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Abstract

The embedding theorem of Takens forms a bridge between the theory of nonlinear dynamical
systems and the analysis of experimental time series. This memorandum describes the theorem,
and gives a detailed account of its proof. The necessary differential topology is briefly reviewed,
and then a proof of the theorem is presented; this proof follows broadly the argument of Takens,
although it differs in some details. Some extensions to the theorem, which facilitate its use in
applications, are described. The memo concludes with a brief discussion of what the theorem
implies about time series, viewed as the raw material for signal processing algorithms.

© Crown Copyright 1993
Defence Research Agency
Farnborough, Hants., GU14 6TD, UK



COILILCILILDS

1 Introduction 1
2 Some Differential Topology 2
3 Proof of Takens’ Embedding Theorem 4
3.1 Openness of the set of embeddings . . . . . .. ... .. ... .. ... ..., 5
3.2 Denseness of the set of embeddings . . . . . .. ... .. ... . L. 7
3.3 Stage 1: Periodicorbits . . . . . . . .. .. 8
3.4 Stage 2: Making an immersion . . . . . ..o 12
3.5 Stage 3: Embedding orbit segments . . . . . . . ... ..o 14
3.6 Stage 4: Making an injectionon M . . . . . .. ... oo 17
3.7 Proofof Theorem 1. . . . . . . . . . . . . . . . 20
3.8 The openness part of Theorem 1 . . . . . . .. . ... ... .. .. ... ... .... 21
4 Extensions to Takens’ Theorem 23
4.1 Relaxing the C? Condition . . . . . . . . . .. ittt 23
4.2 Compact Subsets of Non-Compact Manifolds . . . . .. ... ... ... ....... 23
4.3 The work of Sauer, Yorke and Casdagli . . ... ... ... .. ... ......... 24
5 Consequences of Takens’ Theorem for Signal Processing 25
6 Acknowledgements 27

1 Introduction

One of the most surprising lessons of dynamical systems theory is that the phase spaces of simple
nonlinear systems may contain strange attractors [1, 2]. For certain simple systems, such as pendula,
direct observations of the phase space are possible, and the existence of strange attractors can be
experimentally investigated. But physical systems in which all the relevant dynamical variables
can be simultaneously monitored are relatively few, and such systems are usually limited to the
laboratory bench. At first sight, the search for these attractors in systems where the dynamical
variables cannot be measured, or are unknown or infinite in number, seems problematic. Yet many
such searches have been made, including attempts to show chaos in situations, such as epidemiological
[3] or economic systems, where even the applicability of dynamical systems theory is unproven.

The possibility that these attempts might actually be successful is suggested by a branch of
applied dynamical systems theory referred to by Sauer, Yorke and Casdagli [4] as ‘embedology’; this
is concerned with the extraction of information about features of phase space from time series of
general measurements made on an evolving system. The central plank of this theory is a result—
suggested by several people [5] and eventually proved by Takens [6]—which shows how a time series
of measurements of a single observable can often be used to reconstruct qualitative features of the
phase space of the system. The technique described by Takens, the method of delays, is so simple
that it can be applied to essentially any time series whatever, and has made possible the wide-ranging
search for chaos mentioned above.

Of course, embedology is not a finished subject: how the amount of derivable information varies
with the quantity and quality of the data, and how the method of delays may best be used, are
matters of continuing debate [7, 8], as are the range of applicability of the method and its recent
extensions. But these debates may be rather hampered by the inaccessibility of the theorem which
justifies the method of delays: the method may be simple but the proof seems discouragingly mathe-
matical. A disinclination to wade through what appears to be a particularly technical and specialized
argument is understandable, but there remains the lurking worry that if we just quote the theorem
we may be missing the point. And if we wish to use or adapt the theorem for our own purposes,
for example to address the problem of filtered time series [9], we have little choice but to familiarize
ourselves with the mechanics of its proof.



1he problem with lakens’s proot 18 that 1t 1s couched 1n the language ol difterential topology, a
subject not well known to the wider physics and engineering communities. Indeed, the important
point of the theorem depends on the topological notion of genericity (‘open and denseness’), itself
an unfamiliar notion to many. ‘Generic’ may be interpreted loosely as ‘mostly’ or ‘apart from
special exceptions’, but such interpretations fail to catch the topological nature of the property.
(Furthermore, a measure-theoretic property called prevalence may have a better claim on these
interpretations, and recent work has extended the theorem essentially by replacing ‘generic’ with
‘prevalent’ [4].) Even those with enough familiarity with classical mechanics to have some notion of
how a differentiable manifold is defined might be forgiven for finding Takens’s paper something of
a challenge. It is with a view to helping them meet this challenge that the following exposition is
offered.

We will go through the proof of Takens’ theorem in some detail. Necessarily this will involve us
in quite a lot of differential topology, but actually the level needed is not very high: everything is
covered in elementary books on the subject, and we shall refer to these freely [10, 11, 12]. Presenting
the proof in this way should help us to appreciate exactly what the significance of the theorem is,
and will make clear some aspects—such as why functions are required to be C?, how this can be
relaxed to C', and why the number of delays needed is 2m + 1—which have caused some bafflement
in the past. We will also be in a position to use the same style of proof for our own purposes, such
as the filtering problem.

2 Some Differential Topology

For the sake of completeness we start with some ideas and results from elementary differential
topology, but those for whom the idea of a manifold is completely new might be advised to consult
first an introductory account of the subject [10, 11, 12]. (That by Chillingworth is very good.) Even
introductory texts will probably assume some basic topology [13, 14] (though Chillingworth is a
notable exception), and so will we.

A manifold M is a (separable, Hausdorff) topological space which is locally like R™, that is,
every point has an open neighbourhood which is homeomorphic to an open subset of R™. (The
manifold is said to be of dimension m.) A pair (U, h), where U C M is open and h : U - RR"
is a homeomorphism onto its range is called a chart, with U as the chart domain (or coordinate
neighbourhood), and h as the coordinate function. A collection of charts whose domains cover M is
an atlas.

If two charts (U, h) and (V, g) have overlapping domains, the coordinate transformations

hg™' :g(UNV) = R™and gh™' : L(UNV) = R™

are functions from open subsets of R™ to R™. The charts are C"-related if both these functions
are continuously differentiable r times. An atlas is C"-differentiable if all its charts are C"-related
to each other (where there is overlap). A differential structure is the set of all charts which are
CT-related to those in a particular atlas—it is itself an atlas and is defined so as to avoid giving
the impression that some coordinate systems are to be preferred over others. (A manifold with a
differential structure is differentiable, and is called a C" manifold.) In fact, when showing that a
manifold has particular properties, we may choose any convenient atlas to work with: the results
carry over automatically to all C"-related charts, and hence to the differential structure. A certain
amount of elementary differential topology is concerned with finding appropriate atlases with which
to prove desired results, and this is also true of Takens’s proof.

A function f : M — N between C" manifolds is C?®-differentiable (s < r) if, for every point
p € M there are charts (U,h) and (V,g) of M and N respectively, with p € U and f(p) € V,
such that gfh~! : (U N f~1V) — R" is s times continuously differentiable at h(p). Although this
definition is couched in terms of particular charts containing p and f(p) it is quickly seen that it does
not matter which ones we use. The Jacobi matriz of f at p with respect to h and g is the matrix of
partial derivatives Dgfh~1(h(p)); clearly this does depend on the charts we use, although its rank
does not. If the derivative at h(p) is injective, then f is said to be immersive at p; and a function
which is immersive everywhere is an immersion. An immersion which carries M homeomorphically



onto 1ts 1mage 18 an emoeaaing. 1t [V 1S compact, 1t can be shown that any injective immersion 1s
an embedding. If the derivative is surjective then f is said to be submersive at p.

If N is an n-dimensional manifold, and M C N is an m-dimensional manifold, m < n, then M is
a submanifold of N if at every point of M there is a chart which can be obtained from a chart (V, g) of
N, by restricting g to VN M, and dropping the last n—m coordinates. If A and B are manifolds, and
f: A — Bis an embedding, then f(A) is a submanifold of B, and f : A — f(A) is a diffeomorphism
(i.e. a differentiable function with a differentiable inverse). Two manifolds which are diffeomorphic
can be considered the same apart from a smooth (and invertible) change of coordinates. For our
purposes, the importance of embedding is that it allows us to identify a subset of R™ which is
diffeomorphic to the phase space of the system we are studying. By investigating this subset, we
can clearly learn a great deal about the system itself.

We shall need some basic results from differential topology. We will just quote these results here
without proof—any introductory text will supply the details. The first result is the following. If M
is a differentiable manifold, and {U, : u € A} is an open cover, then there is an atlas {(V,,g,) : v €
N, g, : V, = V,} with the following properties:

1. For every v € NN there is a p € A such that V, C U,; and every point in M has a neigh-
bourhood that intersects only finitely many V,,. ({V, : v € N} is a locally finite refinement of

{Uu:p€eA})
2. V! ={zeR": ||z < 3} = B@)
3. The sets W, = g7 {x € R™ : ||z|| < 1} = g; ' B(1) still cover M.

An atlas such as this is called a good atlas, subordinate to {U, : p € A}. Since we shall only be
concerned with compact manifolds, we can assume that any atlas has a finite number of charts.

Good atlases are used in conjunction with differentiable bump functions. For any positive radius
r, and € > 0, we can construct a function A : R™ — R with the properties:

0<Xz) <1forall z e R™,

Az) =1 & x € B(r), (An overbar represents the closure of a set.)
AMz)=0¢ |z > +e,

and A is infinitely differentiable.

Another basic tool is the partition of unity. If A is a closed subset of M, (which may be M itself)
and {U; : i € A} is an open cover of A, then there is a set of functions \; : M — [0,1],i € A, with
the following properties:

1. );is C*,

2. the support of )\; is contained in U;, i € A,
3. {support);}ica is locally finite,

4. Y ica Ai(x) =1, for every x € A.

This set of functions is known as a C® partition of unity, subordinate to {U; : i € A}. Partitions of
unity allow us to create global properties by making local adjustments, a device used several times
in the proof of Takens’ theorem.

We will need to use the following two results at various points, so we present them as lemmas:

Lemma 1 If M and N are manifolds with dimensions m and n respectively, m < n, and f : M - N
is a C! function, then N — f(M) is dense in N.

Lemma 2 Let M and N be manifolds with dimensions m and n, and m >n, and f: M — N be a
C! function. Let ¢ € N. If f is submersive at at every p such that f(p) = q, then the set f~1(q) is
o submanifold of M, with dimension m — n.



1T we are to discuss the generiCity oI embeddings, then we must nrst endow some runction spaces
with topologies [15]. Let C"(M, N) be the set of C" maps from M to N. The C* topology, (s < r)
on C"(M,N) is generated by a sub-base consisting of sets defined as follows. Let f € C™(M,N),
and (U, h) and (V, g) be charts on M and N; let K C U be a compact set such that f(K) C V, and
let 0 < € < 0o. The set N'*(f; (U, h), (V, g), K, €) consists of those functions f € CT(M, N) for which

f(K) CV and )
ID*gfh~t(z) — D*gfh ()|l < e 1)

for all z € h(K), k=0,...,s. We always use the Euclidean norm.

