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The Representation theory of p-adic GL(n) and
Deligne-Langlands parameters

J.E. HODGINS AND R.J. PLYMEN
Department of Mathematics, The University of Manchester, U.K.

1 Introduction
In this article we cover an episode in the representation theory of GL{n)
defined over a p-adic field with finite residue class field. We concentrate on
the irreducible tempered representations admitting non-zero Iwahori-fixed
vectors. We describe the space of these representations in terms of Deligne-
Langlands parameters. In [6], Kazdhan and Lusztig prove the Deligne-
Langlands conjecture for split reductive p-adic groups with connected centre.
For GL(n), this conjecture amounts to a parametrization of such representa
tions by certain pairs (s, N) satisfying the equation sNs~l = qN where q is
the cardinality of the residue field. We discuss these parameters in §3. In §4
and §5 we discuss the theory of Zelevinsky segments and prove results con
cerning the form of irreducible representations of GL(n) admitting non-zero
Iwahori-fixed vectors. In the final section we define the Brylinski quotient
Bryl{n) for the space T* equipped with the natural action of the symmetric
group Sn and prove that the space of Deligne-Langlands parameters of these
representations is homeomorphic to Bryl{n).

This article is a re-interpretation of [8], (Section 7), in terms of the
Deligne-Langlands parameters: Section 7 in [8] is a report on joint work
with P. Baum and N. Higson.

2 Notation

Throughout this article, we will use certain widely agreed notations. How
ever, for the sake of completeness, we give the following summary.

Firstly, we denote by .F a local non-Archimedean field of characteristic
zero, whereby F is a finite extension of the p-adic field (Q ,̂. The residue field
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of F will be denoted IF,, and has cardinality q. The field F is equipped with
the standard norm denoted | • \f-

We will denote by GL(n) the group ofnxn matrices with entries in
F and non-zero determinant. We use I to denote the Iwahori subgroup
of GL(n) and St(n) will denote the Steinberg representation of the group
GL(n). We will also require the complex general linear group GL{n,€).

When referring to a semisimple element 5 of GL(n, Q, we will sometimes
express it in the form s = diagfo,... xn), which denotes the diagonal matrix
having entry Xi in the ith diagonal position, and zero elsewhere.

By a partition of a positive integer n, we will mean a collection of integers
a — {nii • • • *»*}> possibly with repetitions, such that

n = m + ... + njfc = ri-m +... ri.ni

where the integers i-* occur in the case of a containing repetitions. More
relevant properties of partitions will be discussed in §7, where we will also
refer to the compact torus TP consisting of n-tuples of complex numbers of
modulus I.

As we later consider some quite involved representation theory, it seems
prudent to give a brief account of some of the basic facts we will require on
the representations of GL(n). An (admissible) representation is svpercuspi-
dal if each of its matrix coefficients is compactly supported modulo centre.
A representation is tempered if it occurs in the support of the Plancherel
measure on the unitary dual of GL(n). These definitions are not vital for the
work that follows and more details on these representations can be found in
[5]. Let JC be a subgroup of GL(n). Then a representation n is said to admit
A*-fixed vectors if the set {v € V | 7r(A:)t; = v for all k € K} is non-zero.

3 Deligne-Langlands parameters
In this section we give an account of the results of Kazdhan and Lusztig
from [6]. A fuller summary of this work can be found in [10]. Given a
connected split reductive group with split centre, defined over a p-adic field



5 6 R e p r e s e n t a t i o n t h e o r y o f p - a d i c G L ( n )

F, with finite residue class field containing q elements, a result of Borel and
Matsumoto states that the category of admissible complex representations
of G admitting non-zero /-fixed vectors is equivalent to the category of finite
dimensional representations (over C) of the Hecke algebra H, with respect
to the Iwahori subgroup I. The results of [6] hold for all connected split
reductive groups with connected centre, but in the case of GL(n) the result
is somewhat simpler, and can be stated as follows. iRReiuciSte
3.1 Proposition For the group GL{n), the space of admissiblejrepresenta-
tions admitting non-zero /-fixed vectors is in bijective correspondance with
the space of GL[n, C)-conjugacy classes of pairs (s, N), where 5 is a semisim-
ple element in GL{n, Cj and N is a nilpotent element of the corresponding
complex Lie algebra, and (s, N) satisfy the equation

sNs~l = qN

where q is the cardinality of the residue field of F. These pairs (a, N) are
the Deligne-Langlands parameters.

