
GPU-based solution of Continuous Time Markov
Chains using CUSP

Dingle, Nicholas

2011

MIMS EPrint: 2011.102

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

GPU-based solution of Continuous Time Markov

Chains using CUSP

Nicholas J. Dingle
School of Mathematics, University of Manchester

nicholas.dingle@manchester.ac.uk

November 29, 2011

Abstract

This technical report describes the parallelisation of the response-time analyser
HYDRA using CUSP and the results of executing it on HECToR’s GPGPU testbed.
We achieved good speed-ups in execution time, but these were outweighed by in-
creased setup time.

It is important to ensure that computer and communication systems will meet quality
of service targets. Ideally, it should be possible to determine whether or not this will be the
case at design time. This can be achieved through the modelling and analysis of the system
in question. Such analysis can be conducted by capturing the behaviour of the system with
a formal model; that is, identifying the possible states the system may be in and the way
in which it can move between these states. The concept of time can be introduced by
associating delays with the state transitions. When the choice of the next state depends
only on the current state and transition delays are sampled from the negative exponential
distribution, we call such a model a Continuous Time Markov Chain (CTMC).

As specifying every state and transition in the state space of a complex model of a real-
life system is infeasible, high-level formalisms such as stochastic Petri nets [1], stochastic
process algebras [6] and queueing networks [7] can be employed. These permit a succinct
description of the model from which a CTMC can automatically be extracted and then
solved for performance measures of interest.

From the steady-state probability distribution of the model’s underlying CTMC, stan-
dard resource-based performance measures, such as mean buffer occupancy, system avail-
ability and throughput, and expected values of various sojourn times can be obtained.
Steady-state measures allow the answering of questions such as: “What is the probability
that the system will be in a failure state in the long run?” and “What is the average
utilisation of this resource?”. The steady-state probability distribution of a CTMC is cal-
culated by solving a set of linear equations of the form Ax = b. In this case, A is a (sparse)

1

transposed generator matrix which has zero column sums, x is a probability vector whose
elements sum to 1, and b = 0 (a vector of zeros).

There exist a large number of tools designed to calculate steady-state probabilities in
CTMCs, but very few of them exploit recent advances in General Purpose GPU (GPGPU)
computing. In this note we report on our experience of taking the existing CTMC steady-
state solver HYDRA (HYpergraph-based Distributed Response Time Analyser) [4, 5] and
parallelising it using the CUSP library for execution on NVIDIA GPUs. We have previously
achieved good speed-ups on multicore machines by parallelising HYDRA with OpenMP [3].

1 Implementation

The workflow for the HYDRA analysis pipeline proceeds as follows: a high-level model
description (specified in a TeX-like input language) is first parsed and then the resulting
C++ code is compiled and executed with the state generator to produce the CTMC’s
generator matrix. This matrix is then read in by the steady-state solver and used to
compute the model’s steady-state probability vector.

As the existing HYDRA serial steady-state solver takes as input a file containing A,
we were able to replace it with a solver which was written using CUSP’s built-in I/O and
Krylov subspace routines. We modified HYDRA’s state generator to output A in Matrix
Market format, as used by CUSP, rather than the proprietary format used by HYDRA;
this was easy to accomplish as the Matrix Market format only requires the matrix to be
specified in coordinate format. This matrix was then used as input to CUSP’s built-in
BiCGStab (biconjugate gradient stabilised) [8] routine to solve Ax = b. The entire source
code of the CUSP solver (minus the timing and solution verification code) is shown in
Figure 1 and closely follows the examples provided in the CUSP documentation.

2 Results

CUSP (GPU) CUSP (CPU) HYDRA (CPU)
Rows Non-zeros Set-up Solve Set-up Setup Solve

Iterations Time Iterations Time
11 700 71 724 1.80 87 0.27 0.60 0.02 63 0.03
152 712 1 416 903 21.00 93 0.33 14.10 0.10 75 1.10
5 358 150 45 138 039 587.20 187 7.60 515.10 6.20 166 104.60
9 304 650 79 457 034 1 046.20 197 14.20 924.4 10.9 227 248.40
15 404 115 136 117 843 1 859.40 234 28.50 1 789.0 18.8 205 385.40

Table 1: Run-time in seconds and iteration counts for CUSP and HYDRA steady-state
solution.