(This looks more complicated than it really is. Roughly speaking, to decide whether we should
regard two functions as close together, we break up the domain M into pieces which can be trans-
formed to subsets of R™, and then assess how close the functions are on each piece, in the usual
way.) Note that in this topology, any apparent dependence on the charts is removed by simply
considering them all. We shall want to use this topology in two ways. To show that a set of func-
tions, (for example immersions), is open in C" (M, N), we need to find, for each member f of the
set, charts {(U;, h;)} and {(V;,9:)}, compact sets {K;} and numbers {¢;}, so that all members of
N NV*(f; (Ui, hi), (Vi, 95), Kis €;) are members of the set. To show that a set is dense, we have to
show that for every f € C"(M, N), every neighbourhood of f contains a member of the set. To do
this it is enough to find a good atlas for M, as described above, any convenient atlas for N, and
to show that for any € > 0, (", N*(f; (Uv, hw), (Vir; 9u), Wy, €) contains a member of the set. In our
case N will often be R™ (for some n), for which we can always choose the chart (R",identity).
The set of C™ functions from M to itself which are also diffeomorphisms (have C” inverses) is called
Diff "(M); it is clearly a subset of C™(M, M), and can be given the subspace topology.

Finally we note that any manifold may be regarded as a complete metric space: this fact can be
used to simplify some of the topological arguments we need in the proof of Takens’ theorem.

3 Proof of Takens’ Embedding Theorem

Let us first state the thing we are setting out to prove: this is Theorem 1 of Takens’ paper [6].

Theorem 1 (Takens) Let M be a compact manifold of dimension m. For pairs (¢,y), with
¢ € Diff*(M), y € C*(M,R), it is a generic property that the map B4,y : M — R*™ T de-
fined by

By, (2) = (y(@),y($(2)), - -, y(¢*™ (2)))

is an embedding.

Here ‘generic’ means open and dense, and we use the C! topology. We refer to the functions
y € C%2(M,R) as measurement functions.

The discussion given by Takens is largely directed towards establishing a slightly different version
of the theorem, which runs as follows:

Theorem 2 (Takens, unstated) Let M be as above. Let ¢ : M — M be a diffeomorphism, with
the properties: firstly, that the periodic points of ¢ with periods less than or equal to 2m are finite in
number, and secondly that if x is any periodic point with period k < 2m then the eigenvalues of the
derivative of ¢* at x are all distinct. Then for genericy € C*(M,R), the map B4,y : M — R*™H,
defined as in Theorem 1 is an embedding.

Note that Theorem 1 is concerned with open and dense sets of diffeomorphisms, while in Theorem 2
attention is focused on one particular ¢. This ¢ is not, however, arbitrary: it has to satisfy the
conditions concerning the periodic points with period less than or equal to 2m. We shall discuss
later on how to get to Theorem 1 having established Theorem 2, but for the moment the latter is
our target. This version of the theorem also helps to make clear the connections between Takens’
theorem and the later work of Sauer, Yorke and Casdagli, and we will say more about this later as
well.



Naturally enough, the proots or lLheorems 1 and <4 come 1In two parts: one part establishes the
openness of the embeddings and the other their denseness. However the proof of denseness draws
several times upon the fact that certain sets of functions, such as immersions and embeddings, are
open, and so we need to start with that. (Takens himself discusses openness very briefly at the end
of his proof.)

3.1 Openness of the set of embeddings

Theorem 2 promises genericity in the set C2(M,R) of measurement functions. Every function y in
this space gives rise to a delay map (y,...,y$*™), so we can define a mapping
F®: C*(M,R) —» C*(M,R*™*") by y — ®(4,). We shall need to show that this mapping is
continuous. This is essentially straightforward, but since it involves using the perhaps unfamiliar
topology of C?(M,R) we shall proceed in stages.

Lemma 3 The function Fy : C?(M,R) — C*(M,R) defined by y — y o ¢ is continuous.

Proof. Let {(Ui, h;);i € A} be a finite good atlas for M, and say W; = h;'B(1). Given any
neighbourhood in C?(M,IR) of y o ¢ there is a neighbourhood N of the form
NN (y o ¢ (Ui, hi), (R, id), W;, €') contained within it—we need only choose €' small enough. We
will show that there is a neighbourhood N(e) = MN(y; (Ui, h;), (R,id), W;,€) of y such that if
7 € N(e) then Fi(§) € N; that is, 1N (e) C N, so that F; is continuous. All we need is to show
that this is true for sufficiently small e.

The sets W;, i € A, cover M, and since ¢ is a diffeomorphism, so do the sets ¢~1W;, i € A,
and also the sets ¢ 1W; N W;, i,j € A. If ¢ 'W,; N W, is not empty for some particular i, j, the
derivative Dhi¢h; ' : hj(¢~*W;NW;) - R™ ™ is continuous and has a compact domain. (To
see this it must be recalled W; C U;.) Hence the norms of these derivatives are bounded: we can
find a constant A; ; such that ||Dhi¢h;1(u)|| < A;j for all u € hj(¢~'W,;NW;). And since there
are only finitely many of these intersections, we can find a single A which is an upper bound for
{Ai’j 14,] € A} L o

Now choose € < min{€’,e'/A}. Let § € N(e) and let z € W;. Then z € ¢ 'W; N W, for some
i € A. Let ' = ¢(x), so that =’ € W;. Then

15 0 gh; (hjz) —y o ¢hy ' (hx)l| = |lg(e") — y(@)|
lgh; ! (hiz') — yhi " (hiz') |

€

A

!
€.

A

Further

Dj o ¢h; ' (hjz) — Dy o ¢h; * (h;x)

Dih; *high; ' (hjz) — Dyh; *high;* (hjz)
(Dih;" (hix) = Dyh; (hiz)) Dhigh; ' (h;z)

where the second line uses the Chain Rule. This means

1D o ph; " (hjz) — Dy o ¢hi* (hz)l| < [|Dghi " (hiz) — Dyh;* (hix)||| Dhigh; ' (hiz)||
< €A

!

< €.
Hence the conditions 1 are satisfied, and § o ¢ € N. It follows that F} is continuous.
Lemma 4 The function F,, : C?(M,R) — C?(M,R) defined by (¢,y) — y o ¢"™ is continuous.
Proof. This is done by induction. We already know that Fj is continuous. Assume that Fj,_; is

continuous, and note that F,,y = yo ¢" = (yo¢" oo = Fi(yo¢" ') = F(F,_1y), so F, is the
composition of continuous functions.
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Proof. Let us say Fy : C*(M,R) — C?(M,R) is the identity on C?(M,R), and also that F :
C*(M,R) — [C?(M,R)]*™t! is specified by its components: F = (Fy, Fi, ..., Fop). Then F) =
ToF,where T : [C?(M,R)]*™t' — C?(M,R*™*") maps each 2m + 1-tuple of real-valued functions
(fo, f1,- - -, fom) to the vector-valued function having these functions as its components. The previous
lemma shows that F' is continuous, so it only remains to show that 7" is. This is quite similar to
lemma 3: for each 2m + 1-tuple (fo, f1,- -, fom) in [C%(M,R)]>™+1 we have to show that for every
neighbourhood N of T'(fo, f1,---, fom) = f there is a neighbourhood N (€) of the 2m + 1-tuple such
that TN (e) C N.

Let {(U;, h;),i € A} be a finite good atlas for M, with W; = h; ' B(1). Given any neighbourhood
N in C?(M,R*™ ) of f, there is a neighbourhood of the form NN (f; (Ui, hi), (R®*™ 1, id), W;, ')
contained within it. Now choose € < €' /(2m+1), and consider the neighbourhood N (€) of (fo, - . -, fom)
defined by

2m
N(e) = Q) nilfs; (Ui, hi), (R, id), Wi, e).
=0
Let (foa tes f?m) € N(€)7 f = T(foa EERE me)a and r € Wz Then
2m
1£h "t (hiz) = fh7 (Rao)| < ) | fihi* (hiw) — fihi* (haz))|
j=0
J2m
< Ze
j=0
< €.

Also

IDfhi ! (hiz) = Df i (hia))|

AN

2m
> _IIDfih; ! (hiw) = D fih;  (hiz)|
7=0

2m
< E €

7=0

!

< €.

Hence f € NV, so T is continuous.

This brings us to the main result of this section.

Proposition 2 Let M be a compact manifold, ¢ : M — M a diffeomorphism, and K a compact
subset of M. Then the set of functions y such that the delay map ® 4, : M — R*™H s immersive
on K is open in C*(M,R). The same is true of injective immersions of K.

Proof. We first note that the set, S, of maps f : M — R*™*! which are immersive on K is open
in C?(M,R*™*1). This is a standard result of differential topology so we need not prove it here:
Hirsch [15] gives a full treatment of these matters. It is clear that the measurement functions giving
delay maps which are immersive on K are just those which lie in the inverse image of S under F(?).
Since F?) is continuous, by the previous proposition, this inverse image is open. Just the same
argument applies to injective immersions of K.

We shall have many occasions to use this result below; we can use it immediately to prove the
openness part of Theorem 2: all we need to do is take K to be M.

Our statement of Propostion 2 is much more specific than it need be. A glance at the argument
above shows that no use is made of the fact that the number of delays is 2m + 1: the proposition
is true for any number of delays. There is no need for ¢ to be a diffeomorphism: any differentiable
function from M to M will do; and there is no need for ¢ and y to be C?: it is sufficient that they
be C!, (remember that we always work in the C! topology).



J.4«4 Denseness Oof tne sev 01 empeaaings

Having shown that the measurement functions giving rise to embeddings of M are open in C2(M,R)
we now wish to show that they are also dense. The general strategy for doing this is again a standard
method of differential topology. Given any y € C?(M,R) and any neighbourhood N of y, we have
to show that there exists y' € N such that ®, .+ is an embedding of M. This is done by showing
how to construct a suitable y' explicitly.

We construct new measurement functions by adding functions to y:

N
v =y+ ) aib (2)

i=1

where N is finite, the a;’s are real, and 1; : M — R is differentiable. To ensure that y' is C? we
need to make 1; C2; in fact we will always be able to assume that they are C*°.

We adjust the measurement function in the manner of equation (2) several times during the
course of the construction. Each such adjustment endows gy’ with some desirable property, for
instance that of giving an immersive delay map, or embedding® some compact subset of M. These
properties are used when we make subsequent adjustments. The question immediately arises: how
do we ensure that the properties we have given to the measurement function are preserved under
subsequent adjustments? For example, if ®4 . is an immersion of M, and y' is given by (2), how do
we ensure that ®4 . is still an immersion? This example hints at the answer we need: according to
Proposition 2, there is a neighbourhood of y such that so long as ¥’ lies within this neighbourhood,
y' will share the properties of y.

Given any y € C%(M,R), and any neighbourhood N of y, we make a suitable choice for ¢;, i =
1,...,N,and for a;, i =1,..., N, and form gy’ according to (2). We choose the 9;’s and a;’s so that
y' is a member of A, and y' has the desired property (which in the first place will be immersivity at
a periodic point). (Of course, we must demonstrate that such a choice is possible.) This property is
shared by all the measurement functions in some open set, O, containing y’, and we can assume O is
contained in A/. We choose another set of 1;’s and a;’s and construct a third function y”, which lies
in O, and which has some further desired property (for example it is immersive at another periodic
point). Since y” lies in O it still has the first property. We carry on producing new measurement
functions, each within an open neighbourhood of the previous one until, after a finite number of
adjustments, we generate an embedding of M. The final function lies in A.

It is apparent that for each adjustment to y, and every neighbourhood of y, we must show that it
is possible to find sets {1;} and {a;} such that y’ lies in the neighbourhood, and has the property we
want. Finding {¢;} and {a;} so that gy’ lies in the neighbourhood is discussed in the next paragraph;
finding them so that y' has the desired property naturally depends on the property we are after:
the rest of the proof is concerned with showing that we can find suitable v;’s and a;’s to endow the
measurement, function with the characteristics we want—ultimately that of giving rise to a delay
map which is an embedding of M.

To make the argument outlined above, we shall need the following lemma.

Lemma5 Lety: M — R be C?, and let¢; : M - R, i =1,...,N be C? for all i, where N is
finite. Let a = (ai,...,an)T be a member of RN. For each neighbourhood N of y there is some
d > 0 such that if ||a|| < § the function y' defined by equation (2) lies in N .

