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We present the results of a combined experimental and numerical investigation into
steady secondary vortex flows confined between two concentric right circular cylinders.
When the flow is driven by the symmetric rotation of both end walls and the inner
cylinder, toroidal vortex structures arise through the creation of stagnation points (in the
meridional plane) at the inner bounding cylinder or on the mid-plane of symmetry.
A detailed description of the flow regimes is presented, suggesting that a cascade of such
vortices can be created. Experimental results are reported, which visualize some of the
new states and confirm the prediction that they are stable to (mid-plane) symmetry-
breaking perturbations.
We also present some brief results for the flows driven by the rotation of a single end

wall. Vortex structures may also be observed at low Reynolds numbers in this geometry.
We show that standard flow visualization methods lead to some interesting non-
axisymmetric particle paths in this case.
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1. Introduction

The steady flow within a single circular cylinder, with one or both end walls
driving the fluid within the cavity, has been the subject of a great deal of
numerical and experimental research. This geometry has proved to be a
useful tool for studying the development of secondary structures on a forced
primary vortex flow. Previous studies have shown that a rapid development
of a vortex ‘bubble’1 may occur on the primary vortex axis (see Vogel 1968;
Escudier 1984).

Vogel (1968) was the first to study the flow driven by a single rotating end
wall. He showed that it was possible to form a pair of stagnation points midway
along the central core of the driven columnar vortex (the primary flow state)

Phil. Trans. R. Soc. A (2008) 366, 1317–1329

doi:10.1098/rsta.2007.2133

Published online 5 November 2007

One contribution of 6 to a Theme Issue ‘Experimental nonlinear dynamics II. Fluids’.

*Author for correspondence (richard.e.hewitt@manchester.ac.uk).
1 In the associated literature, the phrase ‘bubble’ has been used to indicate a closed region of
recirculation in the meridional plane.

1317 This journal is q 2007 The Royal Society

 on September 15, 2010rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


above a certain range of Reynolds numbers. Vogel suggested that the creation of
a local secondary (axisymmetric) recirculation by this flow feature was a steady
form of the ill-defined ‘vortex breakdown’ phenomenon.

Driven cavity flows of the type described here are important both scientifically
and technologically. Indeed, there are few flows of similar practical significance in
which the boundary conditions are so unambiguously defined and, as a
consequence, offer an ideal framework in which meaningful and detailed
comparisons can be made between the results of experiments and numerical
computations. The flow configuration has a wide range of applicability including,
for example, swirl combustion chambers and the flow between enclosed, rotating
and data storage media. In such cases, a deeper understanding of the formation
and location of vortex bubbles and their associated stagnation points is vital in
gaining further insight into the origins of more complicated dynamics.

Escudier (1984) extended Vogel’s work with a single driving boundary and
presented the results of a systematic sequence of experiments. He was able to
establish the parameter ranges for the existence of steady secondary vortices. He
also showed that the vortices do not form in domains with an aspect ratio smaller
than a critical value and that multiple steady vortices (aligned on the rotation
axis) and temporal dependence can be found at sufficiently large Reynolds
numbers and aspect ratios.

In the work of Escudier, the appearance of the vortex bubbles was discussed in
the vocabulary of stability theory, with parameter space diagrams (spanned by
the aspect ratio and rotational Reynolds number) showing ‘stability boundaries’
for ‘breakdown’. However, Tsiverblit (1993) established that the appearance of
the single secondary vortex is not caused by any hydrodynamic instability or
bifurcation but is the smooth evolution of one steady axisymmetric flow to
another as the Reynolds number is increased in an appropriate control
parameter regime. That this flow feature is not induced by an instability
means that there is no (local) underlying solution to the Navier–Stokes system in
this geometry, for which the flow does not develop a closed recirculation region in
the meridional flow.

In contrast to the work of Escudier (1984), a more recent paper by Mullin et al.
(1998) gave numerical evidence for the development of off-axis toroidal vortices
in a small aspect ratio driven cavity. In these flows, unlike those described by
Escudier, a vortex was suggested to develop in the main bulk of the flow, rather
than at the rotation axis or an inner boundary. Their work was inspired by the
work of Valentine & Jahnke (1994) on symmetrically driven flows.

