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Abstract
We derive new perturbation bounds for eigenvalues of Hermitian matrices with block tridiagonal
structure. The main message of this paper is that an eigenvalue is insensitive to blockwise pertur-
bation, if it is well-separated from the spectrum of the diagonal blocks nearby the perturbed blocks.
Our bound is particularly effective when the matrix is block-diagonally dominant and graded. Our
approach is to obtain eigenvalue bounds via bounding eigenvector components, which is based
on the observation that an eigenvalue is insensitive to componentwise perturbation if the corre-
sponding eigenvector components are small. We use the same idea to explain two well-known
phenomena, one concerning aggressive early deflation used in the symmetric tridiagonal QR algo-
rithm and the other concerning the extremal eigenvalues of Wilkinson matrices.
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1. Introduction

Eigenvalue perturbation theory for Hermitian matrices is a well-studied subject with many
known results, see for example [21, Ch.4] [8, Ch.8], [7, Ch.4]. Among them, Weyl’s theorem
is perhaps the simplest and most well-known, which states that the eigenvalues of the Hermitian
matrices A and A + E differ at most by ‖E‖2. In fact, when the perturbation E is allowed to be an
arbitrary Hermitian matrix, Weyl’s theorem gives the smallest possible bound that is attainable.

Hermitian matrices that arise in practice frequently have special sparse structures, important
examples of which being banded and block tridiagonal structures. For such structured matrices,
perturbation of some eigenvalues is often much smaller than any known bound guarantees. The
goal of this paper is to treat block tridiagonal Hermitian matrices and derive eigenvalue perturba-
tion bounds that can be much sharper than known general bounds, such as Weyl’s theorem.

The key observation of this paper, to be made in section 2, is that an eigenvalue is insensitive
to componentwise perturbations if the corresponding eigenvector components are small. Our ap-
proach is to obtain bounds for eigenvector components, from which we obtain eigenvalue bounds.
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In this framework we first give new eigenvalue perturbation bounds for the simplest, 2-by-2 block
case. In particular, we identify a situation in which the perturbation bound of an eigenvalue scales
cubically with the norm of the perturbation.

We then discuss the general block tridiagonal case, in which we show that an eigenvalue is
insensitive to blockwise perturbation, if it is well-separated from the spectrum of the diagonal
blocks nearby the perturbed blocks.

Finally, to demonstrate the effectiveness of our approach, we show that our framework success-
fully explains the following two well-known phenomena: (i) Aggressive early deflation applied to
the symmetric tridiagonal QR algorithm deflates many eigenvalues even when no off-diagonal
element is negligibly small. (ii) Wilkinson matrices have many pairs of nearly equal eigenvalues.

A number of related studies exist in the literature, especially in the tridiagonal case for which
explicit formulas exist for the eigenvector components using the determinants of submatrices [19,
Sec. 7.9]. Cuppen [5] gives an explanation for the exponential decay in eigenvector components
of tridiagonal matrices, which often lets the divide-and-conquer algorithm run much faster than
its estimated cost suggests. The derivation of our eigenvector bounds are much in the same vein
as Cuppen’s argument. A difference here is that we use the bounds to show the insensitivity of
eigenvalues. In [18] Parlett investigates the localization behavior of eigenvectors (or an invariant
subspace) corresponding to a cluster of m eigenvalues, and notes that accurate eigenvalues and
nearly orthogonal eigenvectors can be computed from appropriately chosen m submatrices, which
allow overlaps within one another. One implication of this is that setting certain subdiagonals to
zero has negligible influence on some of the eigenvalues. A similar claim is made by our Theorem
4.2, which holds for block tridiagonal matrices, whether or not the eigenvalue belongs to a cluster.
In addition, in a recent paper [20] Parlett considers symmetric banded matrices and links the
disjointness of an eigenvalue from Gerschgorin disks with bounds of off-diagonal parts of L and
U in the LDU decomposition, from which exponential decay in eigenvector components can be
deduced. A similar message is conveyed by our Lemma 4.1, but unlike [20] we give direct bounds
for the eigenvector components, and we use them to obtain eigenvalue bounds. Moreover, Parlett
and Vömel [17] study detecting such eigenvector decay behavior to devise a process to efficiently
compute some of the eigenvalues of a symmetric tridiagonal matrix. Our results in this paper
may be used to foster such developments. Finally, [10] considers general Hermitian matrices and
shows for any eigenpair (λi, x) of A that the interval [λi − ‖Ex‖2, λi + ‖Ex‖] contains an eigenvalue
of A + E, and gives a condition under which the eigenvalue is the ith eigenvalue. Our approach
here is roughly to give explicit bounds for ‖Ex‖2 for the block tridiagonal case, while maintaining
the one-to-one correspondence between the ith eigenvalue of A and that of A + E.

The rest of this paper is organized as follows. In section 2 we outline our basic idea of deriving
eigenvalue perturbation bounds via bounding eigenvector components. Section 3 treats the 2-by-2
block case and presents a new bound. Section 4 discusses the block tridiagonal case. In section 5
we investigate the two case studies.

Notations: λi(X) denotes the ith smallest eigenvalue of a Hermitian matrix X. For simplicity
we use λi, λ̂i and λi(t) to denote the ith smallest eigenvalue of A, A + E and A + tE for t ∈ [0, 1]
respectively. λ(A) denotes A’s spectrum, the set of eigenvalues. We use only the matrix spectral
norm ‖ · ‖2.
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2. Basic approach

We first recall the partial derivative of a simple eigenvalue [21].

