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Abstract. A new algorithm is developed for computing arbitrary real powers Ap of a matrix A ∈ Cn×n.
The algorithm starts with a Schur decomposition, takes k square roots of the triangular factor T , evaluates an
[m=m] Padé approximant of ð1− xÞp at I − T1=2k , and squares the result k times. The parameters k andm are
chosen to minimize the cost subject to achieving double precision accuracy in the evaluation of the Padé
approximant, making use of a result that bounds the error in the matrix Padé approximant by the error
in the scalar Padé approximant with argument the norm of the matrix. The Padé approximant is evaluated
from the continued fraction representation in bottom-up fashion, which is shown to be numerically stable. In
the squaring phase the diagonal and first superdiagonal are computed from explicit formulae for Tp=2j , yielding
increased accuracy. Since the basic algorithm is designed for p ∈ ð−1; 1Þ, a criterion for reducing an arbitrary
real p to this range is developed, making use of bounds for the condition number of theAp problem. How best to
computeAk for a negative integer k is also investigated. In numerical experiments the new algorithm is found to
be superior in accuracy and stability to several alternatives, including the use of an eigendecomposition and
approaches based on the formula Ap ¼ expðp logðAÞÞ.
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1. Introduction. The need to compute fractional powers Ap of a square matrix A
arises in a variety of applications, including Markov chain models in finance and health-
care [8], [30], fractional differential equations [29], discrete representations of norms cor-
responding to finite element discretizations of fractional Sobolev spaces [3], and the
computation of geodesic-midpoints in neural networks [11]. Here, p is an arbitrary real
number, not necessarily rational. In some applications A is large and sparse and the
problem is posed as the computation of Apb for a vector b [3], [29]; when an Arnoldi
or Lanczos approximation is employed a small subproblem Hpb with H Hessenberg
or tridiagonal arises [23, sect. 13.2], and this can be solved by evaluating Hp. The
Apb problem can also be attacked using the methods of Hale, Higham, and Trefethen
[16], though they require the spectrum of A to lie on or near the positive real axis.

Often, p is the reciprocal of a positive integer q, in which caseX ¼ Ap ¼ A1=q is a qth
root of A. Various methods are available for the qth root problem, based on the Schur
decomposition and appropriate recurrences [14], [37], Newton or inverse Newton itera-
tions [15], [27], Padé iterations [28], [33], or a variety of other techniques [6]; see
[23, Chap. 7] and [25] for surveys. However, none of these methods is applicable for
arbitrary real p.
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Arbitrary matrix powers can be defined via the Cauchy integral [23, Def. 1.11]

Ap ≔
1

2πi

Z
Γ
zpðzI − AÞ−1dz;ð1:1Þ

where Γ is a closed contour that encloses the spectrum ΛðAÞ. This definition yields many
different matrices Ap, as the branch of the function zp can be chosen independently
around each eigenvalue. For practical purposes it is more useful to define Ap uniquely
as follows.

DEFINITION 1.1. Let A ∈ Cn×n have no eigenvalues on R− except possibly for a semi-
simple zero eigenvalue, and let p ∈ R. If A is nonsingular,

Ap ¼ exp ðp logðAÞÞ;ð1:2Þ

where logðAÞ is the principal logarithm ofA [23, Thm. 1.31]. Otherwise, write the Jordan
canonical form of A as A ¼ ZdiagðJ 1; 0ÞZ−1, where J1 contains the Jordan blocks
corresponding to the nonzero eigenvalues. Then

Ap ¼ ZdiagðJp
1 ; 0ÞZ−1;ð1:3Þ

where Jp
1 is defined by (1.2).

It follows from the theory of matrix functions that the matrix given by Definition 1.1
is independent of the particular choice of Jordan canonical form. Moreover, if A is real
then Ap is real. For p ¼ 1=q, with q a positive integer, Ap reduces to the principal qth
root of A [23, Thm. 7.2]. For 0 < p < 1, Ap can also be represented as the real integral
[23, pp. 174, 187]

Ap ¼ sinðpπÞ
pπ

A

Z
∞

0
ðt1=pI þ AÞ−1dt:ð1:4Þ

The aim of this work is to devise a reliable algorithm for computing Ap for arbitrary
p ∈ R. When A is diagonalizable, so that A ¼ XDX−1 for a diagonal D ¼ diagðdiÞ and
nonsingular X , we can compute Ap ¼ XDpX−1 ¼ Xdiagðdpi ÞX−1. If X is unitary (that
is, A is normal), this is an excellent way to compute Ap (and is what our new algorithm,
Algorithm 5.1, reduces to for normal A). Alternatively, for any A we can compute the
Schur decomposition A ¼ QTQ�, with Q unitary and T upper triangular, from which
Ap ¼ QTpQ�. The matrix Tp has diagonal elements tpii and we can obtain the super-
diagonal elements from the Parlett recurrence if the tii are distinct [23, sect. 4.6], [35].
However, this approach breaks down when A is nonnormal with repeated eigenvalues.

The definition (1.2) suggests another way to compute Ap: to employ existing algo-
rithms for the matrix exponential and the matrix logarithm. However, if we use the
inverse scaling and squaring method for X ¼ logðAÞ [9], [23, sect. 11.5], [31] followed
by the scaling and squaring method for expðpXÞ [1], [22], [24] then we are computing
two Padé approximants: one of the logarithm and the other of the exponential. We ex-
pect benefits to accrue from employing a single Padé approximant, to ð1− xÞp. In this
work we develop an algorithm for computing Ap based on direct Padé approximation
of ð1− xÞp.

We begin, in section 2, by investigating the conditioning of fractional powers. Padé
approximation of ð1− xÞp, and in particular how to bound the error in the approxima-
tion at a matrix argument, is the subject of section 3. Evaluation of the matrix Padé
approximant is considered in section 4, where we investigate the numerical stability of
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the continued fraction representation evaluated in the bottom-up fashion. An algorithm
for Ap with p ∈ ð−1; 1Þ that employs an initial Schur decomposition, matrix square
roots, Padé approximation, and squarings is developed in section 5. In section 6 we ex-
plain how to deal with general p not necessarily in the interval ð−1; 1Þ and negative
integer p, while in section 7 we extend our algorithm to handle singular matrices with
a semisimple zero eigenvalue. Some alternative algorithms are considered in section 8,
and all the algorithms are compared in the numerical experiments of section 9. Finally,
some concluding remarks are given in section 10.

