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algebra

Robert Sandling
School of Mathematics
University of Manchester

1. Introduction

The unit group of an algebra is often an important object in its own right. The
general linear group, for example, is the group of units of the algebra of matrices.
For all the interest shown over the years in the Steenrod algebra, remarkably
little attention has been paid to its group of units. Here we present results
arising from an attempt to redress the balance for the most classical Steenrod
algebra, that over the field of two elements. Our object is to develop approaches
which might lead to insights about the Steenrod algebra itself available from a
novel point of view.

Our main result states that the centraliser of a non-identity element of the
unit group of the Steenrod algebra is of infinite index. It is equivalent to say
that every non-identity conjugacy class of the unit group is infinite, or that
every non-identity normal subgroup is infinite. These results have virtual ex-
tensions in the group-theoretic sense of the term, e.g., no subgroup of finite index
has non-identity finite normal subgroups. The result has consequences within
the Steenrod algebra itself: its centre is trivial; the centraliser of a non-scalar
element is of infinite codimension.

Our main technique is refinement of the Adem-Wu relations to capture more
information from the reduction of a monomial in the Steenrod squares into the
canonical form afforded by these relations, that is, its decomposition in the
basis of admissible monomials. This is applied by giving precise descriptions
of the annihilators of the augmentation ideals of the finite subalgebras intro-
duced by Milnor. We show in particular that such an annihilator has a basis of
admissibles.

The paper concludes with diverse remarks and results about the group of
units, most exploiting its key feature, local finiteness. They complement the
discussion in Sect. 9 of the survey article [Wo98]. The fact that the composition
of the antipode with inversion is an outer automorphism of the unit group is
proved here.

Notation. The Steenrod algebra over the Galois field F2 is denoted by
A, and its augmentation ideal by A+; U denotes the Steenrod group, the unit
group of A, so that U = 1 +A+. For n ≥ 0, A(n) denotes the unital subalgebra
generated by the Steenrod squares Sq2

m

, 0 ≤ m ≤ n, (equivalently, generated by
Sqi, 0 ≤ i ≤ 2n+1−1). Further, A(n)+ denotes its augmentation ideal, spanned
as subspace by its monomials of positive grading, and U(n) = 1 + A(n)+, the
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unit group of A(n). For standard results on the Steenrod algebra we refer the
reader to [SE62, Wo98].

A typical monomial in the Steenrod squares is denoted as Sqx, where x =
(x1, x2, . . .), xi ≥ 0, with only finitely many non-zero entries; thus, Sqx =∏
i Sq

xi = Sqx1Sqx2 . . .. To avoid ambiguity of representation, we assume that
x is normalised in the sense that, if xk 6= 0, then xi 6= 0 for 1 ≤ i ≤ k. We
write |x| for the sum of the entries of x and set |Sqx| := |x| if Sqx 6= 0 in which
case |Sqx| is called the degree, or grading, of the monomial Sqx. The length of
Sqx, denoted `(Sqx) or `(x), is the number of non-zero entries of x. We write
x′ = (x2, x3, . . .) and so on. A monomial Sqa is called admissible if ai ≥ 2ai+1

for all i; in these circumstances we also refer to a as admissible. The admissible
elements of A comprise a basis for A. The Steenrod algebra is the free alge-
bra generated by the Steenrod squares Sqα, α ≥ 0, subject to the Adem-Wu
relations which state that, if 2β > α, then

SqαSqβ =
∑

εκSq
α+β−κSqκ

for certain coefficients εκ. Specifically,

εκ =

(
β − κ− 1

α− 2κ

)
but the specific values are not always needed. The antipode, or conjugation, of
A as Hopf algebra is denoted by χ; it is an anti-automorphism of A and of U .

2. Centralisers and annihilators

For our purposes the admissible basis of the Steenrod algebra has proved to be
the most useful because of the way in which the Adem-Wu relations enable an
arbitrary monomial to be straightened into the canonical form this basis pro-
vides. We begin with a lemma which establishes certain features obtainable by
this straightening process. That the grading of a monomial remains unchanged
on passing to its admissible expression, and that its length cannot increase, are
familiar features immediate from the nature of the Adem-Wu relations. The
point of our lemma is its specification of conditions under which the superfix
of the leading factor of an admissible appearing in the expression exceeds the
superfixes of the factors of the original monomial.

