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Fractals

D.S.Broomhead
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ABSTRACT: The

mathematically and experimentally is then

idea of a fractal as a mathematical
phenomena is introduced by way of simple examples.
considered.

object and as a model of natural
The characterization of fractals both
Finally a model exemplifying the

generation of fractal geometries in nature is discussed.

1 INTRODUCTION

The word "fractal” was coined by Mandelbrot
(see Mandelbrot 1982), an act which has
subsequently given voice to many. The
present talk is intended to motivate interest
in, rather than to review exhaustively, this
large arca of research.

Let us motivate the motivation by looking
at a classic piece of work by Lovejoy (1982)
on the morphology of equatorial cloud
formations. Fig. 1 (taken from this reference)
summarizes the results of studies of cloud
images obtained using satellite-born infra-red
and radar techniques. The images were
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The perimeter-area scaling of cloud images
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divided into resolution cells, or "pixels",
whose size was determined by the resolution
limit of the imaging technique employed.
The area, A, and the perimeter, P, of ecach
cloud image were then  estimated by
counting, respectively, the number of pixels
covering the whole image and the boundary
of the image. The log-log plot of A versus
P clearly indicates a power law relationship.
This is not of itself surprising, since one
expects generally for closed curves drawn on
a surface that P~/A. The surprise is that
this is not the power law implied by Fig. L
For cloud images one finds P~ /AY9f where
dg~1.35.

The conclusion to be drawn from this
work is that there is something unusual
about the perimeter of clouds. Fig. 2 shows
another shape, a Koch island as illustrated
in Mandelbrot (1982), which, although a
manifestly poor model of a cloud, does have
again an unusual perimeter. This comment
can be made more precise by considering the
relationship between the area and the
perimeter of the Koch island. Consider the
recursive generation process indicated in Fig.
2. Initially one begins with a square of side
L and rearranges its perimeter as shown. The
resulting figure, which can be thought of as
being constructed of squares of side L/6, has
the same area; its perimeter, however, has
increased. The recursion is to treat the
unshared edges of the smaller squares in the
same way as the edges of the original large
square. One now assumes that the observation
of the resulting object has limited resolution.
For simplicity let us say that the smallest
resolvable length is &l=L/6%, where n is a



Fig. 2
A Koch island

positive integer. In this case the Koch island

is indistinguishable from the nth iterate of
the generation procedure, where
n=In(L/81)/In6. In particular, P, appears to

consist of 187 pixels and is estimated to be
P=18051 =51(L/51)In18/In6  gince A=L2, one
obtains a scaling law analogous to that
found in Fig. 1: P~/Adf, where dg=In18/In6
=1.61.

Despite the manifest differences, therefore,
both the Koch island and the clouds in
Lovejoy’s study have perimeters which appear
to be too large for the area that they
enclose - one is reminded of the skin of a
dried fruit such as a prune. In consequence,
rather than appearing as a clear boundary
between inside and outside the perimeter is
strongly folded to the extent that it appears
to form a diffuse "boundary layer". The
following section will contain useful
generalisations of the concept of dimension
which can be used to characterize this kind
of property. It will be shown that the
quantity dp used above may be thought of
as the ‘"dimension" of the perimeter.
Intuitively one thinks of a boundary curve
as being a I-dimensional object. The fact
that, for both the Koch island and the
cloud images, dg>1 is interpreted as being
indicative of the tendency of their
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perimeters to fill a 2-dimensional region.An
object for which a generalised dimension
such as dg exceeds the intuitive dimension

(defined precisely in the next section) is
termed a fractal. It will emerge that this
property results from the fractal having
structure on all length scales. As such
fractals make good models for many
naturally occurring objects - cloud

formations, for example. Fractal models have
several nice features - in particular, as the
calculation of dgf for the Koch island shows,
they have symmetry. Thus, in the same way
that a perfect lattice can be used as a basic
model of a crystal and is

useful because it transforms in a simple way
under the action of a suitable space group,

so a fractal nwusefully models multiscaled
objects in nature because it has simple
properties under the action of a scaling
group.

