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Abstract

We characterise those algebra endomorphisms of the Steenrod algebra over the
field of two elements, and those of its odd subalgebra, which send Steenrod
squares to Steenrod squares or to 0. Two such maps appear in the literature,
an epimorphism of the Steenrod algebra in the book of Steenrod and Epstein
which halves superscripts on Steenrod squares and a monomorphism of the odd
subalgebra in a paper of Monks. In the latter context a new map, an epimor-
phism, arises which has contrasting features to those of the endomorphism of
Monks. Formulae for the endomorphisms are indicated both for the admissible
and the Milnor bases.

1. Introduction and preliminaries

An F2-algebra endomorphism of the Steenrod algebra which sent Steenrod
squares to Steenrod squares (or to 0) would be particularly accessible. Two
such maps occur in the literature, one on the full Steenrod algebra and the
other on its so-called odd subalgebra. The first, dating at least to the book
of Steenrod and Epstein [SE62, p. 24] and called γ in Wood’s survey article
[Wo98, p. 488], halves the superscripts. That is, for p ≥ 0, γ(Sq2p) = Sqp and
γ(Sq2p+1) = 0.

The second map, called λ in [Mo92; Wo98, p. 489], doubles the superscripts
and subtracts 1. We restrict attention to its action on the subalgebra on which
it is an algebra endomorphism, namely, the odd subalgebra, the subspace having
as basis all admissible Sqa := Sqa1Sqa2 , · · · ,Sqa` , a = (a1, a2, · · · , a`), ai ≥ 0,
for which each superscript ai is odd or 0 (and so including the unit 1 of A).
Thus, for p ≥ 0, λ(Sq2p+1) = Sq4p+1. The odd subalgebra O of the Steenrod
algebra A and its endomorphism λ seem to have been introduced by Monks in
his 1989 thesis (see [Mo92]); he used the Milnor basis. In [Mo92] a chain of
smaller and smaller subalgebras is defined, each isomorphic to the next and all
of them isomorphic to O. The isomorphisms are explicitly given and give rise
to λ and its powers. Here we define a chain of larger and larger ideals whose
quotient algebras are each isomorphic to the next and again all are isomorphic
to O. The isomorphisms give rise to endomorphisms of O which send Steenrod
squares to Steenrod squares or to 0.
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For conceptual and notational purposes, we consider our endomorphisms as
initially defined on the tensor algebra and then defined on A via a presenta-
tion. Let V be a vector space of countable dimension over F2. Fix a basis Sn,
n ≥ 1. Then the tensor algebra T (V ), isomorphic to the polynomial algebra
F2{S1, S2, · · ·} in non-commuting variables, has the Steenrod algebra A as a
quotient:

π : T (V ) −→ A,

where π maps Sn to Sqn. The kernel R, according to the Adem-Wu relations,
is generated as ideal by all

SxSy −
∑

εk(x, y)Sx+y−kSk,

where 2y > x ≥ 1 and εk(x, y) is the binomial coefficient
(
y−1−k
x−2k

)
modulo 2.

Let η be a map from the set of indeterminates {S1, S2, · · ·} to T (V ) with the
property that, if η(Sn) 6= 0, then η(Sn) is itself an indeterminate. Thus we may
write η(Sn) = Sη(n) with the convention that, if η(Sn) = 0, then η(n) = −∞,
i.e., we also interpret η as a function from the set P of positive integers to
P ∪ {−∞}. Such a map defines an endomorphism of T (V ) as (unital) algebra.

If η(R) ⊆ R, then η induces an algebra endomorphism of A. We use the same
name η so that, if η(Sqn) 6= 0, then η(Sqn) is itself a Steenrod square and we

again write η(Sqn) = Sqη(n), including 0 in the notation as an honorary Steenrod
square 0 = Sq−∞. As our algebra endomorphisms are taken to be those of unital
algebras, η(0) = 0 (if n > 0, then η(n) 6= 0). Such endomorphisms of A are
those which we wish to characterise and any such arises from a corresponding
endomorphism of T (V ) as above.

Recall that A is minimally generated as unital algebra by the squares Sq2e

with 0 ≤ e (see [Wo98, p. 454]), so that an algebra homomorphism on A
is determined by its images on these elements. In O the Steenrod squares
of odd degree themselves form a minimal generating set so that an algebra
homomorphism on O is determined by its images on the elements Sqn, n odd.
As O has the presentation F2{S1, S3, S5, · · ·}/Rodd, where Rodd is the ideal
generated by all Adem-Wu relations in which only odd superscripts appear, the
considerations above apply as well to defining algebra homomorphisms on O.
Note that in our treatment we consider O as a unital subalgebra. This differs
from the usage in Monks and in Wood for whom the odd subalgebra is O+

(in the algebras which appear here the superscript + denotes the augmentation
ideal, the subalgebra of elements of positive grading).