2.1 Lemma Let Sqx =
∑

a∈A Sq
a be the decomposition of the non-zero

monomial Sqx in the admissible basis. Then, for a ∈ A, |a| = |x|, `(a) ≤ `(x)
and a1 ≥ xi for all i; if x1 < 2xj for an index j, j > 1, then a1 > xi for all i.

Proof. The proof proceeds by induction on d := |x|. We may assume that
d > 1. If |x| = d, then d ≥ x1 so that we may induct in reverse on the value of
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x1 among all x for which |x| = d and Sqx 6= 0. As the case x1 = d is trivial, we
assume that x1 < d.

By the induction on d, we know that Sqx
′

is a sum of admissibles Sqa for
which |a| = d − x1, `(a) ≤ ` − 1 and a1 ≥ xi for all i ≥ 2. It suffices to show
that each non-zero element Sqx1Sqa has the desired expression. For economy
of notation, we take x′ to be admissible and return our attention to Sqx. If x
is itself admissible, we are done as then x1 ≥ 2x2 > xi for i ≥ 2. If not, then
x1 < 2x2 so that, by the Adem-Wu relations,

Sqx1Sqx2 =
∑

εκSq
x1+x2−κSqκ.

On substituting, we see that Sqx is a sum of monomials Sqx1+x2−κSqκSqx
′′

with x1 ≥ 2κ. Thus x1 + x2 − κ > x1 so that, by induction on x1, such a
monomial, not equal to zero, is a sum of admissibles of the required form. As,
in addition, x1 + x2 − κ > x2 ≥ xi for i ≥ 2 because of the assumption that x′

is admissible, the final assertion of the lemma follows. �

We pause at this point to deduce the triviality of the centre of U (cf. [Wo98,
p. 455]). While this is an immediate consequence of our main result as all
elements of U have finite order so that a non-identity central element would
generate a non-trivial finite normal subgroup, much less is required for its proof.

2.2 Theorem The centre of the Steenrod algebra is the base field; the centre
of its group of units is trivial.

Proof. (Wood) Suppose that A has a non-scalar central element z. In the
expression z =

∑
a∈A Sq

a in the admissible basis, let a be maximal among the
values a1 for a ∈ A.

Then Sq2az is a sum of admissibles, each of which has leading factor Sq2a.
On the other hand, by the lemma, zSq2a is a sum of admissibles, each of which
has leading factor Sq` with ` > 2a. Thus, Sq2az 6= zSq2a, a contradiction.

The result for U follows immediately as a central element of U is of the form
1 + z, where z is a central element of A. �

The proof which we provide for our main result relies upon a detailed descrip-
tion of the right annihilator ra(A(n)+) of the augmentation ideal of A(n). As
A(n) is a Poincaré duality algebra [Ma83, p. 188], its subspace of highest grad-
ing is one-dimensional. Its generator is a monomial, indeed an admissible, the
necessarily unique admissible of highest degree in A(n). This element is called
the top element; we denote it as tn. As illustrations, t0 = Sq1, t1 = Sq5Sq1 and
t2 = Sq17Sq5Sq1. Because of its maximal degree in A(n), tn ∈ ra(A(n)+), so
that tnA, the principal right ideal generated by tn, is contained in ra(A(n)+).
It is known that the two coincide. We offer a proof for this fact based on the
themes introduced here. The general formula for tn is

tn = Sqa, ai = 1 + (n+ 1− i)2n+2−i, 1 ≤ i ≤ n+ 1
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(cf. [Wo98, pp. 478-481]). Thus, tn = Sq1+n2
n+1

tn−1, a form by which tn could
be defined inductively and one which is itself useful for inductive proofs. For
example, it can be used to deduce directly the fact that tn ∈ ra(A(n)+), the
only aspect of the conceptual definition of the top element which is used here.

The ideal ra(A(n)+) is unusual in having a basis of admissible elements,
as we show. Members of this basis are used in the proof of our main result.
We approach the topic through two subspaces which contain tn and whose
definitions mimic the form of tn.

2.3 Definition Let n ≥ 0. Let Vn be the subspace of A spanned by all
monomials Sqx with xi ≡ 1 mod 2n+2−i if 1 ≤ i ≤ n + 1. Let V adm

n be the
analogous subspace in which x is additionally required to be admissible.

While it is clear that Vn is a right ideal, it is much less clear that the subspace
V adm
n is as well. In fact, both subspaces coincide with tnA so that all of their

elements have tn as initial factor. We prove the coincidence of the subspaces
tnA, V adm

n and Vn through a sequence of technical lemmas.

