
A framework for the development of implicit
solvers for incompressible flow problems

Silvester, David and Bespalov, Alexei and Powell,
Catherine E.

2011

MIMS EPrint: 2011.104

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


Manuscript submitted to Website: http://AIMsciences.org
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

A FRAMEWORK FOR THE DEVELOPMENT OF IMPLICIT

SOLVERS FOR INCOMPRESSIBLE FLOW PROBLEMS

David Silvester

School of Mathematics, The University of Manchester
Manchester M13 9PL, UK

Alex Bespalov and Catherine Powell

School of Mathematics, The University of Manchester
Manchester M13 9PL, UK

Abstract. This survey paper reviews some recent developments in the design
of robust solution methods for the Navier–Stokes equations modelling incom-
pressible fluid flow. There are two building blocks in our solution strategy.
First, an implicit time integrator that uses a stabilized trapezoid rule with
an explicit Adams–Bashforth method for error control, and second, a robust
Krylov subspace solver for the spatially discretized system. Numerical exper-
iments are presented that illustrate the effectiveness of our generic approach.
It is further shown that the basic solution strategy can be readily extended
to more complicated models, including unsteady flow problems with coupled
physics and steady flow problems that are nondeterministic in the sense that
they have uncertain input data.

1. Background and context. Our starting point is the Navier–Stokes equations
for an incompressible fluid with a fixed viscosity parameter ν > 0. The fluid moves
inside a domain Ω ⊂ R

d and the velocity is nonzero on some portion of the boundary
Γ. The goal is to compute the fluid velocity ~u : Ω → R

d and the pressure p : Ω → R

satisfying the Navier–Stokes equations,

∂~u

∂t
− ν∇2~u+ ~u · ∇~u+ ∇p = ~0 in W ≡ Ω × (0, τ ], (1)

∇ · ~u = 0 in W. (2)

The initial condition will always be associated with the quiescent state,

~u(~x, 0) = ~u0(~x) ≡ ~0, ~x ∈ Ω ∪ Γ = Ω, (3)

and the system (1)–(2) is integrated up to the final time τ . Note that ~u0 trivially
satisfies the incompressibility constraint; that is, ∇ · ~u0 = 0 everywhere in Ω.

For ease of exposition we will only consider two-dimensional flow models (Ω ⊂
R

2) herein. Our solver methodology is unchanged in the case of three-dimensional
flow models. We also focus exclusively on inflow–outflow configurations, where
the boundary comprises two nonoverlapping segments ΓD ∪ ΓN associated with a
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specified time-dependent inlet flow field ~g (set to zero at a fixed wall) and a standard
natural outflow boundary condition,

~u(·, t) = ~g(t) on ΓD, t ∈ (0, τ ], (4)

ν∇~u · ~n− p~n = ~0 on ΓN × (0, τ ]. (5)

We will insist that ΓN has a nonzero length. This ensures that the pressure p is
uniquely specified (for all time t ∈ (0, τ ]) by the outflow boundary condition (5). In

the special case of fully-developed parallel flow, we have ~u ·~t = 0 and the pressure
at the outflow boundary will automatically be set to zero (see Elman et al. [10,
p. 216] for further discussion).

Even the simplest advection–diffusion problems exhibit multiple timescales; see
Gresho et al. [14]. This means that variable step time integrators are essential if such
problems are to be efficiently solved computationally. A conventional strategy for
time stepping the initial-value problem (1)–(5) is to use a semi-implicit time integra-
tion scheme with the nonlinear convection term treated explicitly; see, e.g. Ascher
et al. [1]. This leads to a relatively simple (symmetric indefinite) linear algebra
system at every time level, but there is a CFL stability restriction on the maximum
time step size. In contrast, there is no time-step restriction if one uses a linearized
implicit approach. The latter choice enables the possibility of including self-adaptive
time-step control: time steps can be automatically selected to efficiently follow the
physics. There is, however, a price to pay for this improved robustness: the linear
algebra associated with solving linearized Navier–Stokes systems is much more of
a challenge. Our thesis is that this challenge can be met using the preconditioning
techniques for linearized Navier–Stokes systems that have emerged over the last
decade. Details can be found in the original papers of Elman, Silvester, Wathen
and their collaborators, specifically [9], [17] and [21].

The effectiveness of a stabilized TR–AB2 time-stepping algorithm (linearized
trapezoid rule with a second-order explicit Adams–Bashforth method for error con-
trol) algorithm is established by Kay et al. [16]. The (in)stability of unstabilized
TR for the incompressible Navier–Stokes equations is extensively discussed in the
literature; see, e.g. Simo & Armero [23]. The basic TR algorithm does have some
attractive features though—given the simplest ODE model of convection–diffusion,

ẏ = −
(

1

τ
+ iω

)

y, y(0) = 1,

where τ corresponds to a decay time constant and ω is a frequency parameter, it is
well known (see [14]) that TR is unconditionally stable (A-stable) and nondissipa-
tive. This is important when modelling pure advection (τ = ∞), or even advection-
dominated problems ( 1

τ ≪ ω).
The linearization at each time level is an important aspect of our solution strat-

egy. It is also mildly contentious. A widely-held view is that robustness and ac-
curacy can only be maintained by respecting the fully implicit coupling in the
convection term ~u ·∇~u: for example, by solving the time-discretized nonlinear sys-
tem to a predefined accuracy using fixed point iteration or some variant of Newton
iteration. A recent paper by Damanik et al. [5] gives an efficient implementation of
the latter approach. Suppose that the interval [0, τ ] is divided into N steps, {ti}N

i=1,

and let ~uj denote the discrete (in time) approximation to ~u(·, tj). An alternative

perspective is that the quadratic term ~un+1 · ∇~un+1 is well approximated by the
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explicit “second-order” convection field ~wn+1 · ∇~un+1 with

~wn+1 = (1 + (kn+1/kn))~un − (kn+1/kn)~un−1, (6)

where kn+1 := tn+1 − tn is the current time step and kn is the previous one.
Such a linearization was originally proposed in the context of constant trapezoid
rule time-stepping by Simo & Armero [23] and is mathematically equivalent to the
TRLE algorithm discussed by Layton [18, p. 163]. Using the strategy (6) gives a
more straightforward algorithmic structure: there is no need for an “inner-outer”
iteration since we only solve a single linear system at each time level.

