b)–(8d), cannot be solved in isolation since insufficient information is given for the

leading-order velocity component U0. We can say however, that a solution has the following feature

W0(z) = ±�0(z). (20)

To determine the profile �0(z) one must continue to next order in the expansion thereby obtaining a closed system
of equations.
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Non-axisymmetric self-similar flow between two rotating disks 267

The correction terms in the expansion procedure are all O(Re2) smaller than the leading-order components and
satisfy

U 2
0 + V0U ′

0 + 2�1�0 − 2W1W0 = U ′′
0 − K0, (21a)

2(U0W1 + U1W0) + V0W ′
1 + V1W ′

0 = W ′′
1 , (21b)

2(U0�1 + U1�0) + V0�
′
1 + V1�

′
0 = �′′

1, (21c)

where U1 = V1 = �1 = 0 on z = 0, 1, W (0) = 1 and W (1) = s. In this system K0 is the leading-order term
in the expansion of the pressure constant K . It is clear that this system depends on the correction terms U1(z) and
V1(z), however, as we shall show, a closed system can be obtained by eliminating these terms.

Given (20), we suppose that W0(z) = �0(z) (the other sign can be treated in an analogous manner), and introduce
a new quantity

	1(z) = �1(z) − W1(z). (22a)

Combining Eqs. 21b and 21c allows for a closed system of the form

U 2
0 + V0U ′

0 + 2�0	1 = U ′′
0 − K0, 2U0�0 + V0�

′
0 = �′′

0, (22b,c)

2U0	1 + V0	
′
1 = 	 ′′

1 , 2U0 + V ′
0 = 0, (22d,e)

with boundary conditions U0 = V0 = �0 = 0 on z = 0, 1, 	1(0) = −1 and 	1(1) = −s. To obtain these
equations we have eliminated U1 and V1 by subtracting (21b) from (21c) then combined the resulting equations
with those found at leading order.

Numerical solution of (22a)–(22e) is straightforward and good agreement with the Re → 0 limit of the full
equations is obtained (see Fig. 5). Similar results can be obtained in the case, W0(z) = −�0(z) by making a change
of sign in the definition of 	1. Thus, the small-Reynolds-number structure can be determined for any s, which
matches to the above detailed expansion in the special case of s → −1 via the intermediate structure outlined in
Sect. 3.3.

3.5 The limit s → 0− for Re = O(1)

We have shown numerically, as illustrated by Fig. 6, that the bifurcated non-axisymmetric states have a limiting
structure as s → 0−; an asymptotic description of this limit can also be provided.
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We shall assume Re = 1 (the only conceptual restriction is that Re = O(1) and we shall take it to be unity in
order to simplify the notation). We also simplify the analysis by making the substitutions

	(z) = �(z) − W (z), (23a)

and

�(z) = �(z) + W (z), (23b)

then the full governing system (5), with ∂/∂t = 0, may be written as

U 2 + V U ′ + �	 = U ′′ − K , 2U	 + V 	 ′ = 	 ′′, (24a,b)

2U� + V �′ = �′′, 2U + V ′ = 0, (24c,d)

with boundary conditions

U = V = 0, 	 = −1, � = 1, on z = 0, (24e)

U = V = 0, 	 = −s, � = s, on z = 1. (24f)

The same analysis can be applied at more general Reynolds numbers with no qualitative changes, however we
expect a “corner region” to exist for sufficiently small Reynolds numbers since there is a competing structure in
this limit.

Numerical results for the full system (24) reveal that K → ∞ as s → 0− in the continuation of the nonlinear,
non-axisymmetric states. Rather than seeking an expansion in |s| (small), we shall simply seek an expansion in
terms of the pressure constant K (large).

3.5.1 The inviscid core: region II

Numerical results suggest that a multi-layer structure is obtained, with an interior core region, z = O(1), in which
the appropriate scalings are

	(z) = 	0(z) + · · · , �(z)= �0(z)ε
−1+ · · · , V (z)= V0(z)ε

−1/4+ · · · , U (z)= U0(z)+ · · · , (25a,b,c,d)

where ε = K −1.
The leading-order equations in the core are therefore

	0�0 = −1, V0	
′
0 = 0, V0�

′
0 = 0, V ′

0 = 0. (26)
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which yield

	0 = λ, �0 = −λ−1, V0 = Vm, (27)

where λ, and Vm are constants to be determined.
We note that there are wall-layers in the flow on each disk; we refer to these as regions I and III near the lower

disk and the upper disk, respectively.