This result is proved in [6] by explicitly constructing all H7-modules via
these parameters.
3.2 Remark Proposition 3.1 as stated is valid only for the p-adic group
GL(n), and was proved by Zelevinsky by the theory of segments (see §4 and
[3], [11]). However, the result proved by Kazdhan and Lusztig in [6] holds
for all connected split reductive groups with split centre defined over F. In
this general case it is neccessary to introduce a third parameter. This third
parameter takes the form of a certain representation of the component group
of the simultaneous centralizer in LG of s and u, where u is a unipotent
element of LG such that exp(u) = N. If we consider the case of LG =
GL(n, €), we can see that in fact we have

C(s,u)/C(s,u)o = l

for all pairs (a, N) satisfying sNs'1 = qN, and so for p-adic GL(n) the third
parameter is not required. More details on the form of this third parameter
can be found in [6],
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For readers with an understanding of the original Langlands parameters
as certain representations of the Weil-Deligne group, it is worth noting that
the pairs (a, N) are obtained by evaluating the representation of the Weil-
Deligne group at a certain element of Wp [5], [9].
3.3 Remark We note that, since we are concerned with GL(n, C)- conju-
gacy classes of pairs (5, N), it will suffice to consider conjugacy class repre
sentatives of nilpotent elements in the Lie algebra, in which case we need
only consider the nilpotent elements N in Jordan canonical form.
3.4 Example Let us consider the implications for s and N of the equation
sNs~l = qN for the group GL(2). The form of the nilpotent element N, in
Jordan canonical form, is determined by the partitions of 2, and so will take
one of the two following forms,

N =

and therefore we may evaluate the corresponding elements s such that the
governing equation holds, and we obtain the following pairs (s,N):

([: K ;d - ([;• :hs sd
As we have, discussed, a pair (s, N) is determined by the form of the

nilpotent element N, and this in turn is determined by a partition of n,
from which we can construct N in Jordan canonical form. Therefore, it
seems natural at this juncture to discuss the form of a pair (s, N) given a
partition n = ni + ... + n*.

Given such a partition, we form the nilpotent element N, and simple
calculations concerning the equation sNs'1 = qN yield the form of s as the
following diagonal matrix:

s = diag(zigni_1,... Ziq,zuz2qn2~\... z2,... ztq'"''1, ...zk)

where each Zi is a complex number for t = 1,... k. We discuss the rela
tionship between the parameters (s>N) and the representations of GL(n) in
§5, and we will also note certain properties of the Weyl group action on the
space of parameters in §6.



5 8 R e p r e s e n t a t i o n t h e o r y o f p - a d i c G L { n )

4 The theory of segments
In the paper [11], Zelevinsky gives a classification of the irreducible repre
sentations of GL(n) via a construction called segments. In this section, we
give a brief overview of these results and at the end of §6 we will briefly
discuss the links between the classification by Kazdhan and Lusztig and the
theory of segments. More details on Zelevinsky segments can be found in
the paper [5].

For a partition n = m + ... nk, let P denote the parabolic subgroup of
GL{n) with Levi factor M ~ GL(m) x... x GL(nk). Given a representation
7T of GL(n), we write n(s) to denote the representation it ® (| • |£. odet) for
some complex number s. We now quote a result of Bernstein and Zelevinsky
on the detection of reducibility of induced representations.
4.1 Proposition [3] (Theorem 4.2) Let a = ax ®... ® ck be an irreducible
representation of M with ai supercuspidal for all ». The induced represen
tation Indp (nV is reducible if and only if for some pair of indices t, j, with
i ^ j we have n< = rij and <Tf = Oj-(l).
4.2 Definition For a partition n = m + ... + m = r.m, and for an irre
ducible supercuspidal representation a of GL{m), a segment is a finite set of
representations of GL(m) of the form

