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ABSTRACT
A major result of the various genome programs has been an
accumulation of complete genomic sequences and their asso-
ciated annotation. These resources are extremely valuable to
various fields of biology, not least metabolism and metabolic
modelling. As these complete sequences have started ap-
pearing they have been used to derive lists of metabolic
reactions that are catalysed by enzymes whose genes are
identified in the genome sequence. These metabolic “re-
constructions” are further interpreted as metabolic networks
and several analyses can be derived from them. In the case
of the popular model organism Saccharomyces cerevisiae the
metabolic reconstruction is fairly advanced in terms of com-
pleteness and sophistication [2, 1].

On its own, a metabolic reconstruction can be analysed
through a number of approaches: network analyses (cluster-
ing coe�cients, betweeness centrality, etc.) provide metrics
about the connectedness of the network; elementary flux
mode analysis provides a unique decomposition of the net-
work in minimal subsets that are capable of operating inde-
pendently. By joining extra quantivative information about
input and output fluxes, the network can also be studied
using flux balance analysis [3]. These methods require lit-
tle amount of molecular information, however they are only
able to provide a restricted number of steady state proper-
ties of the system. In order to reveal the network’s dynamic
properties, kinetic models are required. Here we provide
an account of our e↵orts towards costructing and analysing
such large scale kinetic models of metabolism.

Kinetic models describe the dynamic properties of reac-
tion networks and are formulated based on the kinetic prop-
erties of the individual reactions/enzymes of the network.
Traditionally the kinetics are determined through in vitro

studies, which require purification of the enzymes involved.
Studied in that way, each enzyme can be characterized by a
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detailed kinetic rate law — each enzymatic reaction with a
specific rate law. This is a problem because even for the best
studied organisms, such as S. cerevisiae, the large majority
of enzymes has never been studied, and so the rate laws and
their parameter values are unknown. Systematic e↵orts to
purify large numbers of enzymes and determine their pre-
cise kinetic properties are under way in our Centre, but this
cannot scale all the way to the entire set of enzymes of the
network. Nevertheless we have already determined such de-
tailed kinetics for all enzymes of several individual metabolic
pathways of yeast, and it is expected that many more will be
produced in the future in our laboratory and others. Despite
these experimental e↵orts it is clear that not all enzymes of
an organism will be possible to assay in vitro (or even in

vivo). This means that to create a full-genome metabolic
kinetic model a di↵erent strategy must be applied.
In order to overcome the obstacles described above, ki-

netic models of large-scale metabolic networks require the
use of generic rate laws that can be applied for several dif-
ferent reaction types. These are empirical rate laws that
should be able to describe the changes in rates of reaction
in terms of the concentrations of its metabolites in an ap-
proximate way. Absolute precision is not possible, but the
generic behaviour is expected to be captured in these rate
laws. We have studied several types of these generic rate
laws, such as mass action, lin-log, and convenience kinetics.
The lin-log approach is the method that requires the least
amount of e↵ort and indeed it is feasible for this approach [4,
5] given a set of measurements of steady state concentrations
of metabolites. However this method has poor extrapolation
power away from the state used for calibration. Generic rate
laws that display saturation are more likely to extrapolate
to wider range of conditions and we have been using the
convenience kinetics approach.
The convenience kinetics rate law has a number of pa-

rameters that need to be estimated for each enzyme. An
important class of parameters that need special considera-
tion are the equilibrium constants of each reaction. These
are constrained by the structure of the metabolic network:
the overall equilibrium constants of two parallel metabolic
routes (i.e. that start and end in common points, but that
use di↵erent sets of reactions) must be the same. A special
constrained optimisation approach allows us the entire set
of equilibrium constants such that they are consisted with
each other. By using the values of some equilibrium con-
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ABSTRACT
Statistical model selection has become an essential step for
the estimation of phylogenies from DNA sequence align-
ments. The program jModelTest offers different strategies
to identify best-fit models for the data at hand, but for large
DNA alignments, this task can demand vast computational
resources.
This paper presents a High Performance Computing (HPC)

adaptation of jModelTest for shared memory multi-core sys-
tems and distributed memory cluster platforms. The perfor-
mance evaluation of this HPC version on a shared memory
system and on a cluster shows significant performance ad-
vantages, with speedups up to 39. This could represent a
reduction in the execution time of some analyses from al-
most one day to half an hour.
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D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming ; J.3 [Computer Applications]:
Life and Medical Sciences