Lemma 2.1. Let A and E be n-by-n Hermitian matrices. Denote by λi(t) the ith eigenvalue of
A+tE, and define the vector-valued function x(t) such that (A+tE)x(t) = λi(t)x(t) where ‖x(t)‖2 = 1
for some t ∈ [0, 1]. If λi(t) is simple, then

∂λi(t)
∂t

= x(t)HEx(t). (1)

Our main observation here is that if x(t) has small components in the positions corresponding
to the dominant elements of E, then ∂λi(t)

∂t is small. For example, suppose that E is nonzero only in
the ( j, j)th element. Then we have

∣∣∣∂λi(t)
∂t

∣∣∣ ≤ ‖E‖2|x j(t)|2, where x j(t) is jth element of x(t). Hence
if we know a bound for |x j(t)| for all t ∈ [0, 1], then we can integrate (1) over 0 ≤ t ≤ 1 to obtain a
bound for |λi − λ̂i| = |λi(0) − λi(1)|. In the sequel we shall describe in detail how this observation
can be exploited to derive eigenvalue perturbation bounds.

It is important to note that Lemma 2.1 assumes that λi is a simple eigenvalue of A. Special
treatment is needed to get the derivative of multiple eigenvalues. This is described in the appendix,
in which we show that everything we discuss below carries over even in the presence of multiple
eigenvalues. In particular, when λi(t) is multiple (1) still holds for a certain choice of eigenvector
x(t) of λi(t). We defer the treatment of multiple eigenvalues to the appendix, because it only
causes complications to the analysis that are not fundamental to the eigenvalue behavior. Hence
for simplicity until Appendix A we assume that λi(t) is simple for all t, so that the normalized
eigenvector is unique up to a factor eiθ.

3. 2-by-2 block case

In this section we consider the 2-by-2 case. Specifically, we study the difference between
eigenvalues of the n-by-n Hermitian matrices A and A + E, where

A =

[
A11 AH

21
A21 A22

]
and E =

[
E11 EH

21
E21 E22

]
, (2)

in which A22 and E22 are both k-by-k.
Since λi(0) = λi and λi(1) = λ̂i, from (1) it follows that

|λi − λ̂i| =
∣∣∣∣∣∣
∫ 1

0
x(t)HEx(t)dt

∣∣∣∣∣∣ (3)

≤
∣∣∣∣∣∣
∫ 1

0
x1(t)HE11x1(t)dt

∣∣∣∣∣∣ + 2

∣∣∣∣∣∣
∫ 1

0
x2(t)HE21x1(t)dt

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∫ 1

0
x2(t)HE22x2(t)dt

∣∣∣∣∣∣ , (4)

where we block-partitioned x(t) =

[
x1(t)
x2(t)

]
so that x1(t) and A11 have the same number of rows. The

key observation here is that the latter two terms in (4) are small if ‖x2(t)‖2 is small for all t ∈ [0, 1].
We obtain an upper bound for ‖x2(t)‖2 by the next lemma.
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Lemma 3.1. Suppose that λi < λ(A22) is the ith smallest eigenvalue of A as defined in (2). Let

Ax = λix such that ‖x‖2 = 1. Then, partitioning x =

[
x1

x2

]
as above we have

‖x2‖2 ≤ ‖A21‖2
min |λi − λ(A22)| . (5)

P. The bottom k rows of Ax = λix is

A21x1 + A22x2 = λix2,

so we have
x2 = (λiI − A22)−1A21x1.

Taking norms we get

‖x2‖2 ≤ ‖(λiI − A22)−1‖2‖A21‖2‖x1‖2 ≤ ‖A21‖2
min |λi − λ(A22)| ,

where we used ‖x1‖2 ≤ ‖x‖2 = 1 to get the last inequality. ¤

We note that Lemma 3.1 is just a special case of the Davis-Kahan generalized sin θ theorem [6,
Thm. 6.1], in which the two subspaces have dimensions 1 and n − k. Specifically, (5) bounds the
sin of the canonical angle [8, p. 603] between an eigenvector x and the first n − k columns of the
identity matrix I.

Clearly, if λi < λ(A11) then (5) holds with x2 replaced with x1 and A22 replaced with A11. This
applies to the entire section, but for definiteness we only present results assuming λi < λ(A22).

We note that (5) is valid for any λi and its normalized eigenvector x, whether or not λi is a
multiple eigenvalue. It follows that in the multiple case, all the vectors that are in the corresponding
eigenspace satisfy (5).

We now derive refined eigenvalue perturbation bounds by combining Lemmas 2.1 and 3.1.
As before, let (λi(t), x(t)) be the ith smallest eigenpair such that (A + tE)x(t) = λi(t)x(t) with
‖x(t)‖2 = 1. When min |λi − λ(A22)| > 2‖E‖2, using (5) we get an upper bound for ‖x2(t)‖2 for all
t ∈ [0, 1]:

‖x2(t)‖2 ≤ ‖A21 + tE21‖2
min |λi(t) − λ(A22 + tE22)|

≤ ‖A21‖2 + t‖E21‖2
min |λi(0) − λ(A22)| − 2t‖E‖2 (∵ Weyl’s theorem )

≤ ‖A21‖2 + ‖E21‖2
min |λi − λ(A22)| − 2‖E‖2 . (6)

We now present a perturbation bound for λi.
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Theorem 3.2. Let λi and λ̂i be the ith eigenvalue of A and A + E as in (2) respectively, and define

τi =
‖A21‖2 + ‖E21‖2

min |λi − λ(A22)| − 2‖E‖2 . Then for each i, if τi > 0 then

∣∣∣∣λi − λ̂i

∣∣∣∣ ≤ ‖E11‖2 + 2‖E21‖2τi + ‖E22‖2τ2
i . (7)

P. Substituting (6) into (4) we get
∣∣∣∣λi − λ̂i

∣∣∣∣ ≤
∣∣∣∣∣∣
∫ 1

0
‖E11‖2‖x1(t)‖22dt

∣∣∣∣∣∣ + 2

∣∣∣∣∣∣
∫ 1

0
‖E21‖2‖x1(t)‖2‖x2(t)‖2dt

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∫ 1

0
‖E22‖2‖x2(t)‖22dt

∣∣∣∣∣∣
≤ ‖E11‖2 + 2‖E21‖2τi + ‖E22‖2τ2

i ,

which is (7). ¤

Remark 1. We make three points on Theorem 3.2.

