
The lattice of column 2-regular partitions in the
Steenrod algebra

Sandling, Robert

2011

MIMS EPrint: 2011.101

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


The lattice of column 2-regular partitions in the
Steenrod algebra

Robert Sandling
School of Mathematics
University of Manchester

Divisibility provides the ideal of non-units of the Steenrod algebra A over
the Galois field F2 with the structure of a partially ordered set. This can be
examined for features of lattice structure. For example, the Steenrod squares
Sq1 and Sq2 have a least upper bound, namely, Sq1 ∨ Sq2 = Sq3Sq1. We show
that a subposet consisting of the top elements of certain of the Poincaré duality
subalgebras of A forms a lattice which can be identified with the lattice of
column 2-regular partitions.

The subalgebras, under containment, provide another version of the lattice.
as do the collections of the principal ideals of the top elements and of their
annihilators. As the Steenrod algebra is local and locally finite, these subalge-
bras and ideals are associated with finite and with infinite subgroups of its unit
group, the sets of which also form isomorphic lattices.

These results are formulated and proved in Sect. 1. The lattice of column
2-regular partitions itself is discussed in Sect. 2, where features of relevance to
the Steenrod algebra are elaborated. For example, there is an algorithm for re-
trieving each such top element from the lattice alone. The setting of this section
is that of our lattice realised as the lattice of finite subsets of positive integers in
an order derivable from the product lattice on the product of countable many
copies of the integers.

Notation. Vectors of non-negative integers appear here in several contexts.
We find it convenient to assume that they are of a uniform and therefore infinite
dimension. Most of our vectors, e.g., of indices or as partitions, have only a
finite number of non-zero entries and so we adopt the setting of the direct sum⊕

ωN of a countable number of copies of the additive monoid N of non-negative
integers (the set of positive integers is denoted by P).

Vectors of indices are generally denoted by bold Roman letters, e.g., x =
(x1, x2, · · ·), xi ≥ 0. Partitions, however, are written as Greek letters. For
example, ν indicates here an (infinite) sequence of non-negative integers ν =
(ν1, ν2, · · ·), which is assumed to be non-increasing. Its length `(ν) is thus the
largest integer ` for which ν` 6= 0. We take 0 := (0, 0, · · ·) as a partition,
the partition of 0; its length `(0) = 0. Vectors with infinitely many non-zero
entries also appear, e.g., 1 := (1, 1, · · ·). For a partition ν, the elements 2ν :=
(2ν1 , 2ν2 , · · ·) ∈

∏
ω P and 2ν − 1 ∈

⊕
ωN are important here.

We say that p divides q on the left if there is r such that q = pr and we write
p|q (with p|`q and p|rq used to distinguish between left and right divisibility
when required).

Other notation generally follows the usage in [Wo98] for the Steenrod algebra
and in [St97] for lattices. These references also serve as a source of definitions.
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A partition µ is column p-regular for a prime p if µi−µi+1 < p for all i, i ≥ 1.
Note that, with the convention that partitions are infinite vectors, the last non-
zero entry of a (non-zero) column 2-regular partition is a 1. Partitions which
are column p-regular play a significant role in the modular representation the-
ory of the symmetric and general linear groups [Gr80; JK81]. As the Steenrod
algebra is also relevant to the representation theoretic study of these groups in
characteristic p, it is not surprising that such partitions manifest themselves in
A. Indeed, for p = 2, Walker and Wood [WW01] show that a column 2-regular
partition gives rise to an element of A which is related to the irreducible mod-
ule corresponding to the partition in the representation theory of the monoid
Mn(F2) of all n× n matrices over F2.

The Young diagram of a partition µ is a left-justified array consisting of
`(µ) rows of juxtaposed squares, of which the ith contains exactly µi squares,
1 ≤ i ≤ `(µ). This pictorial description of partitions makes it easy to appreciate
the fact that the set of all partitions forms a lattice under the partial ordering
of containment of Young diagrams. Formally, µ ≤ ν if µi ≤ νi for all i, i ≥ 1.
Union and intersection of Young diagrams serve to define the lattice operations
of join and meet respectively. In terms of partitions, (µ∨ν)i = max{µi, νi} and
(µ ∧ ν)i = min{µi, νi} for all i, i ≥ 1. The set of column 2-regular partitions
forms a sublattice Λ of the lattice of all partitions.

