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Abstract

The Davis-Kahan tan θ theorem bounds the tangent of the angles between an approximate and an
exact invariant subspace of a Hermitian matrix. When applicable, it gives a sharper bound than the
sin θ theorem. However, the tan θ theorem requires more restrictive conditions on the spectrums,
demanding that the entire approximate eigenvalues (Ritz values) lie above (or below) the set of
exact eigenvalues corresponding to the orthogonal complement of the invariant subspace. In this
paper we show that the conditions of the tan θ theorem can be relaxed, in that the same bound holds
even when the Ritz values lie both below and above the exact eigenvalues, but not vice versa.
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1. Introduction

The tan θ theorem is one of the four main results in the classical and celebrated paper by Davis
and Kahan [2]. Along with the other three theorems, it is a useful tool for examining the quality
of a computed approximate eigenspace.

The statement of the tan θ theorem is as follows. Let A be an n-by-n Hermitian matrix, and
let X = [X1 X2] where X1 ∈ Cn×k be an exact unitary eigenvector matrix of A so that XHAX =

diag(Λ1,Λ2) is diagonal. Also let Q1 ∈ Cn×k be an orthogonal matrix QH
1 Q1 = Ik, and define the

residual matrix
R = AQ1 − Q1A1, where A1 = QH

1 AQ1. (1)

The eigenvalues of A1 are called the Ritz values with respect to Q1. Suppose that the Ritz values
λ(A1) lie entirely above (or below) λ(Λ2), the exact eigenvalues corresponding to X2. Specifically,
suppose that there exists δ > 0 such that λ(A1) lies entirely in [β, α] while λ(Λ2) lies entirely in
[α + δ,∞), or in (−∞, β − δ]. Then, the tan θ theorem gives an upper bound for the tangents of the
canonical angles between Q1 and X1,

‖ tan ∠(Q1, X1)‖ ≤ ‖R‖
δ
, (2)
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where ‖ · ‖ denotes any unitarily invariant norm. tan ∠(Q1, X1) is the matrix whose singular values
are the tangents of the k canonical angles between the n-by-k orthogonal matrices Q1 and X1.

The sin θ theorem, on the other hand, asserts the same bound, but in terms of the sine instead
of tangent:

‖ sin ∠(Q1, X1)‖ ≤ ‖R‖
δ
. (3)

An important practical use of the tan θ and sin θ theorems is to assess the quality of an ap-
proximation to the partial eigenpairs (Λ1, X1) of a large Hermitian matrix A. A typical algorithm
generates a subspace Q1 designed to approximate X1, then performs the Rayleigh-Ritz method,
see for example [1, 5]. We thus have for a unitary matrix Q = [Q1 Q2]

(Ã =) QHAQ =

[
A1 R̃H

R̃ A2

]
, (4)

in which A,Q1 and A1 are known. Note that ‖R̃‖ can be computed because ‖R̃‖ = ‖AQ1 − Q1A1‖ =

‖R‖ for any unitarily invariant norm. With some additional information on a bound for δ, we can
examine the nearness of the two subspaces spanned by Q1 and X1 by using (2) or (3).

Let us compare the tan θ theorem (2) and the sin θ theorem (3). (2) is clearly sharper than (3),
because tan θ ≥ sin θ for any 0 ≤ θ < π

2 . In particular, for the spectral norm, when ‖R‖2 > δ (3) is
useless but (2) still provides nontrivial information.

However, the sin θ theorem holds more generally than the tan θ theorem in two respects. First,
the bound (3) holds with A1 replaced with any k-by-k Hermitian matrix M (the choice affects δ)
and R replaced with AQ1 − Q1M. The tan θ theorem takes M = QH

1 AQ1, which is a special but
important choice because it arises naturally in practice as described above, and it is optimal in the
sense that it minimizes ‖R‖ for any unitarily invariant norm [9, p.252].

Second, and more importantly for the discussion in this paper, the hypothesis on the situation
of the spectrums of A1 and Λ2 is less restrictive in the sin θ theorem, allowing the Ritz values λ(A1)
to lie on both sides of the exact eigenvalues λ(Λ2) corresponding to X2, or vise versa. Specifically,
in addition to the situation described above, the bound (3) holds also in either of the two cases:

1. λ(Λ2) lies in [a, b] and λ(A1) lies in the union of (−∞, a − δ] and [b + δ,∞).
2. λ(A1) lies in [a, b] and λ(Λ2) lies in the union of (−∞, a − δ] and [b + δ,∞).

