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(Received 24 November 2008 and in revised form 13 March 2009)

We reconsider exact solutions to the Navier–Stokes equations that describe a vortex
in a viscous, incompressible fluid. This type of solution was first introduced by Long
(J. Atmos. Sci., vol. 15 (1), 1958, p. 108) and is parameterized by an inverse Reynolds
number ε. Long’s attention (and that of many subsequent investigators) was centred
upon the ‘quasi-cylindrical’ (QC) case corresponding to ε = 0. We show that the limit
ε → 0 is not straightforward, and that it reveals other solutions to this fundamental
exact reduction of the Navier–Stokes system (which are not of QC form). Through
careful numerical investigation, supported by asymptotic descriptions, we identify new
solutions and describe the full parameter space that is spanned by ε and the pressure
at the vortex core. Some erroneous results that exist in the literature are corrected.

1. Introduction
The structure and development of vortices is of key interest in many areas of

both technological and environmental flows. Central to this field of interest are the
contributions made by Long (1958, 1961), which have since driven a large number of
subsequent publications.

What Long (1958, 1961) achieved was the rational development of an ordinary
differential system that describes an exact (vortex) similarity-type solution to the
Navier–Stokes equations for a viscous incompressible unbounded fluid. The solutions
are exact in the sense that no approximations are required to obtain them from the
framework of the full Navier–Stokes system (all have conical self-similarity).

The system derived by Long (1958, 1961) was presented in terms of a cylindrical-
polar coordinate system and is governed by two control parameters: the ‘flow force’ (a
conserved integral quantity) and an inverse Reynolds number ε (we will provide the
exact definitions of these quantities when formulating the problem in the next section).
However, Long’s attention was focused exclusively on the boundary layer (quasi-
cylindrical (QC)) limit and did not consider the analogous finite-Reynolds-number
flow. A careful solution of the resulting boundary value problem was provided by
Long (1961) in this QC limit.

Because of the practical importance of these types of flow, a great many papers
have subsequently built upon QC theory, with the emphasis placed mostly upon the
spatial/temporal stability of such flows. Notable amongst later works are the papers of
Burggraf & Foster (1977), which considers the spatial marching of the corresponding
parabolic partial-differential system, Drazin, Banks & Zaturska (1995), which presents
results for Long’s equations at finite Reynolds number and addresses their (spatial)
stability, and Shtern & Drazin (2000), which considers the linear stability of the closely
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related half-line vortex states (which are distinct from the type of flow considered in
this paper). For a thorough review of the area of swirling flows, readers are directed
towards the comprehensive articles of Serrin (1972), Shtern & Hussain (1999) and
Pillow & Paull (1985).

There are a number of closely related problems and boundary conditions that
appear in the literature associated with this conically self-similar form. Solutions are
typically subdivided into laterally bounded or unbounded domains, and also into
subclasses that are either singular at a point, or singular along a (half) line. In many
cases the problem is described in spherical polar coordinates, for which impermeability
and circulation conditions are applied on a bounding conical surface. Such problems
are typically distinct from the original Long’s formulation, and can possess a different
structure through the elimination of the subtle algebraic behaviour present in the
laterally unbounded cylindrical formulation.

In this work we wish to concentrate on the formulation most closely related to the
original work of Long (1961), namely a class of conically self-similar vortex solutions
(described relative to a cylindrical polar coordinate system) for an unbounded fluid,
with a singularity only at the origin. In this regard our equations of motion are
precisely those of Long (1958, 1961) with a finite Reynolds number. This same
problem has been tackled before in Drazin et al. (1995); however, we will show
results that differ from theirs in a number of respects, most notably with regards
to how non-uniqueness of the solutions develops. It should be mentioned that the
numerical computation of the governing system is still a challenging task (even on
modern computer hardware), and has to be carried out with a great deal of care. Our
numerical approach is different from that applied by Drazin et al.; these authors used
a numerical shooting procedure, whereas we have chosen to implement a more robust
(but computationally more demanding) boundary-value/finite-difference algorithm.
We will present solutions that are new to the literature and justify our numerical
results (which disagree with those of Drazin et al.) by providing a selection of
asymptotic descriptions that cover a number of limiting cases. Comparisons between
the asymptotic predictions and our numerical data will also be presented.

The format of the paper is as follows. In § 2 we formulate the finite Reynolds
number problem in the notation of Long’s original work, including the boundary
conditions for an unbounded flow. In § 3 we present detailed numerical solutions for
the problem, including identifying non-unique solutions and limit points in the two-
dimensional parameter space. In § 4 we are able to confirm a number of characteristics
observed in our numerical results through asymptotic descriptions of several limiting
cases. Finally, § 6 provides some discussion and overview of our results in the broader
context of the existing literature.

2. Formulation
Following Long’s original formulation of the problem, we consider the axisymmetric

motion of an incompressible fluid of density ρ and kinematic viscosity ν. The system
is described with respect to a cylindrical-polar coordinate system (r, ϕ, z) centred
at the vortex axis and we solve for the flow in terms of a Stokes stream function
ψ(r, z) and a circumferential velocity component v(r, z); the three cylindrical velocity
components are then (u, v, w), where u = −ψz/r and w =ψr/r .