2 DIMENSION, METRIC AND MEASURE

The previous  section referred to  an
"intuitive" notion of dimension. A more
precise statement of this basic idea will now
be given. The objective is to define the
dimension of a set of points, &, found in a
suitable d,-dimensional space, U. Assuming
that the latter has the structure of a linear
vector space one can assert that its
dimension is the largest number of mutually
independent vectors that it can support. This
is, however, too restrictive a definition to be
applied to the general set &

Topolgical dimension, dp, requires only
that continuity has meaning on the set. The
definition is a recursive one: the topological
dimension of & is dp=l+dT” where dp~ is

the topological dimension of a set whose
removal would divide & A point is taken to
have d7=0. It follows from this definition

that a line has dr=1 since it is divided by
the removal of a point. Similarly a surface,
since it is divided by the removal of a line,
has dr=2. These examples illustrate that dy
coincides with an intuitively reasonable idea
of dimension - in particular note that it is
always an integer.

The topological dimension of & is an
intrinsic property of the set itself. It has an
upper bound d,; but, apart from this owes
nothing to U. In consequence, it is
completely insensitive to any fractal
character that & may possess. For example,
consider the recursive process by which the
Koch island is generated from a square.
Since this may be thought of as a sequence
of continuity preserving distortions, it has no
effect on the topology of the square. The
topological dimension of the perimeter of the



Koch island is therefore just that of the
perimeter of the square ie. dp=1. The
fractal structure of the perimeter of the
Koch island is to do with the separations
and relative positions of all points in the
set. It follows that the definition of a
dimension which takes account of this
structure must employ metric properties on

the space U. With this in mind consider the
following generalisation of dimension.
Hausdorff dimension, dy, is defined in
terms of coverings of <& with sets of
d,-dimensional cubes ( for a good survey see

Farmer, Ott, Yorke 1983). Initially the sizes
of the cubes {e¢;} are allowed to vary
subject to the constraint that all ¢;<e,
where ¢ is an arbitary constant. The
quantity:

l14(¢) = inf £ ¢;4d
i

(d30 is a real parameter), is defined to have
the form of a measure of the volume of the
whole set. The summation is taken over a
given choice of cover, while the infimum is
taken over all possible covers subject to the

constraint on the {ej}. The effect of the
infimum is to select a cover which is most
efficient in the sense that it uses the

smallest possible volume to cover &. Taking
the limit

14 m lq(e)

1i
E-»
essentially gives the volume of the set
assuming that the volume of an ¢j-cube is
Eid. Hausdorff proved the existence of a
critical wvalue of d (=dyg) such that: for
d>dy, 14=0 and for d<dy, Ig=e= The
quantity dyg is the Hausdorff dimension of

&, while ldl-l is its Hausdorff measure or
volume.
As an example consider ¢ to be the

perimeter of the Koch island. Having chosen

e=L/6", where n is an arbitrary positive
integer, a particular choice of cover is to
take 18" identical cubes of size ej=e. In

this case EcidnlB“(L/GI‘)d. A new cover may

be generated by replacing one the cubes
with a set of smaller cubes, say of size
L/6%* 1, This requires 18 of the smaller

cubes and causes the value of the summation
to change by an amount: (18-6d)(Ls6n+1)d
There are two cases to be dealt with:

1.For 18>64 the effect of changing
cover is to increase
Therefore, the infimum
original choice. thus
follows that

the

the
It

corresponds to
1g(e)=180(L/6M)d,

oo

H d dyn
14 11_13}22!, (18/69)

the wvalue of the sum.
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2.For 18<6d9 the wvalue of the summation

decreases with the {e¢;}. Therefore 14(¢)=0
which implies 14=0.
The Hausdorff dimension of the perimeter of
the Koch island is the critical value of d
which separates these two cases: dy=Inl18/In6.
Note that the scaling arguments of the
previous section also gave this value for the
exponent dyg.

It is an easy matter to show that the
Hausdorff and topological dimensions coincide
for smooth objects such as surfaces and
lines. The above example shows that this is
not necessarily the case, indeed dy need not
be an integer. Intuitively, the value of dpy
characterises the way in which the set &
fills the space U. Thus l<dy<2 suggests that
the perimeter of the Koch island is a curve

which is in some sense tending to fill an
area of the plane.
Mandelbrot used this fundamental

distinction between Hausdorff and topological

dimension to define a fractal as a set for
which dy>dy. Unfortunately, it is often a
difficult task to calculate the Hausdorff

dimension of a set, generally because of the
need to obtain the infimum over the range
of possible covers. Consequently, other related
but more convenient definitions of dimension
are often employed.