• τi < 1 is a necessary condition for (7) to be tighter than the Weyl bound ‖E‖2. If ‖E11‖2 �
‖E‖2 and λi is far from the spectrum of A22 so that τi � 1, then (7) is much smaller than
‖E‖2.

• When A21, E11, E22 are all zero (i.e., when a block-diagonal matrix undergoes an off-diagonal
perturbation), (7) becomes

∣∣∣∣λi − λ̂i

∣∣∣∣ ≤
2‖E21‖22

min |λi − λ(A22)| − 2‖E21‖2 , (8)

which shows the perturbation must be O(‖E21‖2) if λi is not an eigenvalue of A22.

We note that much work has been done for such structured perturbation. For example,
under the same assumption of off-diagonal perturbation, [15, 14] prove the quadratic residual
bounds

|λi − λ̂i| ≤
‖E21‖22

min |λi(A) − λ(A22)|
≤ 2‖E21‖22

min |λi(A) − λ(A22)| +
√

min |λi(A) − λ(A22)|2 + 4‖E21‖22
. (9)

Our bound (7) (or (8)) is not as tight as the bounds in (9). However, (7) has the advantage
that it is applicable for a general perturbation, not necessarily off-diagonal.

• (7) also reveals that if E =

[
0 0
0 E22

]
and A21 is small, then λi is particularly insensitive to the

perturbation E22: the bound (7) becomes proportional to ‖E22‖2‖A21‖22.

For example, consider the n-by-n matrices
[
A11 v
vH ε

]
and

[
A11 v
vH 0

]
where A11 is nonsingular.

These matrices have one pair of eigenvalues that matches up to ε, and n− 1 pairs that match
up to O(ε‖v‖22). Note that when ‖v‖2 = O(ε), ε‖v‖22 scales cubically with ε.
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4. Block Tridiagonal case

Here we consider the block tridiagonal case and apply the idea we used above to obtain a re-
fined eigenvalue perturbation bound. Let A and E be Hermitian block tridiagonal matrices defined
by

A =



A1 BH
1

B1
. . .

. . .
. . .

. . . BH
n−1

Bn−1 An


and E =



. . .
. . .

. . . 0 0
0 ∆As ∆BH

s
∆Bs 0 0

0 . . .



, (10)

where A j, ∈ Cn j×n j and B j ∈ Cn j+1×n j . The size of ∆As and ∆Bs match those of As and Bs. Here we
consider perturbation in a single block, so E is zero except for the sth blocks ∆As and ∆Bs. When
more than one block is perturbed we can apply the below argument repeatedly.

We obtain an upper bound for |λi − λ̂i| by bounding the magnitude of the eigenvector compo-
nents corresponding to the sth and (s+1)th blocks. As before we let (λi(t), x(t)) be the ith eigenpair
such that (A + tE)x(t) = λi(t)x(t) for t ∈ [0, 1]. To prove a useful upper bound for the blocks of
the eigenvector x(t) corresponding to λi(t) for all t ∈ [0, 1], we make the following Assumption 1.
Here we say “a belongs to the jth block of A” if

a ∈ [λmin(A j) − η j, λmax(A j) + η j] where η j = ‖B j‖2 + ‖B j−1‖2 + ‖E‖2, (11)

in which for convenience we define B0 = 0, Bn = 0. Note that a can belong to more than one
block.

Assumption 1. There exists an integer ` > 0 such that λi does not belong to the first s + ` blocks
of A.

Roughly, the assumption demands that λi is far away from the eigenvalues of A1, . . . , As+`, and
that the norms of E and B1, . . . , Bs+` are not too large. A typical case where the assumption holds
is when A1, A2, . . . , An have a graded structure, so that the eigenvalues of Ai are smaller (or larger)
than those of A j for all (i, j) with i < j. For example, consider the tridiagonal matrix

A + E = tridiag


1 1 . 1 1

1000 999 . . 2 1
1 1 . 1 1

 , (12)

where E is zero except for the first off-diagonals, which are 1. We set all the block sizes to one,
and see that the interval [λmin(A j) − η j, λmax(A j) + η j] as in (11) for the jth block is [998, 1002] for
j = 1 and [(1001 − j) − 3, (1001 − j) + 3] for 2 ≤ j ≤ 999. Hence for any eigenvalue λi ≤ 100,
λi does not belong to the first 897 blocks, so Assumption 1 is valid with ` = 896. More generally,
for any λi ∈ [k, k + 1] for any integer k < 997, Assumption 1 holds with ` = 997 − k.

We also note that the below argument holds exactly the same for the case where λi does not
belong to the last n − s − ` blocks, but for definiteness we proceed under Assumption 1.

