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perturbation E whose columns have widely varying magnitudes. When some
of E’s columns are much smaller than the others, some copies of µ are much
less sensitive than any existing bound suggests. We explain this phenomenon
by establishing individual perturbation bounds for different copies of µ. They
show that when A22−µI is definite the ith bound scales quadratically with the
norm of the ith column, and in the indefinite case the bound is necessarily
proportional to the product of E’s ith column norm and E’s norm. An
extension to the generalized Hermitian eigenvalue problem is also presented.

Keywords: Graded perturbation, multiple eigenvalue, generalized
eigenvalue problem
2000 MSC: 15A22, 15A42, 65F15

1. Introduction

Consider the eigenvalue problem for Hermitian matrix Ã:

Ã =

( m n

m A11 E∗

n E A22

)
, A11 = µIm, (1.1)

where the superscript “·∗” takes the complex conjugate transpose of a matrix
or a vector, and Im (or simply I later if its dimension is clear from the
context) is the m × m identity matrix. If E is a zero block, then µ is a

multiple eigenvalue with multiplicity m. In general, if E is small then Ã has
m eigenvalues close to µ. In fact more can be said qualitatively. Let η be
the eigenvalue gap between A11 = µI and A22 defined as

η = min
ν∈eig(A22)

|µ− ν|, (1.2)

where eig(A22) is the set of the eigenvalues of A22, and let

ε = ‖E‖2, (1.3)

where ‖ ·‖2 is either the spectral norm of a matrix or the `2-norm of a vector.

The main result in [1] says Ã has m eigenvalues θ1, . . . , θm such that

|µ− θj| ≤ 2ε2

η +
√

η2 + 4ε2
for 1 ≤ j ≤ m. (1.4)
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The right-hand side of (1.4) is of second order in ε if η > 0 and is never
larger than ε. As confirmed by the 2-by-2 example in [1], in general these
inequalities cannot be improved without knowing more information on E
than just ε = ‖E‖2.

Suppose now that we do have additional information on E. For example,
consider the case where one of the columns of E is zero for which θi = µ
for some i. Can we derive bounds that reflect this – a zero column leads
to some θi being µ? A possible and quick answer can be given as follows:
first zero out the jth column of E, and then use the well-known perturbation
theorem (attributed to Lidskii, Weyl, Wiedlandt and Mirsky in various forms

[2, pp.196-205]) to conclude that Ã has an eigenvalue θ that differs from µ by
no more than ‖E(:,j)‖2, where E(:,j) denotes the jth column of E. It obviously
implies that if E’s jth column is a zero column, then µ must be an eigenvalue
of Ã. But there are two drawbacks to this quick answer:

1. ‖E(:,j)‖2 can be potentially (much) larger than the right-hand side of
(1.4), making the estimate less favorable to (1.4).

2. This does not imply that Ã has m eigenvalues θj such that |µ− θj| ≤
‖E(:,j)‖2 because some of the θ by this argument could be the same

eigenvalues of Ã, as mentioned in [3, Sec. 11.5].

The purpose of this article is to develop a theory that will reflect the effect
of disparity in the magnitudes of the columns of E on the eigenvalues of Ã,
unlike (1.4), through establishing different bounds for the m eigenvalues of

Ã closest to µ.
For the sake of convenience, throughout this paper η and ε are always

defined by (1.2) and (1.3), respectively, and set

εj = ‖E(:,ij)‖2 for 1 ≤ j ≤ m, (1.5)

where {i1, i2, . . . , im} is the permutation of {1, 2, . . . , m} such that

ε1 ≤ ε2 ≤ · · · ≤ εm. (1.6)

It is well-known that εm ≤ ε ≤ √
mεm. The eigenvalues of E∗E are

τ1, τ2, . . . , τm, arranged in ascending order:

0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τm. (1.7)

We will also use X ≺ Y (X ¹ Y ) for two Hermitian matrices of the same
size to mean Y −X is positive definite (semi-definite), and X Â Y (X º Y )
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to mean Y ≺ X (Y ¹ X). In particular, X Â 0 (X º 0) means that X is
positive definite (semi-definite).