2. Conditioning. We first investigate the sensitivity of Ap to perturbations in A.
We denote by Lf ðA;EÞ the Fréchet derivative of f at A in the direction E, which is
a linear operator mapping E to Lf ðA;EÞ characterized by f ðAþ EÞ ¼ f ðAÞþLf ðA;EÞþ
oðkEkÞ. We also recall the definition and characterization of condition number

κf ðAÞ ≔ lim
ϵ→0

sup
kEk≤ϵkAk

kfðAþ EÞ− fðAÞk
ϵkfðAÞk ¼ kLf ðAÞkkAk

kf ðAÞk ;ð2:1Þ

where

kLf ðXÞk ≔ max
Z≠0

kLf ðX; ZÞk
kZk :ð2:2Þ

For background on Fréchet derivatives and condition numbers see [23, sects. 3.1, 3.2].
Let vec denote the operator that stacks the columns of a matrix into one long

vector and let ⊗ denote the Kronecker product. For any f , we have vecðLf ðA;EÞÞ ¼
Kf ðAÞvecðEÞ for a certain matrix Kf ðAÞ ∈ Cn2×n2

called the Kronecker representation
of the Fréchet derivative and, moreover, kLf ðAÞkF ¼ kKf ðAÞk2 [23, (3.20)]. It follows
that, in the Frobenius norm,

κf ðAÞ ¼
kKf ðAÞk2kAkF

kf ðAÞkF
:ð2:3Þ

To obtain a formula for KxpðAÞ we first apply the chain rule [23, Thm. 3.4] to the
expression Ap ¼ expðp logðAÞÞ, to obtain

LxpðA;EÞ ¼ pLexpðp logðAÞ; LlogðA;EÞÞ:ð2:4Þ

Then, by applying the vec operator, we find that

vecðLxpðA;EÞÞ ¼ pK expðp logðAÞÞvecðLlogðA;EÞÞ ¼ pK expðp logðAÞÞK logðAÞvecðEÞ;

which implies

KxpðAÞ ¼ pK expðp logðAÞÞK logðAÞ:ð2:5Þ

This matrix can be computed explicitly if n is small, or its norm estimated based on a few
matrix–vector products involving KxpðAÞ and its conjugate transpose [23, sect. 3.4].

We now derive some bounds for the condition number κxpðAÞ that give insight into
its size. First, note that, since ðAþ ϵI Þp ¼ Ap þ pϵAp−1 þOðϵ2Þ for sufficiently small ϵ
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(by a general result on the convergence of a matrix Taylor series [23, Thm. 4.7]), we have
LxpðA; I Þ ¼ pAp−1 and hence kLxpðAÞk ≥ jpjkAp−1k=kIk.

Since [23, (10.15)]

LexpðA;EÞ ¼
Z

1

0
eAð1−sÞEeAsds;ð2:6Þ

we have, from (2.4),

kLxpðA;EÞk ¼ jpj
����
Z

1

0
ep logðAÞð1−sÞLlogðA;EÞep logðAÞsds

����
≤ jpjkLlogðA;EÞk

Z
1

0
ejpjð1−sÞklogðAÞkejpjsklogðAÞkds

≤ jpjejpjklogðAÞkkLlogðAÞkkEk;

and so kLxpðAÞk ≤ jpjejpjklogðAÞkkLlogðAÞk. Thus we have the upper and lower bounds

jpjkAp−1k
kIk ≤ kLxpðAÞk ≤ jpjejpjklogðAÞkkLlogðAÞk:ð2:7Þ

We also have the following lower bound [23, Thm. 3.14, Cor. 3.16], with f ½λ;μ� denoting
the first divided difference of f ðxÞ ¼ xp,

kLxpðAÞk ≥ max
λ;μ∈ΛðAÞ

jf ½λ;μ�j ¼ max

�
max
λ∈ΛðAÞ

jpjjλp−1j; max
λ;μ∈ΛðAÞ

λ≠μ

jλp − μpj
jλ− μj

�
;ð2:8Þ

which is an equality for the Frobenius norm when A is normal. When A is Hermitian the
lower bounds in (2.7) and (2.8) are the same for the 2-norm; we will make use of the lower
bound in this case in section 6.

3. Padé approximation and error bounds. A ½k=m� Padé approximant of
ð1− xÞp is a rational function rkmðxÞ ¼ pkmðxÞ=qkmðxÞ with qkmð0Þ ¼ 1 such that

ð1− xÞp − rkmðxÞ ¼ Oðxkþmþ1Þ;

where pkm and qkm are polynomials of degree at most k and m, respectively. If a ½k=m�
Padé approximant exists then it is unique [4, Thm. 1.1], [5, Thm. 1.4.3], [23, Prob. 4.2].
The aims of this section are to show the existence of Padé approximants of ð1− xÞp and
to investigate the error in the Padé approximant at a matrix argument X ∈ Cn×n with
kXk < 1. Throughout this section the norm is assumed to be a subordinate matrix norm.

The scalar hypergeometric function is

2F1ðα;β; γ; xÞ≡ 1þ αβ

γ
xþ αðαþ 1Þβðβþ 1Þ

2!γðγ þ 1Þ x2þ · · ·¼
X∞
i¼0

ðαÞiðβÞi
i!ðγÞi

xi;ð3:1Þ

where α, β, γ, x ∈ R, γ is not a nonpositive integer, ðaÞ0 ¼ 1, and ðaÞi ≡ aðaþ 1Þ : : : ðaþ
i− 1Þ for i ≥ 1. Replacing x in (3.1) with X ∈ Cn×n we obtain the matrix hypergeo-
metric function
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2F1ðα;β; γ; XÞ≡
X∞
i¼0

ðαÞiðβÞi
i!ðγÞi

Xi:ð3:2Þ

Since (3.1) converges if jxj < 1 [2, Thm. 2.1.1], the matrix series (3.2) converges if
ρðXÞ < 1 [23, Thm. 4.7], where ρ is the spectral radius. We are interested in the special
case where α ¼ −p, β ¼ 1, γ ¼ 1, and jxj < 1:

2F1ð−p; 1; 1; xÞ ¼ 1− pxþ pðp− 1Þ
2

x2þ · · ·¼ ð1− xÞp:

The following lemma shows the existence of the Padé approximants of ð1− xÞp for
all p ∈ R.

LEMMA 3.1. For p ∈ R, the ½k=m� Padé approximant of ð1− xÞp exists for all
nonnegative integers k and m.

Proof. It is shown in [4, p. 65], [5, sect. 2.3] that for any α, γ ∈ R the ½k=m� Padé
approximant of the general hypergeometric function 2F1ðα; 1; γ; xÞ exists for k−mþ
1 ≥ 0. Thus ½k=m� Padé approximants to ð1− xÞp exist for all p ∈ R for k ≥ m. From
ð1− xÞp ¼ 1=ð1− xÞ−p and the duality property that the ½k=m� Padé approximant of
the reciprocal of a function is the reciprocal of the ½m=k� Padé approximant of the
function [5, Thm. 1.5.1], it follows that ð1− xÞp has a ½k=m� Padé approximant for
k ≤ m. ▯

We now state some properties of qkmðxÞ. The following result of Kenney and Laub
bounds the condition number of the matrix qkmðXÞ.