We now derive an upper bound for the eigenvector components.
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Lemma 4.1. Let A and E be Hermitian block tridiagonal matrices as in (10). Suppose that A’s
ith eigenvalue λi satisfies Assumption 1, so that defining gap j = min |λi − λ(A j)|, we have gap j >
‖E‖2 + ‖B j‖2 + ‖B j−1‖2 for j = 1, . . . , s + `. Let (A + tE)x(t) = λi(t)x(t) and ‖x(t)‖2 = 1 for
t ∈ [0, 1], and block-partition x(t)H = [x1(t)H x2(t)H . . . xn(t)H]H such that x j(t) and A j have the
same numbers of rows. Let2

δ0 =
‖Bs‖2 + ‖∆Bs‖2

gaps − ‖E‖2 − ‖∆AS ‖2 − ‖Bs−1‖2 , δ1 =
‖Bs+1‖2

gaps+1 − ‖E‖2 − ‖Bs‖2 − ‖∆Bs‖2 , (13)

and

δ j =
‖Bs+ j‖2

gaps+ j − ‖E‖2 − ‖Bs+ j−1‖2 for j = 2, . . . , `, (14)

and suppose that the denominators in (13) and (13) are all positive. Then, for all t ∈ [0, 1] we
have

‖xs(t)‖2 ≤
∏̀

j=0

δ j, (15)

‖xs+1(t)‖2 ≤
∏̀

j=1

δ j. (16)

P. We first show that ‖x1(t)‖2 ≤ ‖x2(t)‖2 ≤ · · · ≤ ‖xs+`(t)‖2. The first block of (A + tE)x(t) =

λi(t)x(t) is
A1x1(t) + BH

1 x2(t) = λi(t)x1(t),

so we have
x1(t) = (λi(t)I − A1)−1BH

1 x2(t).

Now since by Weyl’s theorem we have λi(t) ∈ [λi − ‖E‖2, λi + ‖E‖2] for all t ∈ [0, 1], it follows that
‖(λi(t)I − A1)−1‖2 ≤ 1/(gap1 − ‖E‖2). Therefore, ‖x1(t)‖2/‖x2(t)‖2 can be bounded by

‖x1(t)‖2
‖x2(t)‖2 ≤

‖B1‖2
gap1 − ‖E‖2 ≤ 1,

where the last inequality follows from Assumption 1.
Next, the second block of (A + tE)x(t) = λi(t)x(t) is

B1x1(t) + A2x2(t) + BH
2 x3(t) = λi(t)x2(t),

so we have
x2(t) = (λi(t)I − A2)−1(B1x1(t) + BH

2 x3(t)).

2δ j and gaps depend also on i, but we omit the subscript for simplicity.
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Using ‖(λi(t)I − A2)−1‖2 ≤ 1/(gap2 − ‖E‖2) we get

‖x2(t)‖2 ≤ ‖B1‖2‖x1(t)‖2 + ‖B2‖2‖x3(t)‖2
gap2 − ‖E‖2

≤ ‖B1‖2‖x2(t)‖2 + ‖B2‖2‖x3(t)‖2
gap2 − ‖E‖2 , (∵ ‖x1(t)‖2 ≤ ‖x2(t)‖2)

and so ‖x2(t)‖2
‖x3(t)‖2 ≤

‖B2‖2
gap2 − ‖E‖2 − ‖B1‖2 .

By Assumption 1 this is no larger than 1, so ‖x2(t)‖2 ≤ ‖x3(t)‖2.
By the same argument we can prove ‖x1(t)‖2 ≤ ‖x2(t)‖2 ≤ · · · ≤ ‖xs+`(t)‖2 for all t ∈ [0, 1].
Next consider the sth block of (A + tE)x(t) = λi(t)x(t), which is

Bs−1xs−1(t) + (As + t∆As)xs(t) + (Bs + t∆Bs)H xs+1(t) = λi(t)xs(t),

so we have
xs(t) = (λi(t)I − As − t∆As)−1

(
Bs−1xs−1(t) + (Bs + t∆Bs)H xs+1(t)

)
.

Using ‖(λi(t)I − As − t∆As)−1‖2 ≤ 1/(gaps − ‖E‖2 − ‖∆AS ‖2) and ‖xs−1(t)‖2 ≤ ‖xs(t)‖2 we get

‖xs(t)‖2 ≤ ‖Bs−1‖2‖xs(t)‖2 + ‖Bs + t∆Bs‖2‖xs+1(t)‖2
gaps − ‖E‖2 − ‖∆As‖2 .

Hence we get
‖xs(t)‖2
‖xs+1(t)‖2 ≤

‖Bs‖2 + ‖∆Bs‖2
gaps − ‖E‖2 − ‖∆AS ‖2 − ‖Bs−1‖2 = δ0 for all t ∈ [0, 1].

The (s + 1)th block of (A + tE)x(t) = λi(t)x(t) is

(Bs + t∆Bs)xs(t) + As+1xs+1(t) + BH
s+1xs+2(t) = λi(t)xs+1(t),

so we get
xs+1(t) = (λi(t)I − As+1)−1

(
(Bs + t∆Bs)xs(t) + BH

s+1xs+2(t)
)
,

and hence
‖xs+1(t)‖2
‖xs+2(t)‖2 ≤

‖Bs+1‖2
gaps+1 − ‖E‖2 − ‖Bs‖2 − ‖∆Bs‖2 = δ1. Similarly we can prove that

‖xs+ j(t)‖2
‖xs+ j+1(t)‖2 ≤ δ j for j = 1, . . . , `.

Together with ‖xs+`+1‖2 ≤ ‖x‖2 = 1 it follows that for all t ∈ [0, 1],

‖xs(t)‖2 ≤
∏̀

j=0

δ j‖xs+`+1(t)‖2 ≤
∏̀

j=0

δ j,

‖xs+1(t)‖2 ≤
∏̀

j=1

δ j‖xs+`+1(t)‖2 ≤
∏̀

j=1

δ j.

