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Chapter 32
The Determination of a Dynamic Cut-Off
Grade for the Mining Industry

P. V. Johnson, G. W. Evatt, P. W. Duck and S. D. Howell

Abstract Prior to extraction from a mine, a pit is usually divided up into 3-D
‘blocks’ which contain varying levels of estimated ore-grades. From these, the
order (or ‘pathway’) of extraction is decided, and this order of extraction can
remain unchanged for several years. However, because commodity prices are
uncertain, once each block is extracted from the mine, the company must decide in
real-time whether the ore grade is high enough to warrant processing the block
further in readiness for sale, or simply to waste the block. This paper first shows
how the optimal cut-off ore grade—the level below which a block should be
wasted—is not simply a function of the current commodity price and the ore grade,
but also a function of the ore-grades of subsequent blocks, the costs of processing,
and the bounds on the rates of processing and extraction. Secondly, the paper
applies a stochastic price uncertainty, and shows how to derive an efficient
mathematical algorithm to calculate and operate a dynamic optimal cut-off grade
criterion throughout the extraction process, allowing the mine operator to respond
to future market movements. The model is applied to a real mine composed of
some 60,000 blocks, and shows that an extra 10% of value can be created by
implementing such an optimal regime.
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32.1 Introduction

Mineral mining is a complex engineering operation, which can last for several
decades. As such, significant consideration must be given to the planning and
design of the operation, so that numerous engineering constraints can be met,
whilst making sure the operation is economically viable. To compound the diffi-
culty of the task, the planning and scheduling of extraction from a mine is made in
the presence of uncertainties, such as the future commodity price and estimated
ore-grade. These uncertainties can fluctuate on a daily basis, highlighting the
different timescales upon which the mining company must base decisions: the
shorter time scales governed by commodity price and realised ore-grade, and
the longer time-scales governed by (amongst other things) extraction rates and
processing capacities. The focus of this paper is upon one of these short time-scale
decisions: whether to process the extracted material, or to waste it. The level of
ore-grade which separates this decision is known as the ‘cut-off grade’ [7].

Prior to extraction, the planning of the extraction schedule begins with deciding
an appropriate pathway (or order) through the mine. Whilst it is possible to alter
the order of extraction at various points during extraction, it is generally not a
particularly flexible decision, as changing an order can require moving extraction
machinery, processing units, the cancellation of contracts and large overhead
costs. As such, it is reasonable to assume that the pathway through the mine is
fixed, but it is how one progresses, and operates, along that pathway that is
variable. At this planning stage, the mine is graphically divided up into 3-D blocks,
each containing its own estimated quantity of ore. The estimated ore-grade carries
with it an associated uncertainty, which can have an effect upon the valuation of a
mining operation [6]. However, it is the expected (estimated) ore grade level
which dominates the planning of the actual pathway through the mine, as this is
the best-guess in deciding the order in which the resource should be extracted.
The extraction pathway is most commonly decided using software such as the
Gemcom-Whittle package [15], which allows companies to construct feasible pit
shapes that satisfies slope constraints on the angle of the pit, transportation needs
and work-force limitations. As previously mentioned, this algorithm may be used
several times throughout a mine’s life, so as to ensure the mine plan is consistent
with market conditions, however on a day-to-day basis the mine must take more
detailed scheduling decisions in real-time.

The key real-time decision is whether or not to process the latest extracted
block (e.g. by milling or electrolysis) in readiness for sale, where the block’s
intrinsic value varies with its ore grade and with the underlying commodity price.
We define a ‘cost-effective’ block as one whose ore grade is high enough to pay
the cash costs of processing, at the current price. However the cut-off ore grade—
above which a block should be processed—need not be set as low as the grade
above which the block will be cost-effective to process. Disparity between the
rate of extraction and the maximum processing capacity means that there can
be an opportunity cost to processing all cost-effective material, since the small
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short-term gain of processing a low grade block could be surpassed by bringing
forward the processing of more valuable blocks instead. The optimal wasting of
potentially cost-effective material is the focus of this paper.

To highlight the above point, let us consider a trivial case where the mine has a
stock of 3 blocks awaiting processing, extracted in order, A;B and C; whose
current market values after processing costs are VA ¼ $1; VB ¼ $50; and VC ¼
$1; 000: Whilst, classically, analysis has often been indifferent to the order of
processing, with enough discounting applied one can see that by an optimal cut-off
criterion, it would be best to simply waste A and get on with processing B and C:
This is because the value gained in processing A is less than the time value of
money lost in waiting to process B and C at a later date. This lack of consideration
of the discount rate has been highlighted before as a drawback in current mine
planning [14] but, as yet, little progress has been made with it.