We note that in the literature these two cases have not been treated separately. In particular, as
discussed above, the original tan θ theorem imposes the Ritz values λ(A1) to lie entirely above (or
below) the eigenvalues λ(Λ2), allowing neither of the two cases.

The goal of this paper is to show that the condition in the tan θ theorem can be relaxed by
proving that the bound (2) still holds true in the first (but not in the second) case above. In other
words, the conclusion of the tan θ theorem is valid even when the Ritz values λ(A1) lie both below
and above the exact eigenvalues λ(Λ2).

We will also revisit the counterexample described in [2] that indicates the restriction on the
spectrums is necessary in the tan θ theorem. This does not contradict our result because, as we
will see, its situation corresponds to the second case above. Finally, we extend the result to the
generalized tan θ theorem, in which the dimensions of Q1 and X1 are allowed to be different.
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Notations: σ1(X) ≥ · · · ≥ σn(X) are the singular value of a general matrix X ∈ Cm×n, and
σmax(X) = σ1(X) and σmin(X) = σn(X). ‖ · ‖ denotes any unitarily invariant norm, ‖X‖2 = σmax(X)
the spectral norm and ‖X‖F =

√∑
i, j X2

i j the Frobenius norm. λ(A) denotes the spectrum, or the set
of eigenvalues of a square matrix A.

2. The tan θ theorem under a relaxed condition on the spectrums

2.1. Preliminaries
We first prove a lemma that we use in the proof of our main result.

Lemma 2.1. Let X ∈ Cm×n,Y ∈ Cn×r,Z ∈ Cr×s have the singular value decompositions X =

UXΣXVH
X , Y = UYΣYVH

Y and Z = UZΣZVH
Z , where the singular values are arranged in descending

order. Then for any unitarily invariant norm ‖ · ‖,
‖XYZ‖ ≤ ‖Y‖2‖Σ̃XΣ̃Z‖, (5)

where Σ̃X = diag(σ1(X), . . . , σp(X)), Σ̃Z = diag(σ1(Z), . . . , σp(Z)) are diagonal matrices of the
p largest singular values where p = min{m, n, r, s}. Moreover, analogous results hold for any
combination of {X,Y,Z}, that is, ‖XYZ‖ ≤ ‖X‖2‖Σ̃Y Σ̃Z‖ and ‖XYZ‖ ≤ ‖Z‖2‖Σ̃XΣ̃Y‖.
P. In the majorization property of singular values of a matrix product

∑k
i=1 σi(AB) ≤ ∑k

i=1 σi(A)σi(B)
for all k = 1, . . . , p [4, p.177], we let A := X and B := YZ to get

k∑

i=1

σi(XYZ) ≤
k∑

i=1

σi(X)σi(YZ)

≤
k∑

i=1

σi(X)σi(Z)‖Y‖2

= ‖Y‖2
k∑

i=1

σi(ΣXΣZ) for k = 1, . . . , p.

(5) now follows from Ky-Fan’s theorem [3, p.445]. A similar argument proves the inequality for
the other two combinations. ¤

We next recall the CS decomposition [6, 8], which states that for any unitary matrix Q and

its 2-by-2 partition Q =

[
Q11 Q12

Q21 Q22

]
where Q11 ∈ Ck×`, there exist U1 ∈ Ck×k, U2 ∈ C(n−k)×(n−k),

V1 ∈ C`×` and V2 ∈ C(n−`)×(n−`) such that

[
U1 0
0 U2

]H [
Q11 Q12

Q21 Q22

] [
V1 0
0 V2

]
=



I 0
C −S

0 I
0 I

S C
I 0



. (6)
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The blank submatrices are all zeros, and the zero matrices shown in (6) are not necessarily square
and may be empty.

Applied to the unitary matrix W = QHX =

[
QH

1 X1 QH
1 X2

QH
2 X1 QH

2 X2

]
, the CS decomposition states

that there exist unitary matrices U1 ∈ Ck×k, U2 ∈ C(n−k)×(n−k), V1 ∈ Ck×k and V2 ∈ C(n−k)×(n−k)

such that
[
U1 0
0 U2

]H

W
[
V1 0
0 V2

]
can be expressed as


C 0 −S
0 In−2k 0
S 0 C

 when k <
n
2

,
[
C −S
S C

]

when k =
n
2

, and


I2k−n 0 0

0 C −S
0 S C

 when k >
n
2

, where C = diag(cos θ1, . . . , cos θp) and S =

diag(sin θ1, . . . , sin θp), in which p = min{k, n − k}. The nonnegative quantities θ1 ≤ · · · ≤ θp are
the canonical angles between Q1 and V1. Note that they are also the canonical angles between Q2

and V2.