3.5.2 The viscous wall-layers: regions I and III

Since V, � and 	 in the interior are constant, their scalings in the layer I remain as given by (25), with leading-
order terms V̂0(ζ ), �̂0(ζ ), 	̂0(ζ ). Furthermore, it is easy to note that, from a balance of the viscous terms, the
appropriate wall-layer is defined in terms of a scaled co-ordinate of the form

ζ = ε1/4z = O(1), (28)

and therefore, from continuity,

U (z) = Û0(ζ )ε−1/2 + · · · . (29)

The leading-order equations, to be satisfied in the wall-layer I, are therefore

Û 2
0 + V̂0Û ′

0 + �̂0	̂0 = Û ′′
0 − 1, 2Û0	̂0 + V̂0	̂

′
0 = 	̂ ′′

0 , (30a,b)

2Û0�̂0 + V̂0�̂
′
0 = �̂′′

0 , 2Û0 + V̂ ′
0 = 0. (30c,d)

The boundary conditions to be satisfied are

Û0 = V̂0 = �̂0 = 0, 	̂0 = −1, on ζ = 0, (30e)
Û0 = 0, �̂0 = −λ−1, 	̂0 = λ as ζ → ∞, (30f)

where λ is a constant that remains to be determined.
The corresponding expansion in layer III is obviously of the same form, with Û0(ζ ), V̂0(ζ ), �̂0(ζ ) and 	̂0(ζ )

replaced by Ũ0(ξ), −Ṽ0(ξ), �̃0(ξ) and 	̃0(ξ). Here the wall-layer is defined in terms of the coordinate z =
1 − ε1/4ξ , where ξ = O(1).

The resulting equations are then equivalent to (30) but with boundary conditions

Ũ0 = Ṽ0 = �̃0 = 	̃0 = 0, on ξ = 0, (31)

and

Ũ0 = 0, �̃0 = −λ−1, 	̃0 = λ as ξ → ∞. (32)

To determine λ, we must solve both systems for the regions I and III to determine the axial flow induced by
each wall-layer as a function of λ. Since the core flow has a constant axial velocity, this must be matched to both
wall-layer solutions. Therefore, the core flow is fixed by the value of λ for which the axial flow in/out of layer I is
the axial flow out/in to layer III, and it is this level of axial flow that exists uniformly across the inviscid interior.
Therefore, we require that

V̂0(ζ → ∞) = Vm = Ṽ0(ξ → ∞), (33)

is satisfied.
Numerical solution of the governing equations in regions I and III, together with matching the Ekman mass

transport of these layers across the inviscid core yields

λ = −0.0580, Vm = −1.349. (34)

In Fig. 7 we show a comparison of the flow component 	(z) together with the predicted core value of λ as s → 0−.
We must note that we have presented the asymptotic description in terms of K → ∞ rather than in terms of a

small parameter |s|. This description requires that

s = g(K ), (35)

where g(K ) = o(1) in the limit K → ∞. We note that the function g(K ) is only fixed at higher order in the
expansion. Numerical evidence points to a logarithmic dependence of the form K ∼ (log |s|)4, however we do not
pursue this further here, having already clarified the leading-order structure.
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4 The initial-value problem

Here we wish to consider the corresponding initial-value problem for the full unsteady system defined by (5). We
shall assume that the initial condition is one of rigid-body rotation at a constant rate � and with a possible small
initial component that breaks the rotational symmetry, thus

U (z, t = 0) = V (z, t = 0) = 0, W (z, t = 0) = �, �(z, t = 0) = δφ(z). (36)

Here δ is an initial amplitude measure of the non-axisymmetric perturbation at t = 0 and we shall typically take
the initial profile to be φ(z) = z(1 − z). The impact of the exact choice of initial profile, φ(z), on the evolution
of the system will be discussed later. We note that the reflectional symmetry of φ(z) about the mid-plane z = 1/2
may be anticipated to be important when s = −1, however, other initial perturbations have been tested that are not
symmetric about z = 1/2 with no qualitative differences observed.

In obtaining the computational results we assume that the disks change to their new rotation rates smoothly rather
than impulsively; we choose to apply the conditions

W (z = 0, t ≥ 0) = 1 + (� − 1)e−c t2
, (37a)

W (z = 1, t ≥ 0) = s + (� − s)e−c t2
, (37b)

where c is a constant typically taken to be 10. Again, the exact form of change in rotation rate had no qualitative
effect on the results that we present here. The purpose of (37) is to remove the singularity that would otherwise
arise at t = 0 if an impulsive transition was used.

