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IMPROVED INVERSE SCALING AND SQUARING ALGORITHMS
FOR THE MATRIX LOGARITHM∗

AWAD H. AL-MOHY† AND NICHOLAS J. HIGHAM‡

Abstract. A popular method for computing the matrix logarithm is the inverse scaling and
squaring method, which essentially carries out the steps of the scaling and squaring method for the
matrix exponential in reverse order. Here we make several improvements to the method, putting its
development on a par with our recent version [SIAM J. Matrix Anal. Appl., 31 (2009), pp. 970–989]
of the scaling and squaring method for the exponential. In particular, we introduce backward error
analysis to replace the previous forward error analysis; obtain backward error bounds in terms of
the quantities ‖Ap‖1/p, for several small integer p, instead of ‖A‖; and use special techniques to
compute the argument of the Padé approximant more accurately. We derive one algorithm that em-
ploys a Schur decomposition, and thereby works with triangular matrices, and another that requires
only matrix multiplications and the solution of multiple right-hand side linear systems. Numerical
experiments show the new algorithms to be generally faster and more accurate than their existing
counterparts and suggest that the Schur-based method is the method of choice for computing the
matrix logarithm.

Key words. matrix logarithm, inverse scaling and squaring method, matrix exponential, back-
ward error analysis, Padé approximation, matrix square root, MATLAB, logm
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1. Introduction. A matrix X ∈ Cn×n is a logarithm of A ∈ Cn×n if eX = A.
Any nonsingular matrix has infinitely many logarithms, but the one that is most
useful in practice is the principal logarithm, denoted by log(A). For A ∈ Cn×n
with no eigenvalues on R−, the closed negative real axis, the principal logarithm is
the unique logarithm whose eigenvalues have imaginary parts lying in the interval
(−π, π) [16, Thm. 1.31]. Throughout this paper we assume that A has no eigenvalues
on R−.

While there are many methods for computing the matrix exponential, relatively
few methods exist for the matrix logarithm [16], [17]. The most widely used is the
inverse scaling and squaring method, proposed by Kenney and Laub [20], which is
an extension to matrices of the technique that Briggs used in the 17th century to
compute his table of logarithms [11], [22]. The inverse scaling and squaring method
first computes A1/2s , for an integer s large enough so that A1/2s is close to the
identity, then approximates log(A1/2s) by rm(A1/2s − I), where rm is an [m/m] Padé
approximant to the function log(1+x), and finally forms the approximation log(A) ≈
2srm(A1/2s − I). This approximation exploits the identity [16, Thm. 11.2]

log(A) = 2s log(A1/2s).

The inverse scaling and squaring method can be applied to A directly, as in [6], [16,
Alg. 11.10], without the use of transformations, or the Schur decomposition A =
QTQ∗ (Q unitary, T upper triangular) can be computed and the method used to
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compute log(T ) and thence log(A) = Q log(T )Q∗ [8], [16, Alg. 11.9], [20]. Generally,
it is preferable to employ the Schur form, since the resulting algorithm typically
requires fewer flops and is more accurate [16, Sec. 11.5, 11.7].

Early inverse scaling and squaring algorithms used a fixed Padé degree, m, and
a fixed condition ‖A1/2s − I‖ ≤ θ for determining how many square roots to take.
Kenney and Laub [20] take m = 8 and θ = 0.25, while Dieci, Morini, and Papini
[8] take m = 9 and θ = 0.35, aiming for double precision accuracy in each case.
The algorithm of Cheng, Higham, Kenney, and Laub [6] determines m at run time
in a way that aims to minimize the overall cost subject to achieving a user-specified
accuracy, making use of a forward error bound of Kenney and Laub [21]. Higham [16,
Algs 11.9, 11.10] takes a similar approach but precomputes the necessary parameters
and derives algorithms for both full and triangular matrices.

In this work the performance of the inverse scaling and squaring method is con-
siderably improved by

• introducing new backward error analysis for Padé approximation of the ma-
trix logarithm upon which to base the choice of m and s,

• obtaining sharp bounds for the backward error in terms of the quantities
‖Ap‖1/p (p = 2, 3, . . .), which can be substantially smaller than ‖A‖ for non-
normal A,

• accurately computing the diagonal and first superdiagonal of T 1/2s − I in a
way that avoids cancellation, and also computing A1/2s − I more accurately
for full A,

• replacing the elements on the diagonal and first superdiagonal of the ap-
proximation 2srm(T 1/2s−I) by quantities computed accurately from explicit
formulae.

Incorporating these features brings the inverse scaling and squaring method into line
with recent improvements to the scaling and squaring method for the matrix expo-
nential [2], although the details are quite different than those for the exponential.