Our results depend heavily on the parity of certain binomial coefficients. We
begin with lemmas on this topic. The parity of a binomial coefficient can be
calculated from the dyadic expansions of its entries. We write di(n) for the ith
binary digit of the non-negative integer n so that n = Σidi(n)2i. Then, for
x, y ≥ 0, (

x

y

)
≡
∏
i

(
di(x)

di(y)

)
mod 2

[AS72, 24.1.1].
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1.1 Lemma. The binomial coefficient
(
2m+1
m+2

)
is equivalent to 1 modulo 2 if

and only if m = 2e− 1 for some e ≥ 1 or m = 2e− 2 for some e ≥ 2. Similarly,(
2m
m+2

)
≡ 1 mod 2 if and only if m = 2e − 2 for some e ≥ 2.

Proof. We may assume that m ≥ 1. The sufficiency of the conditions is
straightforward. For their necessity let e be maximal such that de−1(m) = 1.
We show by reverse induction that di(m) = 1 for e − 1 ≥ i > 0. Suppose
that di(m) = 1 for e − 1 ≥ i > k > 0. If dk(m) = 0, then dk+1(2m + 1) = 0
while dk+1(m + 2) = 1. This has the contradictory implication that each of
the binomial coefficients of the statement is 0 modulo 2. Thus, m = 2e − 1 or
m = 2e − 2; as m cannot be odd in the second case, m = 2e − 2 there. �

1.2 Lemma. Let a be a positive integer. Then SqaSqa = Sq2a−1Sq1 + S,
where S is a sum of admissible monomials which do not involve Sq1. Moreover,
S = 0 if and only if a = 1 or a = 2f + 1, f ≥ 0, while SqaSqa = 0 if and only if
a = 1.

Proof. The first statement is immediate from the Adem-Wu relations. The
second statement is clear if a ≤ 2 and so we assume a ≥ 3. For f ≥ 1 and k > 1,

εk(2f + 1, 2f + 1) ≡
(

2f + 1− 1− k
2f + 1− 2k

)
=

(
(2f − 1)− (k − 1)

(2f − 1)− 2(k − 1)

)
.

Let i be minimal such that di(k− 1) = 1. Then di((2
f − 1)− (k− 1)) = 0 while

di((2
f − 1)− 2(k − 1)) = 1. It follows that εk(2f + 1, 2f + 1) = 0.

To prove the converse, suppose first that a is odd, a 6= 2f + 1. Then there
exist minimal i, j, j > i > 0, for which a = 2j+1b + 2j + 2i + 1, b ≥ 0. For
k = 2j−1 + 1, εk(a, a) = 1, which suffices. If a is even and a > 2, then there
exists j, j ≥ 1, for which a = 2j+1b + 2j + 2, b ≥ 0. Again for k = 2j−1 + 1,
εk(a, a) = 1, which concludes the proof. �

2. Constructions and characterisations

Our classification of endomorphisms like γ calls forth a host of much more
limited maps. In [Wo98, p. 455] the notation A(0) is used for the subalgebra
F2 + F2Sq1 of A. Let x ≥ 1; using the procedure discussed in the previous
section, define the projection πx from A to A(0) by πx(Sqn) = δx,nSq1 for n ≥ 1

(Kronecker δ). The squares Sq2e , e ≥ 0, form a minimal generating set for A.
It follows that, if n 6= 2e for some e, then Sqn ∈ (A+)2; as (A(0)+)2 = 0, such
Sqn lie in the kernel of any algebra homomorphism from A to A(0). Indeed, πx
is an algebra homomorphism if and only if x is a power of 2. More generally, if
T is a set of such powers, finite or infinite, define the map πT via

πT (Sqn) :=

{
Sq1 if n ∈ T ,
0 otherwise.
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Then πT (Sqn) is an algebra homomorphism, which we view here as an algebra
endomorphism of A. Except for T = ∅ in which case π∅ is the projection of
A onto the ground field, i.e., π∅ = ε, the augmentation homomorphism of A
as Hopf algebra, πT maps A onto A(0). Restricted to A+ the maps πT ∈
EndF2(A+) satisfy a Boolean condition: πT + πU = πT∨U , where, so restricted,
π∅ = 0; in this setting we may write πT = Σt∈Tπt.

The endomorphisms of A which we study here form a monoid under com-
position. Its multiplication table is indicated below. The identity map on A is
taken here to be a power of γ, 1A = γ0.

Multiplication table

γj πU
γi γi+j ε
πT π2jT πV

Here i, j ≥ 1 and T,U, V are sets of powers of 2 with

V =

{
U if 1 ∈ T ,
∅ otherwise.

With the requisite notation now in place, we state our result concerning the
endomorphisms of the Steenrod algebra.