2.2. Main result
We now prove the tan θ theorem under a relaxed condition.

Theorem 1. Let A ∈ Cn×n be a Hermitian matrix and let X = [X1 X2] be its unitary eigenvector
matrix so that XHAX = diag(Λ1,Λ2) is diagonal where X1 and Λ1 have k columns. Let Q1 ∈ Cn×k

be orthogonal, and let R = AQ1 −Q1A1, where A1 = QH
1 AQ1. Suppose that λ(Λ2) lies in [a, b] and

λ(A1) lies in the union of (−∞, a − δ] and [b + δ,∞). Then

‖ tan ∠(Q1, X1)‖ ≤ ‖R‖
δ
. (7)

P. Note that W = QHX is the unitary eigenvector matrix of Ã = QHAQ =

[
A1 R̃H

R̃ A2

]
as in (4).

Partition W =

[
QH

1 X1 QH
1 X2

QH
2 X1 QH

2 X2

]
= [W1 W2], so that the columns of W2 are the eigenvectors of Ã

corresponding to λ(Λ2). Further partition W2 =

[
QH

1 X2

QH
2 X2

]
=

[
W (1)

2
W (2)

2

]
so that W (1)

2 is k-by-(n − k). The

first k rows of ÃW2 = W2Λ2 is

A1W (1)
2 + R̃HW (2)

2 = W (1)
2 Λ2,

which is equivalent to
A1W (1)

2 −W (1)
2 Λ2 = −R̃HW (2)

2 . (8)

For definiteness we discuss the case k ≤ n
2 . The case k > n

2 can be treated with few modifi-
cations. By the CS decomposition we know that there exist unitary matrices U1 ∈ Ck×k,U2 ∈
C(n−k)×(n−k) and V ∈ C(n−k)×(n−k) such that W (1)

2 = U1S̃ VH and W (2)
2 = U2C̃VH, where C̃ =

diag(In−2k,C) ∈ C(n−k)×(n−k), S̃ = [0k,n−2k − S ] ∈ Ck×(n−k) in which C = diag(cos θ1, . . . , cos θk)
and S = diag(sin θ1, . . . , sin θk). Hence we can express (8) as

A1U1S̃ VH − U1S̃ VHΛ2 = −R̃HU2C̃VH. (9)
4



We claim that C̃ is nonsingular. To see this, suppose on the contrary that there exists i such that
cos θi = 0, which makes C̃ singular. Defining j = n − 2k + i this means W (2)

2 Ve j = 0 where e j is
the jth column of In−k, so the jth column of W (2)

2 V is all zero.
Now, by ÃW2 = W2Λ2 we have ÃW2V = W2V(VHΛ2V). Taking the jth column yields

ÃW2Ve j = W2V(VHΛ2V)e j.

Since W2Ve j is nonzero only in its first k elements, we get
[
A1

R̃

]
W (1)

2 Ve j = W2V(VHΛ2V)e j,

the first k elements of which is

A1W (1)
2 Ve j = W (1)

2 V(VHΛ2V)e j.

Now define v = W (1)
2 Ve j and let γ = (a + b)/2. Subtracting γv we get

(A1 − γI)v = W (1)
2 V(VH(Λ2 − γI)V)e j.

Defining Â1 = A1 − γI and Λ̂2 = Λ2 − γI and taking the spectral norm we get

‖Â1v‖2 = ‖W (1)
2 Λ̂2Ve j‖2.

Note by assumption that defining c = 1
2 (b−a) the eigenvalues of Λ̂2 lie in [−c, c] and those of Â1 lie

in the union of [c + δ,∞) and (−∞, c − δ], so noting that ‖v‖2 = ‖e j‖2 = 1 and ‖W (1)
2 ‖2 = ‖C̃‖2 ≤ 1,

we must have σmin(Â1) ≤ ‖W (1)
2 Λ̂2Ve j‖2 ≤ ‖Λ̂2‖2. However, this contradicts the assumptions,

which require δ + c < σmin(Â1) and ‖Λ̂2‖2 ≤ c. Therefore we conclude that C̃ must be invertible.
Hence we can right-multiply VC̃−1 to (9), which yields

−R̃HU2 = A1U1S̃ VHVC̃−1 − U1S̃ VHΛ2VC̃−1

= A1U1S̃ C̃−1 − U1S̃ C̃−1 · (C̃VHΛ2VC̃−1).