We will use the partial fraction form of the [m/m] Padé approximant rm(x) to
log(1 + x), given by [14]

rm(x) =

m∑
j=1

α
(m)
j x

1 + β
(m)
j x

,(1.1)

where the α
(m)
j ∈ (0, 1) and β

(m)
j ∈ (0, 1) are the weights and the nodes, respectively,

of the m-point Gauss-Legendre quadrature rule on [0, 1]. Several different ways are
available to evaluate rm at a matrix argument, but the partial fraction representation
(1.1) was found by Higham [14] to provide the best balance between accuracy and
efficiency.

In the next section we develop our backward error analysis for the Padé approx-
imant. In Section 3 we explain the danger of subtractive cancellation in the inverse
scaling and squaring method. A Schur decomposition-based algorithm for comput-
ing the logarithm is designed in Section 4, and a transformation-free algorithm is
developed in Section 5. Numerical experiments demonstrating significant improve-
ments in accuracy and efficiency over existing algorithms are reported in Section 6
and conclusions are given in Section 7.

2. Backward error analysis. Previous work on Padé approximation of the
matrix logarithm has focused on the use of forward error bounds. The bound

‖rm(X)− log(I +X)‖ ≤
∣∣rm(−‖X‖)− log(1− ‖X‖)

∣∣ := fm(‖X‖)(2.1)
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of Kenney and Laub [21], valid for ‖X‖ < 1 and any subordinate matrix norm, has
been used by several authors to select the Padé degree m [4], [5], [6], [16, Chap. 11],
[20]. It is generally preferable to work with backward error bounds, as these permit an
interpretation that is independent of the conditioning of the problem. In this section
we derive an explicit expression for the backward error of a Padé approximant and a
bound for its norm. Note that backward errors here are with respect to truncation
errors; rounding errors are not considered in this section.

Let ρ(A) denote the spectral radius of A ∈ Cn×n. We will need the bound on
ρ(rm(A)) given in the following lemma.

Lemma 2.1. Let A ∈ Cn×n have no eigenvalues on R− and let ρ(A) < 1. Then
for rm in (1.1) we have

ρ(rm(A)) ≤
m∑
j=1

α
(m)
j ρ(A)

1− β(m)
j ρ(A)

.(2.2)

Proof. The eigenvalues of rm(A) are of the form

λ̃ =

m∑
j=1

α
(m)
j λ

1 + β
(m)
j λ

,

where λ is an eigenvalue of A. Hence

|λ̃| ≤
m∑
j=1

α
(m)
j |λ|

1− β(m)
j |λ|

.

The functions fj(x) = α
(m)
j x/(1 − β(m)

j x) are increasing on (0, ρ(A)] since f ′j(x) =

α
(m)
j /(1 − β(m)

j x)2 > 0. The maximal value of the bound is therefore attained when
|λ| = ρ(A), and the result follows.

We now define the matrix function h2m+1 : Cn×n → Cn×n by h2m+1(X) =
erm(X) −X − I. It is easy to see from the definition of rm that h2m+1 has a power
series expansion of the form

h2m+1(X) =

∞∑
k=2m+1

ckX
k.(2.3)

We will assume that ρ(rm(X)) < π, which ensures that log(erm(X)) = rm(X) [16,
Prob. 1.39]. This turns out not to be a restriction, as we find using Lemma 2.1 that
if ρ(X) < 0.91 then ρ(rm(X)) < π, m = 1: 100, and such a restriction on ρ(X) is
harmless provided that m ≤ 16, as Table 2.1 (explained below) shows. By rearranging
the definition of h2m+1 and taking logarithms we obtain

rm(X) = log(I +X + h2m+1(X)) =: log(I +X +∆X).(2.4)

Hence ∆X = h2m+1(X) is the backward error resulting from the approximation of
log(I +X) by rm(X). We bound the backward error by applying [2, Thm. 4.2(a)] to
(2.3), to obtain

‖∆X‖ ≤
∞∑

k=2m+1

|ck|αp(X)k,(2.5)
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where

αp(X) = max
(
dp, dp+1

)
, dp = ‖Xp‖1/p,(2.6)

and the integer p ≥ 1 must satisfy

2m+ 1 ≥ p(p− 1).(2.7)

Here, the norm is any consistent matrix norm. Since αp(X) ≤ ‖X‖, and indeed αp(X)
can be substantially smaller than ‖X‖ for nonnormal X [2], the use of the αp(X) in
place of ‖X‖ leads to a bound sharper than the more obvious one involving terms
|ck|‖X‖k.