2.1 Theorem. Let η be an endomorphism of the Steenrod algebra with the
property that, if η(Sqn) 6= 0, n ≥ 1, then η(Sqn) is itself a Steenrod square.
Then η is a power of γ or η is a map πT to A(0) for a set T of powers of 2. If
η is a monomorphism, then η = 1A.

Proof. The discussion above shows that, if Im η ⊆ A(0), then η is a projection
πT . We may thus assume in what follows that there are values of η (in its guise
as a map defined on P) which are strictly greater than 1. The hypothesis implies
that there are few possibilities for the images of Sq1 and Sq2. As Sq1Sq1 = 0,
applying η gives Sqη(1)Sqη(1) = 0. By Lemma 1.2, η(1) ≤ 1.

From Sq2Sq2 = Sq3Sq1, we obtain

Sqη(2)Sqη(2) = Sqη(3)Sqη(1).

If η(1) = −∞, then, as before, η(2) ≤ 1. Suppose that η(1) = 1. As Sq3 =
Sq1Sq2, we have

Sqη(2)Sqη(2) = Sq1Sqη(2)Sq1.

If η(2) ≥ 2, then the left-hand side is not 0 so that η(2) is even and the right-

hand side is Sq1+η(2)Sq1, an admissible. Comparison of degrees shows that
η(2) = 2. In conclusion, η(2) ≤ 2.
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Suppose first that η(1) = 1. If η(2) = 2, then η = 1A. For this we prove by
induction that η(n) = n for all n by applying η to the identity

Sq2Sqn−1 = ε0(2, n− 1)Sqn+1 + SqnSq1

for n ≥ 3. If η(2) ≤ 1, then η(n) ≤ 1 for all n, n ≥ 1, the condition which
implies that η is a projection πT . This follows by induction, the induction step
proceeding by applying η to the previous identity for n ≥ 3. Now the left-
hand side is sent to 0 while the image of the right-hand side includes the term
Sqη(n)Sq1 and so Sqη(n) = 0. In conclusion, if η(1) = 1, then η = 1A.

As η(1) 6= 0, the remaining possibility is η(1) = −∞. Now η(n) = −∞
for all odd n, n ≥ 3, as can be seen by applying η to Sqn = Sq1Sqn−1. Since
ASq1A, the two-sided ideal generated by Sq1, is in the kernel of η, it follows
that η induces a homomorphism from A/ASq1A to A. Moreover this ideal has
as basis all admissibles of the form Sqa for which at least one entry in a is odd.
It thus coincides with Ker γ [SE62, p. 24].

Imitating [Wo98, p. 488], we define an endomorphism of the algebra T (V )
called γ−1 by setting γ−1(Sn) = S2n, which, however, does not induce an algebra
endomorphism of A. It does induce an algebra homomorphism from A onto
A/ASq1A which is indeed the inverse of the isomorphism which γ induces from
A/ASq1A onto A. For ease of notation, we use the same names of the mappings
in the context of the quotient algebras.

We now use the fact that η is determined by its action on the elements Sq2e

for e ≥ 0. To conclude the proof, we induct on e, e ≥ 0, that, if

η(1) = η(2) = · · · = η(2e−1) = −∞

and if η(2e) ≥ 1, then η = γe. We have seen earlier that this is so for e = 0,
i.e., that η(1) = 1 implies that η = 1A = γ0. For e > 0, the composite
homomorphism ηγ−1 is an algebra endomorphism of A for which

ηγ−1(1) = ηγ−1(2) = · · · = ηγ−1(2e−2) = −∞

and ηγ−1(2e−1) ≥ 1. By induction it follows that ηγ−1 = γe−1 and so η = γe,
as required. �

We now turn our attention to the odd subalgebra. Again there is a host of
projections to A(0), a subalgebra of O, now obtained from the minimal gener-
ators Sqx, x odd. The maps πx for odd x restrict to algebra endomorphisms of
O. Here we have a map πM for each set M of odd numbers which, except for
M = ∅, maps O onto A(0) (π∅ is again the augmentation homomorphism, here
in the context of O). The other remarks about the projections from A apply in
this setting.

In the next result we apply to O the same considerations and conventions
set out in the introduction for A concerning linear maps defined initially only
on Steenrod squares.
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2.2 Proposition. Let m be a positive odd integer, and f ≥ 1. Define a
linear transformation µ from the odd subalgebra O to itself by letting

µ(Sqn) :=


1 if n = 0,

Sq2f (p−1)+1 if n = (m+ 1)p− 1 for p ≥ 1,
0 otherwise.

If µ is an algebra endomorphism, then there is e ≥ 1 such that m = 2e − 1.

Proof. By replacing µ by λ−(f−1)µ, we may assume that f = 1.
Suppose now that µ is an algebra endomorphism. By the assumption and

the hypotheses,

µ(Sq3(m+1)−1)µ(Sq3(m+1)−1) = Sq5Sq5 = Sq9Sq1.