As above we introduce a “shift” γ = (a + b)/2 such that

−R̃HU2 = A1U1S̃ C̃−1 − (γU1S̃ C̃−1 − γU1S̃ C̃−1) − U1S̃ C̃−1 · (C̃VHΛ2VC̃−1)

= (A1 − γI)U1S̃ C̃−1 − U1S̃ C̃−1 · (C̃VH(Λ2 − γI)VC̃−1)

= Â1U1S̃ C̃−1 − U1S̃ VHΛ̂2VC̃−1.

Taking a unitarily invariant norm and using ‖R̃‖ = ‖R‖ and the triangular inequality yields

‖R‖ ≥ ‖Â1U1S̃ C̃−1‖ − ‖(U1S̃ )(VHΛ̂2V)C̃−1‖
≥ σmin(Â1)‖S̃ C̃−1‖ − ‖(U1S̃ )(VΛ̂2VH)C̃−1‖.
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We now appeal to Lemma 2.1 substituting X ← U1S̃ ,Y ← VHΛ̂2V,Z ← C̃−1. In doing so we note
that Σ̃XΣ̃Z = diag(tan θk, . . . , tan θ1) so ‖Σ̃XΣ̃Z‖ = ‖S C−1‖ = ‖S̃ C̃−1‖ = ‖ tan ∠(Q1, X1)‖, so we get

‖R‖ ≥ σmin(Â1)‖S C−1‖ − ‖VHΛ̂2V‖2‖S C−1‖
= σmin(Â1)‖S C−1‖ − ‖Λ̂2‖2‖S C−1‖
= ‖ tan ∠(Q1, X1)‖

(
σmin(Â1) − ‖Λ̂2‖2

)
.

Using σmin(A1) − ‖Λ2‖2 ≥ (c + δ) − c = δ, we conclude that

‖ tan ∠(Q1, X1)‖ ≤ ‖R‖
σmin(A1) − ‖Λ2‖2 ≤

‖R‖
δ
.

¤

Remarks. Below are two remarks on the tan θ theorem with relaxed conditions, Theorem 1.

• Practical situations to which the relaxed theorem is applicable but not the original include
the following two cases:

(i) When extremal (both smallest and largest) eigenpairs are sought, for example by the
Lanczos algorithm (e.g., [1, 7]). In this case Q1 tends to approximately contain the
eigenvectors corresponding to the largest and smallest eigenvalues of A, so we may
directly have the situation in Theorem 1.

(ii) When internal eigenpairs are sought. In this case the exact (undesired) eigenvalues
λ(Λ2) lie below and above λ(A1), so Theorem 1 is not applicable. However, if the
residual ‖R‖ is sufficiently small then we must have λ(A1) ' λ(Λ1) and λ(A2) ' λ(Λ2),
in which case the Ritz values λ(A2) lie both below and above the eigenvalues λ(Λ1).
We can then invoke Theorem 1 with the subscripts 1 and 2 swapped, see below for an
example.

• For the tan 2θ theorem we cannot make a similar relaxation in the conditions on the spec-
trums. Note that in the tan 2θ theorem the gap δ is defined as the separation between the
two sets of Ritz values λ(A1) and λ(A2) (instead of λ(Λ2)), so there is no separate situations
in which one spectrum lies both below and above the other, unlike in the tan θ theorem.
To see that in such cases ‖R‖

δ̃
(where δ̃ is the separation between λ(A1) and λ(A2)) is not an

upper bound of ‖ 1
2 tan 2∠(Q1, X1)‖, we consider the example (10) below, in which we have

‖R‖2
δ̃

= 1/
√

2
1/
√

2
= 1 but ‖ 1

2 tan 2∠(Q1, X1)‖2 = ∞.

The counterexample in [2]. [2] considers the following example in which the spectrums of A1 and
Λ2 satisfy the conditions of the sin θ theorem but not the original tan θ theorem.