Another consequence of an optimal cut-off grade decision is having to increase
the rate of extraction of poor quality ores to keep the processing plant loaded. This
is because a processing unit will typically operate at a fixed capacity, and closing
(or restarting) it is a costly and undesirable operation. As such, a maximum (and
minimum) possible extraction rate must be known. This clearly illustrates the link
between extraction rate and the optimal cut-off grade. With this maximum possible
extraction rate, one knows precisely which blocks can possibly be extracted within
each period in time, and thus the decision as to which block to process next can be
decided.

There have been several other approaches to mine valuation and the corre-
sponding extraction regime. Typically these have relied upon simulation methods
to capture the uncertainty of price and ore-grade [8, 9, 12]. These types of method
can be extremely time consuming, with computing times of several hours [3], and
can often lead to sub-optimal and incomplete results. Using these simulation
techniques, optimal cut-off grades were investigated by Menabde et al. [10],
although little insight into the core dynamics, performance or robustness was
obtained. A similar approach is the use of genetic algorithms—a general technique
commonly used by computer scientists—which are capable of calculating mine
schedules whilst adhering to specified constraints upon their design [11]. Whilst
the work of Myburgh and Deb [11] was suitable in calculating feasible paths, the
criteria by which this particular study operated was, again, not given, and the
computing time was also of the order of hours.

To make a step-change away from these methods, partial differential equations
(PDEs) can be implemented to capture the full mine optimisation process, which
builds on work by Brennan and Schwartz [2] and Chen and Forsyth [4]. The
inclusion of stochastic ore-grade uncertainty, via PDEs has also been tested by
Evatt et al. [6], which enabled mine valuations to be produced in under 10 s and
showed that the effect on mine value of stochastic ore-grade variation is much less
than the effect of stochastic price. Whilst the mathematics and numerics of this
PDE approach are relatively complex at the outset, once solved, they produce
highly accurate results in short times—complete with model input sensitivities.
This paper extends the use of PDEs, adding a model for tactical processing
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decisions under foreseeable variations in ore grade and unforeseeable fluctuations
in price. This shows that when processing capacity is constrained, the ability to
maximise the value of processing by varying the cut-off ore grade can add sig-
nificantly to mine value when optimally applied. By solving rapidly under a range
of processing constraints, the scale of the processing plant can itself be optimised.

In Sect. 32.2 we demonstrate the underlying concepts determining the optimal
cut-off decision rule, and in Sect. 32.3 we apply a price uncertainty to the model
and use a contingent claims approach to derive the governing equation. We then
apply the model to a mine composed of some 60,000 blocks in Sect. 32.4, to show
how much extra value the running of an optimal cut-off grade regime can add to a
valuation. We draw together our concluding remarks in Sect. 32.5.

32.2 Cut-Off Grade Optimisation

The selection of the cut-off grade criteria reduces to whether a cost-effective
block should be processed or not. This is because there is the possibility a
more valuable block could be brought forward in time to be processed, which
otherwise would loose more time-value of money than the value gained from
processing the first block. To highlight this point let us consider the order of
extracted of blocks from a mine, which we (hypothetically) place in a chro-
nologically ordered row. As we operate the processing unit of the mine, we
must pass along this row and decide which blocks to process and which blocks
to waste. In reality, although we know the (estimated) ore-grades of the blocks
in advance, until we know for certain the market price at the time of pro-
cessing we cannot know what cashflow it will generate. Yet even if we assume
a constant price, we can still show how dynamic cut-off grade decision making
is still required and optimal.