As µ(x) = −∞ if x 6= (m + 1)p − 1 for some p, modulo Kerµ and with ε :=
εm(3m+ 2, 3m+ 2),

Sq3m+2Sq3m+2 ≡ εSq5m+4Sqm = εSq5(m+1)−1Sqm

whose image under µ is εSq9Sq1. Thus,

ε =

(
3m+ 2− 1−m

3m+ 2− 2m

)
=

(
2m+ 1

m+ 2

)
≡ 1 mod 2.

By Lemma 1.1, m = 2e − 1 for some e ≥ 1 as required. �

The converse of this proposition is also true, as can be seen by applying
the method described in the previous section. Hereafter µ will denote the one
specific linear transformation of O defined as in the proposition by

µ(Sq4p−1) = Sq2p−1, p ≥ 1,

and µ(Sqn) = 0 for all other positive n. In the next section we also provide a
detailed proof that µ is an endomorphism, which is incidental to establishing
the formulae for the action of µ on the Milnor basis. For e ≥ 0, µe is the
endomorphism of O given as

µe(Sq2e+1p−1) = Sq2p−1, p ≥ 1,

and µe(Sqn) = 0 for all other positive n. Its kernel is is an admissible ideal, i.e.,
one with a basis of admissible monomials. In the statement, `(x) denotes the
length of a vector x.

2.3 Proposition. The ideal Kerµe, e ≥ 0, is the subspace spanned by all
monomials Sqx of O for which there is an index j, with 1 ≤ j ≤ `(x), for
which xj 6≡ −1 mod 2e+1. The same statement holds when the monomials are
restricted to being admissible. The quotient space Coimµe, isomorphic to O,
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is spanned by the cosets of all admissible Sqa for which aj ≡ −1 mod 2e+1,
1 ≤ j ≤ `(a).

Proof. We may take e positive. Let U denote the subspace described; it is
clear that it is contained in Kerµe and that it is an ideal. We show first that
it is admissible. Our proof that each of the defining monomials Sqx of U is a
linear combination of admissibles which satisfy the defining condition of U , is by
induction, first on `(x), and then on x in the right lexicographic order. The base
cases are trivial: `(x) = 1, and, for fixed ` > 1, xi = 1 for all i, 1 ≤ i ≤ ` = `(x).

Let x = (x1, x2, · · · , x`) be strictly greater than (1, 1, · · · , 1), and suppose
that Sqx satisfies the defining condition of U . If there is an index i such that
xi 6≡ −1 mod 2e and i ≤ `−1, then, by induction on length, we may assume that
(x1, x2, · · · , x`−1) is admissible. If there is no such index, then, by expressing
(x1, x2, · · · , x`−1) as a sum of admissibles (which in O still have length ` − 1),
we may again assume that (x1, x2, · · · , x`−1) is admissible.

If x is not admissible, then x`−1 < 2x`. Writing x = x`−1 and y = x`, we
see from the Adem-Wu relations that

SqxSqy =
∑

k odd,1≤k<x/2

εk(x, y)Sqx+y−kSqk.

If there is an index i, 1 ≤ i ≤ `− 2, with xi 6≡ −1 mod 2e, then we are done by
induction on right lexicographic order. If not then either x or y is not equivalent
to -1 mod 2e.

If there is k, 1 ≤ k < x/2, for which both k and x+y−k are equivalent to -1
mod 2e, then εk(x, y) = 0. To see this, write x = 2ep+ u, y = 2eq + v, and k =
2er+(2e−1), where 1 ≤ u, v ≤ 2e−1. By hypothesis, u+v ≤ (2e−1)+(2e−3).
As u+ v ≡ −2, it follows that (u+ 2) + v = 2e. Thus, dj(u+ 2) = 1− dj(v) if
1 ≤ j ≤ e− 1. Now

εk(x, y) ≡
(
y − 1− k
x− 2k

)
=

(
2e(q − (r + 1)) + v

2e(p− 2(r + 1)) + u+ 2

)
.

Since q − (r + 1) ≥ 0 and p− 2(r + 1) ≥ 0, we may write

εk(x, y) ≡
(
q − (r + 1)

p− 2(r + 1)

)(
de−1(v)

1− de−1(v)

)
· · ·
(

d1(v)

1− d1(v)

)(
1

1

)
.

As v ≤ 2e− 3, there is an index j, 1 ≤ j ≤ e− 1, for which dj(v) = 0. It follows
that εk(x, y) = 0.

We thus see that either x is admissible or Sqx is a sum of monomials in U ,
each of whose vectors of superscripts is strictly below x in the right lexicographic
order, so that the argument concludes on applying the second induction.