1. The lattice in the Steenrod algebra

In the Steenrod algebra, the lattice Λ manifests itself in a variety of ways. It
occurs as a lattice of elements, of subalgebras, of ideals, right and left, and of
subgroups. The manifestation in terms of elements is the key to all the others.
To each column 2-regular partition µ we associate an element tµ defined as
the Milnor basis element Sq(2µ − 1). This notation mimics the use of tn :=
t(n+1,n,···,2,1) for the top element of the Poincaré duality algebra A(n). For n ≥
0, A(n) denotes the unital subalgebra of A generated by the Steenrod squares

Sq2i

, 0 ≤ i ≤ n. We extend the notation here to the case n = −1 by defining
t−1 as t0 = Sq(0) = 1 and A(−1) as F2. Each column 2-regular partition µ is
associated with a subalgebra of A, denoted here as A(µ) and defined by a basis,
namely, all Milnor basis elements Sq(s), s ≤ 2µ − 1. The fact that A(µ) is a
Hopf subalgebra of A, and consequently a Poincaré duality algebra, whose top
element is tµ, is discussed below. In this notation, A(n) = A((n+1, n, · · · , 2, 1)).

In terms of the Milnor basis, multiplication on the left by tµ can be described
explicitly.

1.1 Proposition. Let µ be a column 2-regular partition and let s ∈
⊕

ωN.
Then

tµSq(s) =

{
Sq((2µ − 1) + s) if 2µ divides s,

0 otherwise.
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Proof. In calculating products of Milnor basis elements, we follow the (almost
compatible) conventions of [Ma83, p. 228ff.; Wo98, p. 455ff.]. Let X be an
allowable matrix for the product Sq(2µ−1)Sq(s). For k ≥ 2, we call the entries
{xi,k−i | 1 ≤ i ≤ k − 1} the interior entries of the kth diagonal of X.

Suppose that β(X) = 1. We show by induction on k “down from infinity”
that all interior entries of X vanish. Assume then that the interior entries
of all diagonals to the right of the kth vanish and that k ≥ 3. Therefore
xk,0 = 2µk−1. As µ is column 2-regular, if 1 ≤ i ≤ k−1, then µi ≤ µk+(k− i).
As 0 ≤ xi,0 = (2µi − 1)− Σj≥12jxi,j , it follows that

xi,0 < 2µk+(k−i) − 2k−ixi,k−i = 2k−i(2µk − xi,k−i),

and hence 2µk > xi,k−i ≥ 0. Unless xi,k−i = 0, the multinomial coefficient cor-
responding to the kth diagonal is even and so β(X) = 0, contrary to hypothesis.
Thus the interior entries of the kth diagonal vanish.

We have shown that the only allowable matrix which can contribute a term
to the product is the trivial allowable matrix, i.e., that whose first column is
(∗, 2µ − 1) and whose first row is (∗, s). In this case the term in question is
Sq((2µ − 1) + s). The coefficient β associated with this matrix is 1 if and only
if, for all k, the multinomial coefficient (2µk − 1, 0, · · · , 0, sk) = (2µk − 1, sk) is
odd. Suppose that sk ≡ r mod 2µk , where 0 ≤ r ≤ 2µk−1. Then (2µk−1, sk) ≡
(2µk − 1, r) mod 2, even if µk = 0. But this is 0 unless r = 0, i.e., unless 2µk

divides sk. Consequently, β = 1 if and only if 2µ divides s. But this is the
desired conclusion. �

We turn now to the manifestation of Λ in the structure of A. The ideals
enter into the exposition through the elements tµ. Left multiplication by tµ is an
endomorphism of A considered as right A-module. Its image tµA is a (principal)
right ideal, and its kernel t⊥µ , the right annihilator of tµ, is also a right ideal. As
non-zero ideals, these are infinite [Sa04].