We summarize our findings in the following result.
Theorem 2.2. If X ∈ Cn×n satisfies ρ(rm(X)) < π then rm(X) = log(I +X +

∆X), where, for any p ≥ 1 satisfying (2.7),

‖∆X‖
‖X‖

≤
∞∑

k=2m+1

|ck|αp(X)k−1.(2.8)

Let θm = max{ θ :
∑∞
k=2m+1 |ck|θk−1 ≤ u }, where u = 2−53 ≈ 1.1 × 10−16 is

the unit roundoff for IEEE double precision arithmetic. We used the Symbolic Math
Toolbox to evaluate θm, m = 1: 16, by summing the first 250 terms of the series in
250 decimal digit arithmetic. The values of θm are listed to three significant figures
in Table 2.1. Thus, if X satisfies αp(X) ≤ θm for p and m satisfying (2.7) then the
approximation of log(I + X) by the Padé approximant rm(X) produces a backward
error ∆X such that ‖∆X‖ ≤ u‖X‖. Our strategy will therefore be to choose the
parameters s and m so that

min
{
αp(A

1/2s − I) : p satisfies p(p− 1) ≤ 2m+ 1
}
≤ θm,(2.9)

and in such a way that the computational cost is minimized.
It is important to note that this choice of parameters ensures that the matrix

I+β
(m)
j X arising in (1.1), with X = A1/2s−I, is nonsingular. Indeed, for p achieving

the minimum in (2.9),

ρ(β
(m)
j X) ≤ αp(β(m)

j X) = β
(m)
j αp(X) ≤ β(m)

j θm < θm < 1.

However, the bound

max
j
κ(I + β

(m)
j X) ≤ max

j
(1 + β

(m)
j ‖X‖)/(1− β(m)

j ‖X‖),(2.10)

where κ(A) = ‖A−1‖‖A‖, which is used in [14] to show that the evaluation of rm(X)
in floating point arithmetic will be accurate, is no longer valid as ‖X‖ is not bounded
(and certainly not bounded by 1). One way around this is to choose ε > 0 so that
αp(X) + ε < 1 and recall that there exists a norm ‖ · ‖ε such that ‖X‖ε ≤ ρ(X) + ε ≤
αp(X) + ε < 1. Then (2.10) holds in this norm and provides a satisfactory bound,
but the norm will be poorly scaled if ε is small, so the practical relevance of this
bound is unclear in general. When X is triangular, the relevant error bounds are
more refined, involving componentwise condition numbers [15, Chap. 8] and are less
sensitive to large-normed X. Some loss of accuracy when rm(X) is computed in
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Table 2.1
Value of θm for selected m.

m 1 2 3 4 5 6 7 8

θm 1.59e-5 2.31e-3 1.94e-2 6.21e-2 1.28e-1 2.06e-1 2.88e-1 3.67e-1

m 9 10 11 12 13 14 15 16

θm 4.39e-1 5.03e-1 5.60e-1 6.09e-1 6.52e-1 6.89e-1 7.21e-1 7.49e-1

floating point arithmetic does not necessarily degrade the accuracy of the computed
logarithm, which may nevertheless reflect the conditioning of the problem. But, as
with the scaling and squaring method for the matrix exponential, relating the effect
of rounding errors incurred within the algorithm to the condition number of log(A)
is an open problem.

Finally, it is interesting to compare the parameters θm in Table 2.1 with the cor-
responding parameters θ′m in [16, Sec. 11.5], which are derived using the forward error
bound (2.1) by requiring fm(θ) ≤ u. We have θm ≥ θ′m, m = 1: 16; in particular,
θ8 = 0.367 > 0.340 = θ′8 and θ16 = 0.749 > 0.724 = θ′16. Thus basing the algo-
rithm on backward error bounds rather than forward error bounds leads to a more
efficient algorithm (and our use of αp(X) instead of ‖X‖ brings further savings that
are potentially much larger).

3. Avoiding cancellation. The inverse scaling and squaring method has a
weakness: subtractive cancellation can occur in forming the matrix A1/2s − I, thus
bringing into prominence errors committed in computing the square roots. Although
we will not require ‖A1/2s − I‖ to be orders of magnitude smaller than 1, if A is
(for example) triangular with diagonal elements of widely varying size then for some
elements there can be significant cancellation.

For scalar a ∈ C, Al-Mohy [1] writes

a1/2
s

− 1 =
a− 1∏s

i=1(1 + a1/2i)
(3.1)

and shows that this formula (applied to a1/2 if a lies in the left half-plane) avoids
subtractive cancellation. We will use this idea in Section 4 and an extension of it for
matrices in Section 5.

For triangular matrices A we also employ another approach, similar to that we
used for the matrix exponential in [2]. Instead of approximating the diagonal and
first superdiagonal of log(A) by the corresponding elements of 2srm(A1/2s − I), we
compute these elements directly using explicit formulas. For the diagonal the formula
is simply log(aii). For the elements on the (first) superdiagonal, which are divided
differences [16, p. 84], we use a rather complicated formula given in [16, (11.28)] that
is immune to cancellation.

4. A Schur-based algorithm. We now use the backward error analysis of
Section 2 to design an algorithm that begins with a transformation to Schur form,
A = QTQ∗, and thereafter works with the triangular matrix T .