The cosets of the admissibles described in the last assertion of the proposition
comprise a basis for O/U . To finish the proof of the proposition it suffices to
show that a sum of such admissibles is not sent to 0 by µe. Let Sqa be such
that aj ≡ −1 mod 2e+1, 1 ≤ j ≤ ` = `(a). Then

µe(Sqa) = Sq2a1−1 · · · Sq2a`−1,
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an admissible. Moreover, different such admissibles Sqa are sent to distinct
admissible images µe(Sqa). This establishes the proposition. �

These ideals form a strictly increasing chain: Kerµ0 = Ker 1O = 0 and,
for e ≥ 1, Kerµe−1 ⊂ Kerµe. The maps µe can be factored through the
coimages. For example, using the cosets of the admissible basis we define an
algebra isomorphism from Coimµe to Coimµe−1 for e ≥ 1 by sending the coset

of Sq2e+1p−1, p ≥ 1, to the coset of Sq2ep−1. We have thus constructed a
sequence of isomorphisms

Coimµe −→ Coimµe−1 −→ · · · −→ Coimµ −→ Coim 1O = O.

When preceded by the natural projection the composite gives the epimorphism
µe : O → O.

Before stating our result concerning the endomorphisms of O we describe
the monoid of those non-zero endomorphisms so far considered. We begin with
a multiplication table of the non-identity endomorphisms.

Multiplication table

λi
′

µj
′

λi
′
µj

′
πM ′

λi λi+i
′

λiµj
′

λi+i
′
µj

′
πM ′

µj 0 µj+j
′

0 0

λiµj 0 λiµj+j
′

0 0
πM πM1 πM2 πM3 πM4

Here i, i′, j, j′ ≥ 1 and M,M ′ are sets of positive odd numbers while

M1 = {2p+ 1 | 2i′+1p+ 1 ∈M, p ≥ 0},
M2 = {2j′+1p− 1 | 2p− 1 ∈M, p ≥ 1},
M3 = {2j′+1p− 1 | 2i′+1(p− 1) + 1 ∈M, p ≥ 1},

and

M4 =

{
M ′ if 1 ∈M,
∅ otherwise.

As shown in the next theorem, the monoid of endomorphisms of O which send
squares to squares or to 0 comprises precisely the set of products λiµj for i, j ≥ 0
(by convention, λ0 = µ0 = 1O), the set of projections and the 0 map.

Next we give a table of the values of these endomorphisms, suppressing those
which are zero, i.e., if, for an endomorphism η and an odd integer n, no value for
η(Sqn) appears in the table, then η(Sqn) = 0 (recall that η(Sq0) = η(1O) = 1
as η is a homomorphism of unital algebras). For an example, a notable one, if
p ≥ 0, λµ(Sq4p+3) = Sq4p+1 while λµ(Sq4p+1) = 0.
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Table of non-zero values

λi(Sq2p+1) = Sq2i+1p+1, i, p ≥ 0

µj(Sq2j+1p−1) = Sq2p−1, p ≥ 1, j ≥ 0

λiµj(Sq2j+1p−1) = Sq2i+1(p−1)+1, p ≥ 1, i, j ≥ 0
πM (Sq2p+1) = Sq1, p ≥ 0, 2p+ 1 ∈M

Thus, Kerλi = 0 and

Imλi = Σ{F2Sqx | xj ≡ 1 mod 2i+1, 1 ≤ j ≤ `(x)}

while

Kerµi = Σ{F2Sqx | there exists j, 1 ≤ j ≤ `(x),with xj 6≡ −1 mod 2i+1},

as already noted, and Imµi = O. In the descriptions of Imλi and of Kerµi,
admissible vectors of superscripts can be taken in place of arbitrary ones; thus,
these subspaces have bases of admissible monomials.

2.4 Theorem. Let η be an endomorphism of the odd subalgebra O of the
Steenrod algebra with the property that, if η(Sqn) 6= 0, then η(Sqn) is itself a
Steenrod square. Then η lies in the monoid generated by µ, λ and the projections
πM , where M is a set of odd numbers.

Proof. Assume that η 6= 0 and that η is not a projection. Let m be minimal
such that η(m) > 0. Applying η to the Adem-Wu expansion

SqmSqm =
∑
k

εk(m,m)Sq2m−kSqk,

we find that Sqη(m)Sqη(m) = 0 since η(k) = −∞ if k < m. By Lemma 1.2

η(m) = 1. A similar argument shows that, for m < n < 2m+ 1, Sqη(n)Sq1 = 0
so that η(n) ≤ 1.

As η is not a projection, it takes values strictly greater than 1. But then the
least element on which η takes such a value is of the form n+ (m+ 1),m ≤ n.
If m < n, applying η to the Adem-Wu expansion

Sq2m+1Sqn =
∑
k

εk(2m+ 1, n)Sq2m+1+n−kSqk,

we find that Sqη(2m+1)Sqη(n) = Sqη(n+(m+1))Sq1 since εm(2m + 1, n) = 1. But
the assumption that η(2m+ 1) ≤ 1 implies that the left-hand side is 0 whereas
the right-hand side is not. Thus, η(2m+ 1) > 1.