2.4 Lemma Let q be a power of 2, q ≥ 1. Suppose that α ≡ 1 mod 2q,
β ≡ 1 mod q and that SqαSqβ 6= 0. Let Sqα

′
Sqβ

′
be a term in the expression

for SqαSqβ in the admissible basis. Then α′ ≡ 1 mod 2q and β′ ≡ 1 mod q;
further, if α′ 6= α, then α′ > α.

Proof. We may assume that 2β > α. By the Adem-Wu relations,

SqαSqβ =
∑(

β − κ− 1

α− 2κ

)
Sqα+β−κSqκ

in the admissible basis. If
(
β−κ−1
α−2κ

)
6= 0, then α + β − κ > α, as needed for the

last point of the statement.
Write q as 2m,m ≥ 0. If m = 0, the hypothesis states that α is odd and the

conclusion required is that α′ is odd. But, if α is odd, then α − 2κ is odd so
that, if (

β − κ− 1

α− 2κ

)
≡ 1 mod 2,

then β − κ− 1 must also be odd whence α+ β − κ is odd as required.
Assume then that m ≥ 1. Write the dyadic expansions of the various quan-

tities as follows:

α =
∑

αi2
i, β =

∑
βi2

i, κ =
∑

κi2
i,

β − κ− 1 =
∑

γi2
i, α− 2κ =

∑
δi2

i.

By hypothesis, α0 = β0 = 1, αi = 0, 1 ≤ i ≤ m, and βi = 0, 1 ≤ i ≤ m− 1.
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Let κ be such that
(
β−κ−1
α−2κ

)
≡ 1 mod 2. We show that κ ≡ 1 mod 2m and

that α+ β − κ ≡ 1 mod 2m+1. By a standard congruence [AS72, 24.1.1],(
β − κ− 1

α− 2κ

)
≡
∏(

γi
δi

)
mod 2,

we see that
(
γi
δi

)
≡ 1 for all i, that is, if δi = 1, then γi = 1. As α − 2κ is odd,

δ0 = 1 and so γ0 = 1. As before, β − κ − 1 is odd so that κ is as well whence
κ0 = 1.

The next conclusions are obtained by working modulo 2m+1 and so con-
gruences are to be interpreted modulo this number. Now β ≡ 1 + βm2m so
that

β − κ− 1 ≡ βm2m − κ = −
∑

0≤i≤m−1

κi2
i + (βm − κm)2m

≡ 1 + (2m+1 − 1)−
∑

0≤i≤m−1

κi2
i + (βm − κm)2m

= 1 +
∑

0≤i≤m−1

(1− κi)2i + (1 + βm − κm)2m.

Thus, γi = 1 − κi if 0 ≤ i ≤ m − 1 while γm ≡ 1 + βm − κm mod 2. Further,
α ≡ 1 so that

α− 2κ ≡ 1−
∑

1≤i≤m

κi−12i ≡ 1 + 2 +
∑

2≤i≤m

(1− κi−1)2i

as κ0 = 1. Thus, δ1 = 1 and δi = 1− κi−1 = γi−1 if 2 ≤ i ≤ m.
It follows by induction that γi = 1 = δi if 0 ≤ i ≤ m, that is, κi = 0 if

0 ≤ i ≤ m− 1 so that κ ≡ 1 mod 2m as required. Finally, from γm = 1, we see
that βm = κm and so α+ β − κ ≡ 1 mod 2m+1. �

The first consequence which we draw from this result bounds the superfixes
of the non-zero elements of Vn in terms of the superfixes of tn.

2.5 Lemma Suppose that x satisfies the conditions for a generator of Vn so
that xi = 1 + mi2

n+2−i for integers mi ≥ 0 if 1 ≤ i ≤ n + 1. If Sqx 6= 0, then
mi ≥ n+ 1− i if 1 ≤ i ≤ n+ 1.

Proof. The proof proceeds by induction on n. The result is clear for n = 0.
For n > 0, the induction hypothesis, applied to x′, implies the result for all i
strictly greater than 1. We may assume that x is inadmissible. It remains to
show that m1 ≥ n. Suppose that m := m1 < n. Again, x2 ≡ 1 mod 2n so that,
by Lemma 2.4 and the Adem-Wu relations,

Sq1+m2n+1

Sqx2 =
∑

εκSq
1+m2n+1+x2−κSqκ,

where κ ≡ 1 mod 2n and κ ≤ m2n. Thus, we need only sum over those κ =
1 + `2n for ` such that 0 ≤ ` ≤ m − 1. As m − 1 ≤ n − 1, by the induction
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hypothesis Sq1+`2
n

Sqx
′′

= 0 and so Sqx = Sq1+m2n+1

Sqx2Sqx
′′

= 0, contrary
to hypothesis. �

A particularly simple case in which an x satisfies the defining conditions for
a generator of Vn but not the conclusions of this lemma, and so in which we
can conclude that Sqx = 0, is that in which the degree of x is too small. By
the lemma the non-zero element of smallest degree in Vn is tn, whose degree is
6 + (n− 1)(1 + 2n+2). Thus, for example, Sq9Sq9Sq3 = 0.