LEMMA 3.2. Let qkmðxÞ be the denominator polynomial of the ½k=m� Padé approxi-
mant of 2F1ðα; 1; γ; xÞ where 0 < α < γ and k−mþ 1 ≥ 0. The zeros of qkmðxÞ are all
simple and lie in the interval ð1;∞Þ. Furthermore, for X ∈ Cn×n with kXk < 1,

kqkmðXÞk ≤ qkmð−kXkÞ; kqkmðXÞ−1k ≤ qkmðkXkÞ−1ð3:3Þ

and hence

κðqkmðXÞÞ ≤ qkmð−kXkÞ
qkmðkXkÞ :ð3:4Þ

Proof. See [32, Cor. 1 and Lem. 3], where X ∈ Rn×n is assumed; the proofs there are
nevertheless valid for complex X . ▯

COROLLARY 3.3. Let qkmðxÞ be the denominator polynomial of the ½k=m� Padé ap-
proximant of ð1− xÞp with −1 < p < 1 and k−m ≥ 0. Then the zeros of qkmðxÞ are
all simple and lie in the interval ð1;∞Þ, and for X ∈ Cn×n with kXk < 1, the matrix
qkmðXÞ satisfies (3.3) and (3.4). In particular, when −1 < p < 0 these conclusions hold
for k−mþ 1 ≥ 0.

Proof. It is straightforward to show that ð1− xÞp ¼ 1− px · 2F1ð1− p; 1; 2; xÞ and,
moreover, that if k ≥ m then the ½k=m� Padé approximant of ð1− xÞp is pkm= ~qk−1;m ¼
1− px ~rk−1;m, where ~rk−1;m ¼ ~pk−1;m= ~qk−1;m is the ½k− 1=m� Padé approximant of
2F1ð1− p; 1; 2; xÞ.

Since −1 < p < 1 we have 0 < 1− p < 2, and since also ðk− 1Þ−mþ 1 ≥ 0 the
properties of ~qk−1;mðxÞ in Lemma 3.2 all hold. If −1 < p < 0, it follows from Lemma 3.2
with α ¼ −p and γ ¼ 1 that the conclusions hold for k−mþ 1 ≥ 0. ▯

Denote by Eð2F1ðα; 1; γ; ·Þ; k;m; xÞ the error in the ½k=m� Padé approximant to

2F1ðα; 1; γ; xÞ, that is,
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Eð2F1ðα; 1; γ; ·Þ; k;m; xÞ ¼ 2F1ðα; 1; γ; xÞ− rkmðxÞ:ð3:5Þ
The following lemma provides a series expansion for this error.

LEMMA 3.4. For jxj < 1, k−mþ 1 ≥ 0, and α not a negative integer, the error (3.5)
can be written

Eð2F1ðα; 1; γ; ·Þ; k;m; xÞ ¼ qkmð1Þ
qkmðxÞ

X∞
i¼kþmþ1

ðαÞiði− ðkþmÞÞm
ðγÞiðiþ α−mÞm

xi:ð3:6Þ

Proof. See Kenney and Laub [32, Thm. 5]. The statement of Theorem 5 in [32]
requires 0 < α < γ, but in fact only the condition that α is not a negative integer
(and hence ðiþ α−mÞm is nonzero) is needed in the proof. ▯

We are now in a position to bound the error in Padé approximation of the matrix
function ðI −XÞp ¼ 2F1ð−p; 1; 1; XÞ. The following result, which for −1 < p < 0 is a
special case of [32, Cor. 4], shows that the error is bounded by the error of the same
approximation at the scalar argument kXk.

THEOREM 3.5. For k−m ≥ 0, −1 < p < 1, and kXk < 1,

kEððI − XÞp; k;m;XÞk ≤ jEðð1− kXkÞp; k;m; kXkÞj:ð3:7Þ

In particular, when −1 < p < 0, (3.7) holds for k−mþ 1 ≥ 0.
Proof. For any matrixX with kXk < 1, ðI − XÞp ¼ 2F1ð−p; 1; 1; XÞ is defined and,

by (3.6),

EððI − XÞp; k;m;XÞ ¼ qkmð1ÞqkmðXÞ−1
X∞

i¼kþmþ1

ð−pÞiði− ðkþmÞÞm
i!ði− p−mÞm

Xi;ð3:8Þ

where qkmðxÞ is the denominator of the ½k=m� Padé approximant to ð1− xÞp. We claim
that every coefficient in the sum has the same sign, that is, the signs are independent of i
for i ≥ kþmþ 1. Indeed, ð−pÞi < 0 for 0 < p < 1 and ð−pÞi > 0 for −1 < p < 0, and
clearly ði− ðkþmÞÞm > 0 and ði− p−mÞm > 0. Therefore, by Corollary 3.3 and the
second inequality in (3.3), we have

kEððI − XÞp; k;m;XÞk ≤
jqkmð1Þj
qkmðkXkÞ

X∞
i¼kþmþ1

jð−pÞijði− ðkþmÞÞm
i!ði− p−mÞm

kXki

¼ jqkmð1Þj
qkmðkXkÞ

���� X∞
i¼kþmþ1

ð−pÞiði− ðkþmÞÞm
i!ði− p−mÞm

kXki
����

¼ jEðð1− kXkÞp; k;m; kXkÞj:

If −1 < p < 0, the result holds for k−mþ 1 ≥ 0, since Corollary 3.3 shows that the
required bound kqkmðXÞ−1k ≤ qkmðkXkÞ−1 still holds in this case. ▯

In practice, we would like to select k andm to minimize the error for a given order of
approximation. The following result of Kenny and Laub [32, Thm. 6] is useful in this
respect.

THEOREM 3.6. Let k−mþ 1 ≥ 0, m ≥ 1, and 0 < α < γ, and let the subordinate
matrix norm k · k satisfy kM 1k ≤ kM 2k whenever 0 ≤ M 1 ≤ M 2, where the latter
inequalities are interpreted componentwise. Then, if X ∈ Rn×n has nonnegative
entries,
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kEð2F1ðα; 1; γ; ·Þ; k;m;XÞk ≤ kEð2F1ðα; 1; γ; ·Þ; kþ 1;m− 1; XÞk:ð3:9Þ

Applying Theorem 3.6 with α ¼ −p ∈ ð0; 1Þ and γ ¼ 1, we obtain the corresponding
result for ðI − XÞp, where−1 < p < 0. For 0 < p < 1, the inequality (3.9) holds for k,m
satisfying k−m ≥ 0; this can be proved in the same way as Theorem 3.6, using
Corollary 3.3. We conclude that when X has nonnegative entries and k ≥ m− 1, the
error is reduced as k andm approach the main diagonal (k ¼ m) and first superdiagonal
(kþ 1 ¼ m) of the Padé table. In the rest of the paper we will concentrate on the use of
the diagonal Padé approximants rm ≡ rmm.