Capacity, d., is also defined via a cover

of & using d,-dimensional cubes. Here,
however, the cover is wuniform, all cubes
having the size e,

d. = lim In N(e

C L]

2% Ine-

where N(e) is the number of cubes required
to cover <. Since the uniform cover is not
necessarily the most efficient, d. is strictly

an upper bound to dy.
~ Returning to the example of the Koch
island perimeter, if one sets e=L/6" then the

recursive generation algorithm implies
N(e)=180, from which follows:
de = lim 1nl18" = Inl8
f2° Th 60 1n 6
As in this case it is often true that dyg=d.,
for this reason, when the context is not

clear (sce the introduction) the general term
“fractal dimension", dg, has been employed. It
should be noted, however that this
terminology also appears in the literature
with more specific meanings. An example of
a set for which d.#dy is &={ 1, 1/2, 1/3,
1/4,...} < [0,1]. It is an instructive exercise
to show that dy=0 while dg=1/2, since the
effect of the infimum becomes clear in the
analysis.



Pointwise dimension, d
to capacity, although its
new generalisation - a probability measure
dp(x) defined on the set & There are a
variety of contexts in which this is useful -
the most obvious is to think of the measure
as giving the mass density of the material

is closely related
definition uses a

from which the fractal has been formed.
Thus if one writes:
w (B (x)) = [d,utx") ,
B (x)

as the total probability contained in the ball
B (x)={x; 1 nx-xjli<e,x;EP), it may also be
interpreted as the mass of a ball of radius
€ cut from the fractal at a point x. The
definition proceeds as follows. If dp(x}
defined by:
dp(x) = Lim In u(B, (X)) :

li
E=>
In ¢

is independent of x for almost all x with
respect to p(x), then dp=dp(x) is defined as
the pointwise dimension c:-F & (with respect
to p(x).

There is a definition of fractal dimension,
commonly used in work on the statistical
mechanics of aggregation and growth, which
is similar to the above  with the
interpretation of dp(x) as a mass density. In
this case the scaling relation between the
radius of gyration, R, and the mass, M, of
an aggregating cluster is written M-~RAf. For
small radii the definition of pointwise
dimension leads to the same form:
,!-LI:BE{K))'-Edp(x), and may be thought of as
an idealisation of the mass scaling exponent.
In practice, however, one cannot allow R-0,
nor can the x-independence of dp(x] be
established.

A survey of
literature reveals a bewildering variety of
fractal dimensions (see contributions to
Family, Landau 1984 and Stanley, Ostrowsky
1985). Much can be done to unify these
conceptually, by considering them as
pointwise dimensions associated with
appropriate measures. For example, a measure
corresponding to the density of material
being transported through a  percolating
cluster will give a dimension associated with
its, so-called, backbone. Similarly, a measure
giving the flux of new material onto a
growing surface will give a fractal dimension
for the set of active growth sites.

By way of a finale to this section we
shall now introduce an uncountable number
of dimensions! This will be referred to as
the Hentschel-Procaccia continuum, [dqlqeR}
(Hentschel, Procaccia 1983) and is defined as
follows:

the statistical mechanics
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ln”du-(X) M(BfliX}?'l] ,

In €

where q is any real number. The measure of

the e-ball, pu(B.(x)), is again used, in
contrast with the pointwise dimension,
however, it (or some power of it) is
averaged over the measure dp(x). There is,
therefore, no analogue of the requirement
that d,(x) be constant almost everywhere,

Indeed, if the fractal is homogeneous in the
sense that u(B.(x))=p(B.), a constant, almost
everywhere, then the {dg} reduce to a single
quantity:

Lim [1nn(B¢);1n=],

which is, in fact, the pointwise dimension.

The nature of the information carried by
the {dgq} can Dbe illustrated with some
particular examples. For integer values of
a»2, d, gives the scaling with radius of the
probabﬂity of finding q points within e-balls
constructed on the fractal. In particular, d,
gives the scaling at small separations of the
two point correlation function of points in @
with respect to dp(x). d, is often referred
to as the correlation dimension and is
particularly useful since experimental probes
often provide information about the pairwise
correlation function,

Other cases of interest are the limit gq-0,
wich gives the capacity, d, defined -earlier,
and the limit g-=1 which  yields the
information dimension, dg, defined by:

dg = lim [Jdp(x}Inp(Be(X}}IIne]

The latter has been discussed in some detail
recently (Farmer 1982) and may be thought

of as the exponent for the scaling of the
information content of a measurement made
on a fractal with the resolution of the
measurement.