The previous equation for the case n = 2m+ 1 yields Sqη(2m+1)Sqη(2m+1) =
Sqη(3m+2)Sq1. By Lemma 1.2, η(2m+1) = 2f+1, f > 0. Comparison of degrees
in that same equation shows that η(n+ (m+ 1)) = η(n) + 2f if η(n) > 0. Thus,
Im η = Imλf−1, and, as in the proof of Proposition 2.2, we may replace η by
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λ−(f−1)η, i.e., we may assume that f = 1. In particular, we may assume that
η(2m+ 1) = 3 and η(n+ (m+ 1)) = η(n) + 2 whenever n > m and η(n) > 0.

We next show that η(n) > 0 implies that n ≡ −1 mod m + 1. Let n be
minimal not of this form for which η(n) > 0. We have already shown above that,
if m < n < 2m+ 1, then η(n) = 1. If n > 2m+ 1 and so η(n− (m+ 1)) = −∞,

then η(n) = 1 since then Sqη(2m+1)Sqη(n−(m+1)) = 0. Now apply η to the
Adem-Wu expansion

Sqn+(m+1)Sqn =
∑
k

εk(n+ (m+ 1), n)Sq2n+(m+1)−kSqk

to obtain

Sq3Sq1 =
∑

εi(m+1)−1(n+ (m+ 1), n)Sqη(2n+(m+1)−(i(m+1)−1))Sqη(i(m+1)−1),

where the sum is over all i ≥ 1 for which i(m+ 1) < n. But η(i(m+ 1)− 1) =
2i − 1 so that, for i > 2, the ith term, if non-zero, is of degree ≥ 5, which is
incompatible with the left-hand side of degree 4. For i = 2, to be of degree 4
the second term would have to be Sq1Sq3 which is 0. For i = 1,

εm(n+ (m+ 1), n) ≡
(

n− 1−m
n+ (m+ 1)− 2m

)
=

(
n− (m+ 1)

n− (m+ 1) + 2

)
= 0,

the final contradiction to the supposition. By Proposition 2.2, there is e ≥ 0 for
which η = µe, as required. �

3. Milnor basis

While Monks developed his map λ in order to investigate nilpotence degrees of
elements, our result shows that it could have been uncovered simply by studying
its defining property. It may be that there are similarly useful maps, even on A
itself, to be called into being by positing weaker properties such as sending ad-
missibles to admissibles. A potential difficulty in such an approach, underplayed
here, is establishing that such a map is a homomorphism. The method for do-
ing so which is described in Sect. 1, i.e., in the circle of ideas of the admissible
basis, is straightforward to apply in the cases discussed. This section provides
an alternative and direct approach as a corollary of the following proposition
which states the formulae for our endomorphisms in terms of the Milnor basis.
Details are given only in the case of µ.

We begin by stating the formulae which define our maps in the Milnor basis.
The formulae agree with the previous definitions on Steenrod squares, multi-
plicative generators of our algebras. Showing in each case that the formulae
define a multiplicative mapping thus establishes the correctness of the formulae
in addition to the fact that the map is an endomorphism.
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3.1 Proposition. On the Milnor basis, the maps γ, πT , λ, µ, and πN send
1 = Sq(0) to 1 and all other Milnor basis elements in A and O, respectively, to
0 with the following exceptions:

γ sends each element

Sq(2p1, · · · , 2p`) to Sq(p1, · · · , p`),

where pi ≥ 0, 1 ≤ i ≤ `;
πT sends each element Sq(t) to Sq(1), where T is a set of powers of 2 and

t ∈ T ;
λ sends each element

Sq(2p1 + 1, · · · , 2p`−1 + 1, 2p` + 1) to Sq(4p1 + 3, · · · , 4p`−1 + 3, 4p` + 1),

where pi ≥ 0, 1 ≤ i ≤ `;
µ sends each element

Sq(4p1 + 1, · · · , 4p`−1 + 1, 4p` + 3) to Sq(2p1 + 1, · · · , 2p`−1 + 1, 2p` + 1),

where pi ≥ 0, 1 ≤ i ≤ `;
πM sends each element Sq(m) to Sq(1), where M is a set of positive odd

numbers and m ∈M .

The formulae for composites are readily derived. That for λµ is particularly
striking. Namely, λµ sends each element

Sq(4p1 + 1, · · · , 4p`−1 + 1, 4p` + 3) to Sq(4p1 + 3, · · · , 4p`−1 + 3, 4p` + 1),

where pi ≥ 0, 1 ≤ i ≤ `, and all other non-identity Milnor basis elements to 0. As
with the admissible basis, the subspaces associated with these endomorphisms
have bases of Milnor basis elements. For example,

Imλi = Σ{F2Sq(r) | rj ≡ 1 mod 2i, 1 ≤ j ≤ `(r)}

while

Kerµi = Σ{F2Sq(r) | there exists j, 1 ≤ j ≤ `(r),with rj 6≡ −1 mod 2i+1}.