The s square roots in T 1/2s are computed by the algorithm of Björck and Ham-
marling [3], [16, Alg. 6.3]. One square root costs n3/3 flops and the evaluation of
rm(T 1/2s − I) in (1.1) costs mn3/3 flops. The parameters s and m are chosen to
minimize the total cost of (s+m)n3/3 flops, using the following reasoning.
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For any putative s and m, which must satisfy αp(T
1/2s − I) ≤ θm for some

p by (2.9), the computational cost can be reduced if taking an extra square root
leads to a reduction of the degree of Padé approximant by more than one, that is, if
αp(T

1/2s+1 − I) ≤ θm−2. Irrespective of the triangularity of T , and since (T 1/2s+1 −
I)(T 1/2s+1

+ I) = T 1/2s − I, we have asymptotically that

αp(T
1/2s+1

− I) ≈ 1

2
αp(T

1/2s − I),(4.1)

for suitably large s, and so we will deem that an extra square root is worth taking
if 1

2αp(T
1/2s − I) ≤ θm−2. Table 2.1 shows that the inequality 1

2θm ≤ θm−2 holds
for m > 7. Thus we should take s at least as large as the first value for which
αp(T

1/2s − I) ≤ θ7. We use the 1-norm, and instead of computing the quantities
αp(T

1/2s − I) we estimate them, by using the block 1-norm estimation algorithm of
Higham and Tisseur [19] to approximate dpp = ‖(T 1/2s − I)p‖1; the cost of estimating

dp is just O(n2) flops, given T 1/2s . We can save some work by noting that, on writing
T = D + F with D = diag(T ),

ρ(D − I) = ρ(T − I) ≤ αp(T − I),

and so there is no need to estimate αp(T
1/2s−I) until ρ(D1/2s−I) ≤ θ7, as the latter

inequality is necessary for αp(T
1/2s − I) ≤ θ7; denote the smallest such s by s0.

For p ∈ {2, 3}, the inequality 2m+1 ≥ p(p−1) holds for m ≥ 3, whereas for p = 4
it holds only for m ≥ 6, and by the analysis above m does not exceed 7. From (2.6),
we have α3(X) ≤ α2(X) for any X, so after obtaining s0, computing T ← T 1/2s0 , and
checking if m = 1 or m = 2 can be used, we check whether α3(T − I) ≤ θ7. Suppose,
first, that α3(T − I) ∈ (θ6, θ7]. We have 1

2α3(T − I) ∈ ( 1
2θ6, θ5] ∪ (θ5,

1
2θ7]. Thus if

1
2α3(T − I) ≤ θ5 the algorithm predicts that one more square root should be taken

to reduce the cost. Since it is not guaranteed that α3(T 1/2− I) ≤ θ5, as this depends
on the approximation (4.1), we will allow at most two extra square roots to be taken
to avoid unnecessary square roots. If 1

2α3(T − I) ∈ (θ5,
1
2θ7] we do not immediately

choose m = 7, as by considering α4 we may be able to take m = 6. Consider now the
case where α3(T − I) ≤ θ6. Since θm /∈ ( 1

2θm+1,
1
2θm+2] for m = 3, 4, an extra square

root is not necessary; we find the smallest m ∈ {3, 4, 5, 6} such that α3(T − I) ≤ θm
and evaluate rm. Finally, we test whether min(α3(T−I), α4(T−I)) ≤ θm for m = 6, 7,
which provides our last chance to avoid another square root. If none of these tests is
satisfied we repeat the process with T ← T 1/2.

As pointed out in Section 3, the subtraction T − I can suffer cancellation in
the diagonal elements. Thus before evaluating rm at T − I we replace the diagonal
elements by more accurate computed quantities obtained by applying (3.1) (more
precisely, [1, Alg. 2]) to the diagonal entries of the original T . We also replace the
first superdiagonal of T−I by quantities computed accurately from an explicit formula
[18, (5.6)], applied also to the original T .

We are now in a position to state our algorithm.
Algorithm 4.1 (inverse scaling and squaring algorithm with Schur decom-

position). Given A ∈ Cn×n with no eigenvalues on R− this algorithm computes
X = log(A) via the Schur decomposition and inverse scaling and squaring. It uses the
constants θm listed in Table 2.1 and the function normest(A,m), which produces an
estimate of ‖Am‖1. The algorithm is intended for IEEE double precision arithmetic.