Proof. As usual, let {(U;,h;) : i € A} be a finite good atlas for M. Then there exists € > 0
such that the open set M; N (y; (Us, hi), (R, id), W, €) is a subset of . For each j, 1 < j < N and
each i € A, the function ;h; " : h;(W;) — R is well defined, and being a continuous function on a
compact domain the magnitudes of its values are bounded, say by B; ;. Since there are only finitely
many such functions, there exists an upper bound B of the set {B;; : 1 < j < N, i € A}. It is clear

from (2) that if z € W; then

N
ly'hi t (hiz) = yhi M (hao)| = (1D ajebsh; * (hiz)|
j=1

1We shall sometimes say a compact set A is ‘embedded’ by a function f if f is an injective immersion on A, even
though A may not be manifold.



- '

D lajllwihi (hi)]

Jj=1

N
> la|Bi
j=1

N
< B lajl.
i=1

IN

IA

The derivatives D1; h;l are similarly continuous functions, so we can make the same argument to
give

N
IDy'h; " (hix) — Dyhi (hiz)| < B'_ |ayl.

=1

It is clear from the last two inequalities that there is some § > 0 such that if [lal| < & then
lly'h; * (hiz) — yhi ' (hiz)|| and || Dy'h; " (hiz) — Dyh; ' (hiz)|| will both be less than e, for all z € W;
and 7 € A. Hence y' will then be a member of NV.

How shall we adjust the measurement function to yield an embedding? The procedure described
below has four stages; each stage produces a new measurement function whose delay map is an
injective immersion on successively larger parts of M. If we say Py is the set of periodic points of
¢ with period less than or equal to k, then we shall create new functions which give a delay map
which is

1. immersive at every point in Py, (and hence an injective immersion on some compact neigh-
bourhood of Pa,),

2. an immersion on the whole of M,
3. an injective immersion on orbit segments,
4. an injective immersion on M.

Each of these stages requires one or more adjustments of the form (2); for each one it must be shown
that ||a|| in (2) can be made arbitrarily small and yet still give a y’ having the desired property. As
we shall see, the main tool for doing this is lemma 1.

3.3 Stage 1: Periodic orbits

It is clear that if we try to embed M using delay maps into R®*™*! any periodic points whose
period is less than or equal to 2m will present us with special problems. For these points, not all
the coordinates of their images under @4 . can be different. In particular, for fixed points all the
coordinates are equal, implying that all the images of fixed points lie on the diagonal of R?™+1.
This degeneracy causes some delay maps to fail to be embeddings: for example, if ¢ is the identity
then any corresponding delay map will not be an embedding whatever the measurement function.
Nor will increasing the number of delays help to repair these failures.

These difficulties are the reason why in Theorem 2 the condition is imposed that the number of
periodic points of ¢ with period 2m or less shall be finite. (That is, Ps,, shall be a finite set.) Given
this condition, there is clearly an open neighbourhood of each z; € P»,, containing no other point in
P,,,,. By taking a smaller neighbourhood if necessary, we can assume that it lies within some chart
domain U;, and indeed that it is homeomorphic, under the chart map h;, to an open ball B; in R™
centred at h;(x;). The Hausdorff property implies we can choose these neighbourhoods so that they
do not intersect each other. Now as noted above, the images of the fixed points under @, . all lie

RR*™ !, More explicitly, if z is a fixed point,

®(6,y) (z) = (y(z),y(),...,y(x)).

on the diagonal of



10 make sure that none or the nxed points have the same image, we must adjust y so that 1t takes
a different value at every fixed point. More generally, if y is such that it takes a different value for
every z; € Py, then no two of these points map to the same image (at least the first components of
the images will be different). Since P, is a finite set, the measurement functions with this property
form an open subset of C2(M,R), by Proposition 2.

To see how to adjust y so that it becomes an injection on Ps,,, let 1 and z5 be points in Py,
at which y takes the same value. Let (Uy, h1) be the chart containing x; mentioned in the previous
paragraph, so that hiz is the centre of B(3). Define a function ¢ : M — R by

[ AMhz) for z € hy'B(3)
b(x) = { 0 otherwise

where A : R™ — R is a bump function having support in B(3), and equal to 1 on B(1). It is clear
that ¢ is a C*° function on M. Then say

Yy =y+a

where a is a real number. (This is the form that (2) takes in this case.) Clearly for every a > 0,
y'(z1) and y'(z2) are different (they differ by a). Lemma 5 shows that we can find a suitable y’ in
any neighbourhood of y by taking a sufficiently small. A similar argument deals with the case when
more than two z;’s have the same image, though then we have to make more than one perturbation.
Taken with the previous paragraph, this shows that for generic y, ® 4, is injective when restricted
to P2m.

Our objective in Stage 1 is to make ®4 ) an injective immersion on Py, so we must now
turn to the immersivity part. We require D<I>(¢,y)h;1(hia:i) to be full rank at every x; € Po,.
Consider first the fixed points of ¢. If z; is a fixed point the k-th row of D<I>(¢,y)h1_1(h1m1)
is Dy¢*—'hi*(hiz1), which by the chain rule (and using the fact that z; is a fixed point) is
Dyhi ' (hyz1)Dhi¢* *h7t (hiz1). Letting the row vector v = Dyhy *(hiz1), and J = Dhy¢hy* (hixy),
the k-th row is vJ*~!. So the question of immersivity at z; boils down to whether the set
{v,vJ,vJ?...vJ*™} contains m linearly independent vectors.

Propostion 2 shows that the measurement functions which make ®(,4 ) an immersion at z; form
an open subset of C?(M,R).

To create an immersion at z; we note first that by assumption J has distinct eigenvalues A;, and
hence linearly independent eigenvectors. We expand v in terms of these vectors v = ) aje;, so that
vJF 1l =3 aj)\f_lej. (If the eigenvalues are all real, then so are the «;’s, otherwise we may need
to complexify to do this: see for example Hirsch and Smale [19].) In this basis the vectors v,vJ etc.
take the form

a1 (6D) . A
(651 /\1 0(2)\2 . Oém)\m
a1 )\%m ag)\%m . am)\%nm

We consider the first m of these, discarding the later rows to leave a square matrix; the first m rows
will be linearly independent if and only if the determinant of this matrix is zero. If the a;’s are real,
then considered as a function of these coefficients this determinant represents a mapping from R™
to IR: by expanding it out we see that it is a polynomial function, and that vectors v for which the
matrix is not full rank correspond to sets of a’s which are zeroes of the polynomial. Now it is well
known that if a polynomial does not vanish identically, its zeroes form a closed, nowhere dense set. To

see that the determinant is not identically zero we need only consider (ay,az,...,an) = (1,1,...,1)
in which case the matrix takes the form
1 1 ... 1
DYV S W
APAR L Am

which we know (from the theory of Vandermonde determinants) to be full rank. Thus the v for
which {v,vJ,vJ?, ... ,vJ?>™} contains m linearly independent vectors form an open dense set. (This



argument can easily be extended to the case where the A'S and «’'s are not real: 1t relies on the 1act
that since v and J are real the non-real A;’s and a;’s come in complex conjugate pairs.) Thus given
any v we can find v’ such that {v',v'J,v'J?,...,v"J?™} span R™ and the difference a = v' — v has
arbitrarily small norm.

Define C'*° functions ¢; : M — R, 1 < j <m by

[ wj(@)A(hyz) for z € h7'B(3)
vile) = { OJ 1 o‘cherwise1

where p; : U3 — R is the j-th coordinate function: that is, p;(z) is the j-th coordinate of hq(z).

(We shall use functions like this several times; the important to note is that for any u = hyz € B(1)

=1 -
we have 8%’:; (w) = 6;. This follows because the bump function has zero derivative on B(1).)

Also define y' by equation (2), (N = m here of course). Then Dy'h;*(hiz1) = Dyh;*(hiz1) +a
where a is the row vector whose components are a;. We have just seen that we can arrange for
{Dy'hi*(hix1)J* : k =0...2m} to span R™, and hence for ®(4,,) to be immersive, while [|a| is
less than any prescribed value, so that lemma 5 implies that a g’ giving rise to an immersion at z;
can be found in every neighbourhood of y.

Since the number of fixed points of ¢ is finite, a finite number of such adjustments to y will give
a y' for which @4 ) is immersive at all of them, and by the usual argument, such a y' can be found
in every neighbourhood of y.

In considering immersivity we have concentrated so far on fixed points of ¢, but the arguments
extend easily to the periodic points. For example, say z1, 2 are a pair of period 2 points, (¢(z1) =
x2, ¢(x2) = x1). The important observation is that since these points are distinct, we can find
disjoint open sets containing z; and z3, homeomorphic to open balls B; and By centred at hj(z1)
and ha(z2). This means that we can use bump functions, as above, to perturb y independently at
these two points.

Evidently

(I)(¢,y) (.’El) = (y(xl)ay($2)ay($l)7 s ay(xl))

Consider the question of immersivity at x, that is, the rank of D<I>(¢’y)h1_1(h1x1). The 2i + 1-th
row of the matrix is equal to

Dy¢*'hy t(ha1) = Dyhy 'hi¢® byt (h21) = Dyhy ' (b)) Dha ¢ hy * (ha )
which we write as vJ?, where v = Dyhfl(hlxl) and J = Dh1¢2h1_1(h1;c1). The 2i-th row is
Dy¢* = by (haay) = Dy¢ ™ ¢* by (huay) = Dy¢ ™"y (hywy) Dby ¢y (hyay)

or wJ¢ where w = Dy¢~'hy'(hix1). As before we transform to the eigenbasis of J, and say
v=>3 aje; and w =Y Bjej. D®4 ,h; ' (h171) now takes the form

[ o o ... O]
Jo1 B2 . Bm
a1\ a2 . am)\m
,31)\1 ﬂz/\Q [N ﬁm/\m
B AT B AT ... BumAn
L 041)\?“_1 (12)\;”+1 N Ozm)\m-i_l |

We rearrange the rows of this matrix to give

(651 (7)) . Om
al)\l 042)\2 cee am)\m
a AP ap AT At
B B2 ces B
ﬂl)‘l 62)\2 s Bm)\m
BT BeAY ... BmAR
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and then eliminate the lower rows to make the matrix square. lhe corresponding determinant 1s a
polynomial function, this time R™ x IR™ — R, which is not identically zero because we can choose

(041,042,---,Oém,,Bl,,BQ,---,,Bm) = (1,1,.‘.,1,)\;n+2’)\;n+2,.”’)\Z—i-?)

to yield a Vandermonde determinant. It follows that the set of pairs (v, w) which make the derivative

full rank is open and dense in R™ x R™, and hence given any v and w we can find v' and w' such

that ||(v, w) — (v',w'")|| is arbitrarily small, and the set {v',v'J,...,v"J™ L w' w'J,... w'J™} spans
m

Now suppose that y is a measurement function for which @, , is not immersive at z;. We can
define new functions 9; : M - R, x; : M - R, 1 <i<m by

oy mi@)A(ma) for x € hi'By
Yile) = { 0 otherwise

" (@A) 1
v ) p2i(@)A(hex) for x € hy Bs
Xi(®) = { 0 otherwise

where p1 ; is the i-th coordinate function of h;, and ps; that of hs. Then say
y'(z) =y(@) + > ai(z) + Y bixi(x).
i=1 i=1

This of course is just another version of equation (2): our task is to show that there are vectors
(a,b) of arbitrarily small norm such that the corresponding &4 . is immersive at x;. The result
of the previous paragraph is that we can make ®(, ..y immersive if we can choose (a,b) so that
Dy’hfl(hlx) = ¢’ and Dy’d)‘lhfl(hlwl) = w'. Note that since B; and B are disjoint, there is
no z for which ;(z) and x;(z) are both non-zero, whatever i and j may be. Hence the derivative
of y' at zp is Dy’hfl(hlxl) = Dyhfl(hlxl) +a =v+a, soweset a=1v" —v. The derivative
Dy'¢='h* (hyzy) is given by

Dy'¢~"hy ' (ha1) = Dy'hy ' hag™ A (hay) Dy'hy " (hams) Dho¢™ b (hyay)
(Dyhy* (hazs) + b)A
Dy¢thi ' (haz1) +bA

= w+bA

where A is the matrix Dhy¢~'hy* (hix;). Since A is invertible (¢ is a diffecomorphism) we can choose
b= (w' —w)A . These choices make ®4 ) immersive; evidently we can make the norm of (a, b)
arbitrarily small by choosing the norm of (v — v', w — w') sufficiently small.

