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Minimum Entropy Approach For Robot Manipulator

Zakwan Skaf, Ahmad AI-Bayati and Hong Wang

Abstract— In this paper, a new algorithm for an adaptive
PI controller for nonlinear systems subject to stochastic non-
Gaussian disturbance is studied. The minimum entropy control
is applied to decrease the closed-loop tracking error on an ILC
basis. The key issue here is to divide the control horizon into
a number of equal time intervals called batches. Within each
interval, there are a fixed number of sample points. The design
procedure is divided into two main algorithms, within each
batch and between any two adjacent batches. A D-type ILC law
is employed to tune the PI controller coefficients between two
adjacent batches. However, within each batch, the PI coefficients
are fixed. A sufficient condition is established to guarantee
the stability of the closed-loop system. An analysis of the ILC
convergence is carried out. Two-link robot manipulator example
is included to demonstrate the use of the control algorithm, and
satisfactory results are obtained.

I. INTRODUCTION

Research into controller design for stochastic systems has

been regarded as an important aspect of this field of research

over the past few decades. This is mainly due to the fact

that a large class of physical systems has random inputs,

time delays, uncertainties and noise. Therefore, an ideal

control design should be such that the system attenuates

the stochastic behaviour, or sufficiently minimizes the ef-

fect caused by the randomness. In most stochastic or PDF

control system designs, the output tracking error signal (the

difference between the set point and the system output) of the

closed-loop control system is a central index that represents

the control performance of the closed-loop systems. Under

the assumption that the random variables or the noise in

the stochastic system are subject to Gaussian processes, the

tracking error is used to represent the closed-loop perfor-

mance. The statistics of the tracking error thus characterize

the performance of the controller. The first approach to

controller design focused on mean and variance control [1],

minimizing the uncertainties of the closed-loop stochastic

systems. Later on, linear optimal control [2] and linear

quadratic martingale control [3] were developed. Further

research has been performed into optimal stochastic control,

optimal adaptive predictive control for nonlinear stochastic

systems, and stochastic adaptive control strategies presented

in [4], [5], [6], respectively. Also, the sliding mode control
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problem for a class of linear continuous-time systems with

Markovian jump parameters was solved in [7], and robust

fuzzy control for uncertain Markovian stochastic systems

was developed in [8]. More recently, robust H∞ control of

uncertain stochastic, nonlinear systems [9], and an adaptive

output-feedback controller for a stochastic nonlinear system

[10] were introduced.

On the other hand, when the random variables or the

noise in the stochastic system are subject to non-Gaussian

processes (i.e., systems with non-symmetrically distributed

noises), the mean and variance are insufficient to char-

acterize the stochastic properties, since the spread of the

non-symmetrically distributed noises cannot be accurately

described by the variance of the tracking error measures

alone [11]. This is because the shape of the tracking error

PDF will be related to both the control parameters and

the statistics of the noise. Therefore, a new measure of

randomness, called the entropy of the tracking error of the

closed-loop system, should be employed for the closed-loop

control design of non-Gaussian stochastic systems. Thus,

the main objective of minimum entropy control would be

formulating a deterministic control signal to minimize the

entropy of the closed-loop tracking error. Entropy has a

significant advantage in dealing with non-Gaussian systems.

This is because entropy provides a general description of the

uncertainties of stochastic systems, without constraints the of

using certain distributions. Moreover, it has been proved that

the minimum entropy algorithm is similar to the minimum

variance algorithm, when the noise of the stochastic system

follows a Gaussian behaviour [12], [13]. For an arbitrary

continuous random variable x ∈ [a, b]. The entropy of a x is

defined as

H(x) = −
∫ b

a

γ (x) ln γ (x) dx (1)

where γ (x) is the PDF of x. From (1) it is clear that

the entropy is a measure of the amount of uncertainty

represented by the probability distribution and provides a

more general character of the stochastic system, which is

subject to arbitrary noises with any PDF shape. Suppose x is

a Gaussian variable, a = −∞, and b = +∞. Also, consider

that the PDF of x is Gaussian distribution defined as follows.

γ(x) =
1√
2πσ

exp(− (x−m)2

2σ2
) (2)

where m and σ2 are the mean and the variance of the

distribution, respectively. By substituting (2) in (1), it can

be seen that the entropy H(x) can be expressed as.