The set {dq} forms an ordered sequence
since it can be shown that g~ >q implies that
dqfﬂiq. The equality holds in the case of 2
homogeneous fractal where, as we have
discussed, the whole heirachy reduces to a
single quantity. Any deviation from this
degenerate situation is a measure of the
degree to which the scaling properties differ
from place to place within the fractal set

From the point of view of the following
discussion the dimensions described in this
section will be sufficient. It is probably not
true to say that they characterise all the
interesting properties of fractals. One can
certainly think of other quantities which are
potentially useful. For example there is the



"thickness" of fractal sets defined by
Newhouse (see discussion in Guckenheimer,
Holmes 1983) which characterises the degree

to which such sets can occupy the same
volume without intersecting each other.
3 THE PHYSICAL PROPERTIES OF

FRACTAL OBIJECTS

The scattering of short wavelength radiation
from fractals and “"subfractals" (which are
objects with a fractal surface gradient) gives
rise to scintillation effects which are
commonly observed in nature. The glittering
of a disturbed water surface, the twinkling
of starlight passing through the turbulent
atmosphere (Berry 1977, Berry 1979, Jakeman
1982) are examples. In fact our ability to
perceive texture visually is indicative of
correlations in the scattering medium which
extend over many length scales (E. Jakeman:

private communication), and points to the
ubiquity of fractals in nature.
The general question of what physical

properties are implied by an object having a
fractal geometry is as large as it is
fascinating. In keeping with the basic
philosophy of this article we shall be
content with a limited approach. The
discussion to follow will be concerned with
som¢  experimental methods aimed at
providing evidence for the existence of
fractal structures and obtaining estimates of
fractal dimensions. Broader physical
implications of the effect of fractal
structure on mechanical properties (see for
example:Turcotte, Smalley, Sola 1985,
Alexander, Orbach 1982) or on transport
properties such as conductivities or diffusion
(see various articles in Family, Landau 1984

and Stanley, Ostrowskii 1985) will not be
dealt with here.
In many cases it is possible to make

observations on a system which give directly
a characteristic scaling law of a fractal
Observations which deal directly with an
image of the fractal, such as Lovejoy’s
study, are most direct and least vulnerable
to ambiguous interpretation. An example of
this approach is work done on metallic films
sputtered onto inert substrates (Voss,
Laibowitz, Alessandrini 1982, Kapitulnik,
Deutscher 1982). This work employed digital
image processing  techniques applied to
clectron microgaphs to extract not only the
scaling relations but also impressive
visualisations of the fractals themselves.

It was remarked in section 2 that scaling
laws which are easy to measure are the
mass-radius relation, giving something like
the pointwise dimension, dp, and the small
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scale behaviour of the  particle-particle
correlation function, which gives d,, the
correlation dimension. In a recent experiment

Schaefer, Martin, Wiltzius, Cannell (1984)
demonstrated that using light scattering
techniques both can be obtained
independently for the same system. Light

scattering measures the scattered intensity as
a function of angle of scatter, this relates
directly to the structure factor S(k), where k

is the magnitude of the scattering vector.
S(k) is the Fourier transform of the pair
distribution function, g,(R). One loosely

interprets k as being the inverse separation
of the scatterers contributing to the observed
intensity. The experiment of Schaefer et al
was concerned with the coagulation of
colloidal suspensions of silica spheres. The
observed S(k) has several distinct regions:

1. At small k the separation of the
scatterers is large enough for the dominant
contribution to the scattering to arise from
scatterers on distinct aggregates within the
fluid. The experiment sees the system as a
suspension of aggregate particles which when
sufficiently dilute can be modelled as a
perfect gas. In this limit leading terms in
the expansion of the structure factor give
the following Lorenzian form:

S-1(k) = [cMy]l '[1 + k2<R>2?/3 +...]

where ¢ is the solution concentration by
weight, M,, is the weight averaged molecular
weight of the aggregates while <R> is the
mean aggregate radius. thus a study of the
behaviour of S(k) at small k gives both the
mass and radius of aggregates, which for a
range of coagulation times can be plotted on
a log-log plot to give My~<R>df. For their
system Schaefer et al find dg=2.12. In three
dimensions one expects M~R? for solid
bodies, which suggests that these aggregates
have rather an open Sstructure.