Spatial discretization is equally important but it is not our primary focus. It
will be accomplished herein using a method-of-lines approach based on a stable,
conforming, mixed finite element approximation of (1)–(2), (see Elman et al. [10,
Chapter 5] for further discussion of inf-sup stability). We use fixed grids of rect-
angular elements in this work and we present results obtained using Taylor–Hood
Q2 –Q1 (biquadratic velocity, bilinear continuous pressure) approximation. We de-
note the grid subdivision by Th and we associate the parameter h with the length
of the longest edge in the grid. Then defining finite element solution spaces Xh

E (in-
terpolating the velocity boundary data ~g(tk) on the inflow boundary ΓD at discrete
time steps, k = 1, 2, . . . ) and Mh ⊂ L2(Ω), the fully discrete problem to be solved at
each distinct time level is: given a time step kn+1 := tn+1 − tn and approximations

~un
h and pn

h at time tn, compute ~un+1
h ∈ Xh

E and pn+1
h ∈Mh satisfying the Galerkin

formulation,

2
kn+1

(~un+1
h , ~vh) + ν (∇~un+1

h ,∇~vh) + (~wn+1
h · ∇~un+1

h , ~vh) − (pn+1
h ,∇ · ~vh)

= 2
kn+1

(~un
h, ~vh) + (

∂~un
h

∂t , ~vh), (7)

(∇ · ~un+1
h , qh) = 0, (8)

for all test functions ~vh ∈ Xh
0 , qh ∈ Mh, where (·, ·) represents the L2(Ω) inner

product. Note that the term
∂~un

h

∂t := ν∇2~un
h − ~un

h · ∇~un
h − ∇pn

h is just shorthand
for the acceleration at time step tn, and the convection term is linearized via (6),

so that ~wn+1
h = (1 + (kn+1/kn))~un

h − (kn+1/kn)~un−1
h .

The TR–AB2 algorithm is stabilized using a simple time-step averaging technique.
Full details are given in [14] and [16]. The averaging is invoked periodically every n∗

steps. For such a step, we save the values t∗ = tn, ~u∗h = ~un
h and having computed

the scaled TR velocity update, ~d
n

h := (~un+1
h − ~un

h)/kn+1, we set tn = tn−1 + 1
2kn,

tn+1 = t∗ + 1
2kn+1 and define shifted solutions via the updates:

~un
h = 1

2 (~u∗h + ~un−1
h ),

∂~un
h

∂t = 1
2

(
∂~un

h

∂t +
∂~un−1

h

∂t

)

, (9)

~un+1
h = ~u∗h + 1

2kn+1
~d

n

h,
∂~un+1

h

∂t = ~d
n

h. (10)

Unless stated otherwise, the averaging frequency parameter is fixed: n∗ = 10. We
let εt denote the user-specified tolerance for the time accuracy. Once we have an
error estimate ‖~en+1

h ‖ (the L2 norm of the difference between the TR and AB2
approximations to ~u(tn+1)), the subsequent time step kn+2 is computed using the
heuristic formula

kn+2 = kn+1

(

εt

/∥
∥~en+1

h

∥
∥

)1/3

. (11)



4 DAVID J. SILVESTER, ALEX BESPALOV AND CATHERINE E. POWELL

In the remainder of this introductory section we will quickly review the concepts
of pressure convection–diffusion preconditioning and least-squares commutator pre-
conditioning in the context of the discrete formulation (7)–(8). First, to get to
linear algebra, we need specific basis sets for the approximation spaces:

Xh
0 = span

{[

φi

0

]

,

[

0

φi

]}nu

i=1

for velocity, and

Mh = span{ψj}np

j=1 for pressure.

Next, as discussed in [14] and [16], our TR–AB2 implementation explicitly computes

discrete velocity updates ~d
n

h that are scaled by the time step so as to avoid underflow
and inhibit subtractive cancellation. The current velocity solution is thus given by

~un+1
h = ~un

h + kn+1
~d

n

h. (12)

Then, given the expansions

~d
n+1

h =

[ ∑nu

i=1 α
x,n+1
i φi

∑nu

i=1 α
y,n+1
i φi

]

, pn+1
h =

np∑

j=1

αp,n+1
j ψj ,

the coefficient vectors αu,n+1 = [αx,n+1,αy,n+1], αp,n+1 may be computed by
solving the saddle-point system associated with (7)–(8); that is,

(
F n+1

ν BT

B 0

) (
αu,n+1

αp,n+1

)

=

(
fu,n+1

0

)

. (13)

Note that we have divided the incompressibility constraint by the time step kn+1

to preserve the div–grad block symmetry. The matrix B = [Bx, By] is the discrete
divergence operator,

Bx := [Bx]ji = −
(

ψj ,
∂φi

∂x

)

, j = 1, . . . , np, i = 1, . . . , nu, (14)

By := [By]ji = −
(

ψj ,
∂φi

∂y

)

, j = 1, . . . , np, i = 1, . . . , nu. (15)

A consequence of the inflow–outflow boundary conditions is that the matrix BT

has full rank. This means that the system (13) is nonsingular. The matrix F n+1
ν

in (13) is the discrete convection–diffusion–reaction operator:

F n+1
ν := 2M + νkn+1A + kn+1N(~wn+1

h ). (16)

The matrices M , A and N in (16) are all block-diagonal matrices with (scalar)
components,

M := [M ]ij = (φi, φj), i, j = 1, . . . , nu, (17)

A := [A]ij = (∇φi,∇φj), i, j = 1, . . . , nu, (18)

N(~wh) := [N ]ij = (~wh · ∇φi, φj) i, j = 1, . . . , nu. (19)

Our solution algorithm is right-preconditioned GMRES with a preconditioner
that is specially tailored to the structured matrix (13). To illustrate the approach,
we express system (13) (omitting the matrix subscripts/superscripts) with a pre-
conditioner P so that

(
F BT

B 0

)

P−1 P
(

αu

αp

)

=

(
fu

0

)

.
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Introducing the velocity–pressure Schur complement matrix S = BF−1BT , an ideal

block-triangular preconditioner

P :=

(
F BT

0 −S

)

≈
(

F BT

B 0

)

, (20)

is motivated by the identity
(

F BT

B 0

) (
F−1 F−1BTS−1

0 −S−1

)

︸ ︷︷ ︸

P−1

≡
(

I 0

BF−1 I

)

. (21)

This shows that the preconditioned matrix has all eigenvalues clustered at unity. It
can be shown that the matrix on the right-hand side has Jordan blocks of dimension
two, which implies that GMRES applied to (13) with right preconditioner P will

converge in precisely two iterations, independent of the convection field ~wn+1
h and

the values of the parameters h, kn+1 and ν.
It follows from (21) that the action of P−1 on a vector can be implemented as a

three-step process. First, we solve systems associated with the Schur complement
matrix S, second, we perform a matrix–vector multiply with BT , and finally we
solve the two scalar systems associated with the matrix operator F . For a practical
algorithm, these matrix solves will be replaced by inexact solves associated with a
fixed number (one or two, typically) of algebraic multigrid (AMG) V-cycles.