In the preceding section we have presented details of those points in the two-dimensional parameter space at
which bifurcations to non-axisymmetric states can be found. These non-axisymmetric branches arise from the
steady, axisymmetric solution branch that exists for all Reynolds numbers. In all the cases discussed, the symmetry
breaking bifurcations were found to be subcritical leading to a threshold amplitude response or linear instability
of the axisymmetric state depending on the exact choice of parameters. The locus of the bifurcation points in the
s–Re parameter space obviously delineate regions in which the primary axisymmetric state is linearly unstable to
non-axisymmetric perturbations of the form described here.

In the initial-value computations, three classes of evolution have been found. The system either approached an
axisymmetric steady state, a periodic axisymmetric state or a (non-axisymmetric) finite-time singularity. In this
work we provide just a few details regarding the axisymmetric states, whether stationary or periodic, and concen-
trate instead on the new feature introduced by allowing the flow to be non-axisymmetric, namely the finite-time
singularity.

4.1 Axisymmetric evolutions

We begin by noting that there are clearly a number of states that are stable in the framework of the axisymmetric
similarity equations, as illustrated in Fig. 1. Which of the multiplicity of axisymmetric steady states is achieved in
the initial-value problem is dependent on the nature of the initial conditions.

Here we only consider initial conditions that are rigid-body rotations at some angular frequency � (i.e., δ = 0).
For the parameter values s = −0.3, Re = 900, for example, we can achieve each of the three ‘stable’ (to infini-
tesimal axisymmetric self-similar perturbations) states shown in Fig. 1(VI) by considering the cases � = 0, 1,−1.
These three initial conditions obviously correspond to introducing a slight counter-rotation from an initial state of:
rest (� = 0); rotation at the frequency of the faster (final) rate of the two disks (� = 1); and rotation at this same
frequency but in the opposite direction (� = −1).

In Fig. 8 we show three evolutions from the these three distinct initial conditions. The solutions are each charac-
terized by the corresponding pressure constant K , and the three steady-state values of K are also shown.

123



Non-axisymmetric self-similar flow between two rotating disks 271

4.2 Structure in the neighbourhood of the non-axisymmetric breakdown event

In Fig. 9, we show the time evolution of the shear components Uz(z = 0, t) and Uz(z = 1, t), providing numerical
evidence for the presence of a singularity. Given the results of Fig. 9, we suppose that the governing system possesses
a singularity at a finite, non-dimensional time of t = ts . Therefore, we define a new variable

τ = ts − t, (38)

and seek an asymptotic description in the limit of τ → 0. The description in this limit takes on a multi-layered
structure, which consists mainly of two viscous layers at each boundary and an inviscid core flow.

4.2.1 The inviscid core

If we suppose that there is an inviscid core region in which z = O(1), then a balance of the acceleration, pressure
and nonlinear terms, suggests an expansion of the form

(U (z, t), V (z, t), W (z, t),�(z, t)) = (u0(z), v0(z), w0(z), φ0(z))τ
−1 + · · · , (39a)

K = k0τ
−2 + · · · . (39b)

The resulting leading-order equations in the core are therefore

u0 + u2
0 + u′

0v0 + φ2
0 − w2

0 = −k0, 2u0 + v′
0 = 0, (40a,b)

φ0 + 2u0φ0 + v0φ
′
0 = 0, w0 + 2u0w0 + v0w

′
0 = 0. (40c,d)

Since φ0 and w0 satisfy the same linear equation, we make a simplifying substitution of the form

φ0(z) = B̄ f0(z), w0(z) = Ā f0(z), (41)

where Ā and B̄ are amplitude constants, which without loss of generality can be taken such that

B̄2 − Ā2 = 1, (42)

provided that we exclude the case Ā = B̄; since there is no numerical evidence for such a case. Here, f0(z) is
a function that satisfies the same form of first-order equation as φ0 and w0, but whose ‘amplitude’ is uniquely
determined in this layer. We note that the constants Ā and B̄ will remain undetermined.
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Prompted by the form of the profiles shown in Fig. 10, the behaviour of the solution on approaching the bound-
aries can be obtained by supposing that u0(z) ∼ β as z → 0 (or equivalently as z → 1), where β is a constant.
Therefore, from (40a) we find that

β2 + β + k0 = 0. (43)

It is perhaps unsurprising that the system of equations (40) is somewhat similar in nature to the inviscid equations
that arise in describing the class of singular, steady, solutions to the flow above a single rotating disk. In fact, (40)
admits solutions akin to the ‘inviscid cell’ type states that exist in the classical rotating-disk equations.