Another consequence of Lemma 2.4 is the fact that V adm
n is a right ideal.

2.6 Lemma For n ≥ 0, V adm
n coincides with Vn and is a right ideal.

Proof. Since V adm
n is clearly a subspace of Vn and since Vn is a right ideal,

it remains to show that Vn ≤ V adm
n . We prove this by induction on n. To

avoid repetition, we start the induction at n = −1. Stretched to this case
the definition gives V−1 = V adm

−1 = A (with A(−1) := F2, we get the correct
description of the right annihilator in this case). We may then take n ≥ 0.

Fix a positive integer d for which there is an x satisfying |x| = d and for
which Sqx is a non-zero generator of Vn. As before, among all such generators
of Vn, there are vectors x for which x1 is maximal. We show that Sqx ∈ V adm

n

by reverse induction on x1.
To start the induction, take x as above with x1 maximal. Then Sqx

′ ∈ Vn−1.
By the induction on n, Sqx

′ ∈ V adm
n−1 . As in the proof of Lemma 2.1, we assume

that x′ is admissible and then show that x is admissible.
If x is not admissible, then 2x2 > x1. Now x1 ≡ 1 mod 2n+1 and x2 ≡

1 mod 2n so that, by the previous lemma, Sqx1Sqx2 is a sum of admissibles of
the form Sqy1Sqy2 with y1 ≡ 1 mod 2n+1 and y2 ≡ 1 mod 2n and y1 > x1. But
then Sqy1Sqy2Sqx

′′ ∈ Vn, a contradiction.
We may now turn to a non-zero generator Sqx of Vn with |x| = d but x1 not

maximal. We assume that x is not admissible. As in the previous paragraph, we
find that Sqx is a sum of monomials Sqy1Sqy2Sqx

′′
, each a generator of Vn and

in each of which y1 > x1. By the induction on the first superfix, we conclude
that the monomials are in V adm

n whence Sqx is as well. �

It remains to show that each generator of Vn has tn as initial factor. This
is done explicitly; the main identity required is given in the next lemma. As
with A(−1), it is convenient to extend the definition of tn to the case n = −1,
namely, by setting t−1 := 1.

2.7 Lemma Let x ≥ 0. If 2n+1 divides x, then tnSq
x = Sq1+n2

n+1+xtn−1;
otherwise, tnSq

x = 0.
Proof. For n = 0 the result is immediate, and we finish the proof by use of

induction. Assume then that n ≥ 1 and that x = u2n+1, where u ≥ 1. Then

tnSq
x = Sq1+n2

n+1

tn−1Sq
(2u)2n ,
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which, by the induction hypothesis, is

Sq1+n2
n+1

Sq1+(n−1+2u)2ntn−2.

By Lemma 2.4, the product of the first two factors is∑
εκSq

1+n2n+1+1+(n−1+2u)2n−κSqκ,

where κ ≡ 1 mod 2n and κ ≤ n2n. Thus, we need only sum over those κ of the
form κ = 1 + `2n, 0 ≤ ` ≤ n− 1. If ` ≤ n− 2, the product Sq1+`2

n

tn−2 = 0 by
Lemma 2.5. For ` = n− 1, the binomial coefficient

ε1+(n−1)2n =

(
2u2n − 1

2n+1 − 1

)
,

which is odd. This leaves

tnSq
u2n+1

= Sq1+(n+u)2n+1

Sq1+(n−1)2ntn−2 = Sq1+(n+u)2n+1

tn−1,

as required.
Now assume that x = 2ey, where y is odd and n ≥ e ≥ 0. Since tnA(n) = 0,

it suffices to show that Sqx ∈ A(e)A. We prove this by induction on e. We may
assume that e ≥ 1 and also that y ≥ 3. By the Adem-Wu relations,

Sq2
e

Sq2
e(y−1) =

∑
εκSq

2ey−κSqκ,

where 0 ≤ κ ≤ 2e−1. If κ ≥ 1, the highest power of 2 which can divide 2ey − κ
is 2e−1 so that, by the induction hypothesis, Sq2

ey−κSqκ ∈ A(e)A. But the
binomial coefficient ε0 is odd. Thus, Sq2

ey ≡ Sq2
e

Sq2
e(y−1) mod A(e)A, that

is, Sq2
ey ∈ A(e)A. �

The following corollary is suggested by the proof. It follows with the further
observation that the algebra A(n) is generated by all Sq2

m

, where 0 ≤ m ≤ n.