Our perturbation bounds are actually presented in terms of τj, the eigen-
values of E∗E. They can be easily turned into bounds in terms of εj, because
of Lemma 3.1 below, in order to serve our purpose of developing a theory
that reflects the effect of disparity in the magnitudes of the columns of E.

The rest of this paper is organized as follows. We first investigate specific
examples in section 2, which provide insights into possible bounds that could
be expected. In section 3 we give our main results, in which we separately
deal with the cases where A22−µI is definite or indefinite. For the indefinite
case, we give asymptotic estimates that are correct up to fourth-order terms,
as well as strict bounds that are slightly larger than the asymptotic estimates.
In section 4 we describe how our bounds can be extended to the generalized
eigenvalue problem. Finally we summarize our conclusions in section 5.

2. Motivational Examples

The examples below will shape our expectation on possible effects of
different magnitudes of the columns of E on the eigenvalues of Ã nearest 0.

Example 2.1. Consider the 4-by-4 matrix Ã given by

E =

(
3 · 10−4 −2 · 10−2

2 · 10−4 10−2

)
, A22 =

(
1 0
0 −1

)
, Ã =

(
0 E∗

E A22

)
.

In this case A11 = 0, i.e., µ = 0 in (1.1), and η = 1. The two eigenvalues of

Ã closest to 0 are approximately

1.632172864323117 · 10−7 and − 3.000632552828267 · 10−4, (2.1)

which are about ε2
1 = ‖E(:,1)‖2

2 = 1.3 · 10−7 and ε2
2 = ‖E(:,2)‖2

2 = 5.0 · 10−4,
respectively.

The inequality (1.4) says Ã has two eigenvalues that differ from 0 by no
more than 4.9978 ·10−4. This estimate is very good for the second eigenvalue
in (2.1) but not so for the first one which is about less than the square of

the estimate. The quick answer, on the other hand, says Ã has an eigenvalue
that differs from 0 by no more than ε1 = 3.6056 ·10−4 and an eigenvalue from
0 by no more than ε2 = 2.2361 · 10−2, providing even worse estimates than
by (1.4). 3
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Example 2.1 may lead us to believe that there are m properly ordered
eigenvalues θ1, . . . , θm of Ã with each difference |µ−θj| being of second order
in εj = ‖E(:,j)‖2 if η > 0. Later we will show this is indeed true if A22 − µI
is definite, but not so in the general case as we can see by the next example.

Example 2.2. Consider the 4-by-4 matrix Ã given by

E =

(
δ1 0
0 δ2

)
, A22 =

(
0 1
1 0

)
, Ã =

(
0 E∗

E A22

)
,

where both δi are real numbers and |δi| ≤ 1. The characteristic equation of

Ã is
λ4 − (δ2

1 + δ2
2 + 1)λ2 + δ2

1δ
2
2 = 0,

whose two smallest eigenvalues in magnitude satisfy

|λ| =
√

2

δ2
1 + δ2

2 + 1 +
√

[1 + (δ1 + δ2)2][1 + (δ1 − δ2)2]
|δ1δ2|.

Thus |λ|/|δ1δ2| = 1 + O(δ2
1 + δ2

2). It follows that the smaller |λ| can be made
arbitrarily larger than O(min{δ2

1, δ
2
2}). 3

3. Main Results

Throughout this section, Ã is Hermitian and given by (1.1). Without loss
of generality, we assume

µ = 0.

Since by assumption µ is not an eigenvalue of A22, A22 is non-singular as a
result of assuming µ = 0, and the gap η as defined by (1.2) now is

η = 1/‖A−1
22 ‖2.

For any λ 6∈ eig(A22), set

X =

(
I −E∗(A22 − λI)−1

0 I

)
.