The primary aim in this investigation is to address the stability of the newly
predicted ‘off-axis’ toroidal vortices and whether they can be observed in a
laboratory experiment. We also consider the nonlinear development for
increasing Reynolds numbers both numerically and experimentally. The
appearance of multiple regions of recirculation in the meridional plane is not
purely a finite Reynolds number phenomenon; toroidal vortices may also develop
at low Reynolds numbers. In particular, an analysis of the slow-flow regime by
Hills (2001) has shown that a cascade of toroidal vortices can be found at large
aspect ratios. In this work, we briefly comment on some new features observed in
the experimental visualization of such lid-driven cavity flows.

The presentation of material in this paper is as follows. In §2 we formulate the
problem and in §3 we describe the experimental configuration. In §4 we present
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both numerical and experimental results and make comparisons between the two
using flow visualization techniques. Finally, §5 provides a general discussion of
the implications and future extensions of the work.

2. Formulation

We consider the flow domain shown schematically in figure 1. The annular region
contains a viscous, incompressible, Newtonian fluid of kinematic viscosity n and
density r. The experimental configuration (described below) allows for two driving
mechanisms for the flow: (i) UtZUiZUbZU or (ii) UbZU and UiZUtZ0. Here,
Ut,b,i indicates the angular frequency of the top/bottom/inner bounding walls,
respectively. The outer wall is always stationary.

We assume that the flow remains axisymmetric and describe it with respect to
a cylindrical polar coordinate system (r �, q, z�), in which the corresponding
velocity components are (u�, v�, w�). This coordinate system is centred on the
intersection of the rotation axis and the mid-plane of symmetry.

We non-dimensionalize using the gap width dZRoKRi as the length scale and
URi as the velocity scale. Furthermore, for our computational solutions, we shall
rescale the flow domain to a unit square, thereby introducing an aspect ratio
parameter into the problem and a radius ratio. We therefore define r�ZRiCdr
and z�ZdzG, where

GZH=dO0; hZR i=Ro!1 ð2:1Þ

and (r, z)2[0,1]![K1/2,1/2]. The governing Navier–Stokes equations in this form
then possess a Reynolds number defined by

ReZ
UR id

n
: ð2:2Þ

Ro

Ri

d

z* = – H/2Wb

z* = H/2W t

Wi

(a) (b)

Figure 1. (a) The flow geometry. (b) A (half ) meridional view of the flow domain. The top
(z�ZH/2), bottom (z�ZKH/2) and inner (r �ZR i) boundaries are set to rotate with angular
frequencies Ut,b,i while the outer cylinder (r �ZRo) is stationary.
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The only non-trivial boundary conditions are for the swirl component of the
velocity field, v�ZURiv(r, z), which can be non-dimensionalized as

v ZUi=U on r Z 0 ð2:3Þ
and

v Z
Ut;b

U
1C

1Kh

h
r

� �
on z ZG

1

2
: ð2:4Þ

As noted above, the combinations Ut,b,i/U will be either 1 or 0, depending on
which boundaries we choose to rotate. However, we will concentrate on the
symmetrically driven cavity (§4) Ut,b,i/UZ1 and make some limited comments
regarding the other case Ub/UZ1 and Ut,b/UZ0 in our concluding discussion (§5).

We note that the special case of no inner cylinder can be addressed by setting hZ
0, choosingURo as the velocity scale and applying boundary conditions appropriate
for the axis of symmetry at rZ0. This also leads to replacing (2.4) by vZrUt,b/U.

(a ) Convergence and validation of numerical results

Before initiating the laboratory experiments, a numerical code (formulated as
described previously) was used to provide an overview of the parameter space
and thereby identify parameter values of interest. Numerical calculations were
performed using the primitive variable formulation of the incompressible Navier–
Stokes equations. The algorithm employs a finite-element method, using
quadrilateral elements with biquadratic interpolation of the velocities and
discontinuous piecewise linear interpolation of the pressure. The system is
formulated and solved using the ENTWIFE (Cliffe 1996) finite-element library.

To ensure accuracy of the numerical results, two checks were applied. First,
we compute the flow for a rotating inner cylinder with the top/bottom boundary
conditions replaced with the natural boundary condition for the swirl component
v; this results in a solution with little axial variation, which can be compared to
the well-known circular Couette exact solution. Data for the convergence of the
numerical results in this special case are provided in table 1. Our second check is
to recompute the known results of Mullin et al. (2000) and also to compare (by
removing the inner boundary condition and making the domain simply
connected) with the experimental data of Escudier (1984), for which full
agreement was found in both cases.