It is not practical to work with the Schur complement S, and we use two strate-
gies that circumvent the use of this matrix. These two alternatives are identified
in [10, Section 8.2]. The first approach, referred to as Pressure Convection–Diffusion

(PCD) preconditioning, is a triple product approximation. The ingredients are a
matrix-vector multiply with a matrix F∗ (obtained by constructing the operator
F n+1

ν in (16) with velocity basis functions replaced by pressure basis functions),
together with linear solves for a pressure diffusion matrix A∗ and a pressure mass
matrix Q∗. In this paper, we follow the suggestion of Elman & Tuminaro [11] and
implement PCD via

S−1 = (BF−1BT )−1 ≈ Q−1
∗ F∗ A

−1
∗ , (22)

where Q∗ is the diagonal of the pressure mass matrix Q, and A∗ is the operator
BM−1

∗ BT where M∗ is the diagonal of the velocity mass matrix M . The second
approach, referred to as Least-Squares Commutator (LSC) preconditioning, avoids
the construction of the reaction–convection–diffusion operator on the pressure space
and is given by

S−1 = (BF−1BT )−1 ≈ A−1
∗ (BM−1

∗ FM−1
∗ BT )A−1

∗ . (23)

As discussed above, in a practical implementation, the action of A−1
∗ in (22) and

(23) will be performed inexactly using AMG. Preconditioning with the exact Schur
complement approximations (22) and (23) and with the original matrix operator
F n+1

ν in P−1 will be referred to as exact PCD and exact LSC preconditioning,
respectively.

An outline of the rest of the paper is as follows. Section 2 introduces a model
flow problem (flow in a channel over a backward-facing step) that will be used
to demonstrate the effectiveness of our solver methodology. Our computational
experiments will demonstrate that temporal stability is not compromised using the
linearization (6). Traditional wisdom is that a coupled solver is mainly of use
for computing steady flows, whereas projection-type schemes are usually preferred
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when modelling unsteady flows. We want to challenge this perception. To this
end, the basic flow model is extended to include buoyancy effects in Section 3. We
will demonstrate that it is straightforward to generalize the solver methodology
to the coupled Boussinesq model, and we will see that having an adaptive time
integrator is crucial if we are to follow the coupled physics effectively and efficiently.
This material complements and extends the computational results in the recent
paper [7]. All the numerical results from Sections 2 and 3 can be reproduced by
a diligent reader using our ifiss software toolbox [22]. The concluding section is
more speculative. We discuss the extension of our preconditioning methodology to a
modelling situation whereby the flow is steady but the volume of flow in the channel
is not known precisely. We intend to provide a more comprehensive treatment of
this problem in the follow-up publication [2].

2. Steady flow over a step. The flow inside a rectangular duct with a sudden
expansion is a classical test problem. The domain geometry and boundary condi-
tions are illustrated in Figure 1. The re-entrant corner is positioned at the origin
(0, 0). We set the viscosity parameter to be ν = 1/50 and we fix the dimensions so
that d = 1 and L = 5. A time-dependent, fully-developed (Poiseuille) flow profile,
~g = (4y(d − y)(1 − e−10t)/d2, 0), is imposed on the inflow boundary, Γin. This
models a smooth start-up from the quiescent state. A steady no-flow condition is
imposed on Γwall. At the outflow boundary, Γout, the natural condition (5) forces
the mean outflow pressure to be zero for all time t ∈ [0, τ ].

d

d

d

L

Γwal l

Γwal l

Γout

Γin

Figure 1. The backward-facing step domain.

The singularity in the solution at the re-entrant corner is a very important fea-
ture of this flow problem. A key point is that the Stokes equations are a good
approximation to the Navier–Stokes equations in the neighbourhood of the corner.
Moreover, small length-scale asymptotics show that the Stokes pressure solution
behaves like r−λ, where r is the radial distance from the corner and λ > 0. This
means that derivatives of the (Stokes-flow) velocity—as well as derived quantities
like vorticity—are unbounded at the corner point for all time t ∈ [0, τ ]. The upshot
is that spatial discretization needs to be done carefully. To respect the singularity
we will show some results that are computed using a nonuniform grid of 1536 el-
ements.1 The grid details are shown in Figure 2. The matrix dimensions in (13)
are nu = 6321, np = 1625, so the overall system dimension is 14267. Note that
there are highly stretched elements (with aspect ratios of 15:1) in both coordinate

1The grid is generated in ifiss 3.2 by running newstep domain.m with the grid parameter set
to 6 and the stretch parameter set to 1.2.
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directions along the lines x = 0 and y = 0. Such grids are known to provide a stiff
test for solver strategies that employ algebraic multigrid.

x=−1 x=0 x=5

Figure 2. Grid details (plotted to scale) showing the refinement
in the vicinity of the corner (magnified ×3 in the zoom).

The proposed flow problem is expected to have a stable steady-state solution.
A standard nondimensionalization (see Gresho et al. [13]) of the configuration is
to define the reference length L̄ to be the inlet length d (see Figure 1), and the

reference velocity U to be the average inlet velocity, V :=
∫ d

0
gx dy. Note that V

equals the volume of fluid flowing into the channel in the case d = 1. With our
scaling of the inflow, U tends to 2/3 as t→ ∞, and the Reynolds number increases
over time to a limiting value of Re∞ = 3/(2ν) = 75. This value is much smaller
than the critical Reynolds number Re∗ ∼ 800 (see Gresho et al. [13]), where the
steady flow bifurcates to an unsteady (periodic) flow. Note that a longer outlet
channel, L≫ 5, needs to be specified if we are to compute flows at higher Reynolds
numbers. We will return later to the issue of choosing L appropriately.

The time-step evolution of the stabilized TR–AB2 integrator with a temporal
tolerance, εt = 3× 10−5, is shown in Figure 3. The initial time step is 10−10 but is
omitted from the left-hand plot to give a clearer picture of the scale of the increasing
time step as the solution evolves to a steady state. The right-hand plot shows the
first 79 time steps in better detail. There are no rejected time steps. Looking at
the left-hand plot we see a rapid transient for the first 10–20 time steps, whereby
the time step grows to a magnitude of 10−2. This is followed by a smooth evolution
as the flow solution goes to a steady state. The final time, τ = 200, is reached after
only 150 time steps!

Computed streamlines and vorticity contours at three snapshot times are shown
in Figures 4 and 5. We see that the flow develops into a single recirculation zone
downstream of the step. The steady-state flow is visually identical to that shown in
the bottom plot in Figure 4. At early times, the vorticity field illustrated in Figure 5
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Figure 3. Time-step evolution (left) for flow over a step using
stabilized TR–AB2 with zoom (right) of the first 79 time steps.

develops potential flow “sheets” along the rigid walls. This is an important and
difficult-to-model feature of impulsively-started viscous flow. A detailed discussion
can be found in the book by Gresho & Sani [15, Section 3.19]. As anticipated, the
singularity at the origin is a prominent and persistent feature.

Turning now to linear algebra aspects, convergence history plots for LSC and
PCD preconditioning are shown in Figure 6. We show GMRES convergence curves
associated with the linear systems (13) that arise at three distinct time levels in the
integration run. These three steps correspond to the flow solutions at approximate
times t ∼ 1, t ∼ 5 and t ∼ 100 that are shown in Figure 4. The local time
steps (kn+1 in (16)) are 0.058, 0.192 and 26.1 time units respectively. The trend
is clear—the smaller the time step, the faster the convergence of preconditioned
GMRES. There is little to choose between the performance of exact LSC and exact
PCD preconditioning.