1 Compute a (complex) Schur decomposition A = QTQ∗.
2 T0 = T

6



3 Find s0, the smallest s such that ρ(D1/2s − I) ≤ θ7, where D = diag(T ).
4 for i = 1: s0
5 T ← T 1/2 using [16, Alg. 6.3].
6 end
7 s = s0, k = 0
8 d2 = normest(T − I, 2)1/2, d3 = normest(T − I, 3)1/3

9 α2 = max(d2, d3)
10 for i = 1: 2
11 if α2 ≤ θi, m = i, goto line 35, end
12 end
13 while true
14 if s > s0, d3 = normest(T − I, 3)1/3, end
15 d4 = normest(T − I, 4)1/4, α3 = max(d3, d4)
16 if α3 ≤ θ7
17 j1 = min{ i:α3 ≤ θi, i = 3: 7 }
18 if j1 ≤ 6
19 m = j1, goto line 35
20 else
21 if 1

2α3 ≤ θ5 and k < 2
% Extra square root predicted worthwhile.

22 k = k + 1
23 goto line 32
24 end
25 end
26 end
27 d5 = normest(T − I, 5)1/5, α4 = max(d4, d5)
28 η = min(α3, α4) % Min taken as θ6 < α3 < α4 ≤ θ7 is possible.
29 for i = 6: 7
30 if η ≤ θi, m = i, goto line 35, end
31 end
32 T ← T 1/2 using [16, Alg. 6.3]
33 s = s+ 1
34 end
35 Replace diag(T − I) by diag(T0)1/2

s − 1 using [1, Alg. 2] and recompute
the first superdiagonal of T using [18, (5.6)] applied to T0.

36 Evaluate U = 2srm(T − I), using the partial fraction expansion (1.1).
37 Replace diag(U) by log(diag(T0)) and the elements of the first

superdiagonal of U by those given by [16, (11.28)] with T = T0.
38 X = QUQ∗

Cost: 25n3 flops for the Schur decomposition plus (s + m)n3/3 flops for U and
3n3 flops to form X.

5. Transformation-free algorithm. Now we develop an algorithm that works
on the original matrix A without the use of a Schur decomposition. This algorithm
requires only matrix multiplications and the solution of multiple right-hand side lin-
ear systems, so is potentially more efficient on a parallel computer; it may also be
attractive for higher precision computation (with a recomputation of the θi for the
relevant value of u).

To compute matrix square roots we use the scaled product form of the Denman–
Beavers (DB) iteration [6], [16, (6.29)]. As in the previous section we base the choice

7



of the algorithm parameters on the backward error bound (2.8).
For improved accuracy we compute Xs = A1/2s − I by solving the equation

Xs

s∏
i=1

(
I +A1/2i

)
= A− I,(5.1)

which generalizes (3.1). We actually apply the formula to A1/2, as an initial square
root moves the spectrum to the right half-plane; in the scalar case this ensures that no
subtractive cancellation occurs, as shown by Al-Mohy [1]. If A is symmetric positive

definite then so are all the roots A1/2i in (5.1) and hence all their diagonal elements

are positive and there is no cancellation in the sums I + A1/2i . There is possible
cancellation in forming the right-hand side A − I if some aii is close to 1, but since
any such subtractions are done exactly [15, Thm. 2.5] and involve only original data
they are harmless. A complete justification for (5.1) for general matrices is lacking,
so we will test its effectiveness in the numerical experiments of Section 6.

The formula (5.1) is implemented as follows.
Algorithm 5.1. For A ∈ Cn×n with no eigenvalues on R− this algorithm com-

putes X = A1/2s − I using the formula (5.1) applied to A1/2. All matrix square roots
are computed using the scaled product DB iteration [16, (6.29)].

1 A← A1/2

2 Z0 = A− I
3 if s = 1, X = Z0, quit, end
4 A← A1/2

5 P = I +A
6 for i = 1: s− 2
7 A← A1/2, P ← P (I +A)
8 end
9 Solve XP = Z0 for X.
The extra computational cost of Algorithm 5.1 compared with the direct evalua-

tion of A1/2s−I is s−2 matrix multiplications and one multiple-right-hand side solve.
This is a small overhead compared with the cost of computing the square roots.

To illustrate the numerical accuracy of this algorithm, consider the matrix

A =

[
cosλ − sinλ
sinλ cosλ

]
λ 6= (2k + 1)π,

which has the principal logarithm

log(A) =

[
0 −λ
λ 0

]
.

Suppose that for λ = 1 we approximate log(A) via Briggs’ formula

log(A) ≈ 2s(A1/2s − I),

which uses the first order approximation of the logarithm function log(1+x) ≈ x. The
backward error bound (2.8) is trivially adapted for this approximation and shows that
we need to choose s so that ‖A1/2s − I‖ ≤ 2.3× 10−16 in order to achieve a backward
error no larger than the unit roundoff. We find that the smallest s is 53. The computed
approximations to 2s(A1/2s − I) from Algorithm 5.1 and by direct evaluation using

8



the scaled product DB iteration are, respectively, to two significant figures,[
−1.7× 10−16 −1.0

1.0 −1.6× 10−16

]
,

[
0 −1.0

1.0 −1.0

]
.