{a, a(l),... a(r - 1)} = [<r, a(r - 1)] = A

For such a partition n = r.m, and for P the corresponding parabolic sub
group of GL{n) as above, given a segment A we make the following definition

Ind?L(n)(A): = Ind£t(n)(a ® <r(l) ®... ® a(r - 1))

where the induction is normalized induction from P to GL(n).
4.3 Proposition [3],[5] (1.2.2) Given a segment A, the induced represen
tation

Ind£L(n)(A)
has a unique irreducible quotient Q(A) and a unique irreducible subrepre-
sentation Z(A).
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The unique irreducible quotient Q(A) is called the Langlands quolient.
We now quote a result of Bernstein characterising the square-integrable rep
resentations of GL[n).
4.4 Proposition [11] (Theorem 9.3) Every square-integrable representa
tion of GL{n) has the form Q(A) for some segment A = [a, a{r - 1)] where
a{t^) is unitary-
4.5 Example Let us consider an example. If we consider the trivial par
tition n = 1 + .. - + 1 and a =| - IjT, then P = B, the standard Borel
subgroup and we have the segment

1 — n 3 — n " — *

and Q(A) is the Steinberg representation. See [11] (3.2, 9.2) where the
notation is Q(A) = (A)'. Thus, in the case of n = 2, the Steinberg 5t(2)
corresponds to Q(A) for

A={ i - i7 , i - ih
We now introduce more structure on the set of segments.

4.6 Definition Consider two segments

Ai = [ffi,o-i(n-1)] and A2 = [<r2,a2(r2 - 1)]

Then we have the following definitions:

1. Ai and A2 are linked if Ai <£ A2, A2 £ Ax and Ai U A2 is a segment.

2. Ai precedes A2 if Ai and A2 are linked and a2 = <ri(t) for some
positive integer t

_We now quote the main result of Zelevinsky [11] (Section 9)
4.7 Proposition Consider segments Ai,.. - Afc, and assume that for i < j
we have that Aj does not precede A^. Then

1. The induced representation Ind?L(n)(Q(Ai) ®... ® Q(A*)) admits a
unique irreducible quotient

Q(Ai,. . .Ajk)
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2. If A't,. -. A{ is another such collection of segments, then

Q(A1,...Afc)^Q(A'„.-.A{)

if and only if k = I and A* = A^j for each t and for some permutation
t of {l,...fe}.

3. Every irreducible admissible representation of GL(n) is isomorphic to
some Q(Ai,...Afc).

4. The induced representation Ind£i(n)(Q(Ai) ® ... ® Q(A*)) is irre
ducible if and only if no two of the segments are linked.

We now consider how tempered representations of GL(n) manifest them
selves in the theory of segments. We have the following result [4], [5] (Propo
sition 2.2.1)
4.8 Proposition The tempered representations of GL{n) are precisely the
representations

Ind?Z,(n)(Q(Ai)®...®Q(A*))
where each Q(Aj) is square-integrable for 1 < t < fc.

We note that if Q(A) is square-integrable, then A = [a{^), a^)] for
some unitary supercuspidal a by Proposition 4.4. Two such segments cannot
be linked, and so by Proposition 4.7 part 4, Ind£L(n)(Q(Ai) ®... ® Q(Afc))
is irreducible and so equal to its unique irreducible quotient Q{AU... Afc).
Also, because no such segments are linked, we note that the tempered rep
resentations are irreducibly induced from discrete series representations.

The theory of segments has the following compatibility.
4.9 Lemma Consider a segment A arising from a partition n = 1 +... +1,
and 1< X be an unramified unitary character of GL(1). Then we have

Q(A®x) = Q(A)®X°<tet

4.10 Example For example, consider the group GL(Z) and the segment
A = {|. \pl, 1, | • |f} arising from the partition 3 = 1 + 1 + 1, then we recall
from Example 4.5 that

Q{{\-\?\h\-\F})=St(3)
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and-therefore we can observe that

Q{{\ • If1 ®X, xA-\f ®X» = St(3) ® (x o det)

for an unramified unitary character x of GL(1).