Observe that to find an immersion at z; we have to perturb y both at z; and . This arises
because of the ‘delay’ nature of ®. The measurement functions giving rise to delay maps which
are immersive at x; are open, and so by making another, similar adjustment we can construct a
measurement function which is immersive at both points z; and .

The reader will need no further prompting to realise that these arguments can be extended to
cover all the points of period less than or equal to 2m. (If the period is greater than or equal to m,
m components of the delay map can be perturbed independently.) The general conclusion is that
by making a sequence of adjustments to y, we can construct a y' such that ®4 . is immersive at
all the points in Py,,, and also injective on P,,,. Since this set is compact Proposition 2 shows that
these measurement functions form an open subset of C2(M,R).

Iff:. M- RF is a C! function, and its derivative at some point p € M is injective, then there
is some neighbourhood U of p such that the restriction of f to U embeds U in R* [10]. This is,
essentially, a consequence of the Inverse Function Theorem. Thus we can find a neighbourhood of
each point z; € Py, which is embedded in R*™*! by the immersive maps ® (4., that we have just
been discussing. (This neighbourhood will depend on y.) Recalling that the manifold M can be
considered as a metric space, we may take the neighbourhood of z; to be an open ball b;(r;, ;) of
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radius r; centrea at x;. (Ve use a lower case letter to label these balls to distinguish them Irom
the open balls of R™, which are the supports for the bump functions we used above.) &4, is an
immersion on the union of these balls (since this is a local property), and does not map two points
in the same ball to the same image, but the images of different balls could intersect. However, by
taking smaller radii it must be possible to find balls whose images do not intersect. (This follows
from the continuity of ®4 ,,): if it were not true we could find a sequence {z;} in one ball, converging
to its centre, and a corresponding sequence {Z;} in another ball, converging to its centre, such that
@ (4,4)(2:) = ®(4,4)(2:), implying that two points in P, map to the same image.) @4, is thus an
injective immersion on the union of these smaller balls. Now consider closed balls each having half
the radius of an open ball; the union of these is closed, hence compact, and is a subset of the union
of open balls, so that ®4 ) is an injective immersion of this compact set. This set depends on y,
so we call it V2. Vj, is clearly a compact neighbourhood of Px,,. We call the closed ball containing
z;, b;: then Vy = U;b;.

3.4 Stage 2: Making an immersion

Let us take stock of where we are. We have concluded that for an open dense subset of C?(M,R)
the delay map ®(4 ) is an injective immersion of P, and that for each y in this set there is a
compact neighbourhood Vj, of Py, such that @4 ) is an embedding of Vj,. The next stage in the
proof is to show that in every neighbourhood of y we can find another measurement function which
gives rise to an immersion of M. The strategy for doing this is a standard procedure in differential
topology, though the details depend on the ‘delay’ nature of ®; the description here follows that
of Brocker and Janich [12]. We start by covering M with compact sets, and show that by making
arbitrarily small perturbations of the measurement function, we can produce a delay map which
is an immersion of one of these sets. By making another perturbation we immerse another of the
compact sets, and, as usual, use the openness of immersions to show that the second adjustment
does not spoil the immersion created by the first. We proceed in this way, immersing the compact
sets one by one, until the whole manifold is immersed.

As noted, the set V, embedded by @4,y will in general be different for different measurement
functions. But Proposition 2 shows that delay embeddings of a compact set such as V,, are open.
It follows that there is a neighbourhood of y in C?*(M,R) (which we call U,), such that for every
9 € Uy, ¥4, is an embedding of V,. We intend to show that every neighbourhood of y contained
in U, contains an immersion of M.

We begin, as so often, by constructing a suitable atlas. First we select an arbitrary atlas of M.
Since every point in Pa,, lies in a chart domain we can, by intersecting this domain with the interior
of b;, find a new chart which is a subset of b;. By shifting and scaling the chart map, and taking
a smaller domain if necessary we can find a chart (U;, h;), with U; C b; and U; = h;lB(3). We
can find such a chart for each z;, and the chart domains are clearly disjoint. Note that the sets
W; = hi_lB(l) form an open cover for Ps,,, and that W; is a compact subset of b;.

Now consider the complement of P,,, Ps , which is an open set. Evidently for each element z

2m»
in this set the points {z, ¢z, #*z,...,#*™x} are all distinct. So we can find an open set U, C Ps,,
containing z such that U, ¢U,, ..., #*™U, are disjoint. By the usual argument (taking smaller sets

if necessary) we can take U, to be contained in—and hence to be—a chart domain, and finally we
can find a chart (U, h,), with U, = h,; 1 B(3).

The collection of sets {W, = h;1B(1) : z € P§,, }U{W, : z; € P5,,} is clearly an open cover of M.
From it we extract a finite subcover. Note that the subcover contains every set of {W; : z; € P2y, }.
We relabel the sets so that W;, 1 < ¢ < k are the sets containing the periodic points, and W;,
k < i <1 are the sets contained in Pj, . The corresponding charts (U;, h;) form the required atlas.

By construction, for every § € U, @4 ) is an embedding of, and hence an immersion of, the
compact set U¥_, W;. It remains to adjust the measurement function so as to make an immersion
of the remaining W’s.

Suppose that i is the smallest index greater than k for which ®4 . fails to be an immersion of
W ;. Let = be a member of U, let wj Ui = R, j =1,...,m be the coordinate functions of h;, (that

2This is slightly different to Takens’ notation: he calls this set V.
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18, T = 1T, - .-, kmT)), and let u = n;x and u; = p;x. Lhen the Jacobl matrix of @y ) at h;X 18

oyh; ! oyh; ! oyh;t
gT’ll(U) %T;l(“) s é’T;l(U)
Byoh; Byoh; dyoh,
y8u1 (u) y@uz (u) T yBU'm (u)
. 3)
5 ¢2m’-li—1 5 ¢2mhi—1 P ¢727,1;11'—1
Y S (u) Z 5 (w) ... 2T S (u)

For some u € h;W;(= B(1)) this matrix does not have full rank: we need to make it full rank by an
arbitrarily small perturbation of y. We make this perturbation in stages. At each stage we alter the
measurement function in such a way as to change one of the columns of (3), in particular to make
it linearly independent of the columns to its left. We make such a change for each column in turn
to produce, after a maximum of m such changes, a full rank matrix. Clearly, if we can make each of
these changes arbitrarily small, the overall perturbation can also be made small.

To illustrate, let us suppose that the first s columns of (3) are linearly independent for all
u € B(1). Define as usual A : R™ — R to be a bump function equal to 1 on B(1) and having
support in B(2). Also define ¢ : M — R by

| psp1(@)A(hi(z)) fzeU;
v(w) = { 0 o otherwise.

then ¥(z) = psyp1(z) if x € Wy, ¢ has support in U;, and 9 o $~7 has support in ¢/U;. Now
define 9; : M — IR by ¢; = ¢ o ¢~7 for 0 < j < 2m; the 9;’s have disjoint support. Construct a
measurement function y' according to

2m
Y =y+ ) ajai;.
=0

Note that the bump function factors ensure that y’ is a C? function M — IR, and that y'(z) = y(z)
if z is not in one of the sets U;, ¢Uj, ..., $*™U;.

What is the effect on the Jacobi matrix (3) of introducing the perturbations? It is clear that for
u € bW, ¢*h; ' (u) € ¢*U; so

y'¢Fh; N (w) = yd*hi N (w) + apr (o @R (u)

= yd*h; () + a1 (hit (u)

= y¢"h7 (u) + argr-pss1 (b (u))

= y¢kh;1(u) + Qpt1-Ust1
and hence P oy 1

oy'¢"h; = Oy¢Thy
iy u) = By () + a1

Thus we see that the only column of (3) which is affected by the perturbation is the s + 1-th; and
the effect on this column is to add the vector (ay,as,...,asm41)7 to it. This is true whatever u is,

so long as u € h;W;.

Now that we have seen how to adjust the s + 1-th column of the Jacobi matrix, can we make
it linearly independent of the first s columns? And if so, can we do this with an arbitrarily small
perturbation? We can answer both these questions at once. Let Js(z) be the matrix formed from
the first s columns of the Jacobi matrix of ®(4,,) at € U;. Then by assumption, for z € Wi, Js(x)
is full rank. Since J; is a continuous function from U; to the space of (2m + 1) X s matrices, and the
full rank matrices form an open subset of this space, there is an open set X C U;, with W; C X, such
that for every point in X, the first s columns of the Jacobi matrix of @4 , are linearly independent.

13



INOw dellne the runction o : I X A — I~ Dy

dyh]* dyhy!
T (w) i ()
s 3y¢h,-_ ( 6y¢h,-_
~ou, (@) (u)
Aty A7) = DA Bus — | Owen (4)
j=1 : :
By ™ h ! dy¢*™h;?
yaT(U) yauT(u)

(see Brocker and Jénich [12]). The function S is C!, because y and ¢ are assumed to be C?. Of
course s < m — 1 so that the dimension of R® x X is smaller than that of R?™*!. It follows from
lemma 1 that the complement of S(R* x X) is dense in R*™*!. In particular, we can find a vector
(a1,-..,a2m41)T € R*™ ! with arbitrarily small norm, such that (ai,...,a2ms1)7 € S(R® x X).
With this choice for the numbers a;; in (3.4) the first s + 1 columns of the Jacobi matrix of @4,
must be linearly independent for all z € W;.

So we have succeeded in finding a measurement function y' arbitrarily close to y which gives rise
to a delay map of at least rank s+ 1 on W;. Obviously we can repeat the argument for each column
of the Jacobi matrix in turn to find a measurement function giving rise to an immersion of W;. It
may be worth emphasising the points that to make this argument we needed to assume that y and
¢ are C?, and that the number of delays we use must be greater than s + m, which means that the
minimum dimension for which immersions are dense is 2m. As we shall see later, considerations of
injectivity lead to the stronger condition that we must use 2m + 1 delays.

Since we can find immersions of W; using arbitrarily small perturbations, lemma, 5 shows that
we can find one in U, (which will be an embedding of UfZIWj), and which is an immersion of any
W with j < i. Finally, we can repeat the whole argument for W;;; and so find an immersion of
that as well. If we do this enough times we eventually immerse the whole of M.