Then

X(Ã− λI)X∗ =

(
(−λ)I − E∗(A22 − λI)−1E

A22 − λI

)
, (3.1)
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and thus

det(Ã− λI) = det
(−E∗(A22 − λI)−1E − λI

)× det(A22 − λI). (3.2)

From this we see that any eigenvalue λ̃ of Ã not in eig(A22) is a root of

det(−E∗(A22 − λI)−1E + (−λ)I). (3.3)

Recall from (1.1) that for E sufficiently small in magnitude, the eigenvalues

of Ã consist of two subsets: one spawned from m copies of µ and another
from the eigenvalues in eig(A22) upon being moved by E. Hence Ã has m
eigenvalues close to 0 and these m eigenvalues are zeros of (3.3) near 0. Note
that for |λ|‖A−1

22 ‖2 = |λ|/η < 1 we can write (A22 − λI)−1 =
∑∞

j=0 λjA−j−1
22 ,

so for such λ we have

−E∗(A22 − λI)−1E + (−λ)I = −
∞∑

j=0

λjE∗A−j−1
22 E + (−λ)I. (3.4)

Theorem 3.1. Let Ã be a Hermitian matrix of form (1.1) with µ = 0.

1. Assume ε <
√

3/4 η. Then

(a) Ã has exactly m eigenvalues θj in the open interval (−η/2, η/2),
and moreover

|θj| ≤ 2ε2

η +
√

η2 + 4ε2
, (3.5)

for 1 ≤ j ≤ m;
(b) The function (3.3) has exactly m zeros in (−η/2, η/2) and these

zeros are precisely the eigenvalues θj of Ã.

2. Ã has m eigenvalues θj = ϑj + O(ε4/η2), where ϑj for 1 ≤ j ≤ m
are the eigenvalues of −E∗A−1

22 E. In particular, if η = O(1), then
θj = ϑj + O(ε4).

Proof. Since 4t2/(1 +
√

1 + 4t2) < 1 if t2 < 3/4, we have

2ε2

η +
√

η2 + 4ε2
<

η

2
if

ε

η
<

√
3

4
.

By the main result of [1], we conclude that Ã has exactly m eigenvalues θj

in the open interval (−η/2, η/2) and (3.5) holds.
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Item 1(b) is a consequence of Item 1(a), (3.2) and det(A22 − λI) 6= 0 for
λ ∈ (−η/2, η/2).

The expression in (3.4) is equal to −E∗A−1
22 E + (−λ)I, up to O(ε4/η2),

for |λ| = O(ε2/η). Since by (1.4) Ã has exactly m eigenvalues no larger than
O(ε2/η) in magnitude, we conclude that θj = ϑj + O(ε4/η2) for 1 ≤ j ≤
m.

Example 2.1 (revisit). The eigenvalues of −E∗A−1
22 E are

1.632173307879875 · 10−7, −3.002132173307880 · 10−4

which are extremely close to the exact values given in (2.1). 3

Theorem 3.1 gives asymptotic estimates for θj in terms of ϑj. In the
subsections that follow, we will establish bounds that reflect the effect of
disparity in the magnitudes of the columns of E. To this end, we normalize
the columns of E by their `2-norms to get

E = E0D, (3.6)

where

D = diag(‖E(:,1)‖2, ‖E(:,2)‖2, . . . , ‖E(:,m)‖2), (3.7a)

(E0)(:,j) =

{
E(:,j)/‖E(:,j)‖2, if E(:,j) 6= 0,

0, if E(:,j) = 0.
(3.7b)

Lemma 3.1. Let τ1, τ2, . . . , τm be the eigenvalues of E∗E, arranged in as-
cending order as in (1.7), and let εj be defined as in (1.5) and (1.6). Then

τj ≤ ‖E0‖2
2 ε2

j ≤ mε2
j . (3.8)

Proof. Use 0 ¹ E∗E = DE∗
0E0D ¹ ‖E0‖2

2D
2 to get

τj ≤ ‖E0‖2
2 D2

(ij ,ij)
= ‖E0‖2

2 ε2
j .

The second inequality is due to ‖E0‖2 ≤
√

m.

Next, we separately consider the cases according to whether A22 is definite
or not. All bounds will be given in terms of τj. Corresponding bounds in
terms of εj can then be easily derived by using (3.8).
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3.1. Positive (negative) definite A22

Theorem 3.2. For Hermitian matrix Ã as in (1.1) with µ = 0, suppose

ε <
√

3/4 η. If A22 is positive (negative) definite, then Ã has m nonpositive
(nonnegative) eigenvalues θ1, . . . , θm arranged in ascending order satisfying

0 ≤ −θm−j+1 ≤ 2τj

η +
√

η2 + 4τj

, if A22 Â 0, (3.9a)

0 ≤ θj ≤ 2τj

η +
√

η2 + 4τj

, if A22 ≺ 0, (3.9b)

for 1 ≤ j ≤ m.