H(x) = 0.5(1 + ln(2πσ2)) (3)

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 2475



From (3), it can be seen that minimizing entropy is equivalent

to the minimization of the variance of x, and in this way,

minimum variance control may be regarded as a special case

of minimum entropy control. Entropy was used in different

definitions. Initially, the entropy was presented as a measure

of the uncertainty about its actual structure in both contin-

uous and discrete time [14]. Later on, a new definition was

presented in [15] by considering the exponential nature of the

information gain function. Also, the entropy was represented

as an average information content in a given probability

density function [16]. In fact, entropy concept was applied

widely in the design of control algorithms for stochastic

systems. Among various existing approaches is the work

of [12], where the entropy was applied to characterize and

minimize the closed loop randomness for general stochastic

systems subject to arbitrary bounded random inputs. The

control input was formulated which minimizes the output

entropy and guarantee the local stability of the closed-loop

system. Later on, in [13], the authors developed a control

algorithm for the control of the output mean values and

the minimization of the closed-loop entropy for nonlinear

affine and non-Gaussian stochastic systems. Moreover, a

novel controller design for a linear time-invariant stochastic

system subject to a bounded random input by using Youla

parameterization was established in [17]. Also, a minimum

entropy control problem was solved for nonlinear ARMA

systems over a communication network with a stochastic

delay in the communication channels, where the probability

density function of the tracking error was estimated by using

a neural network [18].

II. PROBLEM FORMULATION

In this chapter, the following nonlinear stochastic model

between the output and input will be considered

x (i+ 1) = Ax (i) +Bu (i) + g (x (i)) + d (i)

y (i) = Cx (i)
(4)

where x (i) ∈ Rn is the state vector, u (i) ∈ Rr is the

measurable input vector and y (i) ∈ Rp is the measurable

output vector. Moreover, A, B and C represent the known

parametric matrices of the dynamic part of the system with

suitable dimensions. d (i) is the bounded non-Gaussian

random noise. g (x (i)) is a nonlinear vector function that

stands for the nonlinear dynamics of the model and is

supposed to satisfy g (0) = 0 , and the following Lipschitz

condition, similar to [19]

‖g (x1 (i))− g (x2 (i)) ‖ ≤ ‖U(x1(i)− x2(i))‖ (5)

for any x1 (i) and x2 (i) , where U is a known matrix.

Denoting the desired system output as r (i), the tracking error

can be expressed as

e (i) = r (i)− y (i) (6)

which is a non-Gaussian random process due to the

affect of the non-Gaussian disturbance on the closed-loop

performance. Theoretically, it is expected that such a

randomness or uncertainty is minimized by the controller

function. In other words, the purpose of the PI controller

design in this chapter is to establish a control signal so

that the randomness or uncertainty in the system output

and closed-loop tracking error is minimized. The controller

coefficients will be trained by an ILC tuning mechanism to

minimize the entropy of the closed-loop tracking error. For

this purpose, the well-known Renyis entropy measure for a

random error (e) can be expressed as follows

H(e) =
1

1− α
log

(
∫

γα(e)de

)

(7)

where γ presents the probability density function of the ran-

dom error. The following Kernel density estimation method

is used to estimate the tracking error probability distribution

function within each batch using the sampled tracking error

data [16].

γ(e) ≈ γ̂(e) =
1

N

N
∑

i=1

Kσ(e− ei) (8)

where Kσ(.) is a real, symmetrical Kernel function with the

specifications stated in [16], and σ > 0 is the order of Renyis

quadratic entropy. The chosen Kernel function in this work

is expressed as follows:

Kσ(x) =
1√
2π

exp

(−x2

2

)

(9)

The choice of the Kernel function is actually dependent

on the level of smoothness the designer expects from the

pdf estimation. The ILC-based controller tuning objective

function can be written as follows:

H(e) =
1

1− α
log(VRa(e))) (10)

where VRa(e) is usually called the Information Potential (IP),

and can be further expressed as

VRa(e) =
1

Nα

N
∑

i=1





N
∑

j=1

Kσ(ei − ej)





α

(11)

III. CONTROLLER ALGORITHM DESIGN

PI controllers are widely used in both theoretical studies

and practical applications of industrial control over the last

five decades [20]. The popularity of PI controller can be

attributed to its robust performance in a wide range of

operating conditions and to its very simple structure.