Algorithm 5.1 gives a result as accurate as we can expect, but the direct evaluation
yields a completely inaccurate (2,2) element.

The following algorithm incorporates Algorithm 5.1. We state the algorithm and
then comment on its underlying logic.

Algorithm 5.2. Given A ∈ Cn×n with no eigenvalues on R− this algorithm
computes X = log(A) via inverse scaling and squaring. It uses the constants θm listed
in Table 2.1 and the function normest(A,m), which produces an estimate of ‖Am‖1.
This algorithm is intended for IEEE double precision arithmetic.

1 s = 0, k = 0, it0 = 5
2 d2 = normest(A− I, 2)1/2, d3 = normest(A− I, 3)1/3

3 α2 = max(d2, d3)
4 for i = 1: 2
5 if α2 ≤ θi, m = i, goto line 52, end
6 end
7 while true
8 if s > 0, d3 = normest(A− I, 3)1/3, end
9 d4 = normest(A− I, 4)1/4, α3 = max(d3, d4) % p = 3, m ≥ 3 (see (2.7))

10 if α3 ≤ θ16
11 j1 = min{ i:α3 ≤ θi, i = 3: 16 }
12 j2 = min{ i: 1

2α3 ≤ θi, i = 3: 16 }
13 if 2(j1 − j2)/3 < its and j1 ≤ 6
14 m = j1, goto line 52
15 else
16 if 2(j1 − j2)/3 ≥ its and k < 2, k = k + 1, goto line 46, end
17 end
18 end
19 d5 = normest(A− I, 5)1/5

20 α4 = max(d4, d5), η4 = min(α3, α4) % p = 4, m ≥ 6
21 if η4 ≤ θ16
22 j1 = min{ i: η4 ≤ θi, i = 6: 16 }
23 j2 = min{ i: 1

2η4 ≤ θi, i = 6: 16 }
24 if 2(j1 − j2)/3 < its and j1 ≤ 10
25 m = j1, goto line 52
26 else
27 if 2(j1 − j2)/3 ≥ its and k < 2, k = k + 1, goto line 46, end
28 end
29 end
30 d6 = normest(A− I, 6)1/6

31 α5 = max(d5, d6), η5 = min(η4, α5) % p = 5, m ≥ 10
32 if η5 ≤ θ16
33 j1 = min{ i: η5 ≤ θi, i = 10: 16 }
34 j2 = min{ i: 1

2η5 ≤ θi, i = 10: 16 }
35 if 2(j1 − j2)/3 < its and j1 ≤ 15
36 m = j1, goto line 52
37 else
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38 if 2(j1 − j2)/3 ≥ its and k < 2, k = k + 1, goto line 46, end
39 end
40 end
41 d7 = normest(A− I, 7)1/7

42 α6 = max(d6, d7), η6 = min(η5, α6) % p = 6, m ≥ 15
43 for i = 15: 16
44 if η6 ≤ θi, m = i, goto line 52, end
45 end
46 A← A1/2, using the scaled product DB iteration [16, (6.29)];

let its+1 be the number of iterations required.
47 s = s+ 1
48 if s = 1, Z0 = A− I, end
49 if s = 2, P = I +A, end
50 if s > 2, P ← P (I +A), end
51 end
52 if s < 2
53 Y = A− I
54 else
55 Solve Y P = Z0 for Y .
56 end
57 Evaluate X = 2srm(Y ), using the partial fraction expansion (1.1).
58 end

Cost: (
∑s
i=1 iti) (4n3) + 8mn3/3 flops, plus an additional 2(s− 2/3)n3 flops if s ≥ 2.

The logic of the algorithm is similar to that of Algorithm 4.1; the limitation
m ≤ 16 and the test 2(j1 − j2)/3 < its on line 13 follow from consideration of the θm
in Table 2.1 and the cost of the DB iteration, and are explained in [16, Sec. 11.5.2].
The algorithm begins by taking repeated square roots of A until αp(A − I) ≤ θ16
for some p ∈ {3, 4, 5, 6}. If the condition 2(j1 − j2)/3 ≥ its is satisfied then it is
predicted to be worth taking extra square roots, but a limit of two extra square roots
is enforced. When j1 > 6, line 13 forces the algorithm to evaluate αp for p = 4,
and possibly p = 5 and p = 6, in an attempt to use a smaller m; note that the
sequence {dp} is generally (although not always) decreasing. However, each phase of
the algorithm is subject to the constraint 2m + 1 ≥ p(p − 1) in (2.7), as noted in
comments within the algorithm. Importantly, it can be shown from the θm values in
Table 2.1 and the definition of j1 and j2 that j1− j2 is nonincreasing as the algorithm
proceeds, which avoids the algorithm taking unnecessary square roots resulting from
failure of the condition 2(j1− j2)/3 < its for one value of p when it had been satisfied
for a previous value of p.