Proof. The case in which A22 ≺ 0 can be turned into the case in which
A22 Â 0 by considering −Ã instead. Suppose that A22 Â 0, i.e., A22 is
positive definite. Set

B(t) = −E∗(A22 − tI)−1E (3.10)

for t ∈ R. By Theorem 3.1 and the assumption ε <
√

3/4 η, we know Ã has
exactly m eigenvalues in (−η/2, η/2) and these m eigenvalues are the zeros
of det (B(t)− tI) in (−η/2, η/2). Since for any t ∈ (−η/2, η/2), 0 ≺ A22− tI
and thus B(t) ¹ 0; so

B(t)− tI ≺ 0 for t ∈ (0, η/2).

Therefore the m eigenvalues of Ã are in (−η/2, 0]. Denote them by

−η/2 < θ1 ≤ θ2 ≤ · · · ≤ θm ≤ 0.

Also denote by
λ1(t) ≤ λ2(t) ≤ · · · ≤ λm(t) ≤ 0 (3.11)

the m eigenvalues of B(t) for t ∈ (−η/2, 0]. They are continuous. The
fixed points of λi(t) within t ∈ (−η/2, 0] give all the θj. In fact, we have
λj(θj) = θj. This is because λj(t) is a decreasing function for t ∈ (−η/2, 0]
and thus λj(t) = t has a unique solution on (−η/2, 0]. Hence θj is the jth
smallest eigenvalue of B(θj). This implies that |θj| = −θj is the jth largest
eigenvalue of −B(θj). Since

−B(θj) = E∗(A22 − θjI)−1E ¹ E∗E
η + |θj| ,
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Figure 3.1: The log-log scale plot of λi(t) for Ã in (3.12)

we have

|θj| ≤ τm−j+1

η + |θj| implying |θj| ≤ 2τm−j+1

η +
√

η2 + 4τm−j+1

which gives (3.9a).

Remark 3.1. Since the right-hand sides in (3.9) are increasing as τj does,
replacing τj by its upper bound in (3.8) yields bounds on |θj| in terms of εj,
the norms of E’s columns.

Example 3.1. Consider the 4-by-4 matrix Ã given by

E =

(
3 · 10−4 −2 · 10−2

2 · 10−4 10−2

)
, A22 =

(
1 0
0 2

)
, Ã =

(
0 E∗

E A22

)
. (3.12)

In this case A11 = 0, i.e., µ = 0 in (1.1), and η = 1. The following table

displays the eigenvalues θj of Ã nearest to 0, the eigenvalues ϑj of −E∗A−1
22 E,

and the upper bounds in (3.9) and the ones after τj replaced by mε2
j .

θj ϑj
2τj

η+
√

η2+4τj

2mε2j

η+
√

η2+4mε2j

−4.4986 · 10−4 −4.5006 · 10−4 4.9978 · 10−4 9.9900 · 10−4

−5.4438 · 10−8 −5.4438 · 10−8 9.7994 · 10−8 2.6000 · 10−7
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Thus our bounds are remarkably sharp. Let λi(t) be as in the proof of
Theorem 3.2 for this example. Figure 3.1 we plots λ1(t) and λ2(t) as functions
of t. The intersections with the curve for t are the eigenvalues θ1 and θ2.
Note that in Figure 3.1 λ1(t) and λ2(t) appear to be nearly constants. That
is because they decrease very slowly, which is a typical behavior of λi(t) when

ε ¿ η/2. In fact it can be shown that − ε2

η2 ≤ dλi(t)
dt

≤ 0 for t ∈ (−η/2, 0] and
1 ≤ i ≤ m. 3

3.2. Indefinite A22

Consider now that A22−µI is indefinite. We will use the following result,
which is a direct consequence of the proof of [4, Theorem 1].