4. Evaluating Padé approximants of �I− X�p. The Padé approximant rmðxÞ
to ð1− xÞp has the continued fraction expansion [4, p. 66], [5, p. 174]

rmðxÞ ¼ 1þ c1x

1þ c2x

1þ c3x

· · ·
1þ c2m−1x

1þ c2mx

;ð4:1Þ

where

c1 ¼ −p; c2j ¼
−jþ p

2ð2j− 1Þ ; c2jþ1 ¼
−j− p

2ð2jþ 1Þ ; j ¼ 1; 2; : : : :

This expansion provides a convenient means to evaluate rmðXÞ for X ∈ Cn×n. However,
just as for the logarithm [20], there are several possible methods for evaluation at a
matrix argument:

1. Top-down evaluation of (4.1).
2. Bottom-up evaluation of (4.1).
3. Evaluation of the numerator and denominator in the representation

rmðxÞ ¼ pmðxÞ=qmðxÞ by Horner’s method or the Paterson and Stockmeyer
method [23, sect. 4.2], [36].

4. Evaluation of rmðxÞ ¼ pmðxÞ=qmðxÞ using the representations of pm and qm as
products of linear factors (the zeros of pm and qm are all real).

5. Evaluation of the partial fraction representation rmðxÞ ¼ α0 þ
P

m
j¼1 αj=

ðβj − xÞ.
A detailed comparison of these possibilities with respect to numerical stability and

computational cost is given by Lin [34]. The method that is found to be the best in the
context of the algorithm to be developed in the next section is bottom-up evaluation of
(4.1), which is summarized as follows.

ALGORITHM 4.1 (CONTINUED FRACTION, BOTTOM-UP).
This algorithm evaluates the continued fraction (4.1) in bottom-up fashion at the
matrix X ∈ Cn×n.

1 Y 2m ¼ c2mX
2 for j ¼ 2m− 1∶ − 1∶1
3 Solve ðI þYjþ1ÞYj ¼ cjX for Yj

4 end
5 rm ¼ I þ Y 1
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We now investigate the numerical stability of this recurrence. Let k · k denote any
p-norm, assume that kYjk < 1 for all j, and let bYj ≡Yj þ ΔYj denote the computed
Yj. The errors in obtaining Yj from ðI þYjþ1ÞYj ¼ cjX result from forming the right-
hand side and solving the system. We assume that the underlying linear system solver is
backward stable for a single right-hand side, which implies for our multiple right-hand
side system that [21, sect. 9]

ðI þ bYjþ1ÞbYj ¼ cjX þ Fj þ Rj;

where kFjk ≤ ujcjjkXk and kRjk ≤ αnuð1þ k bYjþ1kÞkbYjk, for some constant αn, where
u is the unit roundoff. Then ðI þYjþ1ÞΔYj ¼ Fj þ Rj − ΔYjþ1Yj þOðu2Þ, which
implies

kΔYjk ≤
1

1− kYjþ1k
ðujcjjkXk þ αnuð1þ kYjþ1kÞkYjk þ kYjkkΔYjþ1kÞ

þOðu2Þ; j ¼ 2m− 1∶ − 1∶1; kΔY 2mk ≤ ujc2mjkXk:ð4:2Þ

We can bound kYjk from the recurrence

kYjk ≤
jcjjkXk

1− kYjþ1k
; j ¼ 2m− 1∶ − 1∶1; kY 2mk ¼ jc2mjkXk:ð4:3Þ

Together, the recurrences (4.2) and (4.3) allow us to compute, to first order, a bound on
kΔY 1k for any given kXk. An upper bound for the relative error can then be obtained by
using kY 1k ≥ jc1jkXk=ð1þ kY 2kÞ together with the upper bound for kY 2k from (4.3).

Table 4.1 shows the values of the bound for kΔY 1k=kY 1k for a range of p ∈ ð0; 1Þ
and kXk ∈ ð0; 1Þ, with αn ≡ 1 (the bound scales roughly linearly with αn). Here, the
values of m, shown in Table 4.2, are chosen as the smaller of 100 and the minimal value
for which

krmðXÞ− ðI − XÞpk ≤ jð1− kXkÞp − rmðkXkÞj ≤ uð4:4Þ

with u ¼ 2−53 ≈ 1.1× 10−16, where the first inequality always holds by Theorem 3.5.
The assumption kYjk < 1 was found to be satisfied in every case. The results show that
as long as we keep kXk below 0.9, say, the numerical stability of Algorithm 4.1 will
be excellent. In fact, in Algorithm 5.1 we will limit kXk to about 0.3, for other
reasons.

TABLE 4.1
Constants d in the bounds kΔY 1k=kY 1k ≤ duþOðu2Þ for different kXk and p.

p

kXk 0.1 0.3 0.5 0.7 0.9

0.99 3.46e2 3.21e2 2.90e2 2.56e2 2.19e2
0.95 6.53e1 6.08e1 5.55e1 4.97e1 4.33e1
0.90 3.12e1 2.92e1 2.68e1 2.43e1 2.15e1
0.75 1.14e1 1.07e1 1.00e1 9.24e0 8.42e0
0.50 5.01e0 4.80e0 4.59e0 4.36e0 4.12e0
0.25 2.98e0 2.91e0 2.85e0 2.77e0 2.70e0
0.10 2.32e0 2.30e0 2.28e0 2.26e0 2.23e0
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5. Schur–Padé algorithm for Ap. Now we develop an algorithm for computing
Ap for a real p ∈ ð−1; 1Þ, where A has no nonpositive real eigenvalues. We can restrict p
to ð−1; 1Þ without loss of generality, since in general we can compute Ap ¼ Ap1Ap2 with
p1 ∈ ð−1; 1Þ and p2 an integer. How best to choose p1 and p2 is considered in section 6.

Our algorithm exploits the relation Ap ¼ ðA1=2kÞp·2k . We take square roots of A re-
peatedly until A1=2k is close to the identity matrix. Then, withX ¼ I − A1=2k , we can use
the approximation ðA1=2kÞp ≈ rmðXÞ, where rm is the [m=m] Padé approximant to
ð1− xÞp. We recover an approximation to the pth power of the original matrix from
Ap ≈ rmðXÞ2k . This approach is analogous to the inverse scaling and squaring method
for the matrix logarithm [9], [23, sect. 11.5], [31]. In order to facilitate the computation of
the square roots we compute an initial Schur decomposition A ¼ QTQ�, so that the
problem is reduced to that for a triangular matrix.