Lines 8–40 of Algorithm 5.2 can be replaced by the following equivalent, but less
easily understandable, code.

1 if s > 0, d3 = normest(A− I, 3)1/3, end, α2 =∞
2 for p = 3: 5
3 dp+1 = normest(A− I, p+ 1)1/(p+1)

4 αp = max(dp, dp+1), ηp = min(αp−1, αp)
5 if ηp ≤ θ16
6 j1 = min{ i: ηp ≤ θi, i = dp(p−1)−12 e: 16 }
7 j2 = min{ i: 1

2ηp ≤ θi, i = dp(p−1)−12 e: 16 }
8 if 2(j1 − j2)/3 < its and j1 ≤ dp(p+1)−1

2 e
9 m = j1, goto line 52
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10 else
11 if 2(j1 − j2)/3 ≥ its and k < 2, k = k + 1, goto line 46, end
12 end
13 end
14 end

6. Numerical experiments. We now compare our new algorithms with exist-
ing algorithms empirically. Our experiments were carried out in MATLAB R2011b,
and for most of the experiments we use the same set of 67 (mostly 10× 10) test ma-

trices as in [16, Sec. 11.7]. We compute normwise relative errors ‖X̃ − X̂‖F /‖X̃‖F ,

where X̂ is a computed logarithm and X̃ is the result of evaluating log(A) at 100
decimal digit precision using the Symbolic Math Toolbox and rounding the result to

double precision, as well as normwise backward errors ‖eX̂ − A‖F /‖A‖F , with eX̂

computed at 100 decimal digit precision and then rounded to double precision. (Here

we use the fact that X̂ = log(A + ∆A) implies eX̂ = A + ∆A.) The relative errors
in our plots have been transformed as suggested in [9] so as to lessen the influence of
abnormally tiny errors on the performance profiles; the transformation simply applies
a linear scaling that maps [0, u] to [5× 10−2u, u].

The MATLAB codes and the algorithms they implement are as follows.

1. iss schur new: the Schur-based inverse scaling and squaring algorithm, Al-
gorithm 4.1.

2. iss schur old: the Schur-based inverse scaling and squaring algorithm from
[16, Alg. 11.9], which derives its parameters from the forward error bound
(2.1).

3. The (standard) MATLAB function funm, called as funm(A,@log), which is
equivalent to logm(A). This function implements a Schur–Parlett algorithm
[7], [16, Alg. 11.11] that uses iss schur old on diagonal blocks of dimension
3 or larger in the partitioned and reordered triangular Schur factor.

4. A modified version of funm, denoted funm mod, in which iss schur new is
used in place of iss schur old.

5. iss new: Algorithm 5.2.
6. iss old: the transformation-free inverse scaling and squaring algorithm from

[16, Alg. 11.10]. Like iss schur old, this algorithm derives its parameters
using the forward error bound (2.1).

Experiment 1. First we compare the codes on the upper triangular matrix A given
by
3.2346e-001 3.0000e+004 3.0000e+004 3.0000e+004

0 3.0089e-001 3.0000e+004 3.0000e+004

0 0 3.2210e-001 3.0000e+004

0 0 0 3.0744e-001

The true logarithm is, to five significant figures,
-1.1287e+000 9.6142e+004 -4.5248e+009 2.9249e+014

0 -1.2010e+000 9.6346e+004 -4.6810e+009

0 0 -1.1329e+000 9.5324e+004

0 0 0 -1.1795e+000

The result from iss schur new is correct to five significant figures, whereas iss schur old

and funm produce the same matrix, which to five significant figures is
-1.2500e+000 9.6142e+004 -4.5248e+009 2.9249e+014

0 -1.2500e+000 9.6346e+004 -4.6810e+009
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0 0 -1.2500e+000 9.5324e+004

0 0 0 -1.2500e+000

Note that the diagonal elements have only one or two correct significant figures.
Nevertheless, all the codes produce a normwise relative error less than 9u due to
the (1,4) element, which makes ‖ log(A)‖F very large. However, the backward errors
‖eX̂ −A‖F /‖A‖F are 2.5× 10−7 for iss schur new and 4.0× 106 for iss schur old

and funm.
For this matrix, iss schur new takes s = 16 and m = 6, while iss schur old

takes s = 50 and m = 7. The much greater efficiency of iss schur new is due to it

exploiting the nonnormality of A through the use of the αp: we have {‖(A− I)p‖1/pF :
p = 1, 2, . . .} = {7.3× 104, 4.7× 104, 3.0× 104, 3.0× 103, 6.6× 102, . . .}, showing that
αp(A − I)k � ‖A − I‖k for p = 4 (and similarly after square roots of A have been
taken) and hence that our backward error bound is much sharper than it would be if
we had expressed it solely in terms of ‖A− I‖.