As Long (1958, 1961) showed, the introduction of a similarity variable x = r/z leads
to an exact reduction of the Navier–Stokes system. In terms of this new variable, the
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flow quantities can be written in the form:

ψ(r, z) = νzf̂ (x), v(r, z) =
ν

r
m(x), (2.1a)

p(r, z) = −ρ
ν2

z2
h(x), (2.1b)

where p(r, z) is the pressure. For this form of solution, the meridional flow velocities
are

u(r, z) = −νf̂ (x)

r
+

νf̂ ′(x)

z
, w(r, z) =

νf̂ ′(x)

r
. (2.1c)

There is a dimensionless parameter associated with this solution, which is effectively
an inverse Reynolds number

ε =
ν

K
, (2.1d )

where the constant K is the circulation at infinity, that is, rv → K as r → ∞.
In the original formulation there is a second parameter associated with a conserved

‘flow force’ (M in Long’s notation); however, in this work we will prefer to treat the
pressure at the axis of the vortex as the second parameter instead (the appropriate
M can then be computed from any state a posteriori). We will say more about this
below when describing the boundary conditions.

Following Long’s formulation further, we use the same boundary layer scalings
(but we make no assumptions about the size of ε)

y =
x

ε
√

2
, f (y) = f̂ (x), Γ (y) = m(x)ε and s(y) = h(x)ε4, (2.2)

which results in the final form of the governing equations:

Γ 2 + 2y3s ′ = −ε2(f 2 − ff ′y + y2f ′′ + 8y4s − yf ′ + 4y5s ′) − ε4(2y4f ′′), (2.3a)

yf ′′ − f ′(1 − f ) − 4y3s = −ε2(2f ′′y3), (2.3b)

yΓ ′′ − Γ ′(1 − f ) = −ε2(2Γ ′′y3 + 4Γ ′y2). (2.3c)

2.1. Boundary conditions

At the axis of the vortex we impose the boundary conditions

f (0) = Γ (0) = 0 and s(0) = p0. (2.4)

It is straightforward to show that in the near-axis region, these conditions lead to a
local behaviour of the form

f (y) = ā1y
2 + O(y4), (2.5a)

Γ (y) = b̄1y
2 + O(y4), (2.5b)

s(y) = p0 + c̄1y
2 + O(y4), (2.5c)

and the flow is non-singular except at r = z = 0. In this expansion the higher order
terms are determined as functions of the unknowns ā1, b̄1 and c̄1.

As noted above, one may view the arbitrary axis pressure p0 as replacing the ‘flow
force’ constraint introduced by Long (1958, 1961). This formulation is numerically
more convenient than specifying the integral constraint because it maintains the
banded structure of the discretized boundary value problem. Once a solution has
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been determined in this way, we can then determine the flow force via

M = π

∫ ∞

0

[(f ′(y))2 − 4y2s(y)]y−1 dy. (2.6)

This quantity is obtained by integrating the axial momentum equation over a constant
z plane; the reader is referred to Long’s original discussion for further details.

The appropriate conditions in the far field are rather more subtle for general values
of ε (than for ε = 0). As y → ∞, it is straightforward to observe that, in general,

f (y) = a1y + a2 +
a3

y
+ O(y−2), (2.7a)

Γ (y) = 1 +
b1

y
+ O(y−2), (2.7b)

s(y) =
c1

y2
+

c2

y3
+ O(y−4). (2.7c)

In the QC case of ε = 0 (as considered by Long, 1958, 1961) one may easily conclude
that c1 = 1/4 and then a1 = a2 = 1 and bi = 0 for all i � 1 (leading to exponential,
rather than algebraic, decay of Γ to the far-field value of unity). However, for
general Reynolds numbers ε > 0 the coefficients ai, bi, ci will have a functional
dependence on ε and p0 that cannot be known a priori, although we can determine that
a2

1 = 4c1. To accommodate this general far-field behaviour in our numerical scheme,
we will truncate the domain at some finite value y = y∞ and then impose the two
constraints:

Γ (y∞) − 1 + Γ ′(y∞)y∞ = 0, (2.8a)

[f ′(y∞)]2 − 4[y3
∞s ′(y∞) + 3y2

∞s(y∞)] = 0. (2.8b)

Substitution of (2.7) into (2.8) demonstrates that these conditions are O(y−2
∞ )

accurate.
The fifth-order system (2.3), subject to the five boundary conditions (2.4) and

(2.8) then forms a well-posed problem with solutions existing in a two-dimensional
parameter space spanned by ε and p0. It is this parameter space that we now explore,
with particular attention on taking the (high Reynolds number) limit of ε → 0, rather
than following Long’s approach of simply setting ε =0.

3. Numerical results
We begin by presenting numerical results for the solution of (2.3) subject to (2.4)

and (2.8). The problem is formulated as five first-order equations for the unknowns
f, f ′, Γ, Γ ′ and s, solved by second-order finite-differencing coupled with Newton
iteration. The discrete equations are solved at the mid-points of a non-uniform
(adaptive) nodal distribution {yi} where 0 � i � N−1, for some integer N where y0 = 0
and yN−1 = y∞. The two conditions (2.8) are imposed at the mid-point 1/2(yN−1 +
yN−2) using an appropriate second-order difference approximation at that point. The
resulting matrix problem is banded and solutions are continued by applying the
arclength continuation method of Keller (1977) with a bordering algorithm used to
include the additional arclength constraint whilst still maintaining the advantage of
the (mostly) sparse matrix structure.

A wide range of values for y∞ and N were employed in our numerical scheme.
As we shall see, some of the solutions we find have growing length scales for which
we have used values for y∞ as high as 1.2 × 105, whereas some QC solutions can
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be captured with y∞ =102 or less. Similarly a range of uniform, non-uniform and
self-adapted meshes have been used to ensure reliable results. Typical values for N

can range from 103 to 1.5 × 105. At the larger values of y∞ the mesh points were
typically not uniformly distributed. All of the numerical results presented herein are
independent (to within the accuracy presented) of the mesh {yi} and the far-field
parameter y∞.