2.8 Corollary The right ideal A(n)A is the linear subspace spanned by all
Sqx for which x1 is not divisible by 2n+1.

2.9 Proposition For n ≥ 0, the right annihilator of A(n)+ is the princi-
pal right ideal generated by the top element tn of A(n) and coincides with the
subspaces Vn and V adm

n .

Proof. We show first that the ideals tnA, V adm
n and Vn coincide. We know

from the definition of Vn that tnA is contained in Vn and from Lemma 2.6 that
V adm
n = Vn. We next show that Vn is contained in tnA.

Let Sqx be a generator of Vn. We may assume that xi = 0 if i > n + 1 so
that Sqx = Sqx1 · · ·Sqxn+1 with xi ≥ 1 + (n+ 1− i)2n+2−i by Lemma 2.5. The
result then follows from the identity

Sqx = tn
∏

1≤i≤n+1

Sqxi−(1+(n+1−i)2n+2−i).
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This identity is proved by induction in which the induction step is provided by
Lemma 2.7. Thus, Vn ⊆ tnA as required.

We have already remarked that tnA is contained in ra(A(n)+) so that V adm
n

is contained in ra(A(n)+). We complete the proof of the remaining part of the
proposition, the first assertion, by showing, via induction, that ra(A(n)+) is
contained in V adm

n .
To begin we establish by induction the technical fact that, if the admissible

Sqa lies in V adm
n−1 , then no superfix of an admissible in the expansion of Sq2

n

Sqa

is strictly greater than a1 + 2n. We may assume that a1 > 2n−1. Recall our
conventions V adm

−1 = A and A(−1) = F2. For n = 0, either Sq1Sqa vanishes or
has leading superfix a1 + 1.

Let n ≥ 1. Let Sqa be an admissible of V adm
n−1 . Thus, Sqa

′ ∈ V adm
n−2 so that

SqκSqa
′

= 0 for all κ, 1 ≤ κ ≤ 2n−1 − 1, because the Steenrod squares Sqκ

belong to A(n− 2)+. Further, by the Adem-Wu relations,

Sq2
n

Sqa1 =
∑

0≤κ≤2n−1

(
a1 − κ− 1

2n − 2κ

)
Sq2

n+a1−κSqκ.

Thus,

Sq2
n

Sqa =

(
a1 − 1

2n

)
Sqa1+2nSqa

′
+ Sqa1+2n−1

Sq2
n−1

Sqa
′
.

By the induction hypothesis, the largest superfix in the admissible expansion
of Sq2

n−1

Sqa
′

is less than or equal to a2 + 2n−1. By the admissibility of a,
a1 ≥ 2a2 so that, by consideration of the residues modulo 2n, we conclude that
a1 + 2n−1 ≥ 2(a2 + 2n−1). Thus, if Sq2

n−1

Sqa
′

has admissible decomposition∑
e∈Ea

Sqe, then

Sqa1+2n−1

Sq2
n−1

Sqa
′

=
∑
e∈Ea

Sqa1+2n−1

Sqe

is the admissible decomposition of the product. Consequently, Sq2
n

Sqa decom-
poses admissibly as(

a1 − 1

2n

)
Sqa1+2nSqa

′
+
∑
e∈Ea

Sqa1+2n−1

Sqe,

which visibly has no superfix greater than a1 + 2n.
We can now show by induction that ra(A(n)+) is contained in V adm

n . For
n = 0, A(0)+ is spanned by Sq1, its top element. It is an immediate consequence
of the Adem-Wu relations that ra(A(0)+) = ra(Sq1) is spanned by all Sqx with
x1 odd. Thus, ra(A(0)+) = V0 = V adm