Experiment 2. In this experiment we compare iss schur new, iss schur old,
funm, and funm mod on the test set. Figure 6.1 plots the relative errors, with the
solid line showing cond(log, A)u, where cond(log, A) is the condition number of the
matrix logarithm function at A, computed by logm_cond from the Matrix Function
Toolbox [13]. Figure 6.2 presents the same data in the form of a performance profile
[9], [10], [12, Sec. 22.4]; here, the curve for a given method has height p(α) at α if
that method had error within a factor α of the smallest error over the other three
methods on a fraction p(α) of all the test problems. Figure 6.3 displays the ratio of the
computational cost measured in flops for iss schur new and iss schur old excluding
the cost of the transformation to and from Schur form; the cost is proportional to
s + m. These results show that all the methods perform in a generally numerically
forward stable way (Figure 6.1), and that iss schur new is a clear improvement over
iss schur old and is even superior to funm (Figure 6.2); closer inspection of the errors
reveals that iss schur new has errors up to factors of order 108 and 105 smaller than,
and never more than 10% larger than, those for iss schur old and funm, respectively,
Moreover, funm mod shows some small improvements in accuracy over funm, indicating
the benefit of using iss schur new instead of iss schur old within funm. We also
computed backward errors; the resulting performance profile (not shown) is very
similar to that for the forward errors, but with a less pronounced advantage for
iss schur new. Figure 6.3 shows that iss schur new never requires more flops than
iss schur old and can need up to a factor four fewer. Thus iss schur new improves
in both speed and accuracy over iss schur old.

Experiment 3. In this experiment we use the upper triangular QR factors R of
each matrix in the test set, replacing any negative diagonal element ofR by its absolute
value. The errors and performance profile for the same methods as in Experiment 2
are shown in Figures 6.4 and 6.5. The performance profile for the backward errors
(not shown) is similar, except that the curve for iss schur old stays entirely below
that for funm mod.

This experiment shows the superior accuracy of iss schur new over the other
codes for triangular matrices (in Experiment 2 the advantage tends to be reduced by
the errors introduced by the Schur transformation). Indeed we can see from Figure 6.4
several matrices for which funm and funm mod produce much less accurate results than
iss schur new and behave in a forward unstable way. We also see that funm mod

delivers better accuracy than funm.
Experiment 4. In this experiment we compare the transformation-free codes iss new
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Fig. 6.1. Experiment 2: normwise relative errors in log(A) computed by iss schur new,
iss schur old, funm, and funm mod. The solid line is cond(log, A)u.

and iss old on the test set. We also try iss new*, which denotes iss new without
the use of Algorithm 5.1, so that lines 48–50 are deleted and lines 52–56 are re-
placed by Y = A − I. Figure 6.6 plots the relative errors for these codes along with
iss schur new and Figure 6.7 shows the corresponding performance profile. Again,
the performance profile for the backward errors (not shown) is very similar to that
for the forward errors. Figure 6.7 shows a clear improvement in accuracy of iss new

over iss old, and the curve for iss new* shows that some of this improvement is due
to the use of Algorithm 5.1. Figure 6.8 compares the computational cost measured in
flops of iss new with iss old; iss new is usually the faster, by up to a factor 18, and
is at most a factor 1.1 slower. As for the Schur-based algorithms, our new algorithm
iss new brings benefits in both speed and accuracy over iss old.

7. Conclusions. Our new algorithms, Algorithms 4.1 and 5.2, improve signifi-
cantly in speed and accuracy on those of Higham [16, Algs 11.9, 11.10], which in turn
are refinements of those of Cheng, Higham, Kenney, and Laub [6] and Kenney and
Laub [20]. The principal improvements are (a) the use of backward error (instead of
forward error) bounds and the use of estimates of norms of matrix powers in order to
incorporate information about nonnormality and obtain sharper error bounds—both
of which lead to better choices of s (the number of square roots) and m (the degree of
the Padé approximant), and (b) the steps taken to avoid cancellation in the argument
of the Padé approximant and the exploitation of triangular structure in Algorithm 4.1
to directly compute certain elements of log(T ). Algorithm 4.1 emerges as the method
of choice for computing log(A), and is a natural partner to our scaling and squaring
algorithm for eA in [2], which—although not based on the Schur form—uses similar
techniques to maximize speed and accuracy.

Acknowledgments. The first author thanks the Manchester Institute for Math-
ematical Sciences for hosting a visit during which much of this work was done.
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Fig. 6.4. Experiment 3: normwise relative errors in log(A) for triangular A computed by
iss schur new, iss schur old, funm, and funm mod. The solid line is cond(log, A)u.
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Fig. 6.5. Experiment 3: performance profile for the data presented in Figure 6.4.
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