We seek a general solution to the inviscid core equations in the form

u0(z) = β cos[µz], v0(z) = −2β sin[µz]/µ, f0(z) = γ (1 − cos[µz]), (44a,b,c)

where µ, β and γ are constants. Such solutions are easily shown to exist provided that

β = 1/2, and γ = 1/2. (45)

Thus, the pressure constant is determined from (43) to be

k0 = −3/4. (46)

We note at this stage that, if we choose µ = 2π , then (44) provides an outer solution that satisfies impermeability
at the two rigid boundaries of z = 0 and z = 1. This inviscid solution can then be matched with appropriate viscous
regions to satisfy the no-slip boundary conditions. However, in general we can seek solutions with µ = 2mπ and
still match to wall layers at z = 0, 1.

4.2.2 The viscous layers

As can be observed from the form of (40) and (44) further viscous regions can exist in the limit of z → nπ/µ < 1
as the leading-order axial flow vanishes (here n = 1, 2, 3 . . .). On approaching these levels in the flow field, the
behaviour of the leading-order velocity components is

u0 = O(1), v0 = O(z − nπ/µ), (47a)

f0 ∼
(

1 − (−1)n + µ2(z − nπ/µ)2(−1)n/2
)

/2. (47b)

Thus, for even values of the integer n = 2m, f0 = O((z − nπ/µ)2).
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The depth of the viscous layer is easily determined by a balance of the acceleration, viscous and pressure terms,
and we can define a new coordinate that spans this region,

z = 2mπ/µ + τ 1/2η. (48)

The corresponding expansions are of the form

U (z, t)= ũ0(η)τ−1+ · · · , V (z, t)= ṽ0(η)τ−1/2+ · · · , (W (z, t),�(z, t))= (w̃0(η), φ̃0(η))+ · · · , (49a,b,c)

while the pressure constant is

K = k0τ
−2 + · · · , (50)

as before.
The appropriate leading-order equations in this region are therefore

ũ + ηũ′
0/2 + ũ2 + ṽũ′ = ũ′′ − k0, 2ũ + ṽ′ = 0, ηφ̃0/2 + 2ũφ̃0 + ṽφ̃′

0 = φ̃′′, (51a,b,c)

together with the same equation with φ̃0 replaced by w̃0. We note that the equations (51a) and (51b) are decoupled
from the two additional equations for w̃0 and φ̃0.

If 2mπ/µ = 0 (or 1) then the appropriate boundary conditions at the disks are no-slip and impermeability,
ũ0(0) = ṽ0(0) = φ̃0(0) = 0, w̃0(0) = 1, with similar conditions at z = 1, except that w̃0(1) = s. In these regions
the solution needs to be determined numerically and matched to the outer core solution.

If 2mπ/µ is not zero or unity, then layer is in the central core flow. However, these interior layers are easily seen
to be entirely passive and can be ignored.

Therefore, in general, the solution in the core has µ = 2mπ (m = 1, 2, 3 . . .). When m = 1 the solution matches
directly to wall layers at z = 0, 1. For m > 1, there are multiple inviscid cells in the core flow, with the first and last
cell again matched to the viscous wall layers. It is clear that the temporal evolution shown in Fig. 10 corresponds to
an interior solution with m = 1.

We note that the small-τ asymptotics only determine the ‘amplitude’ of f0(z), that is, although we know the size
of φ2

0 − w2
0 in the core region, we cannot determine the individual amplitude constants B̄ and Ā. In general, these

quantities depend on an outer region as τ → ∞ (i.e., the history of the evolution).

4.3 Comparison of asymptotic and numerical results

In Fig. 11, we show the temporal evolution of the quantity zmin, which is the z–location of the minimum value of
the radial component U (z, t) (as shown in Fig. 10). In this case, s = −1/2, Re = 200, and in agreement with the
asymptotic description of the singularity, the core-flow becomes symmetric about the mid-plane with zmin → 1/2
as τ → 0.