The inexact results are remarkable. We make use of the MATLAB version of the
code HSL MI20 [4] and replace each of the solves involving F n+1

ν and A∗ in (22) and
(23) with a single V-cycle of AMG. The key to the overall robustness is a clever
hybrid smoothing strategy2: on the finest level, one sweep of ILU(0) with a left →
right and bottom → top point ordering is performed; on all coarser levels a simple
2–2 (presmoothing–postsmoothing) V-cycle using point-damped Jacobi (PDJ) with
damping parameter ω = 0.5 is used. For a realistic residual reduction factor of 10−6

the inexact version of PCD always converges in 10–20 iterations. The strategy is
extremely robust—it is effective even when arbitrarily large time steps are taken.

We can check the validity of our numerical results by rerunning the stabilized
TR–AB2 integrator: first, keeping the same spatial resolution but taking a longer
computational domain, L = 20; and second, by keeping L = 5 but using a much
finer spatial grid. For the lengthened domain we take the grid in Figure 2 and
extend it uniformly in the x direction as far as the repositioned outlet at L = 20.
The extended grid has 4416 rectangular elements and the dimension of the discrete
system (13) is increased to 40637. Retaining the temporal tolerance, εt = 3× 10−5,
the target time τ = 200 is reached after 173 time steps. The L = 20 time steps are

2This is the default AMG smoothing strategy in the ifiss software.
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Stationary streamlines: time = 0.95

Stationary streamlines: time = 4.88

Stationary streamlines: time = 95.24

Figure 4. Flow over a step: snapshots of stationary streamlines.

Vorticity contours: time = 0.95

Vorticity contours: time = 4.88

Vorticity contours: time = 95.24

Figure 5. Flow over a step: snapshots of the vorticity evolution.
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Figure 6. GMRES convergence using exact preconditioning (top)
and inexact (AMG–ILU) preconditioning (bottom).

visually identical to the L = 5 time steps shown in the right-hand plot of Figure 3,
but, as might be expected, the evolution to the steady state for t > 10 takes a little
longer on the extended domain. If we compare the stationary streamlines plotted
in Figure 7 with those in Figure 4, it is readily seen that the computed solutions
on the extended domain are in very close agreement with those computed on the
original domain.

We also observe grid-independent physics if we refine the original spatial grid.
To show this, we fix L = 5 and generate a new stretched grid consisting of 5888
elements.3 The new dimensions are nu = 23897 and np = 6061 and the overall
system dimension in (13) is increased to 53855. When we run our integrator with
εt = 3 × 10−5, the time step behaviour is essentially identical to that in Figure 3,
and the snapshot streamline and vorticity solutions are qualitatively similar to those
in Figures 4 and 5.

Finally, to quantify the effect that grid refinement has on the rate of convergence
of the linear solver, we show convergence history plots in Figure 8 for inexact LSC

3The refined grid is generated in ifiss 3.2 by running newstep domain.m with the grid parameter
set to 7 and the stretch parameter set to 1.1.
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Stationary streamlines: time = 1.00

Stationary streamlines: time = 4.92

Stationary streamlines: time = 90.41

Figure 7. Flow over a step with an extended outlet: snapshots of
stationary streamlines.

and PCD preconditioning of the linear systems that are solved at time t ∼ 10. Note
that local time steps kn+1 are not small at this snapshot time: 0.346 time units for
the original grid, 0.343 for the lengthened grid and 0.340 for the refined grid, and it
is not so surprising to see a small increase in the number of iterations when moving
from the original grid to the refined grid. For a realistic residual reduction factor
of 10−6, the inexact version of PCD converges in 15 iterations on the original and
extended grids, and 18 iterations on the refined grid. We should also point out that
the convergence curves in Figure 8 are not representative of the behaviour at earlier
time levels. In particular, for the distinct time levels up to t ∼ 1, the convergence
of the alternative solver strategies is essentially independent of the specific grid.

3. Flow over a step with buoyancy. In this section of the paper, the flow do-
main is unchanged but the physical model is extended to accommodate an imposed
(vertical) temperature gradient. Introducing the scalar temperature, T : Ω → R,
and including a transport equation, leads us to the model,

∂~u

∂t
+ ~u · ∇~u− ν∇2~u+ ∇p = ~jT in W ≡ Ω × (0, τ ], (24)

∇ · ~u = 0 in W, (25)

∂T

∂t
+ ~u · ∇T − ǫ∇2T = 0 in W. (26)

The Boussinesq system (24)–(26) arises as a limiting case of modelling the flow of

a fluid forced by gravity (acting downwards in the vertical direction ~j) where the
typical fluid velocity is much smaller than the local sound speed, and where only
small temperature deviations from the average value are allowed. Note that there
are two different viscosity parameters in our model: ν in (24) and ǫ in (26). The
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Figure 8. GMRES convergence for linear systems solved at time
level t ∼ 10. Results are shown for three different spatial discretiza-
tions of the flow domain.

precise definition of these viscosity parameters depends on the nondimensionaliza-
tion used. In our case, we define ν and ǫ in terms of a Rayleigh number, Ra, and a
Prandtl number, Pr, with

ν =

√

Pr

Ra
, ǫ =

1√
Pr · Ra

.

The Prandtl number is a property of the fluid. Herein we will fix Pr = 7.1, which
is a typical value for water at 20◦C. The Rayleigh number characterizes the degree of
instability of the system: it is proportional to the product of the thermal expansion
coefficient of the fluid and the imposed temperature difference. To provide a direct
comparison with the isothermal model in the previous section we set the Rayleigh
number to a fixed value, Ra = 17750. This implies that ν = 1/50 (exactly as in
Section 2) and ǫ ∼ 0.0028.

d

d

d
L

Γcold

Γhot

Γins

Γins

Figure 9. Boundary sections for temperature boundary conditions.

The fluid flow boundary conditions associated with the boundary sections in Fig-
ure 1 need to be supplemented by temperature boundary conditions. Three different
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parts of the boundary are identified in Figure 9, and the associated conditions are

T (·, t) = 1
2 (1 − e−10t) on Γhot, t ∈ (0, τ ],

T (·, t) = − 1
2 (1 − e−10t) on Γcold, t ∈ (0, τ ],

ǫ∇T · ~n = 0 on Γins × (0, τ ],







(27)

so that the temperature gradient across the channel tends to ± 1
2 as t → ∞. Note

that the inflow and outflow temperature profiles are modelled with an insulating
boundary condition. The initial condition is again the quiescent state:

~u(~x, 0) = ~0, T (~x, 0) = 0, ~x ∈ Ω. (28)

We will solve the coupled flow problem (24)–(26) in the flow domain with length
scales d = 1 and L = 20. We note that the problem is not guaranteed to have a
stable steady-state solution for these parameter choices. The thermal convection
effects are significant because the value of Ra = 17750 is bigger than the critical
value for the onset of Rayleigh–Bénard convection rolls between parallel plates in
an enclosed flow setting with separation distance 2d = 2. (For further details, see
Drazin [6, Chaper 6] and the numerical results in [7, Section 4.2]).