We note in passing that this establishes the density of immersions, and hence their genericity,
though we will make no explicit appeal to this result in the remainder of the proof. More important
is the observation that immersions are locally embeddings. If &, ) is an immersion of M, then
for each point x € M there is an open neighbourhood N, of z such that @, ,+ is an embedding of
N, (the Inverse Function Theorem again). Thinking of M as a metric space, we can find a closed
ball 3, centred at  and contained in N,. The interiors of these balls form an open cover of M
(since there is one for each z) from which we can extract a finite subcover. The corresponding finite
collection of closed balls, say {3; : 1 <i < n'}, forms a compact cover, and each of the closed balls
B; is embedded by D4, If we select one of the balls, the set of measurement functions giving
rise to embeddings of it is open, so the measurement functions giving embeddings of all the balls
is also open, since it is the intersection of a finite number of open sets. We call this set Ué; it
is a neighbourhood of y' and since y' € U, we can take U, C U,. (Note the functions in U, are
not usually embeddings of U?ZIBZ-: they embed each ball individually.) A well-known result from
topology (Lebesgue’s lemma [13]) tells us there is some number € > 0 such that a closed ball of
radius € centred at any point of M is contained in the interior of §; for at least one i. It follows
that every such e-ball is embedded by ®4,,), and indeed by all the maps ®4 5 where § € Z/{?'J. If,
following Takens, we call the metric on M, p, we can re-express this by saying that if § € U, then
®(4,5) is an immersion of M, an embedding of V,, and @4 4)(z) # ®(4,4)(z') whenever z # z' and
plz,2') <e.

3.5 Stage 3: Embedding orbit segments

Having found an immersion of M we must now turn to the question of injectivity. For each x € M
let us call the collection of points {z, ¢z, ...,$* ™z} the orbit segment of z. We noted before that
periodic orbits could cause particular problems to the making of an embedding, and for similar
reasons pairs (z,2') where z' belongs to the orbit segment of 2 might also be problematic, since
we cannot change the coordinates of @4 ,)(x) without also changing some of those of @4 ,(').
Especially troublesome are points that lie on a periodic orbit of period less than or equal to 4m;
the segments {z, ¢z, ...,¢*™z} and {z',¢z',...,¢$*™z'} can then overlap ‘at both ends’ (that is,
z = ¢z’ for some 0 < j < 2m and z' = ¢*x for some 0 < k < 2m). In view of these observations
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we shall tackle the matter o injectivity 1n two stages. lhe nrst or these creates a delay map with
the property that no x (except those in P%,,) shares an image under ®, ) with another point on
its orbit segment. In the second stage this limited form of injectivity is extended to injectivity on
the whole of M.

We therefore start with the following lemma.

Lemma 6 Let y' be such that ®; .+ is an injective immersion on V. In every neighbourhood of y'
in C2(M,TR) there is a function, say y" such that for every x € M, and j in the range 1 < j < 2m,
Q5,9 (2) # B(gp,yr) (¢ 2) unless x = ¢’ .

Proof. We will establish this for each j in turn, so let us take j to be the smallest value for which
the lemma is not already true.

Define the set S by S = N?™ ¢~V,. Evidently for every z € S and 0 < k < 2m, ¢¥z € V,
and because of the already established injectivity on V}, the lemma is already true for S. We need
therefore only attend to points outside S.

Let T be the closure of the complement of S. Since S is a neighbourhood of P, if z €
T, x ¢ Pap, and {z,¢z,...,¢*™z} are all different, so we can find an open set U, such that
Uz, Uy, ..., ¢*™U, are all disjoint. We now have to consider two cases. If x is not a periodic
point whose period lies between 2m + 1 and 4m, then we can go further and find a U, such that
Uz, ¢Us, . .., ¢*™U, are all disjoint. As usual, we can assume that U, is the domain of a good chart
(heUz = B(3), W, = h,; ' B(1)). Let us call this Case 1.

In the other case, (Case 2), z is a periodic point of period k, where 2m +1 < k < 4m. We
now find U, such that U,,¢U,,...,¢* U, are all disjoint, and take U, to be the domain of a
good chart. We further define X, = W, N ¢~*W,: this set is open, and not empty since z € X,.
(To simplify the notation, if z belongs to Case 1, write X, = W,.) We have arranged things
so that, in Case 1, and Case 2 if 2m + j < k, none of the sets ™11 X,,...,¢*" 1t X, intersect
U2m #'U,; while in Case 2, if 2m + j > k, none of ¢*™*1X,, ..., ¢F "1 X, intersect U™ ¢'U,, and
P*Xy CWa "X, C Wy, "X, C g?H AW,

From the collection {X, : x € T'} extract a finite cover of T'; label the sets of this cover X;, i =
1,...,N, with (U;, h;) the corresponding charts. The procedure now is similar to the one followed
to create an immersion: adjustments are made to the measurement function y' so that the property
described in the lemma holds for all points in one of the X;. Further adjustments establish the
property on more of the sets, and we show that these adjustments can all be made arbitrarily small,
so preserving the property on those sets already dealt with. After a finite number of adjustments,
the lemma is true on all of T'.

Suppose that X; is the next set with which we need to deal (that is, for 1 < i’ < i, and every
T € Xz'l, q)(qg,yl) (H}') 75 (I)((ﬁ’yl)((é]l')) Define ¢ M —- 1R by

| Ahz) forx €U;
(@) = { 0 otherwise

and ¢y : M - R, 1 =0,...,2m by ¢; =1 o¢ L. The support of ; thus lies in ¢'U;. Finally define
2m

y' =y + ) a (5)
1=0

(another version of equation (2)). o
Now for all z € X;, z € W; and ¢'z € ¢'W;, 1 =0,...,2m so

V(@ = g + a
J(6r) = yn) + a
J($0) = ¢ + a
V(@) = Y(™2) + aom.

The corresponding values for ¢’z depend on whether X; is Case 1 or Case 2; we consider these
separately:
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CLase 1, or Lasez with 2zm + ) < K:

the points ¢/z, g/t z, ..., ¢*™x lie in ¢/W;, pIH W, ..., ¢*™W; respectively,
and the points ¢*™Hz, ..., ¢/ T2™ g lie outside U™ ¢'U;. Thus

y"(¢'z) = y'(Pz)  + g
V(@) = () a
y”(d)2m+lm) — yl(¢2m+lm)
YI($ImE) =y (),

Case 2 with 2m + j > k:
the points ¢z, ¢/ Tlx, ..., ¢*™x lie in ¢'W;, pIHIW,, ..., ¢*W; respectively,

the points ¢*™*1x,...,¢F 1z lie outside Ui ¢'Us,
and the points ¢Fz, ..., ¢ T2mg lie in Wy, oW, ..., ¢ T2m kT, respectively. Thus
y'(Pz) = y(Pe) 4+ aj
V(¢ =y 4
y”(¢2m+1w) — y/(¢2m+1$)
V() =y ¢k )
y'(¢*z) = y'(¢fz) 4+ ao
y'(@mr) = y'(¢Mr) 4 ajremer
Let us concentrate on Case 2: the other is similar. We claim that we can find a = (aq, . . ., a2m)”

with arbitrarily small norm, such that ® g, (z) # ®(4,,m) (¢ z) for all z € X;. Note that for any
T € 71

ag — a;

G2m—j — A2m
2m—j+1
Doy () = Rpyn) (P2) = Do) () = B,y (¢77) + :
Ap—j
ag—j+1 — Qo

L A2m — Q2m+j—k
= By () — By () + Aa.

The (2m + 1) x (2m + 1) matrix A has the following properties: every diagonal element is equal
to 1; every row has at most one non-zero element apart from the one on the diagonal; and the
same is true of every column. It is not hard to show that the rank of such a matrix is at least
m + 1; let this rank be r, and let L be the r-dimensional subspace of R*™*! which is the image of
R*™*! under A. Let m : R*™*' — L be the orthogonal projector onto L. Define F : U; — L by
z = T(Pp (@) — Bro(¢72)). Fis a C? function from the m-dimensional manifold U; to the
r-dimensional one L. Lemma 1 shows that there are vectors of arbitrarily small norm in L which
are not contained in the image of U;; let b be such a vector. If V is the orthogonal complement of
the null space of A, there is a unique b’ € V such that b = Ab’, and we can arrange for the norm of
b’ to be arbitrarily small by choosing ||b|| to be sufficiently small. If we set a = —b' in equation (5),
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then 1t 1ollows that ® (g 4 )(T) — Py, (@7 Z) Cannot equal U for any T € A ; (Ior if 1t did we should
have

0= B4y (2) = Bg,y) (¢’ x) — A’
hence .
0=m(P(g,y) (@) = D(g,y) (¢’ 2)) =]

so that b € FUZ) So (I)(d)’yu) (IL’) 75 ¢(¢’yu)(¢]$) for all z € 71

Since X; is compact, the functions in C?(M,IR) which have the property mentioned in the last
sentence form an open set. (Actually, this case is not quite covered by our usual Proposition 2, but
it follows from very similar arguments, which the reader can easily supply.) Hence we can make a
series of adjustments of the form (5) each of which establishes the property on one of the X;. A
finite number of these is sufficient to generate a function y" such that ® ,n(z) # B(g,ym) (¢ )
for all z € T. Finally, since T is compact, we can make further adjustments while retaining this
property, and in particular can adjust y" so that for all z € T, ®(4, ) (2) # B4, (¢’ ) for every
1 <5 < 2m. We can, of course, make all these adjustments sufficiently small that @4 ,») is still an
injective immersion on Vj,.

So we have seen that for all € T, and 1 < j < 2m, B4,y (z) # B(4,y) (¢ z); also, for all
z €S, and 1 <j<2m, B (@) # Bg,y) (¢ x) unless © = ¢z. Together these observations
establish the lemma.

As usual, the differentiability of y” and ¢ allow us to extend the conclusion of the previous
lemma: as well as concluding that z does not have the same image under 9,4 ,) as other points on
its orbit segment, we can conclude that it does not have the same image as points on nearby orbit
segments. This is formalized in the next lemma.

Lemma 7 Let y"” be a function as prqmised in the previous lemma. There is a number § > 0, such
that if x,x' € M, x # x', and p(¢'z, ¢’ x') < & for some 0 < i,j < k, then B4 ) (x) # P4 ) (2').

Proof. We aim to prove the lemma by contradiction. Let §, — 0 be a sequence of positive
numbers tending to zero. If the lemma were not true we should be able to find, for each n, a pair
of points T, z!, Tn # !, and integers in, jn, 0 < in,jn < k, such that p(¢*»x,, ¢'"z!) < 6, and
gy (@n) = B(g,y7) (7).

By the compactness of M we can find subsequences {z,} and {z] } which have limits, say x and
2’ respectively. Also, since the number of values that i, can take is finite, we can find an infinite
subsequence in which all the ,’s have the same value, say i; we can similarly take j, = j. By
continuity ¢‘z, — ¢'z and ¢’z — @2, and since p(¢'w,, P x!) — 0 we see that ¢lz = ¢/z';
this means one of z,z' lies on the orbit segment of the other. But also by continuity we see that
B4y (x) = B4,y (2'), s0 by lemma 6 it follows that z = z'.

Since z, and z,, tend to the same limit, we can find n large enough so that p(z,,z.) < €. (e
is the quantity described at the end of the last subsection.) But then z, # z!,, p(zn,z.) < € and
(4,9 (Tn) = ®(g,y)(27,), Which is a contradiction.

So we have been partly successful at creating an injection on M: distinct points are not mapped
to the same image by @4 ,») if their orbit segments are sufficiently close together. Naturally, we
construct y" so that it lies in U/,; and as usual, the properties possessed by y", described in the
preceding lemma, are shared by all the measurement functions in an open neighbourhood of y".
Pairs of points separated by larger distances, however, require a rather different approach.

3.6 Stage 4: Making an injection on M

There are several ways in which we might approach the problem of injectivity; we might consider
the product space M x M and remove from it the diagonal A’ = {(z,z) : # € M}: then &4 iy is
injective if and only if the image of (M x M)\A' under the function (z,z") = (®(4 ) (2), P4, ("))
does not intersect the diagonal, A, of R*™*! x R*™ ", Since A is a submanifold of R?*™+ x R?™+!,
we might hope to proceed using considerations of transversality. This is the approach followed by
Takens.
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Another thing we might try 18 to 100K at the map (Z,Z") = (P(g,y)\T) — P(g,9) (T ))- P(g,y")
is injective if and only if the image of (M x M)\A’ does not contain 0. This turns out to be very
similar to the approach of Takens, and is the one we take here.