As discussed before, the aim of the PI controller design

is to minimize the randomness of the tracking error, so

that the entropy of the tracking error can be minimized.

For this purpose, the control horizon will be divided into

a number of equal time-domain intervals called batches as

{T 1,T 2,T 3,....T k,....}. Within each interval, there are a fixed

number of sample points {1,2.....,N}, where N is sampling

numbers in a batch. In this case, the batch length N should

be selected large enough so that the system almost reaches

the steady state with each batch. In each batch, a number of
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PI coefficients are fixed with intervals

PI coefficients are updated at these points

0 T1 T2 time

Batch1 Batch2

Control Horizon

Fig. 1. PI-tuning procedure

sampled tracking error can be collected. Between any two

adjacent batches, the PI coefficients are tuned by ILC-based

method to minimize the tracking error entropy ( see Fig. (1)).

The ILC tuning mechanism of PI coefficients needs to go on

at the beginning of the k batches until the PI coefficients

cannot be further tuned.

A generalized PI controller with tunable coefficients is

considered as adaptive controller in this work as follows

ξ(i) = ξ(i− 1) + Tse(i− 1)

u(i) = KP e(i) +KIξ(i)
(12)

where e(i) = r − y(i) and Ts is the sampling time.

Assume that the current instant is at the beginning of the

interval T k, the system tracking error within this interval

should have the following sample values {ek1 ,ek2 ,ek3 ,....ekN}.

Within this interval, the sampled tracking error can be used

to measure the entropy and construct the PDF. Therefore, the

entropy of sample {ek−1
1 ,ek−1

2 ,ek−1
3 ,....ek−1

N } in the interval

T k−1 can be expressed as follows

Hk−1(e) =
1

1− α
log







1

Nα

N
∑

i=1

[

N
∑

i=1

Kσ(e
k−1
i − ek−1

j

]α−1






(13)

and the information potential for {ek−1
1 ,ek−1

2 ,ek−1
3 ,....ek−1

N }
in the interval T k−1 can be expressed according to the

following equation

V k−1
Ra (e) =

1

Nα

N
∑

i=1





N
∑

j=1

Kσ(e
k−1
i − ek−1

j )





α−1

(14)

By substituting (14) into (13), the entropy can be obtained

as follows:

Hk−1(e) =
1

1− α

k−1

Ra

(e) (15)

The task of tunning the PI controller coefficients between

adjacent batches can be solved by the following D-type ILC

law which can be only considered as a local optimal solution

KP (k) = KP (k − 1)− λP

∂Hk−1(e)

∂Kk−1
P

KI(k) = KI(k − 1)− λI

∂Hk−1(e)

∂Kk−1
I

(16)

where λP and λI are the ILC learning rates chosen so that the

iterative control law is convergent [21]. KP (k) and KI(k)
are the PI controller coefficients within the kth batch. In

ILC, the PI coefficients in the kth batch is based on the PI

coefficients in the (k− 1)th batch and a correcting function,

which is basically dependent on the gradient of closed-loop

entropy tracking error of PI coefficients in the (k − 1)th

batch.

The kth component of
∂H(e)
∂KP

and
∂H(e)
∂KI

can be approxi-

mated as follows:

∂H(e)

∂KP

=
Hk−1(e)−Hk−2(e)

∆KP

∂H(e)

∂KI

=
Hk−1(e)−Hk−2(e)

∆KI

(17)

where

∆KP = KP (k − 1)−KP (k − 2)

∆KI = KI(k − 1)−KI(k − 2)
(18)

The statement of the convergence in this section may raise

some issues about the learning parameters, type of conver-

gence that need to be addressed more clearly. Therfore, it

should be noted that the proposed convergence analysis is in

introductory stage of development and future efforts need to

address constraints on learning rates precisely. As it will be

seen, the so called convergence laws in this work determine

the constraints based on which the ILC-based cost function

is decreasing along with the batches. For simplicity, we only

discuss the suffcient convergence conditions to guarantee

the convergence of the above proposed ILC algorithm. The

key issue is that the learning rate of PI coefficients should

be decreased batch-by-batch. In other words, the entropy

of closed-loop tracking error should be decreased batch-by-

batch. This would be equivalent to

Hk(e(i)) < Hk−1(e(i)) (19)