Proof of 3.1. The formula for γ is well-known. It can be established by the
same lengthy argument given below for the more complicated formula holding
for the endomorphism µ. Note that [SE62, p. 24] only gives the formula for γ
in terms of the admissible basis — and calls the map λ∗.

That for λ is given in [Mo92; Wo98, p. 489]. For λ, establishing multiplica-
tivity has required a fair amount of effort when defined using the Milnor basis,
much more so than a proof of multiplicativity based on the universal property
of the tensor algebra.
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The formulae for πT follow from the fact that all Milnor basis elements
Sq(r) ∈ A+ lie in (A+)2 except for those of the form Sq(2e), where e ≥ 0.
Those for πM rely on the fact that Sq(r) 6∈ (O+)2 if and only if `(r) = 1.

It remains to deal with µ. Let B be an algebra and let φ : A −→ B be a
linear transformation whose values on the Milnor basis are given. Then φ is an
algebra homomorphism if, for all r and s,

φ(Sq(r)Sq(s)) = φ(Sq(r))φ(Sq(s)).

Each of our mappings φ preserve the identity, i.e., φ(Sq(0)) = φ(1) = 1, and
so we may assume that r 6= 0 and s > 0. But if r = (r1, · · · , r`), ` > 0,
and s > 0, then the product Sq(r)Sq(s) is a sum of Milnor basis elements
C(r, s,g), or simply C(g) when r and s are understood, corresponding to vectors
g = (g1, · · · , g`), gi ≥ 0, such that ri ≥ 2gi, 1 ≤ i ≤ `, and s ≥

∑
1≤i≤` gi. The

element C(g) is defined as

Sq(r1−2g1+s−
∑

1≤i≤`

gi, r2−2g2+g1, · · · , ri+1−2gi+1+gi, · · · , r`−2g`+g`−1, g`).

Write NZ = NZ(r, s) for the set of those g for which each of the multinomial
coefficients

(r1 − 2g1, s−
∑

1≤i≤`

gi), (r2 − 2g2, g1), · · · , (ri+1 − 2gi+1, gi), · · · , (r` − 2g`, g`−1)

is 1; the expression (a, b) denotes the multinomial coefficient interpreted modulo
2 and is 1 if and only if the dyadic expansions of a and b have no 1’s in common
[Ma83, p. 230] (i.e., (a, b) =

(
a+b
b

)
modulo 2). Then the product is obtained as

Sq(r)Sq(s) =
∑
g∈NZ

C(g).

Note that, as g is determined by C(r, s,g), there is no cancellation in this sum.
For products of Milnor basis elements in the subalgebra O, there are strong

restrictions on the vectors g in NZ. Let Sq(r) and Sq(s) be in O so that, if
r = (r1, · · · , r`), then r1, · · · , r` and s are odd according to Monks’ original
definition of O [Mo92, p. 402]. Let g ∈ NZ(r, s). As 1 = (ri+1 − 2gi+1, gi) for
1 ≤ i ≤ `− 1, gi is even in this range. Also, since 1 = (r1 − 2g1, s−

∑
1≤i≤` gi),

g` is odd.
We now prove that µ(Sq(r)Sq(s)) = µ(Sq(r))µ(Sq(s)). First assume that

r = (4p1 + 1, · · · , 4p`−1 + 1, 4p` + 3) and s = 4q + 3, where pi ≥ 0, 1 ≤ i ≤ `,
and q ≥ 0. Thus µ(Sq(r)) = Sq(r′), where r′ = (2p1 + 1, · · · , 2p`−1 + 1, 2p` + 1),
and µ(Sq(s)) = Sq(s′), where s′ = 2q + 1.

Suppose that g ∈ NZ(r, s) and that µ(C(g)) 6= 0. Then g` = 4a`+3 for some
a` ≥ 0. Further gi = 4ai for some ai ≥ 0 if 1 ≤ i ≤ ` − 1. For, if there is such
an i for which gi ≡ 2 mod 4, then ri+1 − 2gi+1 + gi ≡ 3 mod 4; consequently,
µ(C(g)) = 0, contrary to assumption. Thus, if ` > 1, then

1 = (4(p1 − 2a1) + 1, 4(q −
∑

ai))

12



and, if 1 ≤ i ≤ ` − 2, then 1 = (4(pi+1 − 2ai+1) + 1, 4ai) and, lastly, 1 =
(4(p`−2a`−1)+1, 4a`−1) while, if ` = 1, then 1 = (4(p1−2a1−1)+1, 4(q−a1)).
Moreover, if ` > 1, then

C(g) = Sq(4(p1 − 2a1 + q −
∑

ai) + 1, 4(p2 − 2a2 + a1) + 1, · · ·

· · · , 4(pi+1 − 2ai+1 + ai) + 1, · · · , 4(p`−1 − 2a`−1 + a`−2) + 1,

4(p` − 2a` − 1 + a`−1) + 1, 4a` + 3)

while, if ` = 1, then

C(g) = Sq((4(p1 − 3a1 + q − 1) + 1, 4a1 + 3).