3.1. The QC results with ε = 0

To begin with we recompute the known states for the case ε = 0, our motivation for
doing so is to validate the numerical approach and to clarify the relationship between
the parameterization in terms of M or p0. Our results agree with those already in
the literature and figure 1(a) shows the traditional view of the solutions, whilst the
alternative parameterization in terms of p0 is shown in figure 1(b) and, finally, the
connection between the flow force M and the axis pressure p0 is shown in figure 1(c).
The two limiting branches along which M → ∞ can be associated with the two limits
p0 → ∞ and p0 → 0+. We do not present any velocity/stream function profiles at this
stage, as many can be found in the existing literature in this special case.

3.2. The results at general values of ε > 0

Having reproduced the classical results we now move on to the general case of finite
Reynolds number, ε > 0. This case has been addressed previously in Drazin et al.
(1995); however, we will show considerable disagreement between our numerical
results and those presented in their work.

The general features of note for ε > 0 are: (i) for small values of ε there is a critical
axial pressure below which a solution cannot be located due to the presence of a
limit point, (ii) a pair of alternative disconnected states are possible which are also
connected by a limit point and (iii) additional limit points can be found at larger
values of ε, leading to a complicated solution space.

In figure 2 we again present the QC results (as the solid line) of figure 1(b) (for
ε = 0) together with the four solutions that are available for ε = 0.1. It is clear that
one of the four solution branches (S1) is a finite-Reynolds-number continuation of
the QC state, but this can no longer be continued to small axial pressures because it
develops a limit point b at a critical p0. This limit point then reveals a second vortex
state (branch S2). For this value of ε there are two further new (isolated) solutions
(again connected by a limit point a), which we shall refer to as solution branches S3

and S4. We note that only when ε = 0 is f ′(∞) = 1 for all p0, which is the horizontal
solid line in figure 2(b).

In figure 3 we continue the loci of the limit points a and b, as shown in figure 2, in
the parameter plane spanned by ε and p0. We know from the results of figure 2 that,
for small ε, the two limit points (a and b) are introduced at small values of p0. The
evolution of these two limit points, to larger values of p0, as ε is increased is shown in
figure 3; the asymptotic description of these points will be discussed below. At rather
larger values of ε the solution structure becomes more complicated. At ε ≈ 0.24 and
p0 ≈ 0.041 we find a transcritical bifurcation (denoted by T in figure 3). At ε ≈ 0.25
an additional limit point c arises, which is associated with solutions that can be
continued to negative values of p0, then at ε ≈ 0.258 and p0 ≈ 0.038 a hysteresis
point (denoted by H in figure 3) is obtained.

The evolution of the solution structure for fixed values of the pressure p0 and
varying ε is provided in figure 4. In figure 4(a) the axis pressure constant is p0 = 0.045,
for which figure 3 shows there to be three limit points a, c and e. For this p0 solution
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)
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Figure 1. A reproduction of Long’s original results for the QC equations (ε = 0). In terms of
the ‘flow force’ (M) there is a limit point at M ≈ 3.75. However, when parameterized by the
axis pressure (p0) there is a single branch of solutions.

S1 (which is connected to Long’s original vortex state as ε → 0) has a small region
of hysteretic behaviour on passing through limit points e and c and solution S2

remains disconnected from it. For values of p0 below the transcritical point T shown
in figure 3, S1 and S2 reconnect, leading to the limit points b and d; this behaviour is
shown in figure 4(b) at p0 = 0.039. Finally, at values of p0 below the point denoted by
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S3
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a
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b

b

QC

QC

f′
′(0

)
1 2

Figure 2. Solutions at fixed values of ε and varying axial pressure p0. In figure (a) we show
the reference solution of figure 1(b) for ε = 0 (solid) together with the four solutions available
for ε = 0.1 (dash and dash-dot). Long’s metric of f ′′(0)/2 does not distinguish the multiple
solutions especially well, so in (b) we show an alternative measure f ′(∞). Solid circles denote
the presence of limit points, which arise at finite Reynolds number.

H in figure 3, the hysteretic behaviour at higher values of ε is removed as limit points
d and e merge. The metric we use in figure 4 is the gradient of the circulation at the
axis. Small values of this measure are associated with solutions that have a growing
length scale (e.g. S2,3,4 as ε → 0) whilst large values indicate a decreasing length
scale.

In figure 5 we show sample profiles of the functions related to the axial flow,
circulation and pressure in the similarity form of (2.1), namely, f ′(y), Γ (y) and s(y);
the axial flow is proportional to f ′(y)/y. In figure 5(a–c) we show profiles at the same
values of ε = 0.1, p0 = 0.04, for each of the solutions S1–S4 shown in figure 2(b). We
can clearly see that S2 develops over a length scale that is an order of magnitude
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Figure 3. The loci of limit points in the parameter plane spanned by the inverse Reynolds
number ε and the pressure at the axis p0. The labelling of the lines is consistent with the
labelling of the two limit points shown in figure 2. Further, the open circles H and T indicate
a hysteresis point joined by d and e and a transcritical point joined by d and b, respectively.
Both a and b approach the origin as ε → 0 (see later asymptotic descriptions); however, the
computation involves increasing domain sizes that cannot be captured numerically.

larger than for the S1 state, and contains a region of reverse axial flow where f ′(y) < 0.
Solutions S3 and S4 similarly develop over a length scale that is an order of magnitude
larger than that found for S2 and have f ′(y) < 0 over their entire range (indicating
that the axial flow is always towards the singularity, i.e. a sink-type flow). In figure 5(d)
we show a case of ε = 0.3, p0 = −0.1. These solutions with negative pressure at the
vortex axis (relative to the far field) only exist beyond the boundary, corresponding
to the locus of limit point c in figure 3.