Table 1. Velocity convergence data, measured relative to the analytical solution for circular
Couette flow, with hZ0.1 and ReZ10. (The flow domain is spanned by Nx!Ny elements and Dv is
the absolute difference between the analytical solution and the numerical result measured at the
central point rZ0.5, zZ0. Tolerance of the numerical method is 10K8.)

Nx!Ny Dv ratio

4!4 6.10683!10K4 —
8!8 1.19152!10K4 5.13
16!16 8.00082!10K6 14.90
32!32 5.15248!10K7 15.53
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Clearly, there is a discontinuity in the boundary conditions for v in the corner
regions where the rotating top/bottom end wall meets a stationary cylinder. In
the experimental configuration, a small fluid-filled gap is present between such
boundaries. To eliminate the corner discontinuity, and to better model the
experimental configuration, we apply a continuous velocity distribution on the
top/bottom end walls which varies rapidly from the appropriate linear profile to
zero over a small distance near the corner. To be consistent with the
interpolation scheme, we choose a quadratic profile for the smoothing over the
corner element boundary. Furthermore, we apply a corner refinement of
the finite-element mesh to resolve this rapid variation and verify that the
numerical results are insensitive to both the length scale over which the
smoothing of the discontinuity is achieved (for sufficiently small length scales)
and the inclusion of further refinement to the mesh.

All the computations presented herein are for a non-uniformly distributed
mesh with 64!48 elements spread over the half-domain (r, z)2[0,1]![0,1/2],
with symmetry conditions applied at zZ0. Additional computations were
performed over the full domain (r, z)2[0, 1]![K1/2, 1/2] for which no
symmetry assumptions were made. We shall discuss the possibility of
symmetry-broken flows in §3.

3. Experimental investigation

The experimental configuration consisted of a pair of concentric cylinders
mounted in a controlled environment (a water jacket), through which a
temperature-controlled fluid was pumped. This configuration ensured that the
working section of the experiment was maintained at 25.0G0.028C. The outer
cylinder of the flow domain was held stationary, while either the top/bottom end
plates and the inner cylinder were rotated or just the bottom plate was rotated.
The outer boundary was constructed from a precision ground glass cylinder with
an inner diameter of 63.5G0.025 mm. The inner cylinder was a 4.75 mm
diameter rod located centrally on the axis of rotation.

In terms of our non-dimensional parameters, this geometry corresponds to a
radius ratio of hZ0.0748. The bottom and top end plates had a diameter of
63.48 mm, thus leaving a small gap between the driving plates and the outer
boundary. The distance between the upper and lower plates was chosen to give
an aspect ratio of GZ0.78 in the experiments presented herein.

A stepper motor with a gear box and toothed belt drive was used to drive the
rotation of the boundaries. The angular frequency of the rotation was determined
accurately from the input to the stepper motor, and we could therefore estimate
the Reynolds number given the above length scales and the viscosity of the
working fluid. The fluid was chosen to be a water–glycerol mixture (50 : 50 by
volume) and the viscosities were determined using an Ubbelohde viscometer.

The flow field was visualized by adding a small quantity of Mearlmaid AA
natural pearlessence and illuminating the experiment from the side by a sheet of
light. Photographs were taken from a position perpendicular to the plane of
illumination using a digital camera, or a film camera where very long exposures
were required.
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To generate the flow states visualized in the experimental pictures, we
smoothly varied the angular frequency of the driving boundaries from rest to a
final speed in small increments.

4. Results: symmetrically driven flows

We begin by computing the parameter space boundaries at which the first
recirculation bubble appears in the meridional plane. The parameter space is
spanned by the aspect ratioG, the Reynolds numberRe and the radius ratio h. Given
these three parameters, we shall choose to present results by fixing the radius ratio h,
and then describe the two-dimensional parameter space spanned by G and Re.

The previous work of Mullin et al. presented results relevant to this case,
showing that, for low values of h, there is a Reynolds number above which an
obvious recirculation bubble can be observed (for the whole range of aspect
ratios). On increasing the radius ratio h, the boundary for the appearance of this
first bubble moves more rapidly to higher values of Re. Thus, for hR0.5, it is
difficult to obtain reliable numerical results for the boundary above which this
flow feature can be observed because large values of Re are required. It is
therefore unclear whether the flow feature is absent above a critical value of h or
whether this is merely a rapid limiting process as h/1.