Consider a highly simplified mine, as shown in Fig. 32.1, which is composed of
just two blocks, Block1 and Block2, with ore grades G1 and G2; respectively. We
allow the mine to have the capacity within the rate of extraction to immediately
process either the first block, Block1, or its successor, Block2. As such, the
comparison is between the value of processing both blocks in order, given by V12;
or the value of only processing Block2, V2: With a constant price, S; we can write
down the net present value of these two (already extracted) blocks, where we shall
process both,

V12 ¼ ðSG1 � �PÞ þ ðSG2 � �PÞe�rdt: ð32:1Þ

Here dt is time it takes to process each block, �P is the cost of processing each
block and the discount rate is r: This value must be compared to the decision to
waste the first block and process only the second block, which would have value,

V2 ¼ ðSG2 � �PÞ: ð32:2Þ
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This comparison between V12 and V2 is one the algorithm must continually make.
To demonstrate how the selection depends upon the underlying price, Fig. 32.1
shows the choices available for two different commodity prices, one high
(S ¼ $10; 000 kg�1) and one low (S ¼ $1; 000 kg�1). These are made with pre-
scribed parameter values

r ¼ 10%; �P ¼ $100 block�1; dt ¼ 0:1 year: ð32:3Þ

As can be seen, in the low-price case, Example A, it is best to process only the
second block. However, in the high commodity price case, namely Example B, it
is best to process both blocks. This simple example demonstrates (albeit with
rather exaggerated parameter values) how the selection needs to be actively taken,
and how different values of the underlying price, and discount rate, will affect the
optimal cut-off decision. Another consequence of this optimal decision taking is
that the mine will be exhausted earlier than might have been previously thought,
since we wasted the first block and only processed the second, hence a mine owner
could agree a shorter lease on this particular mine.

32.3 Model Construction

To create the framework for determining an optimal dynamic cut-off grade, we can
make use of two distinct methods for arriving at the core equation describing the
valuation, V: The first method follows a contingents claims approach, in which the

Block1 Block2

$9,900

$999,900Waste

10kg

Direction of Extraction

Potential Block Values

Potential Block Values

NPV = $10,000,030

NPV = $9,999,900$9,999,900

$9,900,040$99,990

Waste

NPV = $ 999,900

NPV = $999,850

S=$10,000 per kg

Example A)

Example B)

$989,950

1000kg

S=$1,000 per kg

Fig. 32.1 Two examples of
how price may effect the
order in which blocks are
processed so as to maximise a
mines NPV. Example A is
made with a low commodity
price, S ¼ $1; 000 kg�1; and
Example B is made with a
high commodity price,
S ¼ $10; 000 kg�1
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uncertainty arising from the underlying price is removed by hedging away the risk
via short-selling suitable quantities of the underlying resource. The second method
follows the Feynman–Kac probabilistic method, as described in relation to the
mining industry by Evatt et al. [5], which is the chosen method for deriving a
valuation when hedging is not undertaken. This second method is also permissible
when hedging does take place but a slight adjustment to the price process is
required, and explained within this latter paper. Because Evatt et al. [5] already
covers the derivation of the mine valuation, in the present paper we explain how
the contingent claims approach can be used.

We first prescribe three state-space variables; these are the price per unit of the
underlying resource in the ore S; the remaining amount of ore within the mine Q
and time t: We next need to define the underlying price uncertainty process, which
we assume to follow a geometric Brownian motion,

dS ¼ lS dt þ rsS dXs; ð32:4Þ

where l is the drift, rs the volatility of S and the random variable dXs; is a standard
Wiener process. We use this price process without loss of generality, since other
price processes (such as mean-reverting Brownian motion) can easily be imple-
mented by the techniques described here.

Using the contingent claims approach (see [16]) and the above notation, we
may apply Ito’s lemma to write an incremental diffusive change in V as

dV ¼ rs
oV

oS
dXs þ

oV

oQ
dQþ oV

ot
þ 1

2
r2

s

o2V

oS2 þ l
oV

oS

� �
dt; ð32:5Þ

where we have taken powers of ðdtÞ2 and ðdQÞ2 to be negligible. We are able to
remove the dQ term via the relationship between Q and t by specifying the rate of
extraction, qe; namely,

dQ ¼ �qe dt; ð32:6Þ

where qe can be a function of all three variables, if required. This extraction rate is
the function we wish to determine in our optimal cut-off regime, as it governs both
how we progress through the mine and, as a consequence, which blocks we choose
to waste. The rate of extraction will obviously have limitations on its operating
capacity, qe 2 ½0; qmax�; which itself could be a function of time. The rate of
extraction is closely linked to the rate of processing, which should be kept at a
fixed constant, qp: Hence qmax must be big enough for the processing unit to
always operate at its constant capacity, qp; i.e. there must always be enough cost-
effective ore-bearing material being extracted from the mine so as to meet the
processing capacity. Optimal variation in the extraction rate has already been
shown to produce improved valuations [7], although this was achieved without
considering processing limitations or grade variation.
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With this relationship, (32.6), Eq. 32.5 can be transformed into