¤
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We are now ready to present a perturbation bound for λi.

Theorem 4.2. Let λi and λ̂i be the ith eigenvalue of A and A + E as in (10) respectively, and let δi

be as in (13). Suppose that λi satisfies Assumption 1. Then

∣∣∣∣λi − λ̂i

∣∣∣∣ ≤ ‖∆As‖2

∏̀

j=0

δ j


2

+ 2‖∆Bs‖2δ0


∏̀

j=1

δ j


2

. (17)

P. Using (3) we have

|λi − λ̂i| =
∣∣∣∣∣∣
∫ 1

0
x(t)HEx(t)dt

∣∣∣∣∣∣

≤
∣∣∣∣∣∣
∫ 1

0
xs(t)H∆Asxs(t)dt

∣∣∣∣∣∣ + 2

∣∣∣∣∣∣
∫ 1

0
xs+1(t)H∆Bsxs(t)dt

∣∣∣∣∣∣

≤ ‖∆As‖2
∣∣∣∣∣∣
∫ 1

0
‖xs(t)‖22dt

∣∣∣∣∣∣ + 2‖∆Bs‖2
∣∣∣∣∣∣
∫ 1

0
‖xs(t)‖2‖xs+1(t)‖2dt

∣∣∣∣∣∣ .

Substituting (15) and (16) we get

∣∣∣∣λi − λ̂i

∣∣∣∣ ≤ ‖∆As‖2
∣∣∣∣∣∣∣∣


∏̀

j=0

δ j


2 ∫ 1

0
dt

∣∣∣∣∣∣∣∣
+ 2‖∆Bs‖2

∣∣∣∣∣∣∣
∏̀

j=0

δ j

∏̀

j=1

δ j

∫ 1

0
dt

∣∣∣∣∣∣∣

= ‖∆As‖2

∏̀

j=0

δ j


2

+ 2‖∆Bs‖2δ0


∏̀

j=1

δ j


2

.

¤

Remark 2. Two remarks on Theorem 4.2 are in order.

• Since the bound in (17) is proportional to the product of δ2
j , the bound can be negligibly small

if ` is large and each δ j is sufficiently smaller than 1 (say 0.5). Hence Theorem 4.2 shows
that λi is insensitive to perturbation in far-away blocks, if its separation from the spectrum
of the diagonal blocks nearby the perturbed ones is large compared with the off-diagonal
blocks. We illustrate this below by an example in section 5.1.

• When the bound (13) is smaller than the Weyl bound ‖E‖2, we can obtain sharper bounds
by using the results recursively, that is, the new bound (17) can be used to redefine δ j :=

‖Bs+ j‖2
gaps+ j−∆−‖Bs+ j−1‖2 , where ∆ is the right-hand side of (17). The new δ j is smaller than the one in
(13), and this in turn yields a refined bound (17) computed from the new δ j.

Above we showed how a small eigenvector component implies a small eigenvalue bound.
We note that Jiang [11] discusses the relation between the convergence of Ritz values obtained
in the Lanczos process and eigenvector components of tridiagonal matrices. In patricular, [11]
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argues that a Ritz value must be close to an exact eigenvalue if the corresponding eigenvector of
the tridiagonal submatrix has a small bottom element. We argue that Lemma 4.1 can be used to
extend this to the block Lanczos method (e.g., [1, Ch. 4.6]). Assuming for simplicity that deflation
does not occur, after j steps of block Lanczos with block size p we have AV = VT + [0 V̂R] where
V ∈ Cn× jp and V̂ ∈ Cn×p have orthonormal columns and VHV̂ = 0. T ∈ C jp× jp is a symmetric
banded matrix with bandwidth 2p + 1, and R ∈ Cp×p. Then we see that letting U = [V V̂ V2] be a
square unitary matrix, we have

UHAU =



T11
. . .

. . .
. . . T H

j, j−1
T j, j−1 T j j RH

R A2


.

Note that the top-left jp× jp submatrix is equal to T . Now, if an eigenvalue λ of T does not belong
to the last s > 0 blocks of T (which is more likely to happen if λ is an extremal eigenvalue), then
by Lemma 4.1 we can show that the bottom block xp of the eigenvector x corresponding to λ is
small. Since the Ritz value λ has residual ‖Ay − λy‖2 ≤ ‖xp‖2‖R‖2 where y = Ux, this in turn
implies that the there must exist an exact eigenvalue of UHAU lying within distance of ‖R‖2‖xp‖2
from the Ritz value λ.

5. Two case studies

Here we present two examples to demonstrate the sharpness of our approach. Specifically, we

1. Explain why aggressive early deflation can deflate many eigenvalues as “converged” when
applied to the symmetric tridiagonal QR algorithm.

2. Explain why Wilkinson matrices have many pairs of nearly equal eigenvalues.

In both cases A and E are symmetric tridiagonal, and we denote

A + E =



a1 b1

b1
. . .

. . .
. . .

. . . bn−1

bn−1 an


, (18)

where E is zero except for a few off-diagonal elements, as specified below. We assume without
loss of generality that b j ≥ 0 for all j. Note that when b j are all nonzero the eigenvalues are known
to be always simple [19], so the treatment of multiple eigenvalues becomes unnecessary.