Keywords
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1. INTRODUCTION
In recent years, DNA sequence data has been accumulated

in databases (e.g., GenBank) at an exponential rate. These
DNA sequences can be used for example to study the his-
tory of the different species that inhabit our planet, for ex-
ample estimating phylogenetic trees from multiple sequence
alignments. All phylogenetic methods make assumptions,
whether explicit or implicit, about the process of DNA sub-
stitution [7]. It is well known that the use of one or another
probabilistic model of nucleotide substitution can change the
outcome of the analysis [2][10][3], and model selection has
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become a routinary step for the estimation of molecular phy-
logenies.

The most popular bioinformatic tool to select appropri-
ate models of DNA substitution for a given DNA sequence
alignment is jModelTest [11]. This program calculates the
likelihood score for each model and uses different model se-
lection techniques to choose the “best” one according to the
likelihood and number of parameters. The model selection
strategies implemented in jModelTest are the Akaike Infor-
mation Criterion (AIC) [1], Bayesian Information Criterion
(BIC) [13] and dynamic Likelihood Ratio Tests (dLRTs)
[12].

Table 1 shows the 88 candidate substitution models sup-
ported by jModelTest. In top of different substitution schemes
and ACGT frequencies, each of these models can assume
that some nucleotides do not change (i.e., are invariant; “+I”
parameter), or they do it at different rates (approximated
with a discrete gamma distribution “+G”). The estimation
of the α shape parameter of the gamma distribution can be
complicated, and models that include this parameter (“+G”
models) carry an extra computational burden.

jModelTest makes an extensive use of third party bioin-
formatics libraries and software, aggregating multiple tasks
in a pipeline and providing a high-level view of the analysis.
Figure 1 shows the workflow of jModelTest, where the most
time-consuming part of the process is the calculation of the
likelihood scores (carried out by the Phyml program [9]).
Because this calculation represents more than 99% of the
execution time in most cases, our parallel adaptation is fo-
cused in this part of the model selection process.

2. JAVAFORHIGHPERFORMANCECOM-
PUTING

Java Shared Memory Programming. As Java has
built-in multithreading support, the use of threads is quite
extended due to its portability and high performance, al-
though it is a rather low-level option. Nevertheless, Java
now provides concurrency utilities, such as thread pools,
tasks, blocking queues, and low-level high-performance prim-
itives (e.g., CyclicBarrier), for a higher level programming.
However, this option is limited to shared memory machines,
which generally provide less computational power than dis-
tributed memory architectures such as clusters.

Java Distributed Memory Programming. Message-
passing is the preferred programming model for distributed
memory architectures due to its portability, scalability and
usually good performance, although it generally requires
significant development efforts. Among currently available



stants determined with precision (i.e. experimentally) for a
few reactions, the other equilibrium constants can also be
estimated. This then leaves two other classes of parameters:
a�nity constants (Michaelis constants, inhibition or activa-
tion constants) and limiting rates (Vm) which are estimated
by a global fit using known values of fluxes and concentra-
tions of metabolites. This approach produces a large-scale
kinetic model of metabolism which should be seen as a hy-
pothesis (or collection of hypotheses) about the dynamic
behaviour of the metabolic network. It is important to rec-
ognize that such a model is very rough and has low “dy-
namic resolution” but is nevertheless an important starting
point for further improvements. We have started to make
our large-scale model of yeast more accurate by substituting
the generic rate laws for precise rate laws for those enzymes
that we have already studied in detail. Rounds of sensitiv-
ity analysis and experimentation are proposed to identify the
enzymes that if studied in detail can best improved the ac-
curacy of the model. The approximate low-accuracy model
developed is therefore an important piece towards accurate
large-scale metabolic models through this strategy proposed
here.
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