It has to be admitted that this part of the argument is rather involved; a version of it takes up
the bulk of Takens’ published form of his proof. In outline, we remove the set intV}, from M, and
map the resulting set with ¢, ¢2, ..., $*™. Taking the union of the images, we find a covering of it,
which has some special properties, and make a partition of unity. The functions in the partition
form the 1’s of equation (2), and we find we can adjust the measurement function so that &,
becomes injective on M.

Recall that we have found a y" such that &4 ) is an injective immersion of V,, and &4, (z) #
Dy (2') if z,2" € M, 2 # 2" and p(¢'z, ¢’ 2") < 0 for some 0 <i4,j < k.

The set M\int V, is compact, and so is the set Z defined by

2m
Z = | ¢ (M\int V},).

=0

For reasons which will become clear shortly, we shall need a finite open covering of Z, {U;,l =
1,..., N} with the following two properties

1. foreachl=1,...,Nand 0<i,j <2m, ¢—*U;N¢~7U; = () unless i = j,
2. for each I =1,..., N the diameter of U; is less than 6.

To see how to construct such a cover, note first that for every z € Z, x ¢ Pa,, so that the points
z, 0 tx,...,¢ 2™z are all distinct, and so we can find an open set U, containing x such that
Ug, ¢ Uy, ..., ¢ 2™U, are all disjoint. So the collection {U, : x € Z} has property 1. And we can
easily ensure that U, C b(z,d/2) so that it also has property 2. From {U, : x € Z}, which covers
Z, we extract a finite subcover {U; : I =1,..., N}. We build a partition of unity on Z, subordinate
to this cover. Say the functions in the partition of unity are ¢; : M - R, [ =1,..., N.

This is a slightly different arrangement to those we have seen so far, but the adjustment we are
going to make to y" will still be of the form of equation (2), and in particular the conclusion of
lemma, 5 will still hold. As a matter of notation, we define

N
ve=y"+> e (6)

=1

for e € R".

We saw above that @4 ) is injective on M if and only if the image of M x M\A under the map
(z,2") = (g, (x) — B(g,y)(2") does not contain 0. This suggests we should attempt to adjust y"
so that the image is shifted away from 0 if it contains it. It will turn out that be sure of being able to
make such an adjustment the dimensionality of the codomain of &4 .~ will have to be sufficiently
large: in particular, greater than or equal to 2m + 1. Let us now go through this in detail.

Consider the subset of M x M, W, given by

W = {(z,2') : p(¢'z,¢’2") > & for all 0 < 4,j < k, and either z or 2’ ¢ the interior of V},}.

Note that W is closed. The reason for introducing this set rather than working with M x M directly
is that certain points are eliminated (such as (x,z)) where the construction below fails to work—this
is why these points were dealt with separately beforehand. The idea is to show that appropriate
choices of € in (6) will yield delay maps which carry W into R*™*'\{0}. To this end we consider
the map ¥ : M x M x RV — R*™*! defined by

U(z,2 €1,€2,. 5 6N) = (g, (2) — By 4 (@) (7)

and investigate the inverse image of 0 under ¥, by using lemma 2 and submersivity of ¥. We shall
then argue that the y. so found give injective delay maps on M.
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We need to establish the submersivity oI ¥ at all the points 1n the set VW X {U;p"—quite why this
is appropriate will become clear later on. To specify the derivative of ¥ we need to assign charts to
M x M x RN. Let {(hy,V,) : p € A} be an atlas for M, then {(g,4,V, x V; x RN) : p,q € A},
where g, ,(z,2',€) = (hy(z), he(z'),€), is an atlas for M x M x R™. Using these charts, (and writing
hp(z) = u, he(x') = u') we can see from the definition (7) that the derivative D¥g, !(u,u’,0) takes
the form

Dg,yyhy " (u) | =DPg,yhg (u) A(z) — A(2") ®)

where A(xz) is a (2m 4+ 1) x N matrix whose elements are given by

i—1p—1

Aa(w) = LB ) =0 ) = i @), ©)
(As it turns out, the form of A(z) does not depend on the chart map.) Our task is to show that if
(z,2') € W the columns of (8) form a basis for R*™ . The immersivity property of 4" implies that
the first 2m columns of (8) span at least an m-dimensional subspace of R*™*!; but since we aim
to establish injectivity by adjusting €, we discard these columns and concentrate on the submatrix
A(zx) — A(z"). We will show that this matrix has 2m + 1 independent columns. From (9)

Ag(z) — Ay(2') = P (@) — thip' ' (). (10)

We need the following observations. To begin with, we can show that each column of the
matrix A(z) — A(z') has at most one non-zero element. For if, for some [, there were distinct
i,j such that A;(z) — Ay(z') and Aj(z) — Aj(z') were both non-zero, this would mean at least
one of Aj(x),Ay(z") was non-zero, and at least one of Aj(x), Aj(z') was non-zero. But A;(x)
and Aj;(z) cannot both be non-zero, for that would imply ¥;¢*~*(z) # 0 and ¢;¢'~(z) # 0 so
that both ¢*~!(z) and ¢?~1(x) are in the support of 1; and hence in the same element U; of the
cover. But then ¢~ (DU, and ¢~ U~V U; are not disjoint, contradicting property 1. We can also
see that Ay (z) and Aj;(z') cannot both be non-zero, for then ¢*~!(z) and ¢ !(z') are both in Uy,
implying p(¢* 1(z),¢’ (z')) < § and so (z,z') ¢ W. Similar arguments dispense with the other
two possibilities (A;(2') and Aj(2) both non-zero, or A;(z') and Aj(2") both non-zero.)

We now show that every row of A(z) — A(z') has at least one non-zero element. Assume (x,z') €
W, then at least one of z, 2’ is in M\int V,,. For definiteness say that z € M\int V;; then ¢'~'(z) € Z
for 1 <4 < 2m+ 1. Hence Zf\;l ¢ 1(x) = 1 (because the {1y} form a partition of unity), so that
for every 1 < i < 2m + 1 there must be some I, 1 <1 < N such that ¢;¢*~!(z) # 0; that is, for
every 4 there is an [ such that A;(z) is not zero. But note also that if A;(x) # 0, then A;(2') must
be zero, for otherwise ¢:~'x and ¢!z’ would both lie in the support of 1; and hence in a ball of
radius 6/2, implying (z,2") ¢ W. So if A;(z) is not zero then A;(z) — A;(z') is not zero either.

Since A(z) — A(z') has at least one non-zero element in every row, but no more than one non-zero
element in every column, two things follow: the matrix must have at least as many columns as rows;
and it must be full rank. Hence the rank of D¥g- ! (u, v/, 0) must be 2m + 1, and ¥ is submersive
at (z,z',0).

Actually we can go further than this. Since the derivative of ¥ is full rank at (z,z’,0), by
continuity there is an open subset of M x M x RY containing (z,z',0) throughout which the
derivative is full rank. These open sets form a cover of W x {0} and their union is an open set X
such that the restriction of ¥ to X is a submersion. By Lebesgue’s lemma there is an 7 > 0 such
that every closed ball of radius 7 or less, centred at a point in W x {0} is contained in X. Note in
particular that this means that if e € R" and ||e|| < 1, then W x {¢} C X.

Since ¥|x : X — R*™! is a submersion, lemma 2 shows that ¥|3'(0) is a submanifold of X,
of dimension 2m + N — (2m + 1) = N — 1. Consider the projection 7 : X — R, (z,2',€) — €, and
its restriction, 7, to ¥|3'(0). Suppose that there is some €, with ||e|| < 5, which is not in the range
of 7: then there is no pair (z,2') € W such that &4, )(x) = ®(4,y.)(2') (for if there were, since
(z,2',€) € X then (z,2',€) € ¥|;*(0) implying € is in the range of 7). Moreover, since 7 is a C*
map from a manifold of dimension N — 1 to R", lemma 1 shows that €’s not in the range of 7 are
dense in RY ; in particular, we can find such €’s with arbitrarily small norm.

3Note that this 0 € RN, whereas in the previous paragraph O stood for the origin of R2m+1,
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D0 we have seen that the image or W X q€; under ¥ does not contain U. 1he pairs (r,r ) In
M x M missing from W are those for which p(¢'z,¢’x') < § for some 0 < i,5 < k, or for which
both z,2' € int V,. But we already know that if € is chosen small enough, then for all these missing
pairs, U(z,z',€) # 0 unless z = z'. So ¥(z,z',¢) # 0 for all (z,2') € M x M, unless = z'. This
means @4 ,.) is injective on M.

So @4 ,.) is an injective immersion, hence an embedding of M. We need only note that we can
make the norm of ¢ sufficiently small to ensure that y. € N to complete the proof of Theorem 2.

The reader will not have failed to notice that for the above argument to work, the number of
delays in the delay map must be at least 2m + 1: if it is less than this, the dimension of ¥|%"(0)
is greater than or equal to N, and so we cannot apply lemma 1 to the projection 7. Of course,
this does not by itself prove that 2m + 1 delays is the minimum we can get away with for Takens’
theorem to hold in general; but it is not too difficult to devise examples which demonstrate that this
number is indeed the minimum.

3.7 Proof of Theorem 1

For a diffeomorphism of M having special properties (to do with the points in P»,,) we have seen
that the measurement functions y such that @, ,) embeds M are open and dense in C?*(M,R)
(in the C! topology). Can we say anything about diffeomorphisms in general? Theorem 1 states
that pairs (¢,y) such that @4 ,) is an embedding are open and dense in Diff>(M) x C*(M,R).
Roughly speaking, this means that given any C? diffeomorphism, and a measurement function,
there is a diffeomorphism arbitrarily close to the first (and a measurement function, similarly) which
give rise to an embedding of M. So the situation described by Theorem 2 is not exceptional.
This happens because diffeomorphisms which satisfy the conditions demanded in Theorem 2 are
themselves unexceptional, that is, are generic.

This genericity is the essential instrument for proving the denseness part of Theorem 1 from
Theorem 2. The thing we need for this is provided by a well-known theorem in nonlinear dynamical
systems theory, the Kupka-Smale Theorem [16, 17], which we may summarise as follows:

Theorem 3 (Kupka-Smale) Let M be a compact manifold, and n be a finite positive integer. For
generic ¢ € Diff?(M), the number of periodic points, with period n or less, is finite.

This is really only part of the theorem. Another part of the theorem tells us that we make take
the periodic points to be hyperbolic*, and by a relatively simple extension we can conclude that for
generic ¢ the fixed points have distinct eigenvalues, and the periodic points have distinct eigenvalues
when considered as fixed points of ¢*. We need not take the trouble to prove the Kupka-Smale
theorem here: an extensive discussion is given by Palis and de Melo [18].

Let A be the set of ¢’s, with finite numbers of periodic points with period < 2m, and having
distinct eigenvalues; the Kupka-Smale theorem tells us that A C Diff>(M) is open and dense. Now
let X and Y by topological spaces, and say V is a subset of X x Y with the following property:
there is a dense subset A of X such that, for every € A there is an open dense subset of Y, O,
such that {(z,y) : y € Oy} C V. Then it is not difficult to see that V is dense in X x Y. If we
interpret X to be Diff>(M) and Y to be C?(M,IR) then we immediately deduce the denseness part
of Theorem 1.

The openness part does not fall into our hands so easily. Even if A in the last paragraph is open
this does not necessarily mean that V will be. It seems that we will have to establish openness from
scratch. We can do this in the same sort of way that we proved Proposition 2, but the details are
more complicated now because we need to consider neighbourhoods in Diff (M) x C?(M,R) rather
than just C2(M,R). The argument is given below; its construction parallels that of subsection 3.1.