In Fig. 12, we show a comparison between two scaled quantities evaluated from the full numerical solution as
t → ts and the appropriate asymptotic predictions. In particular, given the interior solution, we observe that the
quantity Umin(t) = U (z = zmin, t) should have a leading-order description

Umin = −(1/2)τ−1 + · · · , (52)

therefore |Umin|−1 ∼ 2τ as τ → 0. Similarly, since

K = −(3/4)τ−2 + · · · , (53)

we compare |K |−1/2 with (3/4)−1/2τ .
A further prediction of the asymptotic description is that the inviscid interior region can have an infinity of

solutions of the form

U (z, t) = (1/2) cos[2mπ z]τ−1 + · · · , (54)
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for any m = 1, 2, . . .. By choosing an initial condition with a larger initial amplitude δ and a functional form

φ(z) = 1 − cos[4π z], (55)

an unsteady evolution to a singularity contained within the same asymptotic framework but with m = 2 can be found,
as shown in Fig. 13. Similar figures can be generated that correspond to core-flows with m = 3, 4, . . . ; however,
the computations suggest that to trigger such evolutions requires large initial non-axisymmetric perturbations.

In general, if Re > Recrit(s) (as shown in Fig. 3), the linear instability of the axisymmetric state results in the
initial-value problem eventually approaching a singularity (with m = 1) for sufficiently small amplitudes, δ, of the
initial perturbation.

4.4 More complex scenarios

As we have observed, there are a number of steady axisymmetric states that are linearly stable in the framework
of the similarity equations provided that the axisymmetry remains unbroken. However, in our analysis only the
solution state that extends to low Reynolds numbers has been found to possess a region that is linearly stable to both
axisymmetric and non-axisymmetric perturbations. That is, the disconnected states illustrated in Fig. 1 are found to
be unstable to non-axisymmetric perturbations.

As can be seen from comparisons of Figs. 2 and 3, one can choose parameter values for s and Re for which the
primary branch of steady solutions (that extends from low Reynolds numbers) is stable to non-axisymmetric modes,
but for which other states exist that are linearly stable to axisymmetric perturbations and unstable to non-axisym-
metric perturbations. For example, the parameter values s = −0.05, Re = 500 are in the stable region of Fig. 3,
therefore the primary steady state is linearly stable to non-axisymmetric modes, but there are other states that are
unstable to non-axisymmetric modes. In this context the evolution of the system can depend dramatically on the
initial conditions.

For example, if we choose initial conditions of � = 0 and a small, δ (thereby breaking the rotational symmetry),
then an evolution to the stable primary state is achieved. However, for an initial condition of � = −1 (δ �= 0), the
evolution begins to approach one of the alternative steady states, which though stable to axisymmetric perturbations
are linearly unstable to modes that break the axisymmetry. In this latter case the evolution is towards a finite-time
singularity of the form described above.
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Fig. 13 Profiles of the velocity component U and W as t → ts in the case of s = −1. In this instance a different core flow is obtained
by altering the initial conditions; further details are given in Sect. 4.3. Compare this evolution with the m = 1 case shown in Fig. 10

5 Discussion

We have considered an unsteady three-dimensional solution that results in an exact reduction of the Navier–Stokes
equations to an eighth-order nonlinear system of ordinary differential equations. The solution corresponds to a class
of non-axisymmetric flow, with an azimuthal wavenumber of two, confined between two, infinite, parallel, co-axial
rotating disks.

Non-axisymmetric states have been shown to arise through bifurcations from the branch of axisymmetric states
that develop from the Stokes flow limit. The bifurcations lead to steady, nonlinear states that terminate with a
singular structure on approaching the critical boundaries of Re = 0 and s = 0. Asymptotic descriptions of these
limits have been presented. The bifurcations are seen to be subcritical in nature, typically leading to a threshold
amplitude response at low Re for fixed s < 0. However, there is a broad region of the s < 0 part of parameter
space for which a linear instability is predicted for modes that break the rotational symmetry. We should note that
the singular behaviour as Re → 0 is indicating that a Reynolds number based on the rotation of the boundaries is
not the most representative choice for these bifurcated states; i.e., that there is significant motion in the bulk fluid
despite the fact that Re is small.

Unsteady computations relevant to the initial-value problem confirm the presence of both the threshold ampli-
tude response and the linear instability. For states that are unstable to modes of the type described here, we have
presented numerical results that suggest the system evolves to a finite-time singularity. An asymptotic description
valid near the breakdown event has also been presented that compares well with the full numerical results. As we
have noted, Hall et al. [11] have previously described a similar problem, showing a threshold amplitude response
and eventual finite-time breakdown of Von Kármán’s solution to the flow over a single rotating disk. The structure
of the singularity described by Hall et al. is more complicated than that presented here, including as it does a
‘boundary-layer’2 thickness that increases without bound as the singularity is approached. Such a scenario is not
possible for a flow confined by two disks, and the structure of the breakdown presented here must necessarily be
somewhat different.