5 Tempered Representations of GL(n)
We now delve into the representation theory of the p-adic group GL(n). We
introduce the notation

Q(Ai) x ... x Q(Afc) = Ind5L(n)(Q(A!) ®... ® Q(Afc))

All representations considered in this section satisfy the conditions of Propo
sition 4.8, and so we have

Q(A,) x ... x Q(Afc) s* Q(Ai,... Afc)

For example, in the case of GL{4) and A = {| • |F*, | • |jt}, we have

Q(A, A) ~ Ind^L(n)(Q(A) ® Q(A)) = St{2) x St{2)

as Q(A) = St(2) by Example 4.5. As stated in the introduction, we are
concerned with tempered representations of GL(n) which admit non-zero
/-fixed vectors. We now state and prove the following result concerning
such representations using the theory of segments introduced in the previous
section.
5.1 Proposition [8] Let n = nx + ... + nk be a partition of n, and let
wi,...wkeWL Then the representation

(5<(ni)®(| • |y odet)) x ... x (5t(nfc)® (| • |£* odet))

of GL(n) is unitary, irreducible, tempered and admits non-zero /-fixed vec
tors. Conversely, all such representations are of this form.
Proof (Modelled on [8]) By Proposition 4.8, each tempered representation
of GL{n) is of the form Q(Ai) x... x Q{Ak) where Q(Aj) is square-integrable
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for each * = 1,... k. We now use transitivity of parabolic induction [3] and
Borel's theorem [2] to calculate that (modulo unramified unitary twist) we
must have

Ai-fl-lj?1,...!-!?1}
with i = l,...k. But then Q(Ai) is the Steinberg representation of GL{ni)
by Example 4.5. Note that Q(x ® Aj) = (x o det) ® Q(Af) as in Lemma 4.9,
and that Q(A{) x ... x Q(Ak) is irreducible by Proposition 4.1. □
5.2 Remark We must now unravel the combinatorics governing the rep
resentations above. Again, considering the partition n = ri.ni +... + n-«J>
and forming the subgroup M, we note that the Weyl group of M is

W(M) = STl x...xSn

The action of this Weyl group permutes blocks of equal size. We will enlarge
upon this in §6.

We now discuss the relationship between a parameter (s, N) and the cor
responding representation ir of GL(n). From the above, we have the form
of all irreducible tempered representations of GL{n) admitting a non-zero
Iwahori-fixed vector. We recall from Example 4.5 that the Steinberg repre
sentation St(n) of GL(n) occurs as the unique irreducible quotient Q( A) of
the segment A = {| • [/", | ■ |]7~, • • • I • \7~)- The P^ (s>N) correspond
ing to the Steinberg representation St(n) is given by

/ T q H 1 1 r o 1 . . . 0 " " \
q 2 ? 0 1 . . . 0

, j v = • . • :
0 1

s =

q a

Now let us consider a partition n = ni + ... + nk, and a corresponding
representation ir = ir\ x ... x irk where each iti takes the form

7T,- = St(m) ®(|- [p odet)
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for some wj € tR We note that | - |p odet gives.rise to a factor of qWi and
so we have that the parameter (s, N) corresponding to the representation
ffi = St(rii) ® (|. \p? o det) is given by

s =

, 2 ^ - H *
n;-3

+Wi

, ^ + « <
i—n«* .

with N as above, and it can be seen that the condition sNs~l = qN holds.
Therefore the form of the parameter (5, N) for the representation it = 7Ci x
... x 7Tfc is of the form

3 = diag(g5-+w\...,9 * +n\. , q * — , . . . 9 ^ + " " )-+«jfc

and iV is the n x n matrix in Jordan canonical form corresponding to the
partition n = ni +...nk.
5.3 Example Let us consider the discussion above in terms of the irre
ducible tempered representations of GL{2) and GL(Z) admitting non-zero
Iwahori-fixed vectors. For the group GL[2), we note from Proposition 5.1
that these representations must be of the form

7ri = 1S,t(2)®(|-|F°det)

corresponding to the null-partition, or of the form

*4 = (H? odet) xfj.fi? odet)

for i0,wi,ti>2 € t'R all determined modulo $£-. We can now write down ex-
plicitly the parameters (s, N) corresponding to these repersentations. They
are

([ 9?+«" : IMC, W l

n w i

0 0
0 0 ])

We now note that the action of the Weyl group on the parameter correspond
ing to the representation 7r2 permutes the diagonal entries, and so in fact
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the ordering of ti>i and u>2 is unimportant. We will enlarge on this comment,
and indeed formalise it in §6.