The next observation, an immediate corollary of Prop. 1.1, shows that the
right ideals associated with tµ have bases consisting of Milnor basis elements.

1.2 Proposition. Let µ be a column 2-regular partition. Then tµA has
basis consisting of all Sq(t) for which 2µ | t + 1 and t⊥µ has basis consisting of
all Sq(t) for which 2µ 6 | t.

We can now state and prove the main result. In order to simplify the state-
ment, we omit the quantifier, that is, an expression f(µ) is to be understood as
the set {f(µ) | µ column 2− regular}.

1.3 Theorem. The following posets are isomorphic to the lattice Λ:

1. (2µ, | ) 3. (tµ, |` ) 5. (tµA,⊇) 7. (t⊥µ ,⊆)
2. (A(µ),⊆ ) 4. (tµ, |r ) 6. (Atµ,⊇) 8. (⊥tµ,⊆).
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Proof. The observation concerning the vectors 2µ is immediate from the
definition used here for divisibility of vectors, i.e., v|w if vi|wi for all i. The fact
that A(µ) ⊆ A(ν) if and only if µ ≤ ν is clear from the bases given for these
subalgebras.

The assertions about left divisibility of the elements tµ follow from Prop.
1.1. If µ ≤ ν, then

tν = Sq(2ν − 1) = Sq(2µ − 1)Sq(2ν − 2µ) = tµSq(2ν − 2µ).

Conversely, if tµ|tν , then there is an s such that tν = tµSq(s); necessarily,
s = 2ν − 2µ and 2µ divides 2ν .

For right divisibility we use the conjugate χ of A. As A(µ) is a Hopf subal-
gebra of A, χ(A(µ)) = A(µ). Furthermore, χ(tµ) = tµ, and so tν = tµa if and
only if tν = χ(a)tµ.

The assertions concerning principal ideals are now immediate from general
principles of ring theory. For example, if x divides y on the left in a unital ring
R, then xR ⊇ yR, and conversely.

For the assertions concerning annihilators note that, as a general principle,
if x divides y on the right, then x⊥ ⊆ y⊥, but the converse need not hold. Use
of the conjugate shows that χ(x⊥) = ⊥χ(x) for x ∈ A. Thus, to complete the
proof it suffices to show that t⊥µ ⊆ t⊥ν implies that 2µ | 2ν .

If not then there is an index i for which νi < µi. Define the vector κ via

κj :=

{
max{µj , νj} if j 6= i,

νi if j = i.

But then 2ν divides 2κ whereas 2µ does not. Thus, by Prop. 1.2, Sq(2κ) ∈ t⊥µ
while Sq(2κ) 6∈ t⊥ν , which is the desired contradiction. �

Remark. Lattices 5-8 are not sublattices of the lattice of ideals of A. In
general, tµA∨tνA is not tµA+tνA although tµA∧tνA = tµA∩tνA; in contrast,
t⊥µ ∨ t⊥ν = t⊥µ + t⊥ν while t⊥µ ∧ t⊥ν 6= t⊥µ ∩ t⊥ν in general.

To place the lattice Λ in context in A, several classes of Milnor basis element
are relevant, namely, those Sq(r) for which:

I: r = 2u − 1 for u ∈
⊕

ωN;
II: r = 2λ − 1 for a partition λ (non-increasing in our convention);
III: r = 2µ − 1 for a column 2-regular partition µ;
IV: r = 2u − 1 for u ∈

⊕
ωN, where u is such that, for all i, j ≥ 1,

ui ≤ j + ui+j or uj ≤ ui+j ;
V: r satisfies the condition: for all i ≥ 1, ri ≡ −1 mod 2ω(ri+1), where ω(r)

is the minimal non-negative exponent such that 2ω(r) > r.