dV ¼ r1
oV

oS
dXs þ

oV

ot
� qe

oV

oQ
þ 1

2
r2

s

o2V

oS2 þ l
oV

oS

� �
dt: ð32:7Þ

To follow the conventional approach in creating and valuing risk-free portfolios
we construct a portfolio, P; in which we are instantaneously long in (owning) the
mine and short in (owing) cs amounts of commodity contracts. This defines P ¼
V � csS; such that,

dP ¼ dV � cs dS: ð32:8Þ

This portfolio is designed to contain enough freedom in cs to be able to con-
tinually hedge away the uncertainty of dXs; which is the standard approach in
creating risk-free portfolios [1, 13]. It also implies that within a small time
increment, dt; the value of P will increase by the risk-free rate of interest, minus
any economic value generated and paid out by the mine during the increment. This
economic value is typically composed of two parts, the first, negative, being the
cost to extract, qe�M; and the second, positive, the cash generated by selling
the resource content of the ore processed, qpðSG� �PÞ: Here �M is the cost of
extraction per ore tonne, �P is the processing cost per ore tonne, and G is the ore-
grade (weight of commodity per ore tonne). The reason why the economic func-
tions contain the factors qe or qp is that we wish to maximise value by varying qe in
real time, so as to maintain qp at its fixed bound. In turning the discrete block
model into a continuous function describing the ore grade, G; we have assumed
that blocks are small enough that they can be approximated as infinitesimal
increments of volume.

As discussed in Sect. 32.2, the decision whether to process or waste the next
block must be optimised. Before or after optimisation the incremental change in
portfolio value may be written as

dP ¼ rP dt � cSdS dt � qpðGS� �PÞ dt � qe�M dt: ð32:9Þ
By setting the appropriate value of cs to be

cs ¼
oV

oS
;

and substituting Eqs. (32.4), (32.7) and (32.8) into (32.9), we may write our mine
valuation equation as

1
2

r2
s S2o

2V

oS2 þ
oV

ot
� qe

oV

oQ
þ ðr � dÞSoV

oS

� rV þ qpðGS� �PÞ � qe�M ¼ 0: ð32:10Þ

This is of the same form as that derived by Brennan and Schwartz [2], except that
they added taxation terms, but did not model processing constraints or variations
of ore grade.
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We next need to prescribe boundary conditions for (32.10). The boundary
condition that no more profit is possible occurs either when the reserve is
exhausted Q ¼ 0; or when a lease to operate the mine has reached its expiry date
t ¼ T ; hence:

V ¼ 0 on Q ¼ 0 and/or t ¼ T : ð32:11Þ

Since the extraction rate will have a physical upper bound, the extraction rate and
cost will not vary with S when S is large. This permits a far field condition of the
form

oV

oS
! AðQ; tÞ as S!1: ð32:12Þ

When the underlying resource price is zero we need only solve the reduced form of
Eq. 32.10 with S ¼ 0; which reduces to

V ¼ e�rt
ZT

0

qe�MðzÞerz dz: ð32:13Þ

This completes the determination of our core equation, and its boundary condi-
tions. We can now define the optimising problem which we wish to solve: we must
determine the optimal extraction rate, q�e ; at every point in the state space which
maximises the value V; which satisfies Eq. 32.10, with qe ¼ q�e ; subject to the
defined boundary conditions. Problems of this type may be solved numerically
using finite-difference methods, in particular the semi-Lagrangian numerical
technique (see [4] for further details). All results in this paper have been thor-
oughly tested for numerical convergence and stability.

We must now show how the optimal q� and its corresponding cut-off grade is to
be incorporated into the maximisation procedure.

32.4 Example Valuation

We now apply our optimal cut-off grade model to a real mine of some 60,000
blocks, whose block by block ore-grade and sequence of extraction were
supplied by Gemcom Software International. This mine has an initial capital
expenditure of some $250m. We were also supplied with a fixed reference
price Sref ; for us to compare valuations with. We ourselves assumed a maxi-
mum extraction rate of five times the processing rate, which is broadly realistic,
and it restricts the mine to wasting no more than 80% of any section of cost-
effective ore (if one can increase the extraction rate fivefold, then it is possible
to waste four blocks and process the fifth). The other parameter values we were
supplied are
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r ¼ 10% year�1; d ¼ 10% year�1; rs ¼ 30% year�
1
2;