Lemma 3.2. Let W be an `-by-` Hermitian matrix, and let D = diag(δ1, δ2, . . . , δ`)
with |δ1| ≤ |δ2| ≤ · · · ≤ |δ`|. Denote the eigenvalues of D∗WD by ω1, . . . , ω`

arranged such that |ω1| ≤ |ω2| ≤ · · · ≤ |ω`|. Then for 1 ≤ i ≤ `

|ωi| ≤ min
1≤j≤`−i+1

|δ`−j+1δi+j−1| ‖W‖2

≤ |δ`δi| ‖W‖2.

Two types of bounds will be proven for the eigenvalues θj of interest of

Ã: asymptotical bounds up to O(ε4), and strict bounds at a tradeoff of being
slightly larger than the asymptotic bounds if higher order terms O(ε4) are
ignored.

Lemma 3.3. Let ϑj for 1 ≤ j ≤ m be the eigenvalues of −E∗A−1
22 E arranged

such that
|ϑ1| ≤ |ϑ2| ≤ · · · ≤ |ϑm|.

Then

|ϑj| ≤ ζj
def
=

1

η
min

1≤k≤m−j+1

√
τm+1−kτj+k−1 (3.13a)

≤ 1

η

√
τmτj, (3.13b)

where τi (1 ≤ i ≤ m) are the eigenvalues of E∗E as in Lemma 3.1.

Proof. Inequality (3.13b) follows from (3.13a) by simply picking k = 1 with-
out the minimization.
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We now prove (3.13a). Let E = UΣV ∗ be the SVD of E, where U and
V are unitary and

Σ =





(
diag(

√
τ1,
√

τ2, . . . ,
√

τm)

0(n−m)×m

)
, if n ≥ m,

(
diag(

√
τm−n+1,

√
τm+n+2, . . . ,

√
τm) 0n×(m−n)

)
, if n < m.

Note that in the case when n < m, τ1 = · · · = τm−n = 0. We have E∗A−1
22 E =

V Σ∗U∗A−1
22 UΣV ∗ which has the same eigenvalues as Σ∗U∗A−1

22 UΣ. It can
be proven that for either n ≥ m or n < m,

Σ∗U∗A−1
22 UΣ = DWD

for some matrix W satisfying ‖W‖2 ≤ 1/η and D = diag(
√

τ1, . . . ,
√

τm).
Now apply Lemma 3.2 to complete the proof.

Remark 3.2. When A22 is definite, we can get |ϑj| ≤ τj/η which is stronger
than (3.13a) and thus (3.13b).

Theorem 3.3. For Hermitian matrix Ã as in (1.1) with µ = 0, suppose

ε <
√

3/4 η. Then Ã has m eigenvalues θ1, . . . , θm arranged such that

|θ1| ≤ |θ2| ≤ · · · ≤ |θm| (3.14)

satisfying
|θj| ≤ ζj + O(ε4), (3.15)

where ζj is defined by (3.13a).

Proof. It is a consequence of Theorem 3.1 and Lemma 3.3.

Next we derive strict bounds, i.e., without the term O(ε4) in (3.15). One
difficulty here is that λi(t) is no longer monotonic. However, the fact remains
true that if θi ∈ (−η/2, η/2) is an eigenvalue of

B(θi) = −E∗(A22 − θiI)−1E,

then θi is also an eigenvalue of Ã.
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Lemma 3.4. Let B(t) be defined as in (3.10) with eigenvalues

λ1(t) ≤ λ2(t) ≤ · · · ≤ λm(t) (3.16)

each of which are piecewise differentiable5. If ε < η/2, then
∥∥∥∥
dB(t)

dt

∥∥∥∥
2

≤ 4ε2

η2
< 1 and

∣∣∣∣
dλj(t)

dt

∣∣∣∣ ≤
4ε2

η2
< 1 for t ∈ (−η/2, η/2).

(3.17)

Proof. We have

B(t)−B(t + ∆t) =E∗(A22 − tI)−1E − E∗ [A22 − (t + ∆t)I]−1 E

=E∗ {
(A22 − tI)−1 − [A22 − (t + ∆t)I]−1} E

=E∗(A22 − tI)−1
{

I − [
I −∆t(A22 − tI)−1

]−1
}

E.