Since α > 0, then inequality (19) can be re-written as

log
(

V k−1
Ra (e(i))

)

< log
(

V k
Ra(e(i))

)

(20)

which means that

log

(

V k−1
Ra (e(i))

V k
Ra(e(i))

)

< 0 (21)

which is equivalent to the following

V k−1
Ra (e(i))

V k
Ra(e(i))

< 1 (22)

Since the IP is non-negative, inequality (20) would mean

∆VRa,k = V k
Ra(e(i))− V k−1

Ra (e(i)) > 0 (23)

By using (11), the following approximation can be made.

∆VRa,k ≈ ∆





1

Nα

N
∑

i=1





N
∑

j=1

Kσ(ei − ej)





α



=
1

Nα

N
∑

i=1















N
∑

j=1

Kσ(ek (i)− ek (j))





α−1

×





N
∑

j=1

K̀σ(ek (i)− ek (j))∆(ek (i)− ek (j))











(24)
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As such, when PI controller is running, the learning

parameters λP and λI must be chosen so that the (19) to

(24) together with (18) are satisfied. The algorithm can be

summarized as follows:

Step 1: Collect error sample from interval T k−1

Step 2: At the beginning of interval T k, calculate the rate of

changes of the closed-loop tracking error entropy as shown

in (17).

Step3: Update the PI coefficients using (16)

Step4: Calculate the control signal using (12), and apply it

to the system, and return to step 1.

This process will repeat untill the end of of control horizon

is reached.

IV. CLOSED LOOP STABILITY

In this section, the stability of the closed-loop system given

by (4) and (12) will be considered. Corresponding to (4) and

(12), the closed-loop system equation within the kth batch

can be written as

Mk(i+ 1) = ĀkMk(i) + B̄k.r + F̄ g(Mk(i))) (25)

where

Mk(i) =

[

ek(i))
ξ(i)

]

, Āk =

[

A−BKP −BKI

TsI I

]

(26)

and

B̄k =

[

I −A

0

]

, F̄ =

[

I 0
0 0

]

, g(Mk(i)) =

[

g(x(i))
0

]

(27)

To prove the stability of the closed loop system, let us

consider the following Lyapunov candidate

V (Mk(i), i) = MT
k (i)P−1

k Mk(i)

+ λ2
k−1
∑

i=1

[‖ŪMk(i)‖2 − ‖g(Mk(i)‖2]]
(28)

Differentiating equation (28) over the time gives

∆V (i) = V (Mk(i+ 1), i+ 1)− V (Mk(i), i) (29)

= S̄T
k (i)NkS̄k(i) + 2S̄k(i)ĀT

k P
−1
k B̄kr

+ 2gT (Mk(i)F̄T
k P−1

k B̄kr

+ rT B̄T
k P

−1
k B̄kr < 0

where

Nk =

[

ĀT
k P

−1
k Āk − P−1

k + λ2ŪT Ū ĀT
k P

−1
k F̄

F̄TP−T
k Āk F̄TP−1

k F̄ − λ2I

]

(30)

Using the well known Schur complement formula, (30) can

be further reduced to

N1,k =





−P−1
k + λ2ŪT Ū 0 ĀT

k

0 −λ2I F̄T

Āk F̄ −Pk



 < 0 (31)

By pre-multiplying N1,k by diag(PT
k , I, I) and post multiply-

ing it by diag(Pk, I, I) and also applying Schur complement

formula, the necessary condition for stability will be as

follows

N2,k =









−Pk 0 PT
k ĀT

k λ.PkŪ
T
k

0 −λ2I F̄T 0
ĀkPk F̄ −Pk 0
λŪkPk 0 0 −I









< 0 (32)

If (32) holds, a positive scalar δ exists so that Nk ≤ −δ.I .