For any p ∈ ½−1; 1� and m we denote by θðpÞm the largest value of kXk such that the
second inequality holds in (4.4). With u ¼ 2−53, we determined θðpÞm empirically in
MATLAB, using high precision computations with the Symbolic Math Toolbox. For
p ¼ 1=2 and a range of m ∈ ½1; 64�, Table 5.1 reports the results to three significant

figures. To see how the values of θðpÞm vary with p for a specific m, we show in Figure 5.1

the values of θðpÞm corresponding to 324 different values of p between −0.999 and 0.999,
for a range of m. Table 5.2 reports the corresponding minimum values of θðpÞm over
p ∈ ½−1; 1�. For each m, θðpÞm tends to 1 as p tends to −1, 0, or 1. Our results show, how-
ever, that the relative variation of θðpÞm with p is slight, except when p is within distance
about 10−4 of −1, 0, or 1. We therefore base our algorithm on the values

θm ¼ min
p∈½−1;1�

θðpÞmð5:1Þ

and do not optimize the algorithm parameters separately for each particular p.

TABLE 4.2
Minimal values of m for which (4.4) holds.

p

kXk 0.1 0.3 0.5 0.7 0.9

0.99 88 100 100 84 79
0.95 38 39 39 39 36
0.90 27 27 27 27 26
0.75 16 16 16 16 15
0.50 9 10 10 10 10
0.25 6 6 7 7 6
0.10 5 5 5 5 5

TABLE 5.1
θðpÞm , for p ¼ 1=2 and selected m.

m 1 2 3 4 5 6 7 8 9

θð1=2Þm 1.53e−5 2.25e−3 1.92e−2 6.08e−2 1.25e−1 2.03e−1 2.84e−1 3.63e−1 4.35e−1

m 10 11 12 13 14 15 16 32 64

θð1=2Þm 4.99e−1 5.55e−1 6.05e−1 6.47e−1 6.84e−1 7.17e−1 7.44e−1 9.27e−1 9.81e−1
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In designing the algorithm we minimize the cost subject to achieving the desired
accuracy, adapting a strategy used within the inverse scaling and squaring algorithm
for the matrix logarithm in [9], [23, sect. 11.5]. Computing a square root of a triangular
matrix T by the Schur method of Björck and Hammarling [7], [23, Alg. 6.3] costs n3=3
flops, while evaluating rmðTÞ by Algorithm 4.1 costs ð2m− 1Þn3=3 flops. Bearing in
mind the squaring phase, it is therefore worthwhile to compute an extra square root
if it allows a reduction in the Padé degree m by more than 1. Considering that

kI − T 1=2k ¼ kðI þ T1=2Þ−1ðI − TÞk≈ 1

2
kI − Tkð5:2Þ

once T ≈ I and that, from Table 5.2, θm=2 < θm−2 for m > 7, the cost of computing Tp

when kI − Tk > θ7 will be minimized if we take square roots of T repeatedly until
kI − T 1=2kk ≤ θ7. Then it is worth taking one more square root if it reduces the required
m by more than 1.

An important final ingredient of our algorithm is a special implementation of the
squaring phase, obtained by adapting the approach suggested by Al-Mohy and Higham

TABLE 5.2
Minimum values of θðpÞm , for p ∈ ½−1; 1�.

m 1 2 3 4 5 6 7 8 9

minp θ
ðpÞ
m 1.51e−5 2.24e−3 1.88e−2 6.04e−2 1.24e−1 2.00e−1 2.79e−1 3.55e−1 4.25e−1

m 10 11 12 13 14 15 16 32 64

minp θ
ðpÞ
m 4.87e−1 5.42e−1 5.90e−1 6.32e−1 6.69e−1 7.00e−1 7.28e−1 9.15e−1 9.76e−1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIG. 5.1. θðpÞm against p, form ¼ 1∶25, 32, 64;m ¼ 1 is the lowest curve andm ¼ 64 the highest curve. θm
in (5.1) is marked as “�”. The curves are not symmetric about p ¼ 0.
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[1] for the matrix exponential. The squaring phase forms rmðI − T1=2kÞ2j ≈ Tp=2k−j
,

j ¼ 1∶k. But we can evaluate the diagonal and first superdiagonal elements of
Tp=2k−j

exactly from explicit formulas, and injecting these values into the recurrence
should reduce the propagation of errors. The diagonal entries are computed in the ob-
vious way. We now derive an appropriate formula for the first superdiagonal.

The (1,2) element of F ¼ ½λ10 t12
λ2
�p is given by f 12 ¼ t12ðλp2 − λp1Þ=ðλ2 − λ1Þ if λ1 ≠ λ2,

or pλp−1
1 t12 otherwise [23, sect. 4.6]. We need a way of evaluating the divided difference

ðλp2 − λp1Þ=ðλ2 − λ1Þ accurately even when λ1 and λ2 are very close; this formula itself suf-
fers from cancellation. We have

λp2 − λp1
λ2 − λ1

¼ expðp log λ2Þ− expðp log λ1Þ
λ2 − λ1

¼ exp

�
p

2
ðlog λ2 þ log λ1Þ

�
expðp2 ðlog λ2 − log λ1ÞÞ− expðp2 ðlog λ1 − log λ2ÞÞ

λ2 − λ1

¼ exp

�
p

2
ðlog λ2 þ log λ1Þ

�
2 sinhðp2 ðlog λ2 − log λ1ÞÞ

λ2 − λ1
:

The remaining problem is to evaluate w ¼ log λ2 − log λ1 accurately. To avoid cancella-
tion we can rewrite [23, sect. 11.6.2]

w ¼ log

�
λ2
λ1

�
þ 2πiUðlog λ2 − log λ1Þ ¼ log

�
1þ z

1− z

�
þ 2πiUðlog λ2 − log λ1Þ;

where z ¼ ðλ2 − λ1Þ=ðλ2 þ λ1Þ and UðzÞ is the unwinding number of z ∈ C defined by

UðzÞ ≔ z − logðezÞ
2πi

¼
�
Im z − π

2π

�
∈ Z:ð5:3Þ

Then, using the hyperbolic arc tangent atanhðzÞ, defined by

atanhðzÞ ≔ 1

2
log

�
1þ z

1− z

�
;ð5:4Þ

w can be expressed as

w ¼ 2 atanhðzÞ þ 2πiUðlog λ2 − log λ1Þ:

Hence

f 12 ¼ t12 exp

�
p

2
ðlog λ2 þ log λ1Þ

�
2 sinhðpðatanhðzÞ þ πiUðlog λ2 − log λ1ÞÞÞ

λ2 − λ1
:ð5:5Þ

Overall, we have the formula

f 12 ¼

8><
>:

t12pλ
p−1
1 ; λ1 ¼ λ2;

t12
λp2−λp1
λ2−λ1

; jλ1j < jλ2j=2 or jλ2j < jλ1j=2;
ð5.5Þ otherwise;

ð5:6Þ

where we evaluate the usual divided difference if λ1 and λ2 are sufficiently far apart. We
are assuming that accurate implementations of the scalar sinh and atanh functions are
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available. The definition (5.4) is that used in MATLAB; there is an alternative to (5.4)
which necessitates modifications to (5.5) described in [23, sect. 11.6.2].