The condition defining class V is Monks’ criterion for Sq(r) to be an ad-
missible basis element (see [Mo98; CWW98]). That defining class IV is the
criterion of Adams and Margolis for Sq(r) to be the top element of a Poincaré
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duality algebra, here denoted A(r) (the earlier notation A(µ) can be viewed as
an abbreviation for A(2µ − 1), an unambiguous notation). The Milnor basis
elements of classes II and III mediate a role played by the Steenrod algebra in
the representation theory of the full matrix algebra Mn(F2) (see [WW01, Thm.
5.1]). Class II is the intersection of classes I and V (its elements are called
Milnor spikes in [WW01]). Class III, that which gives rise to Λ in A, is the
intersection of classes II and IV and so also of classes IV and V.

Class IV is canonically determined within A in that Adams and Margolis
showed that the corresponding algebras A(r) are the only finite Hopf subalgebras
of A. They also showed that each such A(r) is a Poincaré duality algebra and
that it has a basis consisting of all Sq(s), s ≤ r (see [AM74; Ma83, p. 233]).
Whether class III is also canonical is an interesting issue.

2. The lattice of column 2-regular partitions

The lattice of column 2-regular partitions is one that admits a number of com-
binatorial interpretations. The Young diagram of a partition µ suggests another
and related partition, namely, that corresponding to the columns of squares in-
stead of the rows. This is the partition µ′, the conjugate of µ. A partition is
(row) p-regular for a prime p if its conjugate is column p-regular. Consequently,
a partition is p-regular if none of its (non-zero) entries appears p times. It is
clear from Young diagrams that the assignment µ 7→ µ′ is an automorphism of
order 2 of the lattice of partitions. Thus the collection of p-regular partitions
forms a sublattice of the lattice of all partitions which is isomorphic to that of
column p-regular partitions.

When p = 2, the conjugate of a column 2-regular partition admits a rather
different interpretation. Let µ be column 2-regular and let λ = µ′. Then, with
` = `(λ) and with 1 ≤ i, j ≤ `, it is the case that λi = λj if and only if i = j; that
is, the partition λ has distinct parts and so can be viewed as a finite subset S
of P. Conversely, if S is such a subset written as {s1 > s2 > · · · > s`}, then the
sequence λ defined by setting λi = si if 1 ≤ i ≤ ` = |S| and λi = 0 otherwise,
is a partition whose conjugate µ is column 2-regular. Note that the numbers
si indicate the positions at which the entries in the non-increasing sequence µ
decrease by 1, i.e., µsi = 1 + µ1+si ; indeed, µj = i if and only if si ≥ j > si+1

(read s0 as∞). In the Steenrod algebra the lattice of 2-regular partitions has an
association with the admissible basis. The results of the previous section given
in terms of the Milnor basis have analogues in terms of the admissible basis.

In the interpretation in terms of partitions having distinct parts, Λ may be
identified with the additive submonoid ℘ of

⊕
ωN consisting of all sequences

(s1, s2, · · ·) in which si ≥ si+1 for all i ≥ 1 and either si > si+1 or si = 0. The
subset ℘ is a locally finite sublattice of

∏
ωN interpreted as the product lattice∏

ω(N,≤). As lattice of column 2-regular partitions, Λ also has interpretations
in product lattices. Via the vectors 2µ, it is a sublattice of

∏
ω P interpreted as

the product lattice
∏
ω(P,≤). or, alternatively, as

∏
ω(P, | ), an interpretation

more apt in our applications and that which is given in Theorem 1.3(1).
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A generic construction on posets also gives rise to Λ. If (P,≤) is a poset
and Pfin(P ) is the set of finite subsets of P , then, for S, T ∈ Pfin(P ), say that
S ≤ T if there exists an injective mapping φ : S −→ T which is non-decreasing
in the sense that s ≤ φ(s) for all s ∈ S. The existence of such maps between
subsets defines a poset structure on Pfin(P ), denoted (Pfin(P ),≤). In the case
(P,≤) this construction produces a lattice (Pfin(P),≤) which is precisely the
finite subset version of Λ.