We now turn our attention to representations of GL(Z). Again, by Propo
sition 5.1, the form of the representations we consider are

7ri=St(3)®(|-|Fodet)

tt2 = (St{2) ® (| -1? odet)) x (| • \p odet)

7T3 = (| • \T odet) x (I - \F* odet) x (| • I? odet)

corresponding to partitions 3 = 2 +1 = 1 + 1 +1 for w, w\... «;5 € tR. The
Deligne-Langlands parameters for these representations are then given by

Sl = diag(gl+"\<r,<r1+w)

s2 = diag(gH«»,9-i+»",g»")

S2 = diag(<r,<T,<r)

•with the nilpotent elements NUN2, N3 in Jordan canonical form correspond
ing to the partitions as above.

6 Bryl(n) and the space {(s,N)}

In this section, we define the Brylinski quotient and prove the main Theorem
of this article.

The Brylinski quotient: Firstly we note some elementary facts about
partitions of integers and then give the definition of the Brylinski Quotient.
Given a positive integer n, a partition of n is a set of positive integers
a _ {m,...Tife}, possibly with repetitions, such that n = nx + ... + nk.
The order of the elements in a is irrdevant. If we now have n € N+ and
a partition a, then we define d(a) to be the number of distinct elements
in a. Therefore, as we may write the partition a as n = n-ni + .. .rj.n/,
we have d(a) - I. Thus, for example, if n = 7 and a = {4,1,1,1}, then
7 = 4 + 1 + 1 + 1 = 1.4 + 3.1 whereby d(a) = 2.
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The Brylinski quotient can be defined in great generality [1], but for this
article it will be sufficient to give the definition in a specific case.

\ 6.1 Definition For the space T1 equipped with the natural action of Sn,
the Brylinski quotient is defined by Bryl{n) = Sry/CF1; Sn). We therefore
have

Bry/(«) = |J(TT/Z(7)
a

where the disjoint union is taken over all partitions a of n, where 7 € Sn
has cycle type a. Thus the disjoint union is taken over all conjugacy classes
in Sn. The set (Tn)'* = {t 6 ¥"17* = *} is the 7-fixed set, and Z(t) is the
centralizer of 7 in Sn-

Suppose now we have a partition a of n, and that a consists of ri elements
equal to m, up to ri elements equal to 7i|. Then we can observe that n =
ri.ni +... rj.ni. Let 7 be an element of Sn of cycle type a. The centralizer
Z{f) is a product of wreath products

Z(7) = (Z/m I Sri) x ... x (Z/m I Sri)

Let SymmT be the space of unordered m-tuples {ti,...*m}i where each
U 6 T for i = 1,... m. We now observe, as in [8], that

Bryl{n) = |_J(I"rWr)
a

U { ( t i , . . . t i , . . . , t t , . . . t | ) }a (Z/mlSri)x...x(Z/n,lSrj)
_ I I { ( * l i • •♦ < ! > • • • » ^ i • •■U ) }

^ — ^ O f t X . . . X O f i
a

= [JSj /mr,Tx. . .xSymr 'T

where each U occurs n+ times for a partition a = {t*i, ... n\,... nk,... nk}.
6.2 Proposition For the space IP equipped with the natural action of
Sn, the Brylinski quotient is given by

Bryl{n) = [_]SymriT x ... x SymT'T
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where the disjoint union is over all partitions a = rx.nx + rj.7i|.
The proof of the main Theorem: Now let us return our discussion to

the subject of representations. From §5, Proposition 5.1, we have the form
of all tempered representations of GL{n) admitting non-zero /-fixed vectors
and also the form of their respective Deligne-Langlands parameters (a, N).