Now we state the overall algorithm.

ALGORITHM 5.1 (SCHUR–PADÉ ALGORITHM).
Given A ∈ Cn×n with no eigenvalues on R− and a nonzero p ∈ ð−1; 1Þ this algorithm
computes X ¼ Ap via a Schur decomposition and Padé approximation. It uses the con-
stants θm ≔ minp θ

ðpÞ
m in Table 5.2. The algorithm is intended for IEEE double precision

arithmetic.
1 Compute a (complex) Schur decomposition A ¼ QTQ�.
2 If T is diagonal, X ¼ QTpQ�, quit, end
3 T0 ¼ T
4 k ¼ 0, q ¼ 0
5 while true
6 τ ¼ kT − Ik1
7 if τ ≤ θ7
8 q ¼ qþ 1
9 j1 ¼ minfi∶τ ≤ θi; i ¼ 3∶7g

10 j2 ¼ minfi∶τ=2 ≤ θi; i ¼ 3∶7g
11 if j1 − j2 ≤ 1 or q ¼ 2, m ¼ j1, goto line 16, end
12 end
13 T←T 1=2 using the Schur method [23, Alg. 6.3].
14 k ¼ kþ 1
15 end
16 Evaluate U ¼ rmðI − TÞ using Algorithm 4.1.
17 for i ¼ k∶ − 1∶0
18 if i < k, U←U 2, end
19 Replace diagðUÞ by diagðT 0Þp=2i .
20 Replace first superdiagonal of U by first superdiagonal of Tp=2i

0 obtained
from (5.6) with p←p=2i.

21 end
22 X ¼ QUQ�

Cost: 25n3 flops for the Schur decomposition plus ð2kþ 2m− 1Þn3=3 flops for U
and 3n3 to get X ; about ð28þ ð2kþ 2m− 1Þ=3Þn3 flops in total.

Note that line 2 simply computes Tp in the obvious way when T is diagonal, that is,
when A is normal; there is no need for Padé approximation in this case.

If A is real, we could take the real Schur decomposition at line 1, and compute the
square roots of the now quasitriangular T at line 13 using the real Schur method [19],
[23, Alg. 6.7]. This would guarantee a real computed bX and could be faster due to the
avoidance of complex arithmetic.

6. General p ∈ R. In developing the Schur–Padé algorithm we assumed
p ∈ ð−1; 1Þ. For a general noninteger p ∈ R there are two ways to reduce the power
to the interval ð−1; 1Þ. We can write

p ¼ bpc þ p1; p1 > 0;ð6:1aÞ
p ¼ dpe þ p2; p2 < 0;ð6:1bÞ
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where p1 − p2 ¼ 1. To choose between these two possibilities we will concentrate on
the computation of Ap1 and Ap2 and ask which of these computations is the better
conditioned. To make the analysis tractable we assume that A is Hermitian positive
definite with eigenvalues λ1 ≥ · · ·≥ λn > 0 and we use the lower bound (2.8), which
is now an equality for the Frobenius norm. Using the mean value theorem, we obtain,
for p ∈ ð−1; 1Þ and fðxÞ ¼ xp,

kLxpðAÞkF ¼ max
i≤j

jf ½λi; λj�j ¼ max
i≤j

jf  0ðξijÞj; ξij ∈ ½λi; λj�;

¼ jf  0ðλnÞj ¼ jpjλp−1
n :

Hence, by (2.1) for the Frobenius norm,

κxpðAÞ ¼
jpjλp−1

n kAkF
kApkF

≈
jpjλp−1

n kAk2
kApk2

¼
� jpjκ2ðAÞ1−p; p ≥ 0;
jpjκ2ðAÞ; p ≤ 0;

where κ2ðAÞ ¼ kAk2kA−1k2 ¼ λ1=λn. Since p1 > 0 and p2 < 0, in order to minimize the
lower bound we should choose p1 if p1κ2ðAÞ1−p1 ≤ −p2κ2ðAÞ ¼ ð1− p1Þκ2ðAÞ, that is, if
κ2ðAÞ ≥ expðp−1

1 logðp1=ð1− p1ÞÞÞ. Thus, for example, if p1 ≤ 0.5 then p1 is always cho-
sen, while if p1 ¼ 0.75 or p1 ¼ 0.99 then p1 is chosen for κ2ðAÞ ≥ 4.3 and κ2ðAÞ ≥ 103.7,
respectively.

Now we consider how to handle integer p. When p is positive,Ap should be computed
by binary powering [23, Alg. 4.1]. When p is negative there are several possibilities, of
which we state three. We write GEPP for Gaussian elimination with partial pivoting.

ALGORITHM 6.1.
This algorithm computes X ¼ Ap for p ¼ −k ∈ Z−.

1 Y ¼ Ak by binary powering
2 X ¼ Y−1 via GEPP

ALGORITHM 6.2.
This algorithm computes X ¼ Ap for p ¼ −k ∈ Z−.

1 Y ¼ A−1 via GEPP
2 X ¼ Yk by binary powering

ALGORITHM 6.3.
This algorithm computes X ¼ Ap for p ¼ −k ∈ Z−.

1 Compute a factorization PA ¼ LU by GEPP.
2 X0 ¼ I
3 for i ¼ 0∶k− 1
4 Solve LXiþ1=2 ¼ PXi

5 Solve UXiþ1 ¼ Xiþ1=2

6 end
7 X ¼ Xk

Algorithms 6.1 and 6.2 have the same cost. Algorithm 6.3 is more expensive as it
does not take advantage of binary powering. However, our main interest is in accuracy.
Algorithm 6.1 inverts Ak, which is potentially a much more ill conditioned matrix than
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A. Intuitively, Algorithm 6.2 should therefore be preferred. Algorithm 6.3 does not ex-
plicitly invert a matrix but relies on triangular solves, and triangular systems are
typically solved to higher accuracy than we might expect from conditioning considera-
tions [21, Chap. 8]. Rounding error analysis for these three algorithms yields forward
error bounds whose respective sizes are difficult to compare [34]. Therefore we will use
numerical experiments to guide our choice (see Experiment 7 in section 9).