4A fixed point z of ¢ is hyperbolic if Dgg¢g~!(gx) has no eigenvalues of unit modulus. A periodic point & of period
k is hyperbolic if it is a hyperbolic fixed point of ¢F.
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9.0 11€ Oopenness part o1 1 neorem 1

For each positive integer p every pair in the space Diff>(M) x C?(M,IR) gives rise to a delay map
(¢,9) = (y,-..,ydP), so for fixed p we can define a mapping

2 Diff>(M) x C*(M,R) — C*(M,R")

by (¢,y) — <I>(¢,y)5. We need to show that this mapping is continuous. As before, we shall tackle
this in stages.

Lemma 8 The function Fy :Diff>(M) x C?>(M,R) — C?(M,R) defined by (¢,y) — y o ¢ is con-
tinuous.

Proof. Let {(U;, h;);i € A} be a finite good atlas for M, and say W; = h; ' B(1). Then the collection
{¢~'Wi;i € A} is a cover of M. Let {(V],g]) j € O} be another finite good atlas, subordinate to
the cover {¢7'W;;i € A}, with X; = =9; '!B(1). Then for each V; there is some W;, which we call
Wz(]); such that (b‘/J C Wz(‘])

For any (¢,y), observe that the functions yh; 1. h;W; = R are uniformly continuous, so given
€ > 0 there is a §; > 0 such that |yh;(u) — yhi(u)| < € if ||u' — u|| < §;; and since there is a finite
number of these functions, we can find § > 0 which works for all i € A.

The derivatives Dyh; ' : h;W; — R™ and Dhigbgj_l : ;X — R™ ™ are continuous and have
compact domains. This means their norms are bounded: we can find constants A and B, such
that |[Dyh; "' (u)|| < A for all u € h;W; and i € A, and ||Dhigg; ' (u)|| < B for all u € g;X;,
j € © and i € A. Also, since the continuity is uniform, given € > 0 we can find § > 0 such that
|Dyh;* (u') — Dyh; ! (u)|| < € for all |Ju’ — ul| < 6.

Now given any neighbourhood in C?(M,R) of y o ¢, there is a neighbourhood of the form
N = NNy o ¢;(V;,g5), (R,id), X;,€) contained within it. Choose § sufficiently small that the
following are satisfied:

lyh; ' (u') — yh; ' (u)| < €/2 for all |ju' —u|| < 3, u,u’ € W;, and i € A,
|Dyh; " (u') — Dyh; ' (u)|| < €' /3B for all ||u' — u|| < &, u,u’ € W;, and i € A,
0 <€/3A,and § < B.

Also choose € < min{e'/2,¢'/6B}. Now consider the open neighbourhood N(,€) of (¢,y) in
Diff>(M) x C*(M,R), where

ﬂ/\fl & (Vi 95)s Wigsy, higiy)» X, 0) X ﬂ/\/l (Ui, hi), (R, id), W, €).

To show that F} is continuous, we show that if (¢,§) € N(6,¢) then Fy($,§) € N; to do this we
have to show that the conditions (1) are satisfied.

Let (¢,5) € N'(d,€),j € ©, 2 € X; and u = gjz. Then
lidg; (u) — ydg; “(u)| < lidg; * (u) —yog; ' (w)| + lydg; *(u) — ydg; *(u)] (11)
If we say u' = hi(j)qAng_l(u) then
15007 (u) — ydg7 ()] = Ighigh () — yhigh ()] <€ < /2 (12
since § € NN (y; (Ui, hs), (R, id), Wi, €). Also, if u" = hz-(]-)qﬁgj_l(u) then
luda () -y ()] = yhilh () — yhith ()] < €72 (13)

5Note that this mapping is not necessarily injective: to take a rather trivial example, consider the diffeomorphisms,
f»g of the circle, defined by f(8) = ¢ and ¢(8) = 6 + =, together with the measurement function y(6) = sin26; then

®(5,y) = P(g.9)-
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since [jum —u- || = ([R5 P9; ~ ) — () ¢g5(w)l] < 0. Lombining (11), (12) and {(15) gives
lidg; " (u) — ydg; " (u)| < €.
The derivatives are dealt with as follows:
IDjg; * (u) — Dygg; ()| < |Djdg; ' (u) — Dydg; " (u)|| + | Dydg; * (u) — Dydg; * (u)l|

= ||Djh; *hidg; * (u) — Dyh; *higg; *(w)l| + | Dyh; *hidg; ' (u) — Dyh; *higg; (u)|

(the j dependence of 7 has been suppressed in the last line). Using the Chain Rule (and «' and u"
as above) this becomes

IDgdg; " (u) — Dydg; ' ()| < [|Dgh; " (u')Dhidg;" (u) — Dyh; " (u')Dhidg; " (u)|
+ (|Dyh; ! (') Dhidg;* (u) — Dyh; ' (") Dhiggy " (u)]]
< ||Dgh; " (u')Dhidg;* (u) — Dyh; " (u') Dhidg; ™ (u)||
+ ||Dyh; ' (u')Dhidg; ' (u) — Dyh; " (') Dhigg; " (u)||
+ [|Dyh; " (u')Dhigg; " (u) — Dyh; ' (u")Dhigg; ™ (u)]

< \Dgh;*(u') = Dyhi (&)1 Dhidg; ' (W)l +  [[Dhigg; ™ (u) — Dhigg;* ()l Dyh; ™ (u')]
+  [IDyh; ' (') — Dyh; ' (u")[[[|Dhigg; " (w)].

Now ¢ € NN (¢; Vi, 95), (Wigs), higs))» X,6) so [|[Dhigy* (u) — Dhidg; " (u)|| < & and since § < B
this implies ||Dhi¢gj_1(u)|| < 2B. Hence the inequality above becomes

!
IDjdg; *(u) — Dydg; “(u)l| < e.2B + 6.4 + ;—B.B <€

What all this shows is that if (¢,4) € N(6,€) then jod € N. That is, N (6,€) C N, and so Fy
is continuous.

Lemma 9 The function F, :Diff>(M) x C*(M,R) — C?(M,R) defined by (¢,y) — y o ¢" is
continuous.

Proof. This is done by induction. We already know that Fj is continuous. Assume that F,, ; is
continuous, and note that F,, = F,,_; oG, where G : Diff>(M) x C?(M,R) — Diff>(M) x C*>(M,R)
is defined by G(¢,v) = (¢, F1(¢,v)). Lemma 8 shows that G is continuous, so Fj, is the composition
of continuous functions.

Proposition 3 F?) is continuous.

Proof. Let us say Fy : Diff>(M) x C?(M,R) — C>(M,R) is given by (¢,y) — y, and also that
F : Diff>(M) x C*(M,R) — [C?(M,R)]P*! is specified by its components: F = (Fy, Fy,...,Fp).
Then F2) = T o F, where T is as defined in Proposition 1. The previous lemma shows that F' is
continuous, so we need only show that T is. This was done in the proof of Proposition 1.

So now we can prove the analogue of Proposition 2:

Proposition 4 Let M be a compact manifold, and K a compact subset of M. Then the set of pairs
(¢,y) such that the delay map @4,y : M — R*™* is immersive on K is open in Diff>(M) x
C?(M,R). The same is true of injective immersions (embeddings) of K.

This is proved using the continuity of (), in just the same way as Proposition 2. This completes
the proof of the openness part of Theorem 1 and so of Theorem 1 itself.
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General though Theorem 1 is, it does not, of course, answer every question we might think to ask
about the reconstruction of phase spaces of dynamical systems. Attempts have therefore been made
to extend the theorem in various directions. Most notable among these attempts so far has been
the work of Sauer, Yorke and Casdagli, who shifted fundamentally the viewpoint of the theorem,
translating it from the setting of differential topology to a more geometrical and measure-theoretic
one. This enabled them to make a number of detailed statements about aspects of reconstruction
not addressed in Takens’ paper. We will summarize these results below, but first we look at some
extensions which stem more directly from Theorems 1 and 2.

4.1 Relaxing the C? Condition

We have assumed so far that all the diffeomorphisms ¢ and measurements functions y are C?;
but on the other hand we have only used the C' topologies on Diff*(M) and C?(M,R). Can the
condition that the ¢’s and y’s be twice continuously differentiable be relaxed to just once continuously
differentiable?

It is not very hard to see that it can. It is well known [15] that the set of twice continuously
differentiable functions is dense in C'(M,R) where the latter has the C* topology, and that corre-
spondingly the set of C? diffeomorphisms is dense in Diff* (M). Tt follows that Diff*(M)x C*(M,R)
is dense in Diff (M) x C*(M,R). The C' topology on C?(M,R) is simply the induced topology
when C?(M,IR) is considered as a subset of C* (M, R), and similarly for Diff*(M) and Diff* (M), so
that Diff>(M) x C?(M,R) has the induced topology from Diff* (M) x C*(M,R). Now Theorem 1
tells us that the set of pairs (¢,y) giving rise to delay maps which are embeddings of M is dense in
Diff?(M) x C?(M,R); and since the latter is dense in Diff' (M) x C*(M,R) (and has the induced
topology) these pairs must be dense in Diff' (M) x C*(M,R) as well.

To show that the set of pairs is also open, we need to show that the function

FO . Difft (M) x CY(M,R) — C*(M,R")

defined by (¢,y) — ¥4, is continuous. In sections 3.1 and 3.8 we showed this for F ), but
examination of the arguments given there shows that it does not make use of the twice continuous
differentiability of ¢ and y: exactly the same argument works for F(1). It follows that Theorem 1
remains true if we replace Diff*(M) by Diff' (M) and C?(M,R) by C*(M,IR), that is, if we allow
¢ and y to be merely C*.

4.2 Compact Subsets of Non-Compact Manifolds

One of the most popular uses of phase space reconstruction has been the calculation of various
fractal dimensions of chaotic attractors. If we think about using this approach for, say, the Hénon
or Lorenz systems we can immediately see a problem. The phase space of the Hénon system is R?,
which is not a compact manifold, so we cannot apply Takens’ theorem to it directly. The Hénon
attractor, though compact, is presumably not a submanifold of IR?, so we cannot apply the theorem
to it either. Nor indeed are there any compact submanifolds of R? which contain the attractor®. As
it stands, therefore, we do not seem to be able to use Theorem 2 to justify the use of the method
of delays in the calculation of dimensions, (or anything else), of the Hénon attractor; and it seems
likely that the same sort of difficulty will occur with experimental systems.

Any hopes we might have that the requirement that M be compact can simply be dropped
from Theorems 1 and 2 are instantly damaged by recalling that embeddings of M in R™ are not
necessarily generic whatever the value of n [15]. Clearly we are not going to be able to say such
useful things about non-compact manifolds as we are about compact ones.

The resolution of this difficulty comes from the recognition that we may not require such general
statements as Theorems 1 and 2 for non-compact sets. If we attempt to reconstruct the phase space
from experimental (or even computed) data, then since the amount of this data will always be finite,
it will always lie in some compact subset of the phase space—our data can never explore the whole

Sunless we allow the manifold to have a boundary.
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Ol phase space 1I the phase space 1S not compact. S0 there are regions oI phase space about which
we are unconcerned because we do not observe them.

There are two ways we might consider adjusting the theorems in the light of this observation. We
could replace the measurement function with another which, while equal to the first on a compact
set containing the data, may differ from it elsewhere, and which has some special property allowing
us to deduce something similar to Theorem 2, even though M is not compact. This idea is hinted
at by Takens, in a remark after the proof of Theorem 1 in which it is stated that the theorem holds
for non-compact manifolds if we restrict our attention to ‘proper’ functions’.