Therefore

∥∥∥∥
B(t)−B(t + ∆t)

∆t

∥∥∥∥
2

=

∥∥∥E∗(A22 − tI)−1
{

I − [I −∆t(A22 − tI)−1]
−1

}
E

∥∥∥
2

|∆t|

≤
ε‖(A22 − tI)−1‖2

∥∥∥I − [I −∆t(A22 − tI)−1]
−1

∥∥∥
2
ε

|∆t| .

Noting that for t ∈ (−η/2, η/2), we have

‖(A22 − tI)−1‖2 <
2

η
,

∥∥∥I − [
I −∆t(A22 − tI)−1

]−1
∥∥∥

2
<

1

1− |∆t| · 2/η − 1

=
|∆t| · 2/η

1− |∆t| · 2/η ,

and thus

∥∥∥∥
B(t)−B(t + ∆t)

∆t

∥∥∥∥
2

≤
ε2 · 2/η · |∆t|·2/η

1−|∆t|·2/η

|∆t|

5By [5, Theorem 4.8], there are countable points in (−η/2, η/2) such that between any
two nearby points, each λi(t) is differentiable.
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=
4ε2

η2(1− |∆t| · 2/η)
.

Let ∆t → 0 to get ∥∥∥∥
dB(t)

dt

∥∥∥∥
2

≤ 4ε2

η2
< 1,

since ε < η/2. Finally, we use the well-known perturbation theorem (at-
tributed to Lidskii, Weyl, Wiedlandt and Mirsky in various forms [2, pp.196-
205]) to conclude that

∣∣∣∣
dλj(t)

dt

∣∣∣∣ ≤
∥∥∥∥
dB(t)

dt

∥∥∥∥
2

≤ 4ε2

η2
< 1,

as expected.

Theorem 3.4. For Hermitian Ã as in (1.1), if ε < η/2, then Ã has m
eigenvalues θ1, . . . , θm (arranged as in (3.14)) satisfying

|θj| ≤ ζj

1− 4ρ2
, (3.18)

for 1 ≤ j ≤ m, where ρ = ε/η < 1/2 and ζj is defined by (3.13a).

Proof. Instead of proving (3.18) directly, we shall prove that for any given
j ∈ {1, . . . , m} there are j of θi’s satisfying |θi| ≤ ζj/(1− 4ρ2). Thus (3.18)
must hold.

Adopt the notations in Lemmas 3.3 and 3.4. By (3.17), for any t ∈
(−η/2, η/2), we have

|λi(t)− λi(0)| ≤
∫ t

0

∣∣∣∣
dλi(τ)

dτ

∣∣∣∣ dτ ≤ 4ε2|t|
η2

= 4ρ2|t| (3.19)

for 1 ≤ i ≤ m. Let δj =
ζj

1−4ρ2 . We claim that there are at least j of λi(t)
such that

λi(t) ∈ [−δj, δj] for all t ∈ [−δj, δj]. (3.20)

This means that each function λi(t) maps the interval t ∈ [−δj, δj] into
itself. By Brouwer’s fixed point theorem, each of such λi(t) has a fixed point
ti ∈ [−δj, δj] such that λi(ti) = ti. Hence, recalling (3.2) we see that ti is an

eigenvalue of Ã. Note that the second inequality in (3.17) implies that ti is
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a unique fixed point of λi(t) in (−η/2, η/2). Therefore all counted, Ã has at
least j eigenvalues in [−δj, δj].

It remains to show that there are at least j of λi(t) satisfying (3.20). To
see this, we notice

ϑk ∈ [−ζk, ζk] ⊆ [−ζj, ζj] ⊂ [−δj, δj] for 1 ≤ k ≤ j.

These ϑk for 1 ≤ k ≤ j are taken by j different λi(t) at t = 0, i.e., ϑk = λ`k
(0),

where `k ∈ {1, . . . , m} are distinct for k ∈ {1, . . . , j}. We now prove that
λ`k

(t) for k ∈ {1, . . . , j} are the j of λi(t) satisfying (3.20). In fact, for
t ∈ [−δj, δj] and k ∈ {1, . . . , j}

|λ`k
(t)| ≤ |λ`k

(0)|+ |λ`k
(t)− λ`k

(0)|
= |ϑk|+ |λ`k

(t)− λ`k
(0)|

≤ ζj + 4ρ2δj

= δj,

as expected.