Additional conditions which give rise to interesting (weak) subposets may
also be specified; for example:
• φ(s) = s for all s ∈ S;
• if s′ ≤ s in S, then φ(s′) ≤ φ(s) in T ;
• s′ ≤ s in S if and only if φ(s′) ≤ φ(s) in T , and, if there are s′ ∈ S, t ∈ T

such that φ(s′) ≤ t, then there is s ∈ S such that t = φ(s).
The first condition, containment, is the most familiar but makes no use of the

poset structure on P . The second corresponds to monomorphisms on posets, i.e.,
order-preserving injections. The third is obtained from isomorphisms. Applied
in the case of P the third condition provides another realisation of Λ in its
interpretation as the lattice of 2-regular partitions.

The lattice Λ has many notable features. For example, it has trivial au-
tomorphism group. The proof of this assertion provides an (exceedingly slow)
algorithm for reconstructing intrinsically the labels attached to its elements in,
e.g., its interpretation as (Pfin(P),≤). This can be accomplished by using the
cover graph of Λ.

In (Pfin(P ),≤), the criterion for a subset T to cover a subset S is that either
T = S ∪ {t} for a minimal element t of P or there are elements t ∈ T and
s ∈ S such that t covers s in P and T − {t} = S − {s}. Its interpretation
for (Pfin(P),≤) is given in the next lemma. It may also be obtained from the
fact that covers in (℘,≤) are determined as in a product of posets, namely, the
entries in all components coincide except for one component in which one entry
covers the other. The criterion has the consequence that Pfin(P) is a graded
lattice whose rank function ρ is given as ρ(S) = ΣS.

2.1 Lemma. Let T and S be finite subsets of P. Then T covers S if and
only if there is h ≥ 0 such that T − {h + 1} = S − {h}, h + 1 ∈ T and either
h ∈ S or h = 0.

For use in the proof of the automorphism result, we describe the conditions
above in more detail. Each non-empty finite subset T of P has a unique minimal
expression as a disjoint union of intervals, written here as decreasing intervals to
match the earlier partition convention, i.e., [x, y] := {n ∈ P | x ≥ n ≥ y}. Thus,
for T = {t1 > · · · > t`}, we write T = ∪1≤j≤mIj , Ij = Ij(T ) = [tij−1+1, tij ] with
i0 := 0 < · · · < im = `. By minimality, the only t ∈ T for which t − 1 6∈ T are
the tij so that T covers precisely m subsets.

We denote by ∂jT the subset obtained by replacing tij by tij − 1 or by
omitting tij if equal to 1, in accordance with the previous lemma. We write the
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canonical decomposition of ∂jT as ∂jT = ∪kIj,k(T ), where Ij,k(T ) := Ik(∂jT ).
Clearly, Ij,k(T ) = Ik(T ) if 1 ≤ k ≤ j− 1. If j < m and Ij(T ) is a singleton, i.e.,
ij−1 + 1 = ij , then

Ij,j(T ) = [tij − 1, tij − 1] and, if j + 1 ≤ k ≤ m, Ij,k(T ) = Ik(T )

if tij − 2 > tij+1 while

Ij,j(T ) = [tij − 1, tij+1 ] and, if j + 1 ≤ k ≤ m− 1, Ij,k(T ) = Ik+1(T )

if tij − 2 = tij+1. If j = m and Im(T ) is a singleton, then

Im,m(T ) = [t` − 1, t` − 1]

if t` > 1 and is not present if t` = 1 (for m = 1, consider ∅ as the decomposition
of itself).

In the case in which Ij(T ) is not a singleton, if j < m, then

Ij,j(T ) = [tij−1+1, tij + 1], Ij,j+1(T ) = [tij − 1, tij − 1]

and, if j + 2 ≤ k ≤ m+ 1, Ij,k(T ) = Ik−1(T ) if tij − 2 > tij+1 while

Ij,j(T ) = [tij−1+1, tij + 1], Ij,j+1(T ) = [tij − 1, tij+1 ]

and, if j + 2 ≤ k ≤ m, Ij,k(T ) = Ik(T ) if tij − 2 = tij+1. If j = m and Im(T ) is
not a singleton, then

Im,m(T ) = [tim−1+1, t` + 1] and Im,m+1(T ) = [t` − 1, t` − 1]

if t` > 1 while
Im,m(T ) = [tim−1+1, 2]

if t` = 1.