0 .
Let n ≥ 1. As an ideal in A(n), A(n)+ is generated by Sq2

m

for all m,
0 ≤ m ≤ n, and so an element r of A is in ra(A(n)+) if and only if Sq2

m

r = 0 for
these m. By the induction hypothesis, this is then equivalent to the conditions
Sq2

n

r = 0 and r ∈ ra(A(n− 1)+) = V adm
n−1 .
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Let r be a non-zero element of ra(A(n)+). We may then write r =
∑

a∈A Sq
a

as a sum of admissibles of V adm
n−1 . Thus, for each a, ai ≡ 1 mod 2n+1−i if

1 ≤ i ≤ n. In order to prove that r ∈ V adm
n , we must show that, for each a ∈ A,

ai ≡ 1 mod 2n+2−i if 1 ≤ i ≤ n+ 1.
The role of the technical fact is to supply the admissible decomposition of

Sq2
n

r, namely, there are sets Ea of admissibles for which

Sq2
n

r =
∑
a∈A

(
a1 − 1

2n

)
Sqa1+2nSqa

′
+
∑
a∈A

∑
e∈Ea

Sqa1+2n−1

Sqe

is a sum of admissibles. As, by hypothesis, Sq2
n

r = 0, binomial coefficients
must vanish or terms must cancel or both.

Fix a. We show first that a1 ≡ 1 mod 2n+1, or, equivalently, that
(
a1−1
2n

)
≡ 0

since, by the induction hypothesis, a1 = 1 + x2n for an integer x. Assume
that a1 6≡ 1 mod 2n+1, i.e., that x is odd so that a1 = 1 + 2n + x−1

2 2n+1. The

admissible term Sqa1+2nSqa
′

in the expansion of Sq2
n

r given above must then
cancel with another term. It is clear that it cannot cancel with another of the
first type. Suppose then that it cancels with an admissible of the second type
corresponding to an admissible b, say, so that a1 + 2n = b1 + 2n−1 and a′ = e
for an admissible e ∈ Eb. Write b1 = 1 + y2n. Note that a1 + 2n ≡ 1 mod 2n+1.
If y is even, then b1 + 2n−1 ≡ 1 + 2n−1 mod 2n+1, a contradiction. If y is
odd, then b1 + 2n−1 ≡ 1 + 2n−1 + 2n mod 2n+1, again a contradiction. Thus,
a1 ≡ 1 mod 2n+1 for all a in A as required. Moreover there are no terms of the
first type appearing in the expansion given for Sq2

n

r.
As to the second type of term, let a be one of the values occurring among

the a1, and let Aa be the set of those a ∈ A for which a1 = a. As cancellation
of terms corresponding to a ∈ Aa can only occur with other such terms,

0 =
∑
a∈Aa

∑
e∈Ea

Sqa+2n−1

Sqe = Sqa+2n−1 ∑
a∈Aa

∑
e∈Ea

Sqe.

By admissibility, it follows that

0 =
∑
a∈Aa

∑
e∈Ea

Sqe =
∑
a∈Aa

Sq2
n−1

Sqa
′
.

With s =
∑

a∈Aa
Sqa

′
, we see that Sq2

n−1

s = 0. The induction hypothesis

implies that s ∈ ra(A(n − 2)+) = V adm
n−2 and so s ∈ ra(A(n − 1)+). But then,

for each a ∈ A, Sqa
′ ∈ ra(A(n − 1)+) and so ai ≡ 1 mod 2n+1−(i−1) = 2n+2−i

if 2 ≤ i ≤ n+ 1, which is the final fact needed to show that the admissible Sqa

belongs to V adm
n . �

We turn now to the application of these technical results to the unit group
of A. Before leaving them, we remark that the result V adm

n = Vn = tnA and
the identities involving tn are not isolated phenomena but rather one extreme
of a range of similar results [Sa07]. At the other extreme lie analogous results
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centred on the Milnor basis elements Sq(1, · · · , 1); compare, for example, the
identities in Sect. 5.2 of [Wo98].

2.10 Lemma Let n ≥ 0. Then there is an involution t in U for which
A(n) ∩A(n)t = F2.

Proof. It suffices to show that A(n)+∩A(n)+t = 0. Choose m such that, for
each admissible a for which Sqa occurs in the expression of an element of A(n)
in the admissible basis, 2m ≥ 2a1.