As the singularity is approached the solution consists of an inviscid core flow with two wall-layers of decreasing
thickness at each boundary. When the flow evolves towards the singularity, the core flow becomes increasingly
symmetric about the mid-plane z = 1/2, even if the initial conditions or the boundary conditions contain no
such symmetry. Furthermore, in the description of the breakdown, there is an infinity of solutions to the equations
appropriate to the inviscid region, parameterized by an integer m. Which of the inviscid solutions is realized in the

2 We still use the phrase ‘boundary-layer’ although we recognize that no associated approximation is necessary in this instance.
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unsteady calculations is dependent on the initial conditions. Typically, the flow will evolve to a breakdown with
m = 1, however finite-time singularities that correspond to different values of m can be achieved by an appropriate
choice of initial conditions. In general, the evolutions that break down with a core-flow that contains a ‘higher-m’
solution are more difficult to achieve and require successively larger initial perturbations; that is, they require a large
δ in (36). There is no evidence of similar bifurcations from the primary branch of steady states being available in
the parameter regime s ≥ 0. However, the instability of the other solution states to non-axisymmetric perturbations
persists and so evolutions to a breakdown at a finite time can still be achieved for some classes of initial condition
as outlined in Sect. 4.4.

The question of the practical relevance of the finite-time singularity discussed herein is a subtle one. Because the
solution provides an exact reduction of the Navier–Stokes equations (NSE) this case is somewhat different from
those obtained, for example, in boundary-layer theory; for which a return to the full field equations is achieved on
approaching the singularity. In this problem the singular solution structure is also clearly a solution of the full NSE.
The most likely scenarios are therefore: (i) instabilities of a more general spatial nature must eventually dominate
the time evolution of the system, thereby preventing the singularity formation and/or (ii) the finite-domain nature
of any real flow leads to a spatio-temporal evolution that is distinct from this infinite-domain case. A fully unsteady,
three-dimensional, finite-domain formulation and numerical solution would clearly be of interest in this respect
(especially with regards comparisons in the near axis, small-r , region).

The previous analysis of HD extended the class of exact solution to more general azimuthal wavenumbers,
whilst also allowing for travelling-wave states. However, we note that this approach is only valid following a formal
boundary-layer approximation and only describes the flow sufficiently far from the rotation axis; that is r  Re−1/2.
Without this approximation the r−2 terms present in (2a)–(2d) cannot be neglected and a radially self-similar solu-
tion cannot be applied. Therefore, for the flow between two disks at finite Reynolds numbers, one cannot seek to
determine the stability of the flow to more general forms of azimuthally propagating waves without relaxing the
self-similar form of the perturbation. Nevertheless, at sufficiently large Reynolds numbers, the analysis of HD can
apply locally near to each of the disks provided that the axisymmetric solution consists of two boundary layers and
a core-flow that is a rigid body rotation.

Our primary motivation for this work was to describe a new exact solution of the Navier–Stokes equations;
because such solutions are rare, they are generally always of some interest. However our long-term aim is to
develop similarity solutions that display non-uniqueness and bifurcation phenomena as a basis to investigate the
significance of such simplified solutions to large but finite aspect-ratio problems. In this regard, the recent work of
Hewitt and Hazel [14] has investigated the relevance of the axisymmetric solutions to (2) by numerical computation
of the full axisymmetric field equations in a finite geometry with a variety of end conditions applied at the edge of
the disks. The Von Kármán-type similarity solutions are often assumed to apply in a ‘sufficiently large’ domain,
however the results of Hewitt and Hazel show that this assumption is often false. We make no claims that the
special form of exact solution that we describe will be dominant in any experimental configuration, the question of
the role of these exact solutions in large but finite domains is a subtle one, particularly in the context of stability
theory. Indeed the very recent results of Nore et al. [15] point to time-dependent axisymmetric instabilities being
the dominant instability in large-aspect-ratio counter-rotating-disk flows within a closed surrounding cylinder. The
role of the non-axisymmetric mode described herein (in the context of the global eigenvalue problem) is worthy of
further investigation, particularly in regard to sensitivity to conditions imposed at the edge of the domain.
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