If we compare our results with those of Drazin et al. (1995) we find that there is
little agreement for ε > 0. Our system (2.3) is equivalent to (2.9)–(2.11) in their paper,
although we retain the QC variables throughout in order to simplify the computations
for small ε (see § 4 of Drazin et al. for the QC limit, for which their Reynolds number
R =1/ε). None of the behaviour highlighted in figure 6 of Drazin et al. is obtained
(for example the loop development at R ≈ 17) and we believe their results are open to
question. One possible source for this discrepancy is the boundary condition presented
in Drazin et al. (e.g. (2.12), (5.2) and elsewhere in § 5 of their paper), which states that
F ′(∞) = 2−1/2 (equivalent to f ′(∞) = 1 in our notation). As we have noted above, this
condition is only valid when ε = 0. Our aim here is to support our own numerical
results with some consistent asymptotic descriptions in § 4 below.

4. Limiting cases: support for the numerical results
4.1. p0 → 0 in the infinite Reynolds number QC equations: ε = 0

We begin by considering the special case of the QC equations (ε =0) and addressing
the limit of vanishing pressure at the vortex axis. If we denote the pressure at the axis
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Figure 4. A view of the solution branches at constant values of p0 chosen to be: (a) p0 = 0.045,
which is above the transcritical and hysterisis points denoted by (T ) and (H ) in figure 3, (b)
p0 = 0.039, which is between the hysteresis point (H ) and the transcritical point (T ) and (c)
p0 = 0.035, which is below both (H ) and (T ).

as p0 = δ � 1, then to describe the limit we introduce the expansions

s = ŝ0(ŷ)δ + · · · , (4.1a)

f = f̂ 0(ŷ)δ− 1
2 + · · · , (4.1b)

Γ = Γ̂0(ŷ) + · · · , (4.1c)
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Figure 5. Profiles of the functions related to the axial flow, circulation and pressure (f ′(y),
Γ (y) and s(y)) for a range of solutions. (a) Solution S1 at ε = 0.1, p0 = 0.04; (b) solution S2

at ε = 0.1, p0 = 0.04; (c) solutions S3 and S4 at ε = 0.1, p0 = 0.04. In this case there is only
a visible difference in the f ′(y) component for these two solutions, as we shall discuss in
§ 4.4 below. (d) A solution with negative axial pressure (relative to the far field) at ε = 0.3,
p0 = − 0.1. Note that the coordinate scale for y differs from 20 to 2000 across the four figures.
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Figure 6. A comparison of the asymptotic prediction of (4.6) with numerical results as p0 → 0
with ε =

√
p0. The dashed lines are the leading-order asymptotic predictions in the two regions

ŷ > ŷ∗ and ŷ < ŷ∗, whilst solid lines are the numerical results with ε =0.1, 0.09, . . . , 0.01. The
vertical line indicates ŷ∗, the predicted location of the displaced shear layer.
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where ŷ = δ1/2y. The leading-order equations are inviscid, namely

Γ̂ 2
0 + 2ŷ3ŝ ′

0 = 0, (4.2a)

f̂ 0f̂
′
0 − 4ŷ3ŝ0 = 0, (4.2b)

Γ̂ ′
0 f̂ 0 = 0, (4.2c)

subject to f̂ 0(0) = Γ̂0(0) = 0, ŝ0(0) = 1 and f̂ 0 ∼ ŷ, Γ̂0 → 1, ŝ0 ∼ 1/4ŷ2 as ŷ → ∞. The
leading-order solution in this case is easily obtained to be

Γ̂0 =

{
0 ŷ < ŷ∗

1 ŷ > ŷ∗ , ŝ0 =

{
1 ŷ < ŷ∗

1/4ŷ2 ŷ > ŷ∗ , (4.3a)

f̂ 0 =

{ √
2ŷ2 ŷ < ŷ∗√

ŷ2 − 1/8 ŷ > ŷ∗ , (4.3b)

where it can be shown that ŷ∗ = 1/2 by requiring continuity of s0 across ŷ = ŷ∗.
As we noted previously, the limit of p0 → 0+ for this state corresponds to M → ∞,

where M is defined by (2.6). The large M limit has been considered previously by
Foster & Jacqmin (1992), in which they derived the same leading-order description as
presented above. Obviously we may also construct the appropriate viscous solution
in a thin layer that spans the critical value of ŷ = ŷ∗, by introducing an additional
coordinate η = O(1) such that y = ŷ∗/δ1/2 + η; the details of this are in Foster &
Jacqmin (1992). We present the above result here because it leads directly to a
finite-Reynolds-number analogue of this same structure.