Table 1 compares the runtimes of the CUSP and HYDRA solvers. For the CUSP
version, the setup and solution times were measured as the execution of the corresponding

2

#include <cusp/krylov/bicgstab.h>

#include <cusp/hyb_matrix.h>

#include <cusp/io/matrix_market.h>

// where to perform the computation

typedef cusp::device_memory DevMemorySpace;

typedef cusp::host_memory HostMemorySpace;

// which floating point type to use

typedef float ValueType;

int main(){

// begin setup

cusp::hyb_matrix<int, ValueType, DevMemorySpace> A;

cusp::io::read_matrix_market_file(A, "./matrix.mtx");

cusp::array1d<ValueType, DevMemorySpace> x(A.num_rows,

1.0/(double)A.num_rows);

cusp::array1d<ValueType, DevMemorySpace> b(A.num_rows, 0);

cusp::verbose_monitor<ValueType> monitor(b, 1600, 1e-5, 1e-5);

// end setup

// begin solution

cusp::krylov::bicgstab(A, x, b, monitor);

// end solution

return 0;

}

Figure 1: Source code for the CUSP solver.

3

code portions identified in the listing above; the times for HYDRA were measured for
the analogous portions of that code. The input matrices used were generated from the
well-known Courier [9] and FMS [2] models.

The CUSP results were produced on the HECToR GPGPU testbed, which comprises
a quad-core Intel Xeon 2.4GHz CPU with 32GB RAM and 4 NVIDIA Fermi C2050 GPUs
each with 3GB RAM. The HYDRA results were produced on an Intel Core2 3.0GHz quad-
core CPU workstation with 8GB RAM. HYDRA is a single-threaded implementation that
was compiled using gcc 4.4.3 with the -O3 flag. All entries in the table are the averages
of 5 runs. Note that HYDRA uses double precision whereas CUSP uses single due to
compilation problems attempting to use doubles with CUSP BiCGStab.

We generally observe that the solution time is faster on the GPU than the CPU, but
that the setup overhead (reading the matrix file from disk and copying the data to the
device) is higher for the GPU code. For all the matrices tested, the extra setup overhead
on the GPU outweighed the improvement in solution time relative to the original CPU
version.

In an attempt to gauge the GPU data transfer overhead, we also carried out the cal-
culations using CUSP but on the CPU not the GPU (achieved by putting the A, x and
b in HostMemorySpace rather than DevMemorySpace). These results are shown in Table 1
under the “CUSP (CPU)” heading. The overhead in this case should therefore be only
that of reading the matrix file from disk and populating the appropriate data structure in
main memory. This gives us some indication of how much time could be saved by skip-
ping the I/O phase (for example by maintaining A in memory when it is generated rather
than writing it to and reading it from disk). The current high CUSP setup overheads
(“CUSP(CPU)” v. “HYDRA(CPU)”) are probably because CUSP reads the matrix from
a text file, while HYDRA uses a proprietary binary storage format.

From Table 1 it is also noticeable that the convergence behaviour of the two imple-
mentations is different, with HYDRA generally requiring fewer iterations to converge than
CUSP for the same problem size. Figure 2 provides more detail of this by plotting the
∞-norm of the residual at each iteration for both implementations for all problem sizes.

CUSP (GPU) HYDRA (CPU)
Rows CUSP speed-up GFLOPS GFLOPS/s GFLOPS GFLOPS/s

wrt HYDRA
11 700 0.11 0.03 0.13 0.02 0.82
152 712 3.33 0.56 1.71 0.45 0.41
5 358 150 13.65 37.97 5.00 33.71 0.33
9 304 650 17.49 69.89 4.92 80.52 0.32
15 404 115 13.52 139.55 4.90 122.27 0.32

Table 2: Performance of CUSP and HYDRA solvers.