Let us begin by considering a partition a = {nx,...nk}. Then, by
Proposition 5.1, all tempered representations n of GL(n) admitting non
zero /-fixed vectors are constructed from unramified unitary twists of the
Steinberg representations of the group GI(tij) and are of the form

7T = (St(m) ® (| ■ |£' odet)) x ... x {St(nk) ® (| • |£* odet))

where u/i,... wk € tR.
As we have seen, these representations correspond to the pairs {s,N)

where N is the n x n matrix in Jordan canonical form given by the partition
a, and s is the diagonal matrix of the form

^ d i a g ^ 2 ^ ^ , . . . ^ ^ , . . . ? ^ ^ * , . . . ^ ^ )
n.—1 .

We can now rearrange the semisimple element s by denoting q * +VH by Zi
each t = 1,... k. Therefore we may now write s in the form

a = diag(zigm-1,. - - zxq, zx, - • • z*gn*~\ • • • *fc«, *fc)

We also note that since each u>» is a pure imaginary number, since n is
tempered, we have that qWi is a complex number of modulus 1. Thus we
have now recovered the form of the parameters (a, N) from §3. We now turn
our attention once again to the action of the Weyl group on the semisimple
elements a G GL(n,C). Consider a partition a in the form n = rx.ni +
... + rj.nj, giving rise to a pair {s,N) of the form we have just described.
This semisimple element is acted on by Weyl group elements, and the action
permutes the diagonal blocks that are of equal size. The two pairs (a, N)
and (7S7-1,7-W7-1 = N) lie in the same conjugacy class, and therefore give
the same parameter. Thus we can see that the space of GL(n, C)-conjugacy
classes of pairs (s, N) satisfying sNs'1 = qN takes the form of an unordered
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n-tuple of complex numbers of modulus 1 for each non-zero r* in the a. We
can map the space {(a, N)} naturally into the Brylinski quotient by mapping
the pair (s,N), with N in Jordan canonical form given by the partition a
into the component of Bryl(n) arising from the partition a,

(a, N) i-4 SymriT x ... x SymT'T

Therefore, we have proved our main result.
6.3 Theorem The space of Deligne-Langlands parameters of those irre
ducible tempered representations of GL(n) admitting non-zero /-fixed vec
tors is homeomorphic to Bryl(n)

{(s,N)}^Bryl(n)
6.4 Remark This is a re-interpretation of [8] (7.7) in terms of Deligne-
Langlands parameters.

Examples: We now give a review of the theory installed in the previ
ous sections, by examining the consequences in terms of the groups GX(2),
GL(Z) and GL(4). As we have seen how the parameters (a, N) relate to the
representations of GL{n), we will construct these parameters, and explicitly
demonstrate the homeomorphism of Theorem 6.3.
6.5 Example Let us consider the case of GL{2). We consider nilpotent
elements N in Jordan canonical form to construct GL(2, C)-conjugacy class
representatives of the pairs {s,N). As we have seen, we arrive at the two
following pairs:

r*«-]'[o o]) aad ([V g-]'[o o])
with u»,u;i,t02 € *K- Conjugating by a Weyl group element, we observe the
following,

(K
_1 o r V1 0 " 0 1" - l y» 0 "

7 3 7 = r r
.1 o. . 0 Q m . .1 o. . 0 Qm .

and therefore, we cannot distinguish between the elements a and 737"l in
the set of GL(2, (Q-conjugacy classes of pairs (a, N). Let us now turn our
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attention to the Brylinski quotient Bryl(2). Since the only partitions of 2
are the trivial partition and 2 = 1 + 1, we have that

Srty/(2)=T|j5ym2T
▶ i?ry/(2) as follows

([T --u° nw.T
Therefore we observe the map {(a,.N)}

M w o ] r o i " i \
.-4+«h[o oJJ

"Wl o
([': !])->[<r. «-] € Sym?T

q -i-
0 0"
0 0.

for w, wx, v)2 S iR, and so we see the relation between the space of parameters
and the Brylinski quotient.
6.6 Example Now consider the case of GL(3). We construct the Brylinski
quotient, considering the three partitions 3 = 3 = 2 + 1 = 1 + 1 + 1, and we
arrive at the following