4.2. p0 → 0 for solution S1 with large Reynolds number: ε = O(
√

p0)

If we now reconsider the same limit discussed in the previous subsection but for a
finite Reynolds number, we know from the numerical results (see figure 2) that a
limit point exists for S1 at a critical p0 when ε > 0. To capture this behaviour we see
that additional terms first appear (in particular in (4.2a)) when the relative size of
the inverse Reynolds number is such that ε = kδ1/2 for some constant k, where again
δ = p0. In this case the scalings (4.1) are still appropriate, but now the leading-order
system becomes modified by finite Reynolds number terms:

Γ̂ 2
0 + 2ŷ3ŝ ′

0 = −k2
{

f̂
2

0 − ŷf̂ 0f̂
′
0 + 8ŷ4ŝ0 + 4ŷ5ŝ ′

0

}
, (4.4a)

f̂ 0f̂
′
0 − 4ŷ3ŝ0 = 0, (4.4b)

Γ̂ ′
0 f̂ 0 = 0. (4.4c)

Note that this system is still void of viscous terms and the first two equations are best
re-posed in terms of a new quantity ĥ0 = − f̂ 2

0, for which the governing equation is
usefully linear:

(2ŷ3k2 + ŷ)ĥ′′
0 − (4ŷ2k2 + 3)ĥ′

0 + 4ŷk2ĥ0 = 4ŷΓ̂ 2
0 . (4.5)

Prompted by the form of the solution in the previous subsection, we solve (4.5) in
two regions ŷ < ŷ∗ and ŷ > ŷ∗, with Γ̂0 as given in (4.3), although the location of ŷ∗

will in general differ. Because (4.5) is second order and we are solving in two regions,
we have five unknown constants (the fifth being the value of ŷ∗). The corresponding
five boundary conditions are ĥ0(0) = 0 and ĥ′

0 ∼ −8ŷ3 as ŷ → 0, and near the critical

value of ŷ∗ we require that both ĥ0 and ĥ′
0 are continuous, whilst in the far field,
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ĥ0 ∼ −ŷ2 as ŷ → ∞. We now have a well-posed problem that determines the solution
above and below ŷ∗ as well as the location of ŷ∗.

The solution for ĥ0 is found to be

h0(ŷ) =

{
−4(1 + k2ŷ2 −

√
1 + 2k2ŷ2) ŷ < ŷ∗

A
√

1 + 2k2ŷ2 − ŷ2 ŷ > ŷ∗
, (4.6a)

where

A = 4k−4 + (k−2 − 4k−4)

√
4 + k2

4 − k2
, (4.6b)

ŷ∗ =
1√

4 − k2
. (4.6c)

It is clear from the form of (4.6) that a solution only exists for 0 � k < 2, and we
note that when k = 0 we recover the QC results of the preceding subsection. As k → 2,
we approach the limit point (denoted by ‘b’ in figure 2) whilst additional terms must
be reintroduced into the leading-order (shear layer type) system as y → y∗.

In figure 6 we show a comparison of numerical results with the asymptotic
predictions of (4.6) in the case of ε, p0 → 0 with ε =p

1/2
0 ; that is, k =1. We note

the excellent agreement between the limiting solution and the location of the shear
layer at y = y∗. Similar agreement for the viscous shear layer solution can be generated,
but we do not present the details here.

4.3. The large-Reynolds-number limit ε → 0 with p0 =O(1) for solution branch S2

In this case the asymptotic description is rather more complicated than the previous
limits. We begin by noting that there is no significant O(1) region on the y scale
and that, in the inviscid limit, these solutions develop on a y1 = εy scale as ε → 0. It
is worth pointing out that this y1 coordinate is comparable with the original (non-
boundary layer) x coordinate introduced by Long (1958, 1961) (also see (2.2) above).

4.3.1. Region I : y1 = εy

The appropriate expansions in this region are

f (y) =
f0(y1)

ε2
+ f1(y1) + · · · , (4.7a)

Γ (y) = γ0(y1) + γ1(y1)ε
2 + · · · , (4.7b)

s(y) = s0(y1) + s1(y1)ε
2 + · · · . (4.7c)

The governing equations are then the analogue of (4.4) with k =1 and we choose
to drop the caret notation. The same approach can be taken here to develop a
leading-order solution, which (subject to f0(0) = 0, s0(0) = p0) is

f0(y1) = −2

√
p0(1 + y2

1 −
√

1 + 2y2
1 ), (4.8a)

s0(y1) = p0

√
1 + 2y2

1 − 1

y2
1

√
1 + 2y2

1

, (4.8b)

γ0(y1) ≡ 0, (4.8c)

after imposing the boundary conditions of f0(0) = γ0(0) = 0 and s0(0) = p0.
As y1 → ∞, f0 ∼ −2

√
p0y1 +

√
2p0 and s0 ∼ p0/y

2
1 , and we consider the possibility

of a further outer region on the y = O(ε−3) scale.
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4.3.2. Region II : y3 = ε3y

The appropriate expansions in this region are

f (y) =
F0(y3)

ε4
+

F1(y3)

ε2
+ · · · , (4.9a)

Γ (y) = Γ0(y3) + Γ1(y3)ε
2 + · · · , (4.9b)

s(y) = S0(y3)ε
4 + S1(y3)ε

6 + · · · . (4.9c)

The leading-order equations are then

F 2
0 + 8y4

3S0 − y3F0F
′
0 + 4y5

3S
′
0 + 2y4

3F
′′
0 = 0, (4.10a)

4y3
3S0 − F0F

′
0 − 2y3

3F
′′
0 = 0, (4.10b)

4y2
3Γ

′
0 + 2y3

3Γ
′′
0 + F0Γ

′
0 = 0, (4.10c)

to be solved subject to matching constraints as y3 → 0 (i.e. (4.8) as y1 → ∞).
We begin by noting that there is a rather simple solution to this system:

F0 = −2
√

p0y3, (4.11a)

S0 = p0/y
2
3 , (4.11b)

Γ0 = exp(−√
p0/y3). (4.11c)

This solution is simply the far-field solution of the y1 system for f and s, but with
a transition in the circulation. This straightforward solution is relevant to the other
solution branches (S3 and S4, described below) but here we instead consider the
possibility of an alternative solution to (4.10) that is not of the simple form of (4.11).