2. The second region of interest arises
when the scparation of the scatterers is such
that scattering is dominated by scatterers on
different spheres within the same aggregate.

For fractal aggregates at small interparticle
separations the pair distribution function
scales as 8,(R)~R42, which implies that

S(k)~k-d2 when the scatterers come from the
same fractal. Schaefer et al, give a log-log
plot of S(k) in this region. The data used
was from both light scattering and small
angle X-ray scattering. The plot shows a
linear region extending over about two
orders of magnitude in k which has a slope
-d ,=-2.12£0.05. Note that this value agrees
with the value obtained for dg using the
small k limit.

These observations lend confidence to the
interpretation that the aggregates are



and provide more
generation of

(homogeneously) fractal
evidence for the sponaneous
fractals in nature.

4 A FRACTAL GROWTH MODEL

We have commented on the ubiquity of
fractals in nature, but have said nothing of
the reasons for this. The present section is
concerned with a particular model for an
aggregation process which suggests a general
(though not, of course, unique) criterion
responsible for the growth of fractals. The
model in question is called Diffusion
Limited Aggregation (DLA) and has
generated considerable interest in the
literature since its description by Witten,
Sander (1981). The form of this section owes
much to Ball (1985).

The model describes the slow growth of a
single aggregate which is seeded by a single
fixed particle placed at the centre of a
large sphere (or, in 2-dimensions, a circle).
The sphere is an isotropic source of material

which is able to diffuse and adhere to the
aggregate. Mathematically, one has a
diffusion problem:

d¢u(r,t) = DV?u(r,t) "

(where D is the diffusion constant and u(r,t)

is the concentration field of the material)
subject to the following boundary
conditions:

1. u(r,t)=0 as the surface of the aggregate
is approached from the outside

2. u(r,t)=ugqyrce at large radius

3. p<v>=DVu(r,t) at the growing surface,
where p is the density of the aggregate, <v>
is the mean velocity of the surface, and Vu
is the concentration gradient as the aggregate
surface is approached from the outside.

The important feature of this model is
that the growing interface is unstable. To
see this, imagine that the interface is

initially planar but becomes distorted by a
fluctuation which generates a small localised
peak. The distortion generates a locally large
value of Wu and hence, in this region of
the aggregate surface, the growing interface
will advance more rapidly, thereby
amplifying the original fluctuation. One
expects, therefore in a realistic, noisy
environment that the growing surface of the
aggregate will be very complicated, reflecting

the history of fluctuations that it has
experienced. of course, a realistic
environment will also provide stabilising

processes which will limit the effect of the
instability. At small scales surface tension,
crystallinity effects and so on restrict the
development of highly curved regions of the
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interface thus limiting the growth of
"needle-like" fluctuations. At large scales the
diffusion field cannot respond over lengths
larger than the diffusion length and hence
the growth of coherentlarge "mountain-like"
distortions will be limited by the diffusion
process itself. However, between "needles” and
"mountains® there are many length scales at
which distortions can grow in an
unconstrained manner. Thus the resulting
aggregate will grow with structure on many
length scales and will appear fractal to
observations not able to probe the scales at
which the stabilsing mechanisms dominate.
The DLA model usually employed is a
modification of the one described above. An

additional assumption is made that the size
of the aggregate is less than diffusion
length. The outer scale limit does mnot

therefore arise. Moreover the diffusing field

in the neighbourhood of the aggregate can
be assumed to respond adiabatically to
fluctuations so that the explicit time
dependence in the diffusion can be dropped.
Paradoxically, this results in a model of
rather general form. One now has a field
@(r) which satisfies Laplace’s equation:
V2p=0, and is subject to the boundary

conditions given above. The moving boundary
is represented by: <v>«Vyp(r)+noise, where the

explicit noise is included to drive the
instability. Formulated in this way the model
clearly has strong connections with
electrostatics. Indeed it has been wused to
describe  the morphology  of dielectric
breakdown at point electrodes buried in
insulating material (Niemeyer, Pietronero,

Wiesmann 1984) . However, Laplace’s equation
can occur more generally, for example the
model has recently been used to describe
viscous fingering in interpenetrating fluids
(Nittmann, Daccord, Stanley 1985). In this
case ¢(r) is a pressure ficld and Laplace’s
equation arises from the application of
d’Arcy’s law to the mass continuity equation
for the fluid.