In both case studies, we will bound the effect on an eigenvalue λi of setting some b j to 0. We
note that Jiang [11] made the observation that setting b j to 0 perturbs an eigenvalue extremely
insensitively if its eigenvector corresponding to the jth element is negligibly small. However
[11] does not explain when or why the eigenvector element tends to be negligible. Our approach
throughout has been to show that for eigenvalues that are well-separated from the spectrum of
the blocks nearby the perturbed blocks, the corresponding eigenvector elements can be bounded
without computing them.

10



5.1. Aggressive early deflation applied to symmetric tridiagonal QR
The aggressive early deflation strategy, introduced in [4] for the nonsymmetric Hessenberg

QR algorithm, is known to greatly speed up the algorithm for computing the eigenvalues of a non-
symmetric matrix by deflating converged eigenvalues long before a conventional deflation strategy
does. Here we consider the simpler symmetric tridiagonal case.

We note that for symmetric tridiagonal eigenvalue problems a number of well-known algo-
rithms exist. While the divide-and-conquer algorithm [9] is preferable when both eigenvalues and
eigenvectors are required, the symmetric tridiagonal QR algorithm remains one of the methods of
choice when only the eigenvalues are desired [7, p. 211]. Aggressive early deflation is of practical
interest because it can further speed up the symmetric tridiagonal QR algorithm.

The following is a brief description of aggressive early deflation applied to the symmetric
tridiagonal QR algorithm. Let A + E as in (18) be a matrix obtained in the course of the algorithm.

Here we let A =

[
A1 0
0 A2

]
, where A1 is s × s for an integer parameter s. E has only one off-

diagonal bs. Let A2 = VDVT be an eigendecomposition, where the diagonals of D are arranged in
decreasing order of magnitude. Then, we have

[
I

V

]T

(A + E)
[
I

V

]
=

 A1 tT

t D

 , (19)

where the vector t is given by t = bsV(1, :)T where V(1, :) denotes the first row of V . It often
happens in practice that many elements of t are negligibly small, in which case aggressive early
deflation regards D’s corresponding eigenvalues as converged and deflate them. This is the case
even when none of the off-diagonals of A is particularly small.

This must mean that many eigenvalues of the two matrices A and A + E, particularly the ones
that belong to the bottom-right block, must be nearly equal, or equivalently that the perturbation
of the eigenvalues by the sth off-diagonal bs is negligible. Here we give an explanation to this
under an assumption that is typically valid for a tridiagonal matrix appearing in the course of the
QR algorithm.

It is well-known that under mild assumptions the tridiagonal QR algorithm converges, in that
the diagonals converge to the eigenvalues in descending order of magnitude, and the off-diagonal
elements converge to zero [23]. In light of this, we can reasonably expect the diagonals a j to be
roughly ordered in descending order of their magnitudes, and that the off-diagonals b j are small.
Hence for a target (small) eigenvalue λi ∈ λ(A2), we suppose that Assumption 1 is satisfied, or that
there exists an integer ` > 0 such that |a j − λi| > b j−1 + b j + bs for j = 1, . . . , s + `.

Under these assumptions, to bound
∣∣∣∣λi − λ̂i

∣∣∣∣ we can use Theorem 4.2 in which we let all block

sizes be 1-by-1. Since ∆AS = 0, we have δ0 = bs
gaps−bs−bs−1

, δ1 = bs+1
gaps+1−2bs

δ j =
bs+ j

gaps+ j−bs−bs+ j−1
for

j ≥ 2, and so using gap j = |a j − λi| we get

∣∣∣∣λi − λ̂i

∣∣∣∣ ≤ 2bs
bs

|as − λi| − bs − bs−1


bs+1

gaps+1 − 2bs

∏̀

j=2

bs+ j

|as+ j − λi| − bs − bs+ j−1


2

. (20)
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Simple example. To illustrate the result, let A + E be the 1000-by-1000 tridiagonal matrix as in
(12), where here we let E be zero except for the 900th off-diagonals, which are 1 (i.e., s = 900).
Note that none of the off-diagonals is negligibly small. We focus on λi (the ith smallest eigenvalue
of A) for i = 1, . . . , 9, which are smaller than 10. For such λi we have ` = 87 (since λi <
[a j − η j, a j + η j] = [998 − j, 1004 − j] for j ≤ 987; recall (11)), and so (20) gives a bound

∣∣∣∣λi − λ̂i

∣∣∣∣ ≤ 2bs
bs

|as − λi| − bs − bs−1


bs+1

gaps+1 − 2bs

∏̀

j=2

bs+ j

|as+ j − λi| − bs − bs+ j−1


2

= 2
1

|100 − λi| − 2


1

|100 − 1 − λi| − 2

87∏

j=2

1
|100 − j − λi| − 2


2

< 2
1

|100 − 10| − 2


1

|100 − 1 − 10| − 2

87∏

j=1

1
|100 − j − 10| − 2


2

< 5.2 × 10−267 (21)

for i = 1, . . . , 9. This shows that all the eigenvalues of A2 that are smaller than 10 can be hardly
perturbed by setting the off-diagonal bs to 0.

The same argument as above applied to i = 1, . . . , 80 shows that more than 80 eigenvalues
of A2 match 80 eigenvalues of A to within accuracy 10−16. The general conclusion is that if the
diagonal elements of A are roughly graded and the off-diagonals are not too large (compared with
the difference between the diagonal elements), then we can show by Theorem 4.2 that the smallest
eigenvalues of A are determined accurately by a much smaller lower-right submatrix of A.

We note that [12] shows for the non-symmetric Hessenberg QR algorithm that the process of
aggressive early deflation can be regarded as extracting converged Ritz vectors by the Krylov-
Schur algorithm. Although we treat only the the symmetric tridiagonal case, the advantage of our
analysis above is that it gives computable bounds for the accuracy of λ̂i.