Let r = SqxSq2
m

with

xi = 1 + (m+ 1− i+ 2m)2m+2−i, 1 ≤ i ≤ m+ 1,

and xi = 0 otherwise (r is the admissible of smallest degree in V adm
m for which

the (m + 2)nd superfix is 2m). By the proposition, r ∈ ra(A(m)+). Since
Sq2

m ∈ A(m)+, it follows that r2 = 0 so that t := 1 + r is an involution.
Let s ∈ A(n)+, s 6= 0. Then st := t−1st = (1 + r)s(1 + r) = (1 + r)s = s+ rs

since m ≥ n. With s expressed as
∑
Sqa in the admissible basis, we see that

rSqa is also admissible because of the choice of m. Again by the definition of m,
rSqa does not occur in the expression of an element of A(n) in the admissible
basis so that rs 6∈ A(n). Thus, st 6∈ A(n)+, as required. �

The group U acts on the algebra A by conjugation so that, for r ∈ A, the
standard centraliser notation CU (r) is meaningful. The centraliser of r in A
itself, CA(r), is simply F2 + CU (r), while, for u ∈ U , CU (u) = 1 + CA+(u).

2.11 Theorem Let u be a non-identity element in the unit group U of the
Steenrod algebra A and let r be a non-scalar element of A. Then CU (u) is of
infinite index in U and CA(r) is of infinite codimension in A. Both CU (u) and
CA(r) are infinite.

Proof. It is convenient to approach these results through one of the equiva-
lent formulations mentioned in the introduction. That the first result is equiva-
lent to the statement that every non-identity conjugacy class of the unit group
is infinite is a standard argument in group theory: the size of the conjugacy
class of an element is the index of the centraliser of the element in the whole
group. That this statement is equivalent to saying that every non-identity nor-
mal subgroup is infinite, is easy to see in a locally finite group from the facts
that a normal subgroup is a union of conjugacy classes and that the subgroup
generated by a conjugacy class is normal. We take the conjugacy class approach.

Suppose that C := uU , the conjugacy class of u in U , is finite. As A is
locally finite, C is contained in A(n) for some n. By the lemma, there is a
unit t for which A(n) ∩ A(n)t = F2 so that C = Ct ⊆ F2, whence C = {1}, a
contradiction.

For the second statement, if r ∈ U , then CA(r) is of finite codimension in
A if and only if CU (r) is of finite index in U . If r 6∈ U , then r ∈ A+ so that
1 + r ∈ U and CA(r) = CA(1 + r).
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For the last statement, suppose that r ∈ A(n). From the description of tnA
as V adm

n , it is clear that there are infinitely many admissibles of the form Sqxtn,
where Sqx is in V adm

n . Thus, the subalgebra tnAtn is infinite, and each of its
elements centralises r. �

The result generalises from individual elements to finite subsets in two ways,
to centralisers and to normalisers. The centraliser CU (R) of a subset R of
A is defined as {u ∈ U | ru = r for all r ∈ R}, while its normaliser NU (R)
is {u ∈ U | ru ∈ R for all r ∈ R}. The generalisations are straightforward
corollaries of 2.11 and its proof.

2.12 Corollary Let R be a finite subset of the Steenrod algebra A not con-
tained in the base field. Then both CU (R) and NU (R) are infinite and of infinite
index in U .

The admissible basis can also be used to prove a result of the same type
about A, without the intervention of group theory, namely, the fact that ideals
are infinite. For two-sided ideals, however, this fact is an immediate consequence
of one of the versions of 2.11, the fact that non-identity normal subgroups are
infinite. To see this, note that, if I is a two-sided ideal of A, I 6= A, then I ⊆ A+,
the unique maximal ideal of A, and 1+I is a subgroup of U , necessarily normal.

2.13 Proposition Every non-zero ideal of A is infinite-dimensional.

Proof. Because of the existence of the antipode χ [Wo98], it suffices to prove
the result for left ideals. Further, we need only consider principal ideals. Let
r ∈ A, r 6= 0, and write r as the sum of admissibles Sqa. Suppose that m is such
that 2m ≥ 2a1 for each a which appears. Then Sq2

m

r =
∑
Sq2

m

Sqa is also a
sum of admissibles. If n is another such integer, n 6= m, then Sq2

n

r 6= Sq2
m

r;
this gives infinitely many elements of the principal ideal Ar. �

The group U also acts on the vector space A by right multiplication and by
left multiplication. Properties of one of these actions are related to those of the
other via the antipode so we focus just on right multiplication. One common
convention in a group action is to denote the stabiliser in U of an element r of A
by CU (r), that is, in this context CU (r) = {u ∈ U | ru = r}. Note that, if r 6= 0,
then the stabiliser CA(r) of r in the right action of A on itself is CU (r). As in
Theorem 2.11 which implies that the orbits of non-central elements of A under
the conjugation action of U are infinite, so are the orbits of right multiplication;
we state this result in its stabiliser form.