A =



0 0 1√
2

0 0 1√
2

1√
2

1√
2

0

 , Q1 =


1
0
0

 . (10)
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A has eigenvalues 0, 1,−1, and the exact angle between Q1 and the eigenvector X1 = [ 1√
2
, 1√

2
, 0]T

corresponding to the zero eigenvalue satisfies tan ∠(Q1, X1) = 1. We can also compute A1 = 0 so
δ = 1, and ‖R‖2 = 1/

√
2. In this case λ(Λ2) = {1,−1} lies on both sides of A1 = 0, which violates

the assumption in the original tan θ theorem. In fact, ‖R‖2/δ = 1/
√

2 is not an upper bound of
‖ tan ∠(Q1, X1)‖2 = 1.

Let us now examine (10) in terms of our relaxed tan θ theorem, Theorem 1. The above setting
does not satisfy the assumption in Theorem 1 either. In particular, the situation between λ(A1) and
λ(Λ2) corresponds to the second case in the introduction, which the relaxed tan θ theorem does
not cover. However, in light of the fact ∠(Q1, X1) = ∠(Q2, X2) for all the p canonical angles, we
can attempt to bound ‖ tan ∠(Q1, X1)‖ via bounding ‖ tan ∠(Q2, X2)‖. We have λ(A2) = ± 1√

2
and

λ(Λ1) = 0, so the assumptions in Theorem 1 (in which we swap the subscripts 1 and 2) are satisfied
with δ = 1/

√
2. Therefore we can invoke the tan θ theorem, and get the correct and sharp bound

‖ tan ∠(Q2, X2)‖ ≤ ‖R‖/δ = 1. We note that the original tan θ theorem still cannot be invoked
because the assumptions are violated.

2.3. The generalized tan θ theorem with relaxed conditions
[2] also proves the generalized tan θ theorem, in which the dimension of Q1 is smaller than that

of X1. Here we show that the same relaxation on the condition can be attained for the generalized
tan θ theorem. We prove the below theorem, in which X1 now has `(≥ k) columns.

Theorem 2. Let A ∈ Cn×n be a Hermitian matrix and let X = [X1 X2] be its unitary eigenvector
matrix so that XHAX = diag(Λ1,Λ2) is diagonal where X1 and Λ1 have `(≥ k) columns. Let
Q1 ∈ Cn×k be orthogonal, and let R = AQ1 − Q1A1, where A1 = QH

1 AQ1. Suppose that λ(Λ2) lies
in [a, b] and λ(A1) lies in the union of (−∞, a − δ] and [b + δ,∞). Then

‖ tan ∠(Q1, X1)‖ ≤ ‖R‖
δ
. (11)

P. The proof is almost the same as that for Theorem 1, so we only highlight the differences.

We discuss the case k ≤ ` ≤ n
2 ; other cases are analogous. We partition W2 =

[
QH

1 X2

QH
2 X2

]
=

[
W (1)

2
W (2)

2

]
where W (1)

2 is k-by-(n − `). There exist unitary matrices U1 ∈ Ck×k,U2 ∈ C(n−k)×(n−k) and

V ∈ C(n−`)×(n−`) such that W (1)
2 = U1S̃ VH and W (2)

2 = U2C̃VH, where C̃ =

[
diag (In−k−`,C)

0`−k,n−`

]
∈

C(n−k)×(n−`) and S̃ = [0k,n−k−` − S ] ∈ Ck×(n−`), in which C = diag(cos θ1, . . . , cos θk) and S =

diag(sin θ1, . . . , sin θk). We then right-multiply (9) by diag
(
In−k−`,C−1

)
, which yields

−R̃HU2

[
In−`

0`−k,n−`

]
= A1U1S̃ diag

(
In−k−`,C−1

)
− U1S̃ VHΛ2Vdiag

(
In−k−`,C−1

)
.
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Noting that the k largest singular values of diag
(
In−k−`,C−1

)
are 1/ cos θk, . . . , 1/ cos θ1 and using

Lemma 2.1 we get

‖R‖ ≥
∥∥∥∥∥∥R̃HU2

[
In−`

0`−k,n−`

]∥∥∥∥∥∥
≥ σmin(Â1)‖S C−1‖ − ‖Λ̂2‖2‖S C−1‖
= ‖ tan ∠(Q1, X1)‖

(
σmin(Â1) − ‖Λ̂2‖2

)
,

which is (11). ¤
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