As has been noted by Tsiverblit (1993), the appearance of the recirculation
bubble is not related to an instability of the flow and therefore it is difficult to
provide a definite criterion for its presence.This is particularly the case if the bubble
appears or disappears near a boundary, since we recognize that recirculating eddies
can always occur when sufficiently close to such corner regions; these local eddy
cascades were described in the work of Moffatt (1964) with a rotational analogue
described by Hills (2001). The approach we take here is one that was successfully
employed by Mullin et al. (1998); the criterion for the existence of a bubble is the
presence of a recognizably enclosed region in the meridional streamline plot when
viewed over the full computational domain.

In the two cases of hZ0.1 and 0.2, the range of existence is shown in figure 2.
Here we see a new feature that is absent in the less resolved data of Mullin et al.
(1998), namely the presence of two limit points in the dataset. The ‘kink’
highlighted in the data of figure 2 has some physical significance. On the right-
hand branch, the recirculation bubble appears first through the creation of
stagnation points2 at the inner cylindrical boundary. However, on the left-hand
branch, the recirculation bubble appears through the creation of stagnation
points in the bulk flow, along the plane of symmetry (i.e. on zZ0).

We note that the kink in the datasets of figure 2 is a consequence of the
presence of an inner cylinder. When the inner cylinder is absent, there is no such
feature, as shown by the results of Mullin et al. (1998). Nevertheless, the feature
is robust and the results are not qualitatively altered by a change in the radius
ratio from hZ0.1 to 0.2, as demonstrated in figure 2.

At aspect ratios between the two limit points shown in figure 2, on increasing
the Reynolds number from zero, the recirculation bubble appears first at the
inner cylinder, but on increasing the Reynolds number further, the bubble

2Here we are referring to stagnation points in the meridional cross section; clearly, there is still a
swirl component to the velocity field at these locations.
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disappears (again at the inner cylinder) before reappearing in the bulk flow as a
detached toroidal vortex. In figure 3, we measure the radial position (in terms of
the dimensionless coordinate r2[0,1]) of the stagnation points as they appear on
the mid-plane of symmetry, zZ0, for increasing Reynolds number when GZ0.865

10

100

1000

10000

0  0.5 1.0 1.5 2.0 2.5

Re

G

Figure 2. Data for the boundary above which at least one recirculation bubble exists. The lower
dataset is for a radius ratio of hZ0.1 and the upper dataset is for hZ0.2. The inset meridional
streamline plots show (schematically) the location of the recirculation bubble on crossing the
existence boundary for low values (left) and high values (right) of G.

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 50 100 150 200 250 300

rst

Re

Figure 3. Data for the radial location of the stagnation points, rst , on the symmetry mid-plane
(zZ0): rZ0 is the inner boundary and rZ1 is the outer boundary. These data are for the case
GZ0.865 and hZ0.1.
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and hZ0.1. This value for the aspect ratio is chosen to lie between the two limit
points shown in the lower data of figure 2. As can be observed from figure 3, the
first recirculation bubble appears (Rez26) and disappears (Rez35) at the inner
boundary rZ0, before occurring again (Rez45) in the main bulk of the flow as
described above. In addition, figure 3 also shows that the detached bubble
continues to exist for increasing Re and that additional bubbles then occur at the
inner cylinder (at Rez145 and 280).

In figure 4a–d, we show examples of the meridional streamlines at a range of
Reynolds numbers for the parameters corresponding to figure 3. In these
streamline images, it is clear that there is a cascade of recirculation zones that
preserve the reflectional symmetry of the flow.

To assess the stability of these steady flow states, we sought bifurcations to
states with broken (mid-plane) reflectional symmetry; however, none were found
in the parameter ranges described herein. We must conclude that, in the absence
of an instability leading to time dependence and/or loss of axisymmetry, these
new states should be experimentally observable.