By the formula for µ, if ` > 1, then

µ(C(g)) = Sq(2(p1 − 2a1 + q −
∑

ai) + 1, 2(p2 − 2a2 + a1) + 1, · · ·

· · · , 2(pi+1 − 2ai+1 + ai) + 1, · · · , 2(p`−1 − 2a`−1 + a`−2) + 1,

2(p` − 2a` − 1 + a`−1) + 1, 2a` + 1)

while, if ` = 1, then

µ(C(g)) = Sq((2(p1 − 3a1 + q − 1) + 1, 2a1 + 1).

Thus, µ(Sq(r)Sq(s)) is the sum over NZ(r, s) of these expressions.
We next calculate

Sq(r′)Sq(s′) = Sq(2p1 + 1, · · · , 2p`−1 + 1, 2p` + 1) Sq(2q + 1).

As the product is taken in O, we know that, for h ∈ NZ(r′, s′), there are integers
bi ≥ 0, 1 ≤ i ≤ `, such that hi = 2bi, 1 ≤ i ≤ `− 1, and h` = 2b` + 1. Thus, if
` > 1, then

1 = (2(p1 − 2b1) + 1, 2(q −
∑

bi))

and, if 1 ≤ i ≤ ` − 2, then 1 = (2(pi+1 − 2bi+1) + 1, 2bi) and, lastly, 1 =
(2(p`−2b`−1)+1, 2b`−1) while, if ` = 1, then 1 = (2(p1−2b1−1)+1, 2(q−b1)).
Furthermore, if ` > 1, then

C(h) = Sq(2(p1 − 2b1 + q −
∑

bi) + 1, 2(p2 − 2b2 + b1) + 1, · · ·

· · · , 2(pi+1 − 2bi+1 + bi) + 1, · · · , 2(p`−1 − 2b`−1 + b`−2) + 1,

2(p` − 2b` − 1 + b`−1) + 1, 2b` + 1)

while, if ` = 1, then

C(h) = Sq(2(p1 − 3b1 + q − 1) + 1, 2b1 + 1).

Thus, µ(Sq(r))µ(Sq(s)) is the sum over NZ(r′, s′) of these matching expressions.
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It remains to set up a bijective correspondence σ between NZ(r, s) and
NZ(r′, s′) such that µ(C(g)) = C(σ(g)) for g ∈ NZ(r, s).

We have seen above that g is of the form g = (4a1, · · · , 4a`−1, 4a` + 3)
for non-negative integers ai and so we take σ(g) = (2a1, · · · , 2a`−1, 2a` + 1). As
1 = (4x+1, 4y) = (2x+1, 2y) for x, y ≥ 0, we may deduce that σ(g) ∈ NZ(r′, s′).
It is straightforward to check that C(σ(g)) = µ(C(g)) both when ` > 1 and when
` = 1.

Conversely, for h ∈ NZ(r′, s′), h = (2b1, · · · , 2b`−1, 2b` + 1) for non-negative
integers bi and so we take g = (4b1, · · · , 4b`−1, 4b` + 3). As before we may
deduce that g ∈ NZ(r, s). Moreover, σ(g) = h. Again one may check that
µ(C(g)) = C(h) in both cases.

Finally we assume that µ(Sq(r)) = 0 or that µ(Sq(s)) = 0 so that we must
show that µ(Sq(r)Sq(s)) = 0. Assume that there is an i, 1 < i < `, for which
ri ≡ 3 mod 4 so that µ(Sq(r)) = 0. Take g ∈ NZ(r, s). As gi is even, ri − 2gi ≡
3 mod 4 and it follows that gi−1 ≡ 0 mod 4. But then ri− 2gi + gi−1 ≡ 3 mod 4
whence µ(C(g)) = 0 and so µ(Sq(r)Sq(s)) = 0. The proof is completed by
working through other such cases in a similar manner. �

Coalgebra endomorphisms

As the subspace spanned by the Steenrod squares forms a subcoalgebra of
A, a linear transformation from A to itself, which sends each Steenrod square
to another or to 0 and which respects the coproduct, determines only a co-
algebra endomorphism of this subcoalgebra. It is not hard to answer the more
appropriate question, namely: which are the bialgebra endomorphisms with this
property?

Proposition. The only bialgebra endomorphisms of A which send a Steen-
rod square Sqn either to 0 or to another Steenrod square are γ and its powers
and the augmentation ε. They are all Hopf algebra endomorphisms.
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