Much of the interest in DLA has arisen
from the ease with which it may be
implemented as a computer model. Fig. 3
shows a DLA cluster of 100,000 sites grown
numerically by Meakin (1985). The model
consists of assuming a square lattice on
which the aggregate can grow from an
initial seed. The diffusion process is
represented by a single random walker which
is started a large distance from the

aggregate. Depending upon the implementation
the random walker may travel on or off the
lattice. On arrival at a lattice site adjacent

to the aggregate that site is incorporated
into the aggregate and a mew  walker
initiated. Clearly the inner scale here is

given by the lattice spacing, while the single
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A DLA aggregate (off-lattice walks, on-lattice
growth, 100,000 sites)

random walker constraint is equivalent to the
slow growth/adiabatic assumption. The noise
enters the problem as shot noise when the
walker decides to which lattice it belongs as
it attaches to the aggregate.

Apparently from Fig. 3 the aggregate
resulting from DLA simulations is a fractal
- this is in accord with the stability
considerations above. The fractal dimension
of these aggregates generally converges to a
value which is independent of the particular
realization of the random walk used, and of
whether or not the walk was on or off
lattice. The general method of calculation is

to relate the radius of gyration to the
number of sites on the aggregate - this is
the mass radius scaling relation which has

already been discussed. Generally it is found
that df=2.495:06 in 3-dimensions, and
dg=1.67 on a plane. These values are
consistent with the fairly open structure
manifest in Fig. 3. The openess results from
the aggregate shielding its own inner
structure from the diffusional flux.

Recent work on the morpholgy of DLA
clusters provides an example of the use of
measures defined on fractal set (Turkevich,
Scher 1985, and Halsey, Meakin, Procaccia
1985). In this case the relevant measure is
harmonic measure on the aggregate. This is
the analogue of Vu for the computer model
and is calculated by studying the incidence
and disposition of contacts of random
walkers with an aggregate of fixed size. The
harmonic measure is generally very singular
with the singularities corresponding to
growing tips. Halsey et al have analysed it
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in some detail using the Henschel-Procaccia
hierachy, and developed a scaling theory to
describe their results.

Several experimental systems
DLA should be good model have been
studied. These involve viscous fingering
(Nittmann et al 1985), dielectric breakdown
(Pietronero, Wiesmann 1984), and
electrodeposition of zinc metal in a
chemically engineered 2-dimensional
environment (Matsushita, Sano, Hayakawa,
Honjo, Sawada 1984). Brady and Ball (1984)
looked at the electrodeposition of copper at

for which

a point electrode under circumstances
carefully controlled to ensure that the
process is diffusion limited. They note that

the diffusion current onto a spherical shell
is proportional to the radius of the shell,
while the mass of copper deposited is
proportional to the total charge passed by
the cell. Thus by monitoring the current
through the «cell and its time integral,
continuous measurement of mass of copper
deposited and effective radius of the
deposite could be made. In this way an
experimental mass radius scaling exponent
was obtained. The wvalue found, dp~243,
compares well with Meakin's computer result.

The general question of the origin of
fractals in mnature has yet to be (fully
answered, however unstable growth processes
must surely be important. In particular, the
lack of “detailed balance” between the
instability and corresponding limiting
processes in the DLA model results in a
broad band of wunstable modes. Recent
molecular dynamics work on phase separation
by the spinodal decomposition mechanism
(Desai 1985) provides another good example
of this. In the situation that  the
homogeneous phase linearly unstable to
fluctuations having a broad range of
wavelengths it is to be expected that the
separating inhomogeneous structure will
appear to be fractal. This is indced found
to be the ~case in Desai’s computer
experiments. Finally, a fractal description of
strong turbulence in fluids (Mandelbrot 1982)
is suggested by a similar lack of "detailed

balance". Here, instabilities occurring over a
range of length scales feed energy to spacial
modes with shorter and shorter wavelength
until finally at small scales dissipation
becomes dominant. The Kolmogorov power
law spectrum is seen to support this
viewpoint.
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