Full details of the Galerkin formulation with TR–AB2 time stepping can be
found in Elman et al. [7]. We combine the basic Q2–Q1 velocity–pressure approxi-
mation used already, with standard Q2 approximation for the temperature; that is,
Xh

0 = span{φℓ}nT

ℓ=1. Using the standard linearization ~wn+1
h = (1 + (kn+1/kn))~un

h −
(kn+1/kn)~un−1

h we are charged with computing (~un+1
h , pn+1

h , T n+1
h ) ∈ Xh

E ×Mh ×
Xh

E satisfying the fully discrete formulation,

2
kn+1

(~un+1
h , ~vh) + ν (∇~un+1

h ,∇~vh) + (~wn+1
h · ∇~un+1

h , ~vh) − (pn+1
h ,∇ · ~vh)

− (T n+1
h , ~j · ~vh) = 2

kn+1
(~un

h , ~vh) + (
∂~un

h

∂t , ~vh), (29)

(∇ · ~un+1
h , qh) = 0, (30)

2
kn+1

(T n+1
h , vh) + ǫ (∇T n+1

h ,∇vh) + (~wn+1
h · ∇T n+1

h , vh)

= 2
kn+1

(T n
h , vh) + (

∂T n
h

∂t , vh), (31)

for all (~vh, qh, vh) ∈ Xh
0×Mh×Xh

0 . Note that the linearization uncouples the system
so that it can, in principle, be solved by back-substitution: first, by computing T n+1

h

from (31), and second, by computing (~un+1
h , pn+1

h ) satisfying (29)–(30).
Following [7], we will keep a fully-coupled approach and solve the “saddle-point

system” associated with (29)–(31); that is,




F n+1
ν BT − 1

2kn+1
0
M

B 0 0
0 0 Fn+1

ǫ









αu,n+1

αp,n+1

αt,n+1



 =





fu,n+1

0

f t,n+1



 , (32)

where Fn+1
ǫ is the scalar reaction–convection–diffusion operator defined on the tem-

perature space and the matrix 0
M represents the buoyancy term,

0

M
:=

(
0

M

)

ij

= ([0, φi], φj), i = 1, . . . , nu, j = 1, . . . , nT . (33)

To facilitate a direct comparison with Section 2, we solve the coupled flow prob-
lem using the extended grid of 4416 rectangular elements. The component subspace
dimensions are thus nu = 36042, np = 4595, nT = 18021, and the dimension of the
discrete system (32) is 58658. As in Section 2, the stabilized TR–AB2 integrator
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Isotherms: time = 1.00

Isotherms: time = 4.86

Isotherms: time = 14.98

Figure 10. Flow over a heated step: isotherm snapshots at early times.

Stationary streamlines: time = 1.00

Stationary streamlines: time = 4.86

Stationary streamlines: time = 14.98

Figure 11. Flow over a heated step: snapshots of stationary
streamlines at early times.
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is run with the accuracy tolerance set to εt = 3 × 10−5. The evolution of the com-
puted temperature field is shown in Figure 10. Initially, the vertical heating has
little effect on the flow, but when t ∼ 15 we observe that the cold fluid is being
convected from the top wall into the centre of the channel. This mixing of hot and
cold fluid represents an unstable perturbation of the steady-state isothermal flow. If
we compare the final-time plot in Figure 7 with that in Figure 11 we might suspect
that a completely different dynamic has been set in motion.
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Figure 12. Time-step evolution (left) for flow over a heated step
using stabilized TR–AB2 with zoom (right) of first 99 time steps.

The adaptive time-step selection is based on the coupled physics. Specifically,

kn+2 = kn+1

(

εt

/√
∥
∥~en+1

h

∥
∥

2
+

∥
∥en+1

h

∥
∥

2
)1/3

, (34)

where ‖~en+1
h ‖ is the L2 norm of the difference between the TR and AB2 approx-

imations to ~u(tn+1) and ‖en+1
h ‖ is the L2 norm of the difference between the TR

and AB2 approximations to T (tn+1). The resulting time-step evolution is shown
in Figure 12. Comparing the right-hand plot with the right-hand plot in Figure 3
we can see that there is very close agreement initially. The two left-hand plots look
very different however. Rather than exponentially increasing, in the nonisothermal
case the time step decreases by an order of magnitude between t = 15 and t = 25.
Moreover, after a second transient, the time step stays almost constant (kn ∼ 0.04
time units) between t = 50 and t = 80. This behaviour is consistent with a trav-
elling wave or periodic solution and this is further confirmed by the solution plots
for t ∼ 63, t ∼ 66 and t ∼ 70 shown in Figure 13. An entrained “bubble” of fluid
is convected along the bottom wall, creating further bubbles near the top wall as
time evolves.

We can also see that there is a problem with our mathematical model for t > 90.
The insulated boundary condition (27) is not compatible with the fluid temperature
profile near the outflow and so the bubble is unable to exit gracefully. This manifests
itself as a source of vorticity at the outlet and is illustrated in Figure 14. We
speculate that a more appropriate condition would be for us to prescribe a “desired”
temperature profile at the outflow—this is an issue for a future paper.

We conclude with a brief discussion of the robustness of our preconditioning
methodology. Our strategy is to develop a natural extension of the block triangular



16 DAVID J. SILVESTER, ALEX BESPALOV AND CATHERINE E. POWELL

Stationary streamlines: time = 63.31

Stationary streamlines: time = 66.66

Stationary streamlines: time = 70.09

Figure 13. Flow over a heated step: snapshots of stationary
streamlines at later times.

Vorticity contours: time = 0.95

Vorticity contours: time = 4.86

Vorticity contours: time = 98.97

Figure 14. Flow over a heated step: snapshots of vorticity.
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preconditioner discussed in Section 1. To illustrate the approach, let us express
the system (32) (again omitting the matrix subscripts/superscripts) with a right
preconditioner P so that





F BT −M
B 0 0
0 0 F



P−1 P





αu

αp

αt



 =





fu

0

f t



 ,

where M := kn+1

2
0
M . Introducing the velocity-pressure Schur complement matrix

S = BF−1BT , an ideal block triangular preconditioner

P ≡





F BT −M
0 −S 0
0 0 F



 ≈





F BT −M
B 0 0
0 0 F



 (35)

is motivated by the identity




F BT −M
B 0 0
0 0 F









F−1 F−1BTS−1 F−1MF−1

0 −S−1 0
0 0 F−1





︸ ︷︷ ︸

P−1

≡





I 0 0

BF−1 I BF−1MF−1

0 0 I



.

A permutation of the second and third rows and columns of the right-hand side
matrix generates a lower triangular matrix with ones on the diagonal. We deduce
that GMRES applied to (32) with right preconditioner P will converge in two
iterations, independent of the parameters h, kn+1, ν and ǫ.