2.2 Notation. The collection of subsets covered by T is denoted by covT .
Thus, if T 6= ∅, |covT | = m, the number of intervals in the canonical decompo-
sition of T , and

covT = {∂jT | 1 ≤ j ≤ m}.

The collection of subsets which cover T is denoted by covT . It is again the case
that |covT | = m (with the convention concerning the decomposition of ∅).

2.3 Theorem. The lattice of column 2-regular partitions has trivial auto-
morphism group.

Proof. Let φ ∈ Aut(Pfin(P),≤). Let T be a finite subset of P and let
U = φ(T ). We show that U = T by induction on the layers of Λ, i.e., on ρ(T ).
In general, each layer is determined by the preceding layer in the sense that
each element is determined by the elements which it covers. This fails, however,
in precisely one case: cov{3} = {{2}} = cov{2,1}. For this reason, individual
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arguments must be made for each element of the first four layers. We assume
then that ρ(T ) ≥ 4.

By induction, φ fixes each of the elements of covT . As φ is an automorphism,

covU = φ(covT ) := {φ(S) | S ∈ covT } = covT .

With m = |covT |, if m = 1, i.e., T = [t1, t`], there are four patterns for covT

depending on whether or not t1 = t` and on whether or not t` = 1. It is readily
seen that T is determined by covT except for the case T = {2}.

Assume then that m > 1. Note first that t1 is determined, i.e., t1 = u1, as

t1 = max ∪ covT = max ∪ covU ,

as can be seen from the description of the sets ∂jT .
We next show that I1(T ) is determined by covT . This interval is a singleton

if and only if there is X ∈ covT for which t1 6∈ X. As the same applies to U ,
I1(T ) = I1(U) in this case.

Suppose that I1(T ) is not a singleton. Then

I1(T ) = ∪X∈covT I1(X)

so that again I1(T ) = I1(U). Moreover, there is a unique X ∈ covT for which
I1(X) 6= I1(T ), namely, X = ∂1T = ∂1U . The interval I2(X) = I1,2(T ) =
I1,2(U) is a singleton if and only if ti1 − 2 > ti1+1 if and only if ui1 − 2 > ui1+1

(note that i1 is unambiguous as ti1 = t1−(i1−1)). The remaining intervals in the
decomposition of X coincide with those of T and of U , that is, if 2 ≤ j ≤ m, then
Ij(U) = Ij+1(X) = Ij(T ). If I2(X) is not a singleton, then I2(X) = [ti1 − 1, ti2 ]
so that I2(U) = I2(T ); further, if 3 ≤ j ≤ m, Ij(U) = Ij(X) = Ij(T ). In all
cases we conclude that U = ∪jIj(U) = ∪jIj(T ) = T as required. �

While Λ may admit no non-trivial automorphisms, it has infinitely many
self-embeddings: for example, every non-decreasing injection from P to itself
induces an embedding.

The sequences {n} and [n] are readily distinguished within (Pfin(P),≤).
The subalgebras of A to which they correspond are also significant. The first
corresponds to a chain of exterior algebras (see Sect. 5.2 of [Wo98]), the second
to the series of subalgebras A(n). In terms of partitions, for column 2-regular
partitions having exactly ` parts, ` ≥ 0, the top elements of these subalgebras
are the Milnor basis elements associated with the “lightest” partition, i.e., that µ
for which Σµ := Σi≥1µi is minimal, and with the “heaviest”, i.e., that for which
Σµ is maximal, namely, Sq(1, 1, · · · , 1, 1) in which the rightmost 1 appears in
the `th coordinate, and Sq(2`− 1, 2`−1− 1, · · · , 3, 1). Features which distinguish
these elements are set out in our next result, whose proof is straightforward.
Recall that (non-empty) intervals are distinguished from other subsets by the
fact that they cover precisely one element.