To solve for F0 we can eliminate S0 from the first two equations in (4.10), then
divide by y2

3 and integrate once to obtain

F 2
0

y3

− F0F
′
0 − 2y3

3F
′′
0 = 0, (4.12)

where the constant of integration is found to be zero by considering the limit y3 → 0.
On writing F0(y3) = y3F (y3) we can integrate the equation for F (y3) directly to yield
that

F0(y3) = −2y3

√
p0 tanh

(√
p0(1 − 4A3y3)

2y3

)
, (4.13a)

S0(y3) =
p0

y2
3

tanh

(√
p0(1 − 4A3y3)

2y3

)
, (4.13b)

where A3 is a constant and then Γ0(y3) can then be determined directly from the third
equation of (4.10).

Note that (4.13a) and (4.13b) both satisfy the appropriate conditions as y3 → 0
(matching with the y1 → ∞ limit), whilst as y3 → ∞ we have

F0(y3) ∼ 2y3

√
p0(1 − 2 exp(−4

√
p0A3)). (4.14)

At this point, there is nothing to determine A3 and our conjecture is that, because
the asymptotic solution as ε → 0 solution develops exclusively in powers of ε2 (as
suggested by (2.3)), then we must have

A3 = − log ε

2
√

p0

. (4.15)
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Figure 7. A comparison of the asymptotic prediction for the solution branch S2 structure
as ε → 0 (dashed) with the full numerical solution (solid) determined for p0 = 0.02. Here
we compute the value yc where f (yc) = 0 and compare it to the asymptotic prediction of
yc =1/(4ε3A3). To resolve the logarithmic region very large computational domains are needed;
here we show y∞ = 104, 4 × 104 and 1.2 × 105.

We note that a logarithmic dependence of between A3 and ε does not invalidate the
expansions that gave rise to (4.13a).

To confirm our asymptotic prediction for the above asymptotic structure, in
particular the quantity A3, we begin computations on the S1 branch at ε = 0.1
and p0 = 0.02 then arclength step, varying ε with p0 fixed, to continue the solution
around the limit point to branch S2 and onwards towards ε = 0. During this process,
at each step we compute the critical value y = yc at which there is a zero streamline
in the meridional flow, i.e. yc is defined by f (yc) = 0. According to the asymptotic
description above, yc = 1/(4ε3A3) + · · · ; in figure 7 we therefore compare ε3yc with
the asymptotic prediction of (4.15). Obviously, for any given choice of computational
domain (i.e. choice of y∞) there will be an ε that we cannot compute below because
the length scales associated with the asymptotic structure of the vortex will be too
large. It is for this reason that we can only show agreement for a range of ε. Even for
computational domains of size 1.2 × 105, the critical value yc will be at/beyond the
edge of the computational domain for ε � 0.005. Figure 7 illustrates an encouraging
trend of our computed results towards our asymptotic result as ε decreases and y∞
increases. Note that this asymptotic description also confirms the qualitative nature
of the axial flow for this branch, which is directed towards the axis in the inner region,
and away from the axis in the outer region (see figure 5b).

4.4. The large-Reynolds-number limit ε → 0 with p0 = O(1) for solutions S3 and S4

The asymptotic description of solution S4 in the high-Reynolds-number limit is
relatively simple. In this case the outer y3 region plays only a minor role, whilst the
y1 layer is the dominant scale for all but the swirl component Γ . The solution is a
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repeat of that presented above in (4.7), (4.8) and the solution over the y3 region is
given by (4.11).

We now move on to the S3 solution, which differs from the S4 solution in that the
y3 region does play a slightly more important role, but only at higher orders in the
expansion. On decreasing ε at fixed values of p0, the S3 and S4 solutions become
identical at leading order and only differ in higher order terms, which will vary over
on the y3 scale. An expansion to describe S3 in the y = O(ε−3) region is then

f (y) =
−2

√
p0 y3

ε4
+

f̃ (y3)

ε2
+ · · · , (4.16a)

Γ (y) = Γ0(y3) + Γ̃ (y3)ε
2 + · · · , (4.16b)

s(y) =
p0

y2
3

ε4 + S̃(y3)ε
6 + · · · , (4.16c)

where Γ0 is as given in (4.11).
As before we can eliminate S̃ in the governing system, and divide by y2

3 . Integrating
the resulting equation once we obtain a linearized form of (4.12), but this time with a
non-zero constant of integration, which can be determined by matching to the (

√
2p0)

displacement produced by the inner y1 region. We can repeat this process once more
to obtain a first-order equation:

2
√

2p0

y3

(
√

p0 − f̃√
2

)
+ 2y3f̃

′ − 2f̃ = −2
√

2p0 − 2
√

p0D3, (4.17)

where, again, the constant of integration is determined from matching to the inner
region. In this expansion D3 is a constant that can only be determined by matching
this outer solution to the any linear growth of the correction term in the y1 region
as y1 → ∞. However, solving for the correction terms in the inner layer reveals that
f1(y1) ≡ 0 and so D3 = 0; the analysis is entirely straightforward and we do not
present the details here.