Perhaps rather simpler than this would be to demand only that the delay map be an ‘embedding’
of the compact subset rather than the whole of M. Then the reconstructed set that we create using
the method of delays would be a faithful (diffeomorphic) copy of the part of the phase space that
we have observed (for example, the attractor). This set would have the same dimensions and so on
as the original in phase space. The version of Takens’ theorem suggested by this approach is given
below.

Theorem 4 Let M be a m-dimensional manifold. Let A be a compact subset of M, and let
¢: M — M be a diffeomorphism, with the properties: firstly, that the periodic points of ¢ with
periods less than or equal to 2m contained in A are finite in number, and secondly that if x € A
is any periodic point with period k < 2m then the eigenvalues of the derivative of ¢* at x are all
distinct. Then the set of y € C*(M,R) such that the map B4,y : M — R*™ ! defined as in
Theorem 1, is an injective immersion of A, is open.

Furthermore, if O is any open set such that U3 ¢A C O (with O° its complement), y any
member of C*(M,R), and N a neighbourhood of y, then there is y' € N such that ®4 ) is an
embedding of a neighbourhood of A, and y'(x) = y(x) for all x € O°.

Remarks. We have to mention a technical point which was ignored in the statement of the
theorem. When dealing with non-compact manifolds M, N there are two topologies that are routinely
given to the spaces C¥ (M, N); the first of these, which is the one described in section 2, is called the
weak topology: the second, in which we insist that conditions such as 1 are satisfied on countable
numbers of compact sets rather than just a finite number, is called the strong topology. For compact
manifolds, the weak and strong topologies are the same, but this is no longer true if M is not
compact. As an example of the difference between these topologies we can observe that the set of
C! functions R — IR that are embeddings of R is open in the strong topology, but not in the weak.

But since Theorem 4 is concerned with compact sets, the distinction between the weak and the
strong topologies loses its significance: the theorem is true whichever topology we use.

We will not go through the proof of this theorem, since it is little different to Theorem 2. We
need only mention that when constructing the various open covers which provide the supports for
the v; functions in equation (2) we must restrict the open sets to lie in O; obviously this is always
possible. To make an injective immersion on A we may need to adjust the measurement function
on a neighbourhood of U?™ ¢ A, as hinted at in the statement above. Usually though, we will be
interested in invariant sets of ¢, such as attractors, in which case U2 ¢pA = A.

For each delay map which is an injective immersion of A there is some open set U containing A
for which the delay map is an embedding. The image of U is a submanifold of R*™*!, to which U is
diffeomorphic. It follows that the dimensions (box-counting and Hausdorff) of the image of A are the
same as those of A, and if A has an invariant measure, the dimensions of this measure are the same
as those of the corresponding measure, induced on the image of A by the delay map. Furthermore,
the characteristic exponents of A are also shared by its image [2]. So theorem 4 provides some
justification for many of the applications of phase space reconstruction using the method of delays.

4.3 The work of Sauer, Yorke and Casdagli

The theorems drawn from differential topology to which we appealed in the proof of Takens’ theorem,
(such as that embeddings of M in R*™*! are open in C?(M,R*™*')), apply to general mappings
between manifolds: there is no need for the codomain to be R"™. IR™ however has properties not

"That is, functions whose inverse images map compact sets to compact sets.
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shared Dy other n dimensional manirolds: 1n particular, 1t 18 a vector space. 1t rollows that we can
also give C%(M,R*™ ") a vector space structure in the usual way.

Sauer, Yorke and Casdagli [4] noted that this makes possible a measure theoretic approach to
assessing whether functions having particular properties are common among all functions. We can
define measures, analogous to Lebesgue measure, on finite dimensional real vector spaces by using the
isomorphism of such spaces to IR"™; hence the notion of ‘almost everywhere’ extends simply to these
spaces. We cannot do this for C?(M, R?*™ ) since it is not finite dimensional, so Sauer et al. defined
a subset A of an infinite dimensional space S to be prevalent if there is a finite dimensional subspace
L of S such that for every v € S, v+e € A for almost every e € L. They then addressed the question
of whether measurement functions giving rise to embeddings are prevalent in C?(M, R*™*1).

Sauer, Yorke and Casdagli were able to prove a theorem similar to Theorem 2, but in which
‘generic’ is replaced by ‘prevalent’. They assumed that M is a subset of a suitable RF (which
involves no loss of generality because of Whitney’s theorem) and used for L the set of polynomials in
k variables up to order 2m + 1. (There is no corresponding version of Theorem 1, because Diff (M)
is not a vector space.)

To prove this theorem, Sauer et al. replaced lemma 1 with a more specific lemma taking account
of the box-counting dimension of the domain. This enabled them to extend their theorem in several
ways. Firstly, they were able to replace the assumption of finiteness of the set of periodic points by
an assumption about the box-counting dimension of this set. Secondly, they were able to derive a
theorem similar to Theorem 4 (though not quite the same) in which the number of delays required
to embed the compact set depends on its box-counting dimension, rather than the dimension of a
manifold which contains it. Thirdly, they were able to make some statements regarding the set of
points at which delay maps fail to be injective or immersive, if an insufficient number of delays is
used.

5 Consequences of Takens’ Theorem for Signal Processing

For all its importance, the unforgiving differential topology in the proof of Takens’ theorem in some
ways obscures, rather than illuminates, the point. Let us take a fresh look at the situation in which
we hope to make use of the theorem.

We are faced with some physical system, which might be something quite general. In the signal
processsing context it could be anything from the engine of a vehicle to the sea surface, to a piece
of electronic signal processing equipment, or even a communications channel. The state of this
system is changing with time according to some deterministic law, which will be Newton’s laws for
a mechanical system. (For the moment we are thinking of autonomous systems, or those, such as
periodically driven systems, that can be made autonomous by a relatively simple extension.) In
many situations the dynamics of the system will be smooth—the state will not change abruptly or
discontinuously with time. The dynamics may naturally occur in a discrete fashion, in a clocked
system perhaps, but more usually the state will change continuously through time. In the latter
case we assume that our observations of the system are discrete, that is, that our measurements
are taken at distinct separated instants, or that we sample a continuous time record. During the
experiment, measurements are taken at times ¢;,4 = 1,.... Again for simplicity we assume the ¢; to
be evenly spaced in time.

As the system is deterministic, the state at any t; is uniquely determined by the state at ¢;_;.
We assume that the reverse is also true, that is, that the motion is invertible. These conditions are
equivalent to supposing that there is some function ¢ : M — M, which maps the state at time ¢; to
that at time ¢;;1, and that this function is invertible, and both ¢ and its inverse are differentiable:
in short that the dynamics is described by a diffeomorphism. Often the dynamics will be specified
by some differential equation, and conditions which guarantee that ¢ is a diffeomorphism may be
drawn from the theory of differential equations [19].

The mapping ¢ forms part of the bridge between our experiment and Takens’ theorem; the
other part is the measurement. We make an observation (or sample a record) at each t;, the result
of which is a single real number. (Ignore for the moment the inevitable presence of noise and
quantization errors.) These observations could be signals from vibration monitoring equipment,
sound records, samples of voltages from electrical machinery and so on. Very little about the nature
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oI the experiment has to be speciiied; all that we need to assume 1s that the measurement at time
t; is determined solely by the state of the system at ¢;, and that the dependence is smooth. Then
the measurement is described by a differentiable function y : M — IR.

Takens’ theorem now tells us that if we take a time series of measurements and construct n-
vectors from it by selecting n consecutive elements, (where n is greater than twice the dimension of
M) then, if ¢ and y are generic, these vectors lie on a subset of R™ which is an embedding of M.

At first sight this might seem to be little enough cause for celebration, and indeed, if the number
of observations we make is small this knowledge will be of little practical value. But if we have
sufficient data that all of the state space is well sampled, then the information in our reconstructed
space will be correspondingly complete and we can learn from it things about the system itself.
The most basic thing we might hope to learn is the dimension of the state space, which is to say
the number of degrees of freedom of the system. Another thing, almost as basic, is the topology of
the space [21]. Though this information may seem rather qualitative, even this has its uses: for a
multifrequency periodic system for example the state space should have the geometry of an n-torus,
where n is the number of independent oscillators—and this will still be true even if the oscillators
are coupled together in a highly nonlinear manner, leading to a very complex, unintelligible Fourier
spectrum. And the homology groups described in [21] are characteristics of the system which might
be used for recognition purposes.

While this topological information is important, it does not actually exploit all the properties
which are preserved under embedding. Furthermore, it is often the case that the dynamics of the
system do not cause it to explore all of its state space: it may become confined to subsets of the
space known as attractors. If the attractors are themselves manifolds then we can simply proceed
as before, but in general they will not be. Nevertheless, the reconstruction still contains important
information about the attractor.

We can usually assume the attractor is associated with an invariant measure of ¢ on M [1]. If we
say N = ®M is the image of the state space under the embedding (from now on we abbreviate ®4,,
to @), there is a corresponding measure on N induced by ®, and because ® is a diffeomorphism the
induced measure has the same (fractal) dimensions as the original. Many of the early studies based
on Takens’ theorem were concerned with the calculation of dimensions from reconstructions made
using the method of delays.

From the point of view of signal processing, a much more important point to note is that the
embedding ® not only yields a copy of the space M, but also of the dynamics. The function
¥ : N = N defined by 1 = ®¢®~! is a dynamical system on N which inherits the properties of
invertibility and smoothness from ¢. It is clear that periodic orbits of ¢ are mapped by @ into
corresponding periodic orbits of v, that the same is true of dense orbits, and so on. These things
follow from the fact that ® is a homeomorphism. The diffeomorphic nature of & means that even
more is true: it can be shown that the characteristic numbers of the periodic orbits are preserved
by embedding, and so are the Liapunov numbers [2, 1].

Since we know that the reconstructed points in N are related by the map v, we might hope to
estimate ¢ from the data. That is, we can try to build a model of the dynamical system (¢, N). If
we can do this accurately, then we can begin to do signal processing in earnest. We can, for example,
use the model for prediction: given an n-vector from the time series, we can use our estimate of
to compute the next vector—essentially to predict the next element of the time series. This opens
the way to predictive coding and predictive noise cancellation. Of course, for signals from the highly
nonlinear systems we are considering, these things are not so straightforward as in the linear case:
they call for new ideas and algorithms; but models such as ¥ appear to be an essential starting
point. We can also use the model in other ways: for example for removing noise from signals by
minimizing the inconsistency between the data and a suitable form of model. (Applications of this
type have begun to appear in the literature [22, 23, 24].) More excitingly, we can turn the noise
cancellation on its head, and explore the possibility that some signals currently treated as stochastic
noise might in fact be better regarded as chaotic processes, and viewed in terms of a model such as
).

In general there is no way for us to use the model to derive ¢, because the data depend not
only on ¢ but on some unknown measurement function y. (The measurement may indeed vary each
time we encounter the system, because we view it from different distances and orientations, or in
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difterent environments. UI course, quantities preserved by embedading will not vary in this way.) but
in the signal processing context it will often be the output of the system which is of most relevance,
rather than its state. It should even be possible to characterise systems ‘up to diffeomorphism’,
that is, to decide whether two signals could be related by the smooth ‘coordinate changes’ that
Takens’ theorem tells us relate the method-of-delays reconstructions to the original system. If so,
the reconstructions offer a way to perform system recognition and classification, which would be all
the more powerful because of its independence of the way the system is measured.

All these things flow from the apparently abstract and abstruse theorem of Takens. It seems
likely that most of the eventual implications that the theorem—and nonlinear dynamical systems
theory generally—will have for signal processing remain to be thought of. But it is already clear
that the possibilities are extensive, and that to exploit them we will have to come to terms with
new, and perhaps unfamiliar, mathematical ideas and techniques.
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