Remark 3.3. Compared with (3.15) in Theorem 3.3, the bound in (3.18)
removes the term O(ε4) at the expense of the factor (1− 4ρ2)−1.

Example 2.1 (revisit). The following table displays the eigenvalues θj of Ã
nearest to 0, the eigenvalues ϑj of −E∗A−1

22 E, and the upper bounds in (3.18)
and the ones after τj replaced by mε2

j .

θj ϑj
ζj

1−4ρ2

mεjεm

1−4ρ2

−3.0006 · 10−4 −3.002 · 10−4 5.0103 · 10−4 1.0020 · 10−3

1.6322 · 10−7 1.6322 · 10−7 7.0140 · 10−6 1.6157 · 10−5

The bounds are rather sharp. 3

4. Possible extensions to the generalized eigenvalue problem

So far we have focused on the Hermitian eigenvalue problem (1.1). We
now consider the following Hermitian definite generalized eigenvalue problem

Ã =

(
µB11 E∗

E A22

)
, B̃ =

(
B11 F ∗

F B22

)
, (4.1)

14



where Bii Â 0, and ‖F‖2 is sufficiently small6 so that B̃ Â 0 also.

If E = F = 0, then µ is an eigenvalue of the pencil Ã−λB̃ of multiplicity
m. In this section we outline how to develop perturbation bounds using what
we have gotten in section 3.

4.1. Special Case: Bii = I and µ = 0

In this case,

Ã =

(
0 E∗

E A22

)
, B̃ =

(
Im F ∗

F In

)
. (4.2)

Assume that ‖F‖2 < 1. A similar approach to the one in [6, section 2.1] can
be applied as follows. We first let

X =

(
Im −F ∗

0 In

)
, W =

(
Im 0
0 [I − FF ∗]1/2

)
, (4.3)

and then let

B̂
def
= X∗B̃X =

(
Im 0
0 I − FF ∗

)
= W 2, (4.4a)

Â
def
= X∗ÃX =

(
0 E∗

E Â22

)
, (4.4b)

where W is the unique Hermitian definite square root [7, Ch. 6] of B̂, and

Â22 = A22 − EF ∗ − FE∗.

Ã − λB̃ has the same eigenvalues as W−1ÂW−1 − λIN . Since W−1ÂW−1

takes the form of (1.1), our theory in section 3 applies to W−1ÂW−1, leading
to various bounds.

4.2. General Case

Now we consider the general case (4.1). Assume µ = 0; otherwise we
shall consider

(Ã− µB̃)− λB̃

6For example, ‖F‖2 < mini{σmin(Bii)} guarantees B̃ Â 0, where σmin(Bii) is the
smallest singular value of Bii.
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instead. Suppose

Ã =

(
0 E∗

E A22

)
, B̃ =

(
B11 F ∗

F B22

)
. (4.5)

Set Y = diag(B
−1/2
11 , B

−1/2
22 ) to get

Y ∗ÃY =

(
0 Ê∗

Ê Â22

)
, Y ∗B̃Y =

(
Im F̂ ∗

F̂ In

)
, (4.6)

which reduces to the case in subsection 4.1, where

Â22 = B
−1/2
22 A22B

−1/2
22 , F̂ = B

−1/2
22 FB

−1/2
11 , Ê = B

−1/2
22 EB

−1/2
11 . (4.7)

5. Conclusion

We established perturbation bounds for the multiple eigenvalue µ of Her-
mitian matrix A under a perturbation in the off-diagonal block:

A =

(
µIm 0
0 A22

)
perturbed to Ã =

(
µIm E∗

E A22

)
,

with an emphasis on the case where the magnitudes of the columns of E
vary widely. We show that whether A22 − µIm is definite or not plays a
major role: if it is (positive or negative) definite, then Ã has m eigenvalues
θi (1 ≤ i ≤ m) such that the ith difference |θi − µ| is bounded by a quantity
that is proportional to the square of the norm of E’s ith column, but when
A22− µIm is indefinite the quantity is proportional to the product of the ith
column norm and the norm of E. We also outline a possible extension to the
Hermitian definite generalized eigenvalue problem.
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