A practical implementation of the preconditioning strategy embodied in (35) is
a three-step process. First, we follow the strategy in Section 2 and approximate
the inverses of the matrix operator F and the Schur complement matrix S using a
single V-cycle of AMG; second, we perform a matrix-vector multiply with M and
with BT ; the final step is to use an AMG V-cycle to approximate the inverse of the
two scalar systems associated with the matrix operator F .
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Figure 15. GMRES convergence when solving the discretized
Boussinesq problem (32) using inexact AMG–ILU preconditioning.

Convergence histories for inexact LSC and PCD preconditioning of the linear
systems that arise at approximate times t ∼ 1, t ∼ 5 and t ∼ 100 are plotted in
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Figure 15. The associated local time steps (kn+1) are 0.0555, 0.148 and 0.0536
time units, respectively. Comparing these results with the isothermal analogues in
Figure 6 we see that the solver performance is essentially identical. For a realistic
residual reduction factor of 10−6, the inexact version of PCD always converges in
10–20 iterations. The same trend noted earlier is also evident here—the faster the
physics, the smaller the time step and the faster the convergence of our linear solver.
A comprehensive assessment of the effectiveness of this strategy can be found in [7].

4. Steady flow over a step with data uncertainty. In this final section we con-
sider a modelling situation in which the volume of flow in the channel is not known
precisely. To model this uncertainty, we consider the stationary Navier–Stokes equa-
tions with a random parameter. More specifically, we consider the Navier–Stokes
equations with fixed boundary conditions but with an uncertain viscosity. We show
that this flow model is equivalent to a problem with a deterministic viscosity to-
gether with an uncertain inflow boundary condition: the (quadratic) shape of the
inflow profile is exactly as in Section 2, but the maximum velocity is not known
precisely. Numerical solutions will be generated using a “stochastic” Galerkin fi-
nite element method. We also demonstrate that the deterministic PCD and LSC
preconditioning schemes in Sections 2 and 3 can be readily extended to provide an
effective solution method for the linear systems of algebraic equations that need to
be solved at every nonlinear iteration.

4.1. Alternative stochastic formulations. First, let us suppose that the fluid
viscosity ν is spatially uniform but that its value is not known precisely. In such a
scenario, we can model ν as a random variable of the form

ν := ν0 + ν1ξ1, (36)

where ν0, ν1 ∈ R are given constants and ξ1 is a random variable on a probability
space (Ξ, F,P). Here, as usual, Ξ denotes the set of outcomes, F is a σ-algebra
of events, and P : F → [0, 1] is a probability measure. If we know a range of
possible values for ν, it is natural to choose ξ1 to be a uniform random variable. If
ξ1 ∼ U(−

√
3,
√

3), then ξ1 has mean zero and unit variance, and the expectation
and variance of ν are

E[ν] = ν0, Var[ν] = ν2
1 , (37)

respectively. We can then model different statistical scenarios by varying ν0 and
ν1. In the numerical experiments reported in the next section, we mirror the setup
in Section 2 and set ν0 = 1/50. For a sufficiently small ν1 and a fixed spatial grid,
we might anticipate that there will be very close agreement between the mean flow
solution and the steady-state solution generated previously; see Section 2.

If F is the σ-algebra generated by the random variable ξ1 in (36), then the
solution of the steady-state Navier–Stokes equations, ~u and p, are functions of both
the spatial variables ~x and the random variable ξ1 (i.e., they are random fields).
Thus, given a (deterministic) vector function ~g = ~g(~x) on ΓD, the boundary value
problem for the Navier–Stokes equations with a random viscosity reads as follows:
find ~u = ~u(~x, ξ1) and p = p(~x, ξ1) such that P-a.s.,

− ν∇2~u+ ~u · ∇~u+ ∇p = ~0 in Ω, (38)

∇ · ~u = 0 in Ω, (39)

~u = ~g on ΓD, (40)

ν∇~u · ~n− p~n = ~0 on ΓN . (41)
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Now, let ~U(~x, ξ1) := ~u(~x, ξ1)/ν(ξ1) and P (~x, ξ1) := p(~x, ξ1)/ν
2(ξ1). Then, P-a.s.,

the pair ~U(~x, ξ1), P (~x, ξ1) satisfies

−∇2 ~U + ~U · ∇ ~U + ∇P = ~0 in Ω, (42)

∇ · ~U = 0 in Ω, (43)

~U = ~G on ΓD, (44)

∇ ~U · ~n− P ~n = ~0 on ΓN , (45)

where ~G = ~G(~x, ξ1) := ~g(~x)/ν(ξ1). The alternative boundary value problem (42)–
(45) consists of the steady-state Navier–Stokes equations with unit viscosity, subject
to the homogeneous Neumann boundary condition (45) and the stochastic Dirichlet
boundary condition (44). For the inflow–outflow configuration shown in Figure 1,
the quadratic inlet profile given by ~g(~x) is scaled by the random variable 1/ν(ξ1).

We focus on the random viscosity formulation in the sequel. There are two rea-
sons for doing so: first, the problem (38)–(41) is more compatible with our existing
(ifiss) software resource; and second, modelling the uncertainty via the viscosity
parameter allows us to make a direct comparison with results in the literature, see,
e.g. Le Mâıtre & Knio [19, Chapter 6].

The problem nonlinearity is not the primary focus of this paper. To test out the
linear solver strategy we take a simple Picard linearization of the convection term
herein. This means that, at the nth step of the iterative procedure we have to solve
a linearized problem with ~u · ∇~u in (38) replaced by the lagged convection field

~un ·∇~un+1. Note that we could equally well have solved the time-dependent version
of (38)–(41) using linearized backward Euler time stepping with a large fixed time
step. Discussion of this important aspect of the solution process is deferred to our
follow-up publication [2].

Since the solution and test functions now depend on ξ1, deriving a variational
formulation from the linearized boundary value problem requires us to take expec-
tations. For the particular choice ξ1 ∼ U(−

√
3,
√

3) we have a constant probability

density function, ρ(λ) = 1/(2
√

3). Moreover Λ := ξ1(Ξ), the range of ξ1, is a finite

interval Λ = [−
√

3,
√

3]. Now recall that for any measurable function f of ξ1, the ex-
pectation is given by E[f(ξ1)] =

∫

Λ
ρ(λ)f(λ) dλ. Hence, at the nth Picard iteration,

we have to solve the following variational problem: find ~un+1(~x, λ) ∈ VE(Λ,Ω)
and pn+1(~x, λ) ∈ W (Λ,Ω) satisfying

∫

Λ

ρ(λ)
{

ν(λ)
(
∇~un+1,∇~v

)
+

(
~un · ∇~un+1, ~v

)
−

(
pn+1,∇ · ~v

)}

dλ = 0, (46)

∫

Λ

ρ(λ)
(
q,∇ · ~un+1) dλ = 0, (47)

for all ~v(~x, λ) ∈ V0(Λ,Ω) and q(~x, λ) ∈ W (Λ,Ω). Note that (·, ·) in (46)–(47)
represents the L2(Ω) inner product. The function spaces V0(Λ,Ω) := L2

ρ(Λ,H
1
0(Ω))

and W (Λ,Ω) := L2
ρ(Λ, L

2(Ω)) contain functions of λ with finite second moment.
These spaces will be formally defined in [2].