Given this prediction of stability, we seek these free-standing toroidal vortex
states in the laboratory by using the experimental configuration outlined in §3. A
flow visualization image of the meridional plane is shown in figure 5a for
parameter values above the first existence boundary, showing the presence of a
single recirculation bubble. Since the aspect ratio GZ0.78 is below the kink in the
existence curve (figure 2), the bubble appears in the main bulk flow rather than
at the inner cylinder. Figure 5c also shows a corresponding numerical
computation for the meridional streamlines and we see that there is an excellent
agreement for the flow structure. As far as the authors are aware, this is the first
experimental confirmation that these flow states are stable and observable. We
emphasize that the bubble observed in figure 5a,b develops suddenly at the
central position shown, rather than occurring first at the inner boundary and
subsequently migrating into the bulk flow.

 

0 0.2 0.4 0.6 0.8 1.0

 0

0.1

0.2

0.3

0.4

 0.5

0 0.2 0.4 0.6 0.8 1.0
0

0.1

0.2

0.3

0.4

 0.5

(a) (c)

(b) (d )

Figure 4. Predicted streamline patterns in the meridional (r, z) plane for GZ0.865, hZ0.1 (as in
figure 3) and ReZ30, 100, 200, 300 corresponding to (a–d ), respectively. Note that each image is
only one-half (z2[0,1/2]) of the full symmetric flow pattern that exists for z2[K1/2,1/2].
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10
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0 0.5 1.0 1.5 2.0

Re

G

two ‘bubbles’

one ‘bubble’

no ‘bubble’

Figure 6. Boundaries above which the first (lower) and second (upper) recirculation ‘bubbles’ exist
for hZ0.1. The inset schematics show the qualitative structure for low aspect ratio in the three
regions of the parameter plane. Additional boundaries exist (at larger Re) above which the flow
field includes more recirculation regions.

(a) (b)

(c) (d )

Figure 5. (a,b) Flow visualization of the laboratory experiment and (c,d ) the corresponding
numerical computation of the meridional streamlines for GZ0.78, hZ0.0748 and (a,c) ReZ45 and
(b,d ) ReZ100.
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In figure 5b,d, we maintain the same aspect ratio and radius ratio (namely
GZ0.78 and hZ0.0748) but continue to increase the rotation frequency of the
boundaries up to ReZ100. At this Reynolds number, we see that an additional
stagnation point/line has developed at the mid-plane zZ0, appearing first at the
inner boundary and developing outwards to reveal an additional bubble to
the left, adjacent to the inner cylinder.

Given that a second bubble clearly exists, we can identify the boundary in the
Re–G plane above which this feature is found (for a fixed radius ratio). In
figure 6, we repeat the data for the existence of the first bubble for hZ0.1 (as
shown in figure 2) and add to this the boundary for existence of a second bubble.
Numerical evidence leads us to conjecture that a cascade of such boundaries
exists, each of which corresponds to the inclusion of additional bubbles into the
flow field. However, we should note that, in the laboratory experiments, the flow
eventually exhibits what appears to be an instability to a travelling wave
through a Hopf bifurcation as the rotation rate is increased.

5. Discussion

We have shown that toroidal vortices are a generic feature of swirl-driven cavity
flows. In the symmetrically driven cavity, we observe a sequence of well-defined
Reynolds numbers (at fixed values of the radius ratio, h, and aspect ratio, G) at
which closed recirculation zones appear in the meridional flow field (the so-called
‘bubbles’). The appearance of these bubbles has been associated by several
authors with the phenomenon of vortex breakdown, as a steady analogue of that
behaviour. While this interpretation remains controversial, the mechanism
behind the sudden development of the bubble in these highly controlled flows
remains a largely unanswered question. There is undoubtedly a rapid
development of the bubble beyond the existence boundaries shown in figure 6,
and evidence of a square-root growth in the dimensions of the bubble (figure 7).
In this sense, it is not surprising that the flow feature was mistakenly viewed as
an instability in early work.