7. Singular matrices. Since our aim is to develop an algorithm of the widest pos-
sible applicability, we would like to extend Algorithm 5.1 so that it handles singular
matrices with a semisimple zero eigenvalue. If A is singular then the Schur factor T
will be singular. We reorder T (using unitary similarities) so that it has the form

T ¼
�
T 11 T12

0 T22

	
;ð7:1Þ

where T 11 is nonsingular and T22 has zero diagonal. The zero eigenvalue is semisimple if
and only if T 22 ¼ 0, by rank considerations. If T 22 ¼ 0 then U ¼ Tp is given by

U ¼
�
U 11 T−1

11 U 11T12

0 0

	
; U 11 ¼ Tp

11:ð7:2Þ

The diagonal blocks in this expression follow from the fact that any primary matrix
function of a block triangular matrix is block triangular [23, Thm. 1.13], while the
(1,2) block is obtained from the equation TU ¼ UT . The conclusion is that we should
obtain U 11 from Algorithm 5.1 and compute U 12 ¼ T−1

11 U 11T 12 separately.
In floating point arithmetic we are unlikely to obtain exact zeros on the diagonal ofT .

Consider, for example, the MATLAB matrix A ¼ gallery ð5Þ, which has integer en-
tries and a Jordan form with one 5× 5 Jordan block corresponding to the eigen-
value 0. The computed triangular Schur factorT has positive diagonal entries all of order
10−2. The computed square root (for example,) fromAlgorithm5.1 has normof order 1010.
Without further computations involving “difficult rank decisions” [12, sect. 7.6.5], which
would effectively be the first stages of computing the Jordan form, it is not possible to
determine whether it makes sense to compute Ap with p ∈= Z when A is singular. We will
therefore not pursue the development of a practical algorithm for the singular case.

8. Alternative algorithms. A number of alternatives to and variations of Algo-
rithm 5.1 can be formulated. They are based on initial reduction to Schur form, the
exp-log formula (1.2), and the Schur–Parlett algorithm of Davies and Higham [10], [23,
Alg. 9.6]. The Schur–Parlett algorithm is designed for computing fðAÞ for any f for which
functions of arbitrary triangularmatrices can be reliably computed. It employs a reordered
and partitioned Schur triangular factor, computes f ðTiiÞ for the diagonal blocksTii by the
given method and obtains the off-diagonal blocks by the block Parlett recurrence.

We summarize the main possibilities.
1. SPade: Algorithm 5.1.
2. SParl–Pade: the Schur–Parlett method using Algorithm 5.1 on the diagonal

blocks Tii.
3. SParl-ss-iss: the Schur–Parlett method with evaluation of expðp logðTiiÞÞ

by the inverse scaling and squaring method for the logarithm [23, sect. 11.5] and
the scaling and squaring method for the exponential [1].

4. tri-ss-iss: reduction to Schur form T with evaluation of expðp logðTÞÞ by
the inverse scaling and squaring method for the logarithm applied to the whole
matrix T and the scaling and squaring method for the exponential.
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5. powerm: the algorithm discussed in section 1 based on an eigendecomposition,
which is implemented in the MATLAB function of Figure 8.1.

Note that a variant of tri-ss-iss that works directly on A instead of reducing to
Schur form is not competitive in cost with tri-ss-iss, since computing square roots
of full matrices is relatively expensive [23, Chap. 6].

We make some brief comments on the relative merits of these methods.
For the methods that employ a Schur decomposition the cost will be dominated by

the cost of computing the Schur decomposition unless kAk is large. If the matrix is
already triangular then SPade and tri-ss-iss have similar cost, and in particular
require approximately the same number of square roots.

SParl–Pade differs from SPade in that it applies Padé approximation to each
diagonal block of T (possibly with a different degree for each block) rather than to
T as a whole. It is possible for the partitioning to be the trivial one, T ≡ T 11, in which
case SParl–Pade and SPade are identical.

An advantage in cost of SParl–Pade and SParl-ss-iss over SPade is that
large elements of T do not affect the number of square roots computed, and hence
the cost, as long as they lie in the superdiagonal blocks Tij of the Schur–Parlett parti-
tioning of T .

In the next section we compare these methods numerically.

9. Numerical experiments. Our numerical experiments were carried out in
MATLAB R2010b, for which the unit roundoff u ¼ 2−53 ≈ 1.1× 10−16. Our implemen-
tations of SParl–Pade and SParl-ss-iss are obtained by modifying the MATLAB
function funm. For all methods except powerm we evaluate powers of 2× 2 triangular
matrices directly, using the formula (5.6).

Relative errors are measured in the Frobenius norm. For the “exact” solution we take
the matrix computed using powerm at 100 digit precision with the VPA arithmetic of
the Symbolic Math Toolbox; thus we can compute relative errors only when A is diag-
onalizable. When q ¼ 1=p is an integer, another measure of the quality of a computed
solution X is its relative residual,

ρðXÞ ¼ kA−Xqk
kXkηðXÞ ;ð9:1Þ

FIG. 8.1. MATLAB function powerm.
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where ηðXÞ ¼ kPq−1
i¼0 ðXq−1−iÞT ⊗ Xik if p > 0 and ηðXÞ ¼ kP−q

i¼1 ðX−iÞT ⊗ Xiþq−1k if
p < 0, with ⊗ denoting the Kronecker product. This is a more practically useful defini-
tion of relative residual than kA−Xqk=kXqk, as explained in [15], [23, Prob. 7.16].

Experiment 1. We computed the pth power of the matrix

AðϵÞ ¼
�
1 1
0 1þ ϵ

	
ð9:2Þ

for p ∈ f0.1; 0.5; 0.9g and ϵ ¼ 10−t with 65 equally spaced values of t ∈ ½0; 16�. The con-
dition number κxpðAðϵÞÞ is of order 1 for all these ϵ and p. The relative errors for powerm
are shown in Figure 9.1. Clearly, the errors deteriorate as t increases and AðϵÞ ap-
proaches a defective matrix; the reason for the “bifurcation” in the error curves is
not clear. The other methods defined in section 8 all produce results with relative error
less than 4u in all cases.

Experiment 2. In this experiment we formed 50 random 50× 50 matrices with ele-
ments from the normal (0,1) distribution; any matrix with an eigenvalue on R− was
discarded and another random matrix generated. Then we reduced A to Hessenberg form
using the MATLAB function hess and computed A1=3 by all five methods as well as by
powerm_nb, the latter denoting powerm with the ’nobalance’ argument, which inhi-
bits the use of balancing in the eigendecomposition. The results, with 2-norms used in the
residuals, are shown in Figure 9.2. The improved performance of powerm_nb over
powerm shows that it is the balancing that is affecting the numerical stability of powerm
in this example. This is not surprising, becauseWatkins [38] has pointed out that for upper
Hessenberg matrices balancing can seriously degrade accuracy in the eigendecomposition
and should not be automatically used.