4.2. A fully discrete formulation. Full details of the Galerkin formulation with
spectral approximation in the stochastic variable can also be found in [2]. A general
overview of the approximation issues is given in [3]. The goal is to combine the
usual spatial Q2–Q1 velocity–pressure approximation with standard polynomial
approximation on Λ. To that end, let Sk = Sk(Λ) ⊂ L2

ρ(Λ) be the set of univariate
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polynomials in λ of degree ≤ k on the interval Λ. Then the Picard linearization
of the convection term leaves us with the task of computing ~un+1

hk ∈ Xh
E ⊗ Sk and

pn+1
hk ∈Mh ⊗ Sk satisfying the fully discrete formulation,

E

[

ν
(
∇~un+1

hk ,∇~vhk

)]

+ E

[(
~un

hk · ∇~un+1
hk , ~vhk

)]

− E

[(
pn+1

hk ,∇ · ~vhk

)]

= 0, (48)

E

[(
∇ · ~un+1

hk , qhk

)]

= 0, (49)

for all ~vhk ∈ Xh
0 ⊗ Sk and qhk ∈ Mh ⊗ Sk, where E[·] represents the expectation

operator with respect to the probability density function ρ(λ). Alternatively, given

~un
hk ∈ Xh

E ⊗ Sk and pn
hk ∈ Mh ⊗ Sk we can compute the updates δ~un

hk := ~un+1
hk −

~un
hk ∈ Xh

0 ⊗ Sk and δpn
hk := pn+1

hk − pn
hk ∈Mh ⊗ Sk by solving the system

E

[

ν
(
∇δ~un

hk,∇~vhk

)]

+ E

[(
~un

hk·∇δ~un
hk, ~vhk

)]

−E

[(
δpn

hk,∇·~vhk

)]

=Rn(~vhk), (50)

E

[(
∇ · δ~un

hk, qhk

)]

=rn(qhk), (51)

for all ~vhk ∈ Xh
0 ⊗ Sk and qhk ∈Mh ⊗ Sk, where the residuals are given by

Rn(~vhk) := −E

[

ν
(
∇~un

hk,∇~vhk

)]

− E

[(
~un

hk · ∇~un
hk, ~vhk

)]

+ E

[(
pn

hk,∇ · ~vhk

)]

,

rn(qhk) := −E

[(
∇ · ~un

hk, qhk

)]

.

Given a basis set Sk = {ϕℓ}k
ℓ=0, we get to a linear algebra problem by expanding

the updates in terms of the tensor product basis functions,

δ~un
hk(~x, λ) =

[ ∑k
ℓ=0

∑nu

i=1 α
x,n
iℓ φi(~x) ϕℓ(λ)

∑k
ℓ=0

∑nu

i=1 α
y,n
iℓ φi(~x) ϕℓ(λ)

]

, δpn
hk =

k∑

ℓ=0

np∑

j=1

βn
jℓ ψj ϕℓ.

The coefficient vectors αn = [αx,n,αy,n] and βn may then be computed by solving
the saddle-point system associated with (50)–(51); that is,

(
F

n
ν B

T

B 0

) (
αn

βn

)

=

(
fn

gn

)

, (52)

where fn and gn are associated with the residual vectors Rn and rn defined above.
The matrices F

n
ν and B in (52) are defined in terms of Kronecker products of

smaller matrices. To see this, let us order the degrees of freedom to run over the
stochastic basis functions ϕℓ in turn: this means that the coefficient vectors αx,n

and αy,n each have k + 1 consecutive blocks each of length nu, and the vector βn

has k + 1 consecutive blocks each of length np. With this numbering, the matrix
B in (52) can be simply written as B = [I ⊗Bx, I ⊗ By], where Bx and By are the
components of the discrete divergence operator (14)–(15) defined in Section 2.

The Kronecker product structure of the matrix F
n
ν looks quite complicated at

first sight:

F
n
ν := (ν0G0 + ν1G1) ⊗ A +

∑k
ℓ=0Hℓ ⊗ N ℓ. (53)

There is a lot of structure in (53) to exploit however. The Galerkin “G-matrices”
take the form,

G0 := [G0]ℓs = E [ϕs ϕℓ] , ℓ, s = 0, . . . , k, (54)

G1 := [G1]ℓs = E [λϕs ϕℓ] , ℓ, s = 0, . . . , k. (55)

If we construct a basis set {ϕℓ}k
ℓ=0 that is orthonormal with respect to the inner

product associated with the expectation operator (scaled Legendre polynomials in



FAST SOLVERS FOR INCOMPRESSIBLE FLOW PROBLEMS 21

the case of the uniform distribution), then G0 is the identity matrix, and G1 is a
permutation of a tridiagonal matrix, with at most two nonzero entries per row (see
Powell & Elman [20]). This means that the diffusion part of the matrix F

n
ν is block

sparse (inherited from G1), with at most three nonzero blocks in each block row.
The convection part of the matrix F

n
ν involves a sum of Kronecker products of the

Galerkin “H-matrices”,

Hℓ := [Hℓ]ms = E [ϕℓ ϕs ϕm] , m, s = 0, . . . , k, (56)

with convection matrices N ℓ that have block diagonal components,

Nℓ(~u
n
hk) := [Nℓ]ij = (~un

hℓ · ∇φi, φj), i, j = 1, . . . , nu. (57)

Note that the “wind” components ~un
hℓ correspond to the spatial coefficients in the

stochastic expansion of the velocity field at the nth nonlinear iteration; that is,

~un
hk =

k∑

ℓ=0

∑nu

i=1 ~u
n
iℓ φi(~x)

︸ ︷︷ ︸

~un
hℓ

ϕℓ(λ). (58)

4.3. Computational results. As mentioned above, we mirror the setup in Sec-
tion 2 and set ν0 = 1/50 and L = 5. We show results for the specific case of
ν1 = 1/500 which corresponds to ν being a uniform random variable on the interval
[0.01654, 0.02346]. The spatial discretization is the reference grid shown in Figure 2
and the stochastic approximation is of polynomial degree k = 4. The resulting nu-
merical approximation to (46)–(47) is generated by taking 15 Picard iteration steps
(starting from the stochastic Stokes-flow solution). The statistical properties of the
computed solution are illustrated in Figures 16 and 17.

Figure 16. Uncertain flow over a step: streamlines of the mean
flow field (top) and contours of the variance of the magnitude of
the mean flow field (bottom).