If any progress is to be made theoretically with regard to describing the origin
of these toroidal vortices, it is clear that the simplest case would be the limit of
an asymptotically small aspect ratio. In this limit, one might expect the flow to
be a rigid-body rotation over the majority of the flow domain, with some
transitional region near the outer cylinder. Questions then arise concerning the
location and appearance of the sequence of bubbles. It is interesting in this regard
to note that the scaling of the existence boundaries shown in figure 6 is such that

ReZ
c

G2
C

a

G
C/ ð5:1Þ

as G/0. In figure 8, we repeat the data for the existence of the first and second
bubbles, but rescale the Reynolds number, instead using ReZRe G2ð1KhÞ=h.
Additionally, figure 8 fits a straight line through the available data for the range
G!0.5. Moreover, figure 8 provides strong evidence that the constant c is the
same for the first and second bubbles; indeed, we conjecture that any subsequent
sequence of existence boundaries would scale with the same manner. One might
interpret this scaling as showing that the development of consecutive bubbles is a
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manifestation of the same effect. Furthermore, the quantity ReZUH 2=nz150 is
clearly of some significance in (axially) short cavities. An asymptotic
examination of this problem may reveal more details regarding the factors that
determine the rapid bubble development.

100

200

300

400

500

600

700

0 0.2 0.4 0.6 0.8 1.0
G

Re

Figure 8. The onset of the first and second ‘bubbles’ in the limit of a small aspect ratio for hZ0.1.
Here Re is the rescaled Reynolds number ReZRe G2ð1KhÞ=hZUH 2=n. The lower dataset (squares)
is the appearance of the first bubble and the upper dataset (triangles) is the second bubble.
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0.0020

0.0025
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Figure 7. The radial location of the first appearing stagnation point, as denoted by rst , for GZ0.865
and hZ0.1 (figure 3). Here we show the evidence of the square-root growth in the bubble size at the
onset by plotting r 2st together with a linear fit near the onset.

1327Vortex development in rotating flows

Phil. Trans. R. Soc. A (2008)

 on September 15, 2010rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


During the course of this investigation, we also briefly examined toroidal eddy
states driven by the rotation of a single end wall. In these cases, Hills (2001)
demonstrated that a cascade of eddies can be obtained in the low Reynolds
number limit for large aspect ratios. These states are somewhat different from
those described in the previous sections of this work, being an axisymmetric
analogue of the eddy structure described by Moffatt (1964). The vortices arise
because the axial decay of an induced azimuthal flow is sufficiently rapid
(spatially) for the far-field response in the meridional flow to be dominated by a
spatially oscillatory (axial) eigenmode.

In a cylindrical geometry, this eigenfunction-dominated structure takes the
form of a sequence of stacked toroidal vortices that fill the full radial extent of
the domain and have a well-defined axial wavelength. Nevertheless, as with the
classical corner vortices described by Moffatt, the observation of this structure is
made challenging by the rapid geometric reduction in the vortex strengths as one
moves away from the driving boundary. Indeed, in this geometry, the decay rate
is significantly greater than the two-dimensional problem of Moffatt, leading to
each vortex being approximately 14 000 times weaker than the preceding one in
the limit of Re/0 and in the absence of an inner cylinder.

Attempts to visualize this type of weak vortex flow over long time scales lead
to some interesting observations. In figure 9, we show an image of the first
(strongest) toroidal vortex (using the same method that proved successful in
figure 5). In this case, a much longer exposure time of approximately 330 min was
used. Every effort was made to ensure that the flow domain remained
axisymmetric, that the lid of the driving boundary was perpendicular to the
side walls and that the axis of rotation of the driving boundary was centrally
located. No measurable evidence of a deviation from axisymmetry has been
obtained in our experimental apparatus in the absence of flow seeding.

Figure 9. Non-axisymmetric particle paths shown by a light sheet across the full diameter of the
cylinder (the overexposed central region is the axis). In this case, only the lower boundary (shown) is
rotating, withGZ3 (the full height of the domain is not shown), hZ0 (there is no inner boundary) and
a Reynolds number of UbR

2
o=nZ30 (the absence of an inner cylinder in this case requires this

alternative definition). The exposure time for the photograph is approximately 330 min.
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It seems that these standard flow visualization techniques must be interpreted
with regard to the non-Lagrangian nature of the seeding particles. Although over
small exposure times the deviation from being a perfect Lagrangian tracer of the
underlying flow is not significant, over the larger time scales required to capture
weak vortex motion, the presence of non-axisymmetric particle paths is clearly
visible. There are obvious similarities between this image and those obtained by
(for example) Fountain et al. (2000), showing chaotic advection in similar flows
that are forced to have a significant non-axisymmetry by a sloped rotating wall
(visualized by dye).

The authors acknowledge financial support from EPSRC (grant GR/R72983/01). The work of
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