We note that using powerm_nb in place of powerm makes no difference to the
results in Experiment 1, as balancing has no effect in that example.

Experiment 3. In this experiment we use a selection of 10× 10 nonsingular matrices
taken from the MATLAB gallery function and from the Matrix Computation
Toolbox [17]. Any matrix found to have an eigenvalue on R− was squared; if it

0 2 4 6 8 10 12 14 16
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FIG. 9.1. Experiment 1: relative errors for powerm on matrix (9.2) with ϵ ¼ 10−t.
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still had an eigenvalue on R− it was discarded. We computed Ap for p ∈ f1=52; 1=12;
1=3; 1=2g, these values being ones likely to occur in applications where roots of transition
matrices are required [23, sect. 2.3], [26], as well as the negatives of these values. This
gives 376 problems in total. We omit tri-ss-iss from this test, as it is generally out-
performed by SParl-ss-iss (as can be seen in Experiment 2). Figure 9.3 shows the
relative errors, with the problems sorted by decreasing condition number. The solid line
is κxpðAÞu, where κxp is computed via (2.3) and (2.5) using codes from the Matrix Func-
tion Toolbox [18] that compute K exp and K log. Figure 9.4 shows the corresponding per-
formance profile. A performance profile shows the proportion π of problems where the
performance ratio of a method is at most α, where the performance ratio for a method on
a problem is the error or residual of that method divided by the smallest error or residual
over all the methods. A plot and a performance profile of the relative residuals (9.1) can
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FIG. 9.3. Experiment 3: relative errors for a selection of 10× 10 matrices and several p.
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FIG. 9.2. Experiment 2: relative residuals for 50 random Hessenberg matrices.
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be found in [34, sect. 4.9]; the performance profile for the residuals is very similar to
that for the errors. The errors and residuals lead to the same conclusions. First, powerm
often produces very good results but is sometimes very unstable. Second, SPade,
SParl–Pade and SParl-ss-iss perform similarly, with SPade having a slight edge
overall. We also ran the Schur–Newton algorithm from [15] on these problems; the errors
and residuals were broadly similar to those from SPade.

Experiment 4. This experiment is identical to the previous one except that we use
the upper triangular QR factor R of each matrix and replace every negative diagonal
element of R by its absolute value. The errors and their performance profile are shown in
Figures 9.5 and 9.6; the residuals are plotted in [34, sect. 4.9] and have a very similar
performance profile to the errors. For this class of matrices SPade is clearly greatly
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FIG. 9.5. Experiment 4: relative errors for a selection of 10× 10 triangular matrices and several p.
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FIG. 9.4. Experiment 3: performance profile of relative errors.
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superior to the other methods. The performance profiles are qualitatively similar if we
use the Schur factor instead of the QR factor.

Experiment 5. In this experiment we compute the three bounds in (2.7), (2.8) as
well as the true norm of the Fréchet derivative kLxpðAÞk for the same matrices and
values of p as in Experiment 3, using the Frobenius norm. The computed upper bound,
which sometimes overflowed, was set to the minimum of 1030 and itself. The results are
plotted in Figure 9.7. The results show that the lower bounds are sharper than the upper
bounds and that they are often correct to within a couple of orders of magnitude, being
less reliable for the very ill conditioned problems.

Experiment 6. In this experiment, we test our proposed choice of the fractional part
of p when p ∈= ½−1; 1�. For κ2ðAÞ we use the lower bound maxijtiij=minijtiij in the
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FIG. 9.7. Experiment 4: the lower bounds lowbnd1 in (2.7) and lowbnd2 in (2.8), the upper bound
upbnd in (2.8), and the true norm kLxp ðAÞkF , for the matrices in Experiment 3.
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prescription of section 6, where T is the triangular Schur factor. We use the same
matrices as in Experiment 3 and compute Ap for p ¼ 3.9, 3.7, 3.3, 3.1. The performance
profiles of the relative errors are shown in Figure 9.8. Our strategy chose p1 in 169 of the
197 cases in this experiment. Indeed, always taking p1 is also a good choice, as can be
seen in two ways. First, the performance profile curve for p1 is almost indistinguishable
from that for the “optimal” choice and so is omitted from the figure. Second, the max-
imum and minimum values of the relative error for p1 divided by that for p2 were 3.2 and
1.3× 10−16, respectively.
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FIG. 9.9. Experiment 7: relative errors for Algorithms 6.1, 6.2, and 6.3 for a selection of 10× 10matrices
and several negative integers p.
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Experiment 7. In this final experiment we compare Algorithms 6.1, 6.2, and 6.3, all
of which compute Ap where p ¼ −k is a negative integer. We test the algorithms on the
same set of matrices as in Experiment 3 for p ¼ −3,−5,−7,−9. The results are shown in
Figures 9.9 and 9.10. Algorithms 6.2 and 6.3 clearly produce much more accurate results
than Algorithm 6.1, as we expected. There is little to choose between Algorithms 6.2 and
6.3; we favor the former in view of its lower computational cost.

10. Concluding remarks. We have derived a new algorithm (Algorithm 5.1) for
computing arbitrary powers Ap of a matrix, based on diagonal Padé approximants of
ð1− xÞp and the Schur decomposition. The algorithm performs in a generally numerically
stable fashion in our tests, with relative error usually less than the product of the condition
number of the problem and the unit roundoff. Our experiments demonstrate the super-
iority of this approach over alternatives based on separate approximation of the exponen-
tial and logarithm in the formula Ap ¼ expðp logðAÞÞ using the best available methods.
The use of Algorithm 5.1 within the Schur–Parlett algorithm (to compute Tp

ii for the
diagonal blocks Tii of the blocked and reordered triangular Schur factor) merits consid-
eration as it is generally faster than applying it to the whole T , but Algorithm 5.1 is
significantly more accurate in our tests with triangular matrices (Experiment 4).

For the Apb problem, or the Ap problem with p−1 a positive integer, the methods
cited in section 1 provide alternatives to Algorithm 5.1, and it would be useful to carry
out further experiments to compare them.

MATLAB has a built-in function mpower for which the function call mpowerðA;pÞ
is equivalent to the syntax A^p. In our tests with MATLAB R2010b, mpower performs
identically to our powerm function for noninteger p, and in particular performs badly on
matrices that are defective or nearly defective. For negative integer p, mpower performs
identically to Algorithm 6.1 in our tests.

Acknowledgments. We thank Krystyna Ziȩtak for pointing out that Lemma 3.1
also follows from the detailed analysis of Padé approximants to ð1− xÞp developed
independently in [13].
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