As anticipated, the mean flow solution in Figure 16 looks exactly like the steady
flow solution illustrated in the bottom plot of Figure 4. The mean pressure solution
in Figure 17 is also indistinguishable from the deterministic steady-state analogue
(not shown). The spatial singularity in the pressure solution is a prominent feature.
The second order solution statistics shown in Figures 16 and 17 are also interesting.
The uncertainty in the volume of flow at the inflow generates uncertainty in the
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mean pressure field

variance of the pressure field

Figure 17. Uncertain flow over a step: mean (top) and variance
(bottom) of the pressure field.

length of the recirculating eddy, so the variance of the velocity solution is concen-
trated in two areas downstream of the step. In contrast, the pressure uncertainty
is concentrated at the inflow—the uncertainty in the volume of fluid at the inflow
generates uncertainty in the pressure drop between the inflow and outflow (recall
that the outflow boundary condition forces the pressure to have mean zero).

The influence of the degree of spectral approximation, k, on the computed so-
lution can be inferred from the behaviour of the spatial coefficients ~u∗hℓ in the

stochastic expansion (58) of the “converged” velocity field ~u∗hk := ~u15
hk. To illus-

trate this, the horizontal velocity component of the spatial coefficients (see (58)) are
plotted in Figure 18, and the norms of the vector of coefficients {ux

iℓ}nu

i=1 are also
recorded. The five polynomial components are ordered vertically with the mean
horizontal velocity component ux

h0 at the top, the linear component ux
h1 just below,

and the quartic component ux
h4 at the bottom. All five components can be seen to be

spatially smooth. Also evident is the fact that the flow resolution monotonically in-
creases with increasing polynomial degree (the linear horizontal velocity component
has three “peaks” in Figure 18, whereas the quartic horizontal velocity component
has six “peaks”). Another important point is that the norm of these components
decreases rapidly with k—this suggests that an increase in the polynomial degree
would have little effect on the numerical solution that is generated. We note that
the issue of how to balance the spatial and spectral errors inside stochastic Galerkin
approximation is a very active research topic; see Xiu [24, Chapter 6] and Le Mâıtre
& Knio [19, Chapter 9] for further discussion of this point.
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component 0:   norm = 3.96e+01

component 1:   norm = 6.55e−01

component 2:   norm = 6.10e−02

component 3:   norm = 5.52e−03

component 4:   norm = 4.76e−04

Figure 18. Uncertain flow over a step: contours of the spatial
coefficients in the stochastic expansion of the horizontal velocity
solution.
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We conclude with a brief discussion of possible preconditioning strategies for the
linear system (52). Note the increased dimensionality: the number of unknown
coefficients is (k + 1) × n where k is the degree of the spectral approximation and
n = 14267 is the dimension of the spatially discretized system. Our immediate
aim is to extend the block triangular preconditioner discussed in Section 1. We
present results computed using three different strategies, all of which are based
on approximating the spatial convection–diffusion operator in (53) by the mean
component F0 = ν0I+N0, where the convection matrix operator is simply linearized
using the mean velocity field ~u∗h0 defined in (57). Recalling (53), and noting that
H0 = I, we can see why this might be a good idea:

Fν = (ν0I + ν1G1) ⊗ A +
∑k

ℓ=0Hℓ ⊗ N ℓ

= I ⊗ (ν0A + N0) + ν1G1 ⊗ A +
∑k

ℓ=1Hℓ ⊗ N ℓ

= I ⊗ F 0 + ν1G1 ⊗ A +
∑k

ℓ=1Hℓ ⊗ N ℓ

≈ I ⊗ F 0 =: F0. (59)

This approximation will be good and the preconditioning strategy will be ef-
fective whenever the ratio ν1/ν0 is close to zero; see Powell & Elman [20]. (See
Ernst et al. [12] for a detailed discussion of mean-based preconditioning in a mixed
approximation context.) If the exact pressure Schur complement, S = BF

−1
ν B

T , is
also approximated using the construction (59) then we deduce that

S = [I ⊗Bx, I ⊗By] F−1
ν [I ⊗Bx, I ⊗By]T

≈ [I ⊗Bx, I ⊗By] (I ⊗ F 0)
−1 [I ⊗Bx, I ⊗By]T

= [I ⊗Bx, I ⊗By] (I ⊗ F−1
0 )[I ⊗Bx, I ⊗By]

T

= (I ⊗Bx)(I ⊗ F−1
0 )(I ⊗BT

x ) + (I ⊗By)(I ⊗ F−1
0 )(I ⊗BT

y )

= I ⊗ (BxF
−1
0 BT

x ) + I ⊗ (ByF
−1
0 BT

y )

= I ⊗ (BF−1
0 BT ) =: I ⊗ S0 =: S0. (60)

Combining (59) and (60), we can define an “ideal” preconditioner for (52) (analogous
to (20)) via

P :=

(
F0 B

T

0 −S0

)

≈
(

Fν B
T

B 0

)

. (61)

The ideal preconditioner is not practical (it requires the explicit construction of
the deterministic problem Schur complement BF−1

0 BT ) but it does provide us with
a reference point for evaluating performance. A practical approach is obtained by
approximating the mean-based Schur complement using the PCD and LSC con-
structions that are described in Section 1.

GMRES convergence curves for the ideal preconditioner (61) and the exact LSC
and PCD analogues are shown in Figure 19. The convergence curves in the right-
hand plot are those obtained using the reference grid in Figure 2. These results
should be compared with the large time step (t ∼ 100) results for the mean-value
deterministic problem that are shown in Figure 6. The left-hand plot in Figure 19
is included to enable an assessment of the robustness of the preconditioning strate-
gies.4 The results in Figure 19, together with experiments not reported here, give

4The coarse grid is generated in ifiss 3.2 by running newstep domain.m with the grid parameter
set to 5 and the stretch parameter set to 1.3. The stochastic flow problem was rerun on this grid
with all other problem parameters left unchanged.
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Figure 19. GMRES convergence when solving the discretized sto-
chastic flow problem (52) using exact preconditioning for a coarse
grid (left) and for the reference grid in Section 2 (right).

us confidence that the ideal preconditioner is perfectly robust; both with respect
to the spatial approximation and with respect to the degree of spectral approxima-
tion. The LSC preconditioning results are less encouraging: looking at Figure 19
a deterioration in the convergence rate of LSC is apparent when the spatial grid is
refined. There is no real surprise here—the grid dependence of LSC is also evident
in the deterministic case; see Figure 8. In contrast, the PCD preconditioner results
are very promising—the convergence rate stays within a factor of two of the ideal

preconditioner and the approximation appears to be perfectly robust with respect
to the parameters h and k. We aim to provide theoretical justification for this
assertion in the future.

5. Summary. A general strategy for finding numerical solutions of incompressible
flow models using implicit methods is outlined in this paper. The main ingredi-
ents are a self-adaptive time-stepping approach in conjunction with a linearization
strategy that requires only one linear system solution at each time step. Moreover,
it is shown that the linearized systems can be solved in essentially optimal order
complexity using specialized algebraic multigrid solver components. The novel con-
tribution is that the effectiveness of the solver methodology is demonstrated on a
sequence of increasingly complex physical models. The computational results show
that very little preliminary knowledge of problem structure or parameter tuning is
needed to efficiently compute accurate solutions.
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