Based on the number of non-zeros and the details of the BiCGStab algorithm, we
estimated the number of flops required to solve each of the five problem sizes. These results

4

 0.0001

 0.01

 1

 100

 10000

 1e+06

 0 20 40 60 80 100

in
f-

no
rm

 o
f r

es
id

ua
l

iteration

CUSP (GPU)
HYDRA (CPU)

(a) 11 700 rows

 0.0001

 0.01

 1

 100

 10000

 0 20 40 60 80 100 120

in
f-

no
rm

 o
f r

es
id

ua
l

iteration

CUSP (GPU)
HYDRA (CPU)

(b) 152 712 rows

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1e+08

 0 50 100 150 200

in
f-

no
rm

 o
f r

es
id

ua
l

iteration

CUSP (GPU)
HYDRA (CPU)

(c) 9 304 650 rows

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1e+08

 0 50 100 150 200

in
f-

no
rm

 o
f r

es
id

ua
l

iteration

CUSP (GPU)
HYDRA (CPU)

(d) 5 358 150 rows

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1e+08

 0 50 100 150 200

in
f-

no
rm

 o
f r

es
id

ua
l

iteration

CUSP (GPU)
HYDRA (CPU)

(e) 15 404 115 rows

Figure 2: Convergence behaviour for each of the five problem sizes.

5

are shown in Table 2, along with the solution-time speedup of CUSP versus HYDRA. Our
estimates give a performance of 5 and 0.3 GFLOPS/sec for CUSP on the GPU and HYDRA
on the CPU respectively, for the 3 largest problems. These figures are far below the peak
performance of either device.

3 Conclusion

We have implemented a GPU-based steady-state solver using the CUSP library, and have
compared this with an existing serial CPU solver. We observed that the CUSP version
solves the system of equations faster than the CPU version, but that the overhead involved
in copying data to the GPU outweighs any runtime savings. There are still areas for im-
provement; for example getting closer to peak performance (perhaps via improved memory
accessing), better CUSP error reporting and optimisation of CUSP’s I/O routines.

References

[1] F. Bause and P.S. Kritzinger. Stochastic Petri Nets – An Introduction to the Theory.
Verlag Vieweg, Wiesbaden, Germany, 1995.

[2] G. Ciardo and K.S. Trivedi. A decomposition approach for stochastic reward net mod-
els. Performance Evaluation, 18(1):37–59, 1993.

[3] N.J. Dingle. HydraMP: Exploiting shared memory parallelism in HYDRA with
OpenMP. In Proceedings of the 27th UK Performance Engineering Workshop (UKPEW
2011), pages 203–214, Bradford, UK, July 2011.

[4] N.J. Dingle, P.G. Harrison, and W.J. Knottenbelt. HYDRA: HYpergraph-based Dis-
tributed Response-time Analyser. In Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA’03), pages
215–219, Las Vegas NV, USA, June 23rd–26th 2003.

[5] N.J. Dingle, P.G. Harrison, and W.J. Knottenbelt. Uniformization and hypergraph
partitioning for the distributed computation of response time densities in very large
Markov models. Journal of Parallel and Distributed Computing, 64(8):908–920, August
2004.

[6] J. Hillston. A Compositional Approach to Performance Modelling. PhD thesis, Univer-
sity of Edinburgh, 1994.

[7] Ng Chee Hock. Queueing Modelling Fundamentals. John Wiley and Sons, 1996.

[8] H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems. SIAM Journal on Scientific Computing,
13(2):631–644, 1992.

6

[9] C.M. Woodside and Y. Li. Performance Petri net analysis of communication proto-
col software by delay-equivalent aggregation. In Proceedings of the 4th International
Workshop on Petri nets and Performance Models (PNPM’91), pages 64–73, Melbourne,
Australia, December 1991.

7