5.2. Eigenvalues of Wilkinson’s matrix
Wilkinson’s matrix [24] appears both in applications and for theoretical purposes, whose fa-

mous 2n + 1 = 21 case is

W+
21 =



10 1

1 9
. . .

. . .
. . . 1
1 1 1

1 0 1

1 1
. . .

. . .
. . .

. . .

. . . 9 1
1 10



. (22)

Such matrices are known to have many pairs of extremely close eigenvalues. For example, the
two largest eigenvalues of W+

21 agree up to about 7 × 10−14. In general, it is observed that for
12



sufficiently large n the largest eigenvalues of W+
2n+1 always have an extremely close pair, while

smaller eigenvalues have a pair that is not as close. Wilkinson [24, p.308] notes that in general the
two largest eigenvalues of the matrix W+

2n+1 agree up to roughly (n!)−2, but does not explain this
in detail. We shall give an explanation using the framework we described in this paper. Define
(2n + 1)-by-(2n + 1) matrices A and E such that A + E = W+

2n+1 by

A =



n 1

1 n − 1
. . .

. . .
. . . 1
1 1 0

0 0 0
0 1 1

1
. . .

. . .

. . . n − 1 1
1 n



, E =



. . .

. . .
. . .

. . .

. . . 1
1 0 1

1
. . .

. . .
. . .

. . .

. . .



. (23)

Note that A has n pairs of multiple eigenvalues of multiplicity 2, and a simple eigenvalue 0. Hence
to prove that large eigenvalues of A + E = W+

2n+1 (those close to n) must have a very close pair, it
suffices to show that large eigenvalues of A are extremely insensitive to the perturbation E.

5.2.1. Bounding
∣∣∣∣̂λi − λi

∣∣∣∣
Unfortunately, the setting (23) does not satisfy Assumption 1 that is required in Theorem 4.2,

because any large eigenvalue of A belongs to some of the top and bottom blocks, which here are
simply the diagonal elements. For example, the two largest eigenvalues of A belong to the top and
bottom blocks.

Here we show that by a slight modification of the derivation of Theorem 4.2 we can still get
sharp bounds for |λi − λ̂i| for large i.

Below we suppose n > 4. First we consider the two largest eigenvalues of A, either of which
we denote by λi (i.e., i can be either 2n or 2n + 1). As before, define x(t) = [x1(t) . . . x2n+1(t)]H

such that (A + tE)x(t) = λi(t)x(t).
First, the (n + 1)th row of (A + tE)x(t) = λi(t)x(t) is

λi(t)xn+1(t) = t(xn(t) + xn+2(t)),

hence
|xn+1(t)| ≤ 2t max(|xn(t)|, |xn+2(t)|)

|λi(t)| , t ∈ [0, 1]. (24)

We separately consider the two cases |xn(t)| ≥ |xn+2(t)| and |xn(t)| < |xn+2(t)|, and show that in both
cases a tight bound can be obtained for |λi(A + E) − λi(A)|.

Suppose |xn(t)| ≥ |xn+2(t)|. Then we also have |xn(t)| ≥ |xn+1(t)| in view of (24). From the nth
row of (A + tE)x(t) = λi(t)x(t) we similarly get

|xn(t)| ≤ |xn−1(t)| + |xn+1(t)|
|λi(t) − 1| , t ∈ [0, 1]. (25)
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Now since n < λi(t) < n+1 for all t ∈ [0, 1]3 we must have |xn−1(t)| ≥ |xn(t)| ≥ |xn+1(t)|. Substituting

this into (25) yields |xn(t)| ≤ |xn−1(t)|
|λi(t) − 1| − 1

. Therefore we have

|xn(t)| ≤ |xn−1(t)|
n − 2

for t ∈ [0, 1].

By a similar argument we find for all t ∈ [0, 1] that

|xn− j(t)| ≤
|xn− j−1(t)|
n − j − 2

for j = 0, . . . , n − 3. (26)

Hence together with (24) we get

|xn+1(t)| ≤ 2t
n − 1

|x2(t)|
n−3∏

j=0

1
n − j − 2

≤ 2t
n − 1

n−3∏

j=0

1
n − j − 2

, (27)

|xn(t)| ≤
n−3∏

j=0

1
n − j − 2

. (28)

We now plug these into (4) to get

|λi(A + E) − λi(A)| ≤
∣∣∣∣∣∣
∫ 1

0
x(t)HEx(t)dt

∣∣∣∣∣∣

≤
∫ 1

0
2(|xn(t)| + |xn+2(t)|)|xn+1(t)|dt

≤ 4
n − 1


n−3∏

j=0

1
n − j − 2


2 ∫ 1

0
tdt

=
2

n − 1


n−3∏

j=0

1
n − j − 2


2

. (29)

The case |xn(t)| < |xn+2(t)| can also be treated similarly, and we get the same result.
Finally, since (29) holds for both i = 2n and i = 2n + 1, we conclude that

|λ2 j(W+
2n+1) − λ2 j+1(W+

2n+1)| ≤ 4
n − 1


n−3∏

j=0

1
n − i − 2


2

. (30)

We easily appreciate that the bound (30) roughly scales as 1/(n−1)((n−2)!)2 as n→ ∞, which
supports the claim in [24].

3We can get n < λ(t) < n + 1 by first following the same argument using n − ‖E‖2 < λ(t) < n + 1, which follows
from Weyl’s and Gerschgorin’s theorems.
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We also note that by a similar argument we can prove for j ≥ 1 that the 2 j−1th and 2 jth largest
eigenvalues of W+

2n+1 match to O((n − j)−1((n − j − 1)!)−2), which is small for small j, but not as
small for larger j. This is an accurate description of what is well known about the eigenvalues of
Wilkinson matrices.