Sref ¼ $11; 800 kg�1; �P ¼ $4 tonne�1; �e ¼ $1 tonne�1;

Qmax ¼ 305; 000; 000 tonnes; qp ¼ 20; 000; 000 tonnes year�1: ð32:14Þ

Whilst the ore-grade is quite volatile, it was shown in Evatt et al. [6] that a
suitable average of the estimated grade quality could be used without any sizeable
alteration in the valuation, as one would expect, since the same volume of ore is
available sold whether one takes average values or not. Using this average,
Fig. 32.2 shows the economic worth throughout extraction for each part of the
mine, where we have assumed the price to remain at its prescribed reference price,
Sref G� �P: This highlights how the grade varies through the extraction process,
and it is with reference to this grade variation that we shall compare the regions
where it is optimal to speed up extraction and consequently waste certain parts of
the ore body.

32.4.1 Results

For the example mine, we first calculate and compare two different valuations
made with and without the optimal cut-off criterion. Figure 32.3 shows two sets of
valuations: the lower pair (straight lines; one dashed, one solid) shows the valu-
ations made assuming a constant price (rs ¼ 0%), and the upper pair (curved lines;
one dashed, one solid) shows the effect of including both price uncertainty
(rs ¼ 30%) and the option to abandon the mine when the valuation becomes
negative—which is a standard option to include in a reserve valuation [2]. In each
pair of lines the lower, dotted lines show valuation without a cut-off regime, and
the higher, solid lines show valuation with the optimal cut-off regime. The optimal
cut-off regime increases the mine valuation by up to 10%, with increasing benefit
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at higher prices. This may seem surprising, but although the mine is always more
profitable at higher prices, the opportunity cost of not allocating the finite pro-
cessing capacity to the best available block does itself grow.

An obvious question which arises from this analysis is how do we decide which
ore-grades we should waste, and what is the corresponding rate of extraction to
achieve this? Given the mine operator will know at each point in time what the
current underlying price is, they can look at the corresponding slice through the
3-D surface of the optimal cut-off grade, and see for which regions in t and Q they
would waste ore and increase the rate of extraction. With this we can refer back to
the corresponding grade of Fig. 32.2 and easily calculate what these grades
actually are. For example, by looking at the closed regions of Fig. 32.4 we can see
the optimal cut-off grades for two different commodity prices, S ¼ 100% (top) and
S ¼ 200% (bottom) of the reference price. The points at where it is optimal to
increase the rate of extraction is given by the segments where the closed regions
(bounded by the thin line) intersect with the optimal extraction trajectory (bold
line). In the two examples of Fig. 32.4, both appear to correspond to a stand-
ardised cut-off grade (Fig. 32.2) of around 2 units. The optimal rate of extraction
is given by the gradient of the bold line, where the trajectory is calculated by
integrating (32.6) for a given extraction regime. The difference between the dotted
line (trajectory for the no cut-off situation), and the thick straight line of the
optimal cut-off regime therefore gives an indication of the total amount of
ore wasted.

Finally, Fig. 32.5 shows how the NPV depends upon the expected expiry time
for extraction if one operates an optimal cut-off regime (solid line) or not (dotted
line). If the mine chooses the optimal regime, the maximum NPV occurs just after
14 years, as opposed to the life of the mine being maximal at mine exhaustion at
15 years (as it is with no cut-off). This is a consequence of an optimal cut-off grade
regime, in which the mine will occasionally increase its extraction rate from the
(originally) planned level due to market fluctuations, thereby reaching the final pit
shape in a shorter time.
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32.5 Conclusions

This paper has shown how to solve and optimise a (relatively) short time-scale
mining problem, known as a dynamic cut-off grade, which is the continuous deci-
sion of whether to process extracted ore or not. This was achieved in the presence of
price uncertainty. We have described how the partial differential equation model can
be derived via two distinct methods, either by a contingent claims approach, when
continuous hedging is present, or by the Feynman–Kac method. Using this model,
we have shown how to determine and operate a optimal dynamic cut-off grade
regime. As such, we have valued the ‘option’ to process or not to process under
uncertainty, allowing the mine owner to react to future market conditions.

With our given example, the option adds around 10% to the expected NPV of
an actual mine of 60,000 blocks. One natural extension of this work will be to
allow for the cut-off grade to remain fixed for discrete periods of time, thus
allowing mine operators to not have to continually alter their rate of extraction due
to market changes.
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