Bryl(3) = T|J (T x T) |J Sym3T
Now let us construct our pairs {s,N). Again we need only consider the
case of the nilpotent element being of Jordan canonical form, and again the
relationship of the pairs (a, N) with actual representations of GX(3) is taken
as understood. We also exhibit which pairs map to which component of
Bryl(3) by way of the following natural maps

* l + w i r o i o n \
i4gw6T

•o 1 o -
J 0 1

- l + t o 0.

gj+ti>i

9-5+u>i
<T J

■o i o -

) 0 0
0.

, t B l

• , f 2

■ •o 0 0"
) 0 0

W3_ 0.

^[gwl,gW2]eTxT

>->[qw\qw\qm]€Sym3T
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We now begin to see the role of the Weyl group in determining the pairs
(s,N) more clearly, since we are now unable to distinguish between the
semisimple element diag(g''̂ « ,̂,̂ 9,,*) and, for example, diagfo"»,«wi,«wa)
due to the Weyl group action, and hence we must map elements of this form
into Sym3T.
6.7 Example Finally, let us consider the example of GL(4). Again, we cal
culate the Brylinski quotient, and then calculate the pairs {s,N), observing
the natural maps into the relevant components of Bryl{4). The unordered
partitions of 4 are 4 = 4 = 3 + I = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1. We
note that this is the first occasion on which we observe a repetition m the
partition which is not the repetition of a 1. For the Brylinski quotient we
have

Bryl{A) = T|J (T x T) |J Sym2 \̂_\ W * -W^ U SVm*T
Calculation of the pairs {s,N), and then mapping into Bryl{A) gives us

/ rot+w " 0 1 0 0" \

q-k+™
1

0 1 0
0 1 ^ q w e T

V _ H + " - . o_/

/ ql+toi 0 1 0 0' \

qm
9

0 1
0

0
0 *->[qm,qWi]€TxT

\ qV>3 . 0. J
For the next pair {s,N), formed from the nilpotent element N in the

conjugacy class corresponding to the partition 4 = 2 + 2, the Weyl group
action will permute the 2 x 2 blocks, and so we map the pair (a, N) into the
component 5ym2T as follows.
/ ■gA+»l

" 0 1 0 0

,-*+•» 0 0 0
95+«"

i 0 1

^ g-5+«*. 0

\

[qwi,qw*]

€ Sym2T
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In the case of the pairs arising form the partition 4 = 2 + 1 + 1, the Weyl
group action will permute the diagonal entries q"» and <T, but the 2 x 2
diagonal block diagta**",*-*4"1) will remain fixed, and therefore we map
into T xSym2T.

V

g5+™»
,-i+«"i

„W2

qm}

o o
o
o

\
0
0
0

b«»fgw»l9"»]

€ T x 5ym2T

Finally, in the case of the zero nilpotent element, the Weyl group action
permutes all diagonal entries, and so we have the map below.

0 0 0 0 l \
0 0 0

0 0
o]/V

r,tUl

nv)t

-W3

L r,tU4

H- [qm,qw,qW3,qW*]

G 5ym4T

and thus we observe the homeomorphism of Theorem 6.3.
6.8 Remark As a final point, we note that the role q plays in the form
of s mimics the development of a Zelevinsky segment. For example, m
the case of GL(3), the semisimple element a = diag(gl+u\ qw, «T ) corre
sponds to a segment of length 3, whereas a semisimple element of the form
s = diag(fl"l,9"a,«w) corresponds to 3 segments, all of length 1. In fact,
considering Example 4.5 we can state the segments explicitly as follows. In
the case of the segment of length 3, we have

A = {| IU>—1I f ' If.Hf+1>

which corresponds to the representation 5t(3)®
segments of length 1 we have

[» odet, and for the

A-{{H7>,{|-|?MH?»
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corresponding to the representation induced from

(| • ft1 odet) x (| • |y odet) x (| • |F odet)

and thus we can observe how the Deligne-Langlands parameters correspond
with Zelevinsky's theory of segments.
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