8



2.4 Proposition. Let T ∈ Pfin(P). Then covT consists of an interval if
and only if there is n ≥ 1 for which T = {n} or T = [n], while covT consists of
an interval if and only if T = ∅ or there is n ≥ 1 for which T = {n}.

If the lexicographic order on Pfin(P) is also brought into play, then each
layer of (Pfin(P),≤) is totally ordered. This can provide a systematic approach
to drawing a Hasse diagram for Λ. Forming the set of maximal elements over
all layers of positive rank, we obtain the set of subsets {n}, n ≥ 1. The set of
minimal elements contains not only the subsets [n] but also the subsets in the
the intervals [ [n], [n + 1] ], n ≥ 1. Both sets of extreme elements are saturated
chains in (Pfin(P),≤); they then serve as the two “sides” of the Hasse diagram.

Certain aspects of the elements of Pfin(P) can be determined locally from
the cover graph, as the next result illustrates. Its interpretation in the Steenrod
algebra is that, in the Milnor basis expression for a top element in the lattice,
whether the initial entries coincide can be determined locally.

2.5 Proposition. Let T be a finite subset of P. Whether 1 ∈ T can be
determined from the ball of radius 2 centred on the node corresponding to T in
the cover graph of Λ.

Proof. (Sketch) For i ≥ 1, let ki denote the number of elements of covT

whose canonical decompositions consist of i intervals. These numbers can thus
be calculated by reference to nodes of the cover graph at distance ≤ 2 from
the node corresponding to T . Let ki, i ≥ 1, denote the analogous numbers of
elements obtainable from covT .

Suppose that the canonical decomposition of T has m intervals, i.e., m =
|covT | = |covT |. Analysis of the decompositions of the elements of covT and of
covT shows that

1 ∈ T if and only if km + 2km−1 = km + 2km−1.

(There is such a formula in the contrary case as well:

1 6∈ T if and only if km + 2km−1 = km + 2km−1 + 1.)

�

There is a way of looking at Λ which corresponds well to the subalgebras
A(n) of A. As (Pfin(P),≤), it can be seen as the union of its sublattices P([n]).
The union can be viewed as proceeding by a form of doubling. For n ≥ 0,
(P([n + 1]),≤) consists of two copies of (P([n]),≤), namely, P([n]) itself and
{{n + 1} ∪ S | S ∈ P([n])} with the induced lattice structure on each together
with, to give only the covers, all relations ({n + 1} ∪ S, {n} ∪ S), where S ∈
P([n− 1]).

An alternative approach to some of this material is available by using trees.
In the lattice (Pfin(P),≤) there is a subposet which has the structure of an
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infinite binary tree and which signals significant aspects of A. A realisation of
the infinite binary tree convenient for our purpose is the following. Its vertices
are the non-zero vectors of

⊕
ω F2, i.e., vectors of countable length which have

only finitely many non-zero entries; its edges are the pairs {x−,x}, where this
ordering serves to define a poset structure, i.e., x− ≤ x (here x− denotes the
vector x shifted to the left one place, i.e., x− := (x2, x3, · · ·)). There is a
monomorphism from the tree to (Pfin(P),≤) given by sending x to {i | xi = 1}.
Note that (1, 0, 0, · · ·) is the root of the tree, that only the empty set is not
in the image of the monomorphism and that a pair {x−,x} is sent to one of
the form {S − 1, S}, where S − 1 := {s − 1 | s ∈ S} − {0}. The image of
this tree in the lattice (Pfin(P),≤) can be envisaged so that the path ascending
from the root along one “side” of the tree has the subsets {`} as its vertices
corresponding to the sequence of elements Sq(1, 1, · · · , 1), ` 1’s, and the path
along the other “side” has the subsets [`] as its vertices corresponding to the
sequence of elements t`−1. The latter sequence of top elements is used in [Wo98]
as the basis of the strapping technique in A. Each infinite path ascending from
the root gives rise to an analogous sequence of elements of the Steenrod algebra.
An analogue of strapping can be formulated in each case but apparently without
the potency of Wood’s usage.
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relevance of column 2-regular partitions.
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