Along with (25) it can be verified that

∆V (i) ≤ −δ‖S̄k‖2 + 2‖ĀT
k P

−1
k B̄kr‖.‖S̄k‖2

+ 2gT (Mk(i))F̄T
k P−1

k B̄kr

+ rT B̄T
k P

−1
k B̄kr (33)

It is obvious that the right-hand side of inequality (33) is a

second degree polynomial with respect to S̄k(i). It can be

shown that ∆V (i) ≤ 0 holds if

S̄k(i) ≥ δ−1(‖ĀT
k P

−1
k B̄kr‖

+

√

‖ĀT
k P

−1
k B̄kr‖2 + δ(c1 + c2)) (34)

where

c1 = 2gT (Mk(i))F̄T
k P−1

k B̄T
k r and c2 = rT B̄T

k P
−1
k B̄kr

This means that the stability of the closed-loop system can

be checked.

V. SIMULATION RESULTS

Using the Lagrange Euler formulation, the dynamic equa-

tion of a n-joint of an ideal rigid robot arm can be expressed

with the equation of motion given by [22],

M(q)q̈ + c(q, q̇)q̇ + g(q) = u (35)

where q ∈ Rn is the joint angular position vector of the robot

manipulator; u ∈ Rn is the applied joint torques; M(q) ∈
Rm×n is the inertia matrix; c(q, q̇) ∈ Rm×n is the effect of

Coriolis and centrifugal forces; g(q) ∈ Rn is the gravitational

torques. In this work, a two-link robot manipulator as shown

in Fig. 2 is considered. The parameter matrices are as follows

[23]:

M(q) =

[

θ1 + θ2 + 2θ3 cos(q2) θ2 + 2θ3 cos(q2)
θ2 + 2θ3 cos(q2) θ2

]

(36)

c(q, q̇) =

[

−θ3 sin(q2)q̇2 −θ3 sin(q2)(q̇1 + q̇2)
θ3 sin(q2)q̇1 0

]

, (37)

g(q) =

[

g(θ4 + θ5) cos(q1) + gθ6 cos(q1 + q2)
gθ6 cos(q1 + q2)

]

, (38)

where g is the gravitational acceleration and

θ1 = m1l
2
c1 +m2l

2
1 + I1 (39)

θ2 = m2l
2
c2 + I2 (40)

θ3 = m2l1lc2 (41)

θ4 = m1lc1 (42)
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Fig. 2. Two-link robot manipulator.
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Fig. 3. The erroe PDF for the first and last batch

θ5 = m1l1 (43)

θ6 = m2lc2 (44)

The numerical values for the two-link robot are presented in

Table I. The desired trajectories are:

qd =

[

qd1
qd2

]

=

[

3.14(1− exp(−0.5t))
3.14(1− exp(−0.5t))

]

(45)

TABLE I

THE PARAMETER VALUES OF TWO-LINK ROBOT

m1 = m2 lc1 = lc2 l1 = l2 I1 = I2 g

10Kg 0.5m 1m 1Kg.m2 9.81Kg/s2

The robotic control systems under communication envi-

ronment are stochastic in nature because of the random

time delays caused by the communications on the employed

networks. However, for the simulation in this work, it is

assumed that the system (35) is stochastic in the sense

that it is corrupted with the process noise d which follows

non-Gaussian distribution. Equation (35) can be written as
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follows:

M(q)q̈ + c(q, q̇)q̇ + g(q) + d = u (46)

Assuming the following initial value [1; 1 ;0 ; 0]. Fig. 3

shows that the proposed algorithm works as expected by

comparing the shape of error PDF in the first batch and the

last iteration. Moreover, the 3-D mesh of the PDF of the

closed loop tracking error further confirms that the closed

loop tracking error tends to be a Gaussian-like shape, as

shown in Fig. 4. Although some small fluctuations can

be seen in the entropy variations, the overall trend of the

closed-loop error entropy suggests a minimum has been

achieved. Fig. 5 illustrates how the closed-loop error entropy

is minimised along with the batches.

By choosing the ILC learning rates λP (1) = 2, λI(1) =
5. Figs. 6 and 7 show the ILC learning rates converge

throughout the batches. Also, the ILC-based tuning algorithm

sets PI controller to KP = 169.3I and KI = 79.5I in the

last batch as shown in Figs 8 and 9. From simulated results

it can be seen that both q1 and q2 converge to the desired

trajectories in Figs. 10 and 11.
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