The solution is therefore readily seen to be

f̃ (y3) =
√

2p0 + C3 y3 exp

(
−

√
p0

y3

)
, (4.18)

where C3 is a constant that can only be determined from (yet) higher order terms
in the expansion. The solution for S̃ then follows by back substitution into the
governing system. When C3 = 0 we have the simpler S4 branch of solutions, and when
C3 �= 0 we obtain the S3 branch with a non-trivial y3 layer. Note that both asymptotic
descriptions confirm the qualitative feature of the axial flow, which is monotonic,
directed towards the axis (see figure 5c).

To show that our numerical solutions are consistent with this asymptotic description
it is not necessary to proceed to even higher (third) order in the expansion. Since
(4.18) provides a prediction for the spatial form of the difference between S3 and S4

as ε → 0 we can compare it (without determining C3) with our numerical results if we
normalize the difference to be unity in the far field. To this end we may use (4.18) to
predict that, as ε → 0,

εf ′(y) + f ′
0(εy)

εf ′(y∞) + 2
√

p0

∼ f̃ ′(y3)

C3

=

(
1 +

√
p0

y3

)
exp

(
−

√
p0

y3

)
, (4.19)
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Figure 8. A comparison of the asymptotic description of (4.19) for solution S3 with full
numerical results in the high-Reynolds-number limit. The scaled numerical results are shown as
solid lines and are presented for p0 = 0.05 and ε =0.3, 0.2, 0.1, 0.05; the asymptotic description
as suggested by (4.19) is shown as the thicker dashed line.

where f0 is given by (4.8). We present the comparison (4.19) in figure 8 and see that
excellent agreement is found as ε → 0 for the solution branch S3.

5. The physical features of the solution branches
Given the form of solution introduced in (2.1) we observe that the flow is only

singular at the origin (r = z = 0). In the meridional plane of the vortex, if we consider
the limit of r → 0 at fixed z, corresponding to y → 0 with near-axis expansion (2.5),
then the velocity components have the following form:

u

ν
∼ ā1

2ε2

r

z2
+ · · · , (5.1a)

w

ν
∼ ā1

ε2

1

z
+ · · · , (5.1b)

v

ν
∼ b̄1

2ε2

r

z
+ · · · . (5.1c)

Similarly, in the limit of z → 0 at fixed r , the far-field expansion (2.7) leads to

u

ν
∼ −a2

r
+ · · · , (5.2a)

w

ν
∼ a1

ε
√

2

1

r
+ · · · , (5.2b)

v

ν
∼ 1

ε

1

r
+ · · · . (5.2c)



Long’s vortex revisited 107

z
L

S1

S2

S3

1.0
(a) (b)

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

z
L

1.0

0.8

0.6

0.4

0.2

z
L

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

r
L

r
L

0
.2

5

0
.0

2
0
.0

8

0.
32

0.
96

1
.0

0

4
.0

0

–1
6.

00

–8.00
–4.00

4.00
8.00

16.00

–
0
.2

5 –
1
.0

0

–4
.0

0

0.02

0.96

0.32
0.08

0.02

0.08

0.32

–1
6.

00

Figure 9. Contours of streamfunction ψ/(εKL) (a) and contours of circulation rv/K (b)
where L is an arbitrary length scale. All solutions are presented at the parameter values
p0 = 0.04 and ε = 0.1. The solutions are (top to bottom) S1, S2 and S3 (S4 is not shown owing
to its similarity to S3). Dashed contours for the streamfunction indicate negative values.

In figure 9 we show the states presented in figure 5(a)–(c), but this time in the
meridional r–z plane. For any arbitrary length scale L, we show contours of the
non-dimensionalized streamfunction ψ/(εKL) and the normalized circulation rv/K ,
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where K is the far-field circulation of the vortex, as formulated in (2.1). Clearly the
circulation has a simple conical self-similarity, and ranges from zero at the r = 0 axis
to unity in the ‘far field’.

The solutions of figure 9 are shown at the parameter values p0 = 0.04 and ε = 0.1,
with streamlines shown on the left and contours of constant circulation shown on
the right. The solutions are S1, S2 and S3 (top to bottom) corresponding to figures
5(a)–(c), respectively. The solution S1 is an outflow solution with mass transported
in the direction of increasing z. The relatively small length scale of S1 is highlighted
by the near axis variation of the contours. It is this state which, if continued to high
Reynolds numbers (ε → 0) would connect smoothly to the boundary layer vortex state
described by Long (1958, 1961).

When varying the Reynolds number (i.e. varying ε) at fixed axis pressure, solution
S2 may arise either from S1 through the limit point b shown in figure 4, or be an
isolated state, depending upon the value of p0. For p0 = 0.04, figure 3 shows that
S1 and S2 are connected by the limit point. The structure of S2 is rather different
from S1, being a ‘thicker’ vortex state, as shown clearly by the shift in contours
of constant circulation to larger radii. The thick reverse flow region near the axis
corresponds to a potential flow (with zero circulation). The flow is towards the origin
on r = 0 and a zero streamline exists at a fixed angle to the axis of rotation. This S2

state is qualitatively similar to that presented by Shtern & Hussain (1993), in which
they associate the development of axial reverse flow and thickening of the vortex
core to the phenomenon of vortex breakdown. Despite the superficial similarity there
remain important differences between our S2 state and that found by Shtern &
Hussain. Chief amongst these differences is that the work of Shtern & Hussain
imposes an impermeability condition along z = 0 as well as a constant circulation
(there is still slip along this boundary in their work). This is in stark contrast to
the free nature of this boundary in the formulation of Long (1958, 1961) (and
herein). In fact, in the limit of infinite Reynolds number the solution of Shtern &
Hussain does not approach the Long solution (see their figure 19) as the ‘outer’
flow that exists between the vortex core and the bounding plane is non-trivial and
contributes a finite flow force. Indeed, even the asymptotic description of the Shtern &
Hussain solution differs in that they find a sudden transition in the circulation at a
critical position, whereas we find an outer (thick) O(ε−3) transition region. Given the
growing length scales (for S2,3,4) as ε → 0 in the Long formulation, it is not surprising
that distinct results are obtained when one imposes alternative ‘far-field’ boundary
conditions.