In [25] Ye investigates tridiagonal matrices with nearly multiple eigenvalues, motivated also
by the Wilkinson matrix. We note that we can give another explanation for the nearly multiple
eigenvalue by combining ours with Ye’s. Specifically, we first consider the block partition W+

2n+1 =[
W1 EH

E W2

]
where W1 is (n + 1)-by-(n + 1), and E contains one off-diagonal of W+

2n+1. We can

use Theorem 4.2 to show that the largest eigenvalues of W1 and W2 are nearly the same; let the
distance be δ. Furthermore, we can use Lemma 4.1 to show the corresponding eigenvectors decay
exponentially, so that the eigenvector component for W1 is of order 1/n! at the bottom, and that
for W2 is of order 1/n! at the top. We can then use Theorem 2.1 of [25] to show that W+

2n+1 must
have two eigenvalue within distance δ + O(1/n!). However, this bound is not as tight as the bound
(30), being roughly its square root.

Appendix A. Multiple eigenvalues

In the text we assumed that all the eigenvalues of A + tE are simple for all t ∈ [0, 1]. Here we
treat the case where multiple eigenvalues exist, and show that all the results we proved still hold
exactly the same.

We note that [2, 3] indicate that multiple eigenvalues can be ignored when we take integrals
such as (3), because A + tE can only have multiple eigenvalues on a set of t of measure zero, and
hence (1) can be integrated on t such that A + tE has only simple eigenvalues. However when A, E
are both allowed to be arbitrary Hermitian matrices4 we cannot use this argument, which can be
seen by a simple counterexample A = E = I, for which A + tE has a multiple eigenvalue for all
0 ≤ t ≤ 1. Hence in a general setting we need a different approach.

Appendix A.1. Multiple eigenvalue first order perturbation expansion
First we review a known result on multiple eigenvalue first order perturbation expansion [22,

16, 13]. Suppose that a Hermitian matrix A has a multiple eigenvalue λ0 of multiplicity r. There
exists a unitary matrix Q = [Q1,Q2], where Q1 has r columns, such that

QHAQ =

[
λ0Ir 0

0 Λ

]
, (A.1)

where Λ is a diagonal matrix that contains eigenvalues not equal to λ0. Then, the matrix A + εE
has eigenvalues λ̂1, λ̂2, . . . , λ̂r admitting the first order expansion

λ̂i = λ0 + µi(QH
1 EQ1)ε + o(ε), for i = 1, . . . , r, (A.2)

where µi(QH
1 EQ1) denotes the ith eigenvalue of the r-by-r matrix QH

1 EQ1.

4The argument in [3] assumes that λ is a simple eigenvalue at t = 0.
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Using (A.2), we obtain the partial derivative corresponding to (1) when A + tE has a multiple
eigenvalue λi(t) = λi+1(t) = · · · = λi+r−1(t) of multiplicity r, with corresponding invariant subspace
Q1(t):

∂λi+ j−1(t)
∂t

= µ j(Q1(t)HEQ1(t)) for j = 1, . . . , r. (A.3)

Now, let Q1(t)HEQ1(t) = UHDU be the eigendecomposition in which the diagonals of D are ar-
ranged in descending order. Then D = UQ1(t)EQ1(t)UH = Q̃1(t)EQ̃1(t), where Q̃1(t) = Q1(t)UH,
so µ j(Q1(t)HEQ1(t)) = q j(t)HEq j(t), where q j(t) denotes the jth column of Q̃1(t). Therefore we
can write

∂λi+ j−1(t)
∂t

= q j(t)HEq j(t) for j = 1, . . . , r. (A.4)

Now, since any vector of the form Q1(t)v is an eigenvector corresponding to the eigenvalue λi(t),
so is q j(t). We conclude that we can always write the first order perturbation expansion of λi(t) in
the form (1), in which when λi(t) is a multiple eigenvalue x(t) represents a particular eigenvector
among the many possible choices.

Finally, since all our eigenvector bounds (such as (5), (15) and (16)) hold regardless of whether
λi is a multiple eigenvalue or not, we conclude that all the bounds in the text hold exactly the same
without the assumption that λi(t) is simple for all t ∈ [0, 1].

Appendix A.2. Note on the trailing term
Here we refine the expansion (A.2) by showing that the trailing term is O(ε2) instead of o(ε).

To show this, we recall (A.1) and see that

QH(A + εE)Q =

[
λ0Ir + εQH

1 EQ1 εQH
1 EQ2

εQH
2 EHQ1 Λ + εQH

2 EQ2

]
.

For sufficiently small ε there is a positive gap in the spectrums of the matrices λ0Ir + εQH
1 E11Q1

and Λ + εQH
2 E22Q2. Hence, using the quadratic eigenvalue perturbation bounds in [14] and

the fact ‖εQH
1 EQ2‖2 ≤ ‖εE‖2 we see that the ith eigenvalue of A + εE and those of the matrix[

λ0Ir + εQH
1 EQ1 0

0 Λ + εQH
2 EQ2

]
differ at most by

2‖εE‖22
gap +

√
gap2 + 4‖εE‖22

. This is of size O(ε2)

because gap > 0. Therefore we conclude that (A.2) can be replaced by

λ̂i = λ0 + µi(QH
1 EQ1)ε + O(ε2) for i = 1, 2, . . . , r. (A.5)
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pointing out many connections with related work in the literature.
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