2.14 Theorem The stabiliser of a non-zero element of the Steenrod algebra
in the action of the unit group by either right or left multiplication is infinite
and of infinite index.

Proof. It is easy to check that, if r 6= 0, then the right annihilator ra(r) =
1 + CU (r), and so, by 2.13, is infinite. Again by the previous proposition,
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A/ra(r) ≈ rA is infinite-dimensional whence ra(r) is of infinite codimension
and CU (r) of infinite index. �

3. Other results

With the recognition of U as a locally finite 2-group, the hope arises that the
long-established theory of locally finite groups might provide insights into U
and A which had not been made before. We report in this section results in this
direction.

One of the few results about infinite locally finite groups which apply in full
generality is the fact that such a group contains an infinite abelian subgroup.
This is a substantial theorem in the general case but the proof in the p-group case
is an exercise [Ro96, Exer. 14.3.8, p. 436]. It has long been known, however,
that A contains infinite commutative subalgebras, for example, the exterior
algebra of countable dimension; it follows that U contains the corresponding
infinite abelian subgroup. Explicit examples of infinite commutative subalgebras
appear in the proof of 2.11, namely, the subspaces tnAtn for n ≥ 0. These are
nilsubalgebras, i.e., all products vanish, and so commutative. Each is contained
in the first, Sq1ASq1, a subalgebra which can be viewed as comprising roughly
a quarter of the Steenrod algebra (e.g., by dimension as degree increases). The
subalgebra F2Sq

1+Sq1ASq1 is a maximal nilsubalgebra as it is the intersection
of ra(Sq1) = Sq1A and the left annihilator la(Sq1) = ASq1.

The outer automorphisms of infinite locally finite groups have also been
much studied (an outer automorphism of a group G is one which is not induced
by conjugation by an element of G, an inner automorphism). In this regard
the situation in the Steenrod group is favourable. We have seen in the main
theorem of the previous section that the group Inn(U) of inner automorphisms
of U is isomorphic to U as, for any group G, Inn(G) ≈ G/ζ(G). Thus, to show
that U has infinitely many outer automorphisms, it suffices to find a single such
automorphism: its composites with inner automorphisms would all be outer.
This can be accomplished constructively in U by using the antipode. Note that,
on U , the antipode commutes with the inversion anti-automorphism of U .

3.1 Proposition The composition of the antipode with inversion in U is an
outer automorphism of U .

Proof. The antipode χ sends A+ to itself and induces an anti-automorphism
of U . Define the automorphism φ of U by φ(u) = χ(u−1) = χ(u)−1. We show
that φ is outer.

Let In be the subspace of A spanned by monomials of degree greater than
or equal to n. Then In is a two-sided ideal of A and so 1 + In is a normal
subgroup of U . As χ preserves degree, φ leaves 1 + In invariant and so acts on
the associated graded Lie algebra

⊕
(1+ In)/(1+ In+1). Note that, because the

exponent of (1 + In)/(1 + In+1) is 2, the action of φ on it is just that of χ.
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Moreover, this action is not trivial. For example, φ sends the coset of 1+Sq3

to that of 1 +Sq2Sq1 and these cosets are not equivalent modulo 1 + I4 because
Sq3 is not equivalent to Sq2Sq1 modulo I4 as both monomials are admissibles.

The conjugation action of U on
⊕

(1 + In)/(1 + In+1) is trivial, however. To
see this, take r ∈ In and u = 1 + s ∈ U . Then

(1 + r)u = 1 + (
∑

si)r(1 + s) = 1 + r + q,

where q ∈ In+1. But 1 + r + q = (1 + r)(1 + (1 + r)−1q) which is equivalent to
1 + r modulo 1 + In+1. �

For locally finite p-groups which are countably infinite, such as U , a stronger
result is known, namely, that such a group has an uncountably infinite outer
automorphism group [Pu92, Theorem 2]. We do not know how to prove this for
U independently, nor whether such a result holds for A.

Because of the importance and ubiquity of the Steenrod algebra, it seems
desirable to learn more about its group of units in its own right. Even elemen-
tary facts about its group theory are unexplored. Its local finiteness is obtained
by realising it as the union of the canonical finite subgroups U(n). The nature
of these subgroups is unclear. The group U(1) is small enough to study exhaus-
tively; results about it, mainly due to Donald Coleman, are reported in [Wo98].
These groups grow rapidly with n however.
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