The difference between solution branches S3 and S4 is slight, therefore in figure
9 we only show S3. The much larger length scale over which the circulation varies
for these solutions is clearly shown by the concentration of the circulation contours
towards even larger radii. These states may be thought of as swirl affected sink/jet
flows, with net transport of flow being towards the z =0 plane.

Intriguingly, although the problem as formulated here may be regarded as being
forced by the circulation (at large distances from the axis), for the most part this
plays only a minor role in the additional solutions we present. The new solutions
can be shown to remain largely unaffected if the swirl (as y → ∞) is omitted in
the computations. This observation is reinforced by our asymptotic analyses, where
generally the circulation does not affect the leading-order bulk flow. The main
exception to this is in the vicinity of limit points (see, e.g. § 4.1). A corollary to this is
that the other solutions may be regarded as extensions of jet flows that include the
influence of circulation. Removal of the circulation leaves a class of jet flows that is
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obviously still exact within the context of the Navier–Stokes equations, and which, as
far as the authors are aware, has not been described in the literature previously. In
particular, it should be noted that this class of axisymmetric jet solution is distinct
from the classical solutions, as catalogued in Rosenhead (1963). We must note that
the limit of zero circulation is non-trivial for these solutions, in the sense that the
dimension of the parameter space is reduced by one owing to the lack of a Reynolds
number.

6. Discussion
In this paper we have presented a number of previously unreported solutions arising

from the similarity reduction of Long (1958, 1961). This similarity form is an exact
solution of the Navier–Stokes equations, based on the cylindrical-polar coordinate
system with an isolated singularity at the origin. We can recover the well-known (QC)
solution branch naturally in our numerical and asymptotic results (in the limit of
vanishing inverse Reynolds number, ε → 0 and finite flow force M), but show that
other limiting solutions are also possible.

The QC solution has received a great deal of attention in the past, in particular
its stability characteristics have been extensively documented (Foster & Smith 1989;
Foster & Jacqmin 1992; Shtern & Drazin 2000), much of the motivation arising from
a desire to model geophysical problems including tornadoes (see, e.g. Burggraf &
Foster 1977).

The additional solutions reported here indicate that three alternative solution
branches can also exist as ε → 0 in addition to those arising directly from the classical
solutions of Long (1958, 1961). Of most direct relevance to the solution of Long
(which we have labelled S1) is the alternative solution that we have labelled as S2.
The origin of this new solution can ultimately be traced to an inability to commute
the limits of large flow force (M → ∞) and large Reynolds number (ε → 0). In the
formulation of Long, a boundary layer approximation is applied and finite Reynolds
number effects are subsequently neglected; this approach yields solutions for which
p0 → 0+ (i.e. a diminishing pressure at the axis) as M → ∞. However, we have shown
that for any ε � 1 there exists a critical p0 ∼ ε2 below which Long’s states cannot be
continued and instead join smoothly to the S2 branch as the flow force is increased;
for sufficiently small values of ε the S2 branch is obtained as M → ∞ in place of the
Long’s state that is typically described as ‘type II’ in the literature. However as ε is
increased further, the solution space becomes increasingly complex, as we show in
figure 3, and the limit point between S1 and S2 plays an important role in describing
the system. Furthermore, from the physical point of view, at present there appears to
be no reason why these additional states may not be relevant.

Our numerical results have been unable to confirm the previous work of Drazin
et al. (1995), however it is worth emphasizing that many of the results presented here
required lengthy computations on modern hardware (despite the system’s appearance
as a somewhat innocuous, albeit nonlinear, fifth-order ODE). To capture accurately
the subtle far-field algebraic behaviour, disparate length scales and the additional
solution branches require very large computational domains with large numbers of
grid points. We treated the problem numerically as a boundary value problem rather
than recasting it into an initial value problem (with an extra layer of iteration, as
was the case in Drazin et al.). In figure 10 we show the same results as figures 5,
6 and 7 in Drazin et al.. In figure 10(a) there is clearly no evidence of the loop
structure discussed in Drazin et al. that arises at ε ≈ 1/17 and M ≈ 5.3. However, in
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Figure 10. Solutions for comparison with those of Drazin et al. (1995) (in particular figure 6
of their paper). In (a) we show the standard QC results for varying flow force M together with
the solutions S1,2 at ε = 1/15, 1/18. In contrast to Drazin et al., we find no loop development
on the lower branch at ε ≈ 1/17 and M ≈ 5.3. In (b) we repeat the QC result again for reference,
but this time include the additional solutions S3,4 again for ε = 1/15, 1/18.

figure 10(b) we do show the additional solutions of S3 and S4 and one may speculate
that the proximity of these states may also cause some numerical difficulties for the
initial value approach taken in Drazin et al.

Problems of this type (especially those linked to cylindrical or spherical polar
geometries) are clearly of fundamental importance and still manage to reveal surprises
as a result of continuing theoretical analysis and advances in computation. The
question of the stability of these new states remains open.
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