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CLASSIFYING WEIGHTED PROJECTIVE SPACES

ANTHONY BAHRI, MATTHIAS FRANZ, DIETRICH NOTBOHM, AND NIGEL RAY

Abstract. We obtain two classifications of complex weighted projective spa-
ces, up to homeomorphism and up to homotopy equivalence. The first turns
out to coincide with Al Amrani’s classification up to isomorphism of algebraic
varieties, and the second follows from our proof that the Mislin genus of any
weighted projective space is rigid.

1. Introduction

Weighted projective spaces are the simplest projective toric varieties that ex-
hibit orbifold singularities. They have been extensively investigated by algebraic
geometers, but have attracted only fleeting attention from algebraic topologists
since Kawasaki’s pioneering work [8], in which he computed their integral cohomol-
ogy rings. Subsequently, their K-theory was determined by Al Amrani [2], and the
study of their KO-theory was initiated by Nishimura–Yosimura [11].

In toric geometry, weighted projective spaces are classified by their fans. Here,
we give two classifications that are fundamental to algebraic topology: up to homeo-
morphism, and up to homotopy equivalence. We obtain the second as a consequence
of the fact that the Mislin genus of a weighted projective space is rigid. Our results
are stated below, following summaries of the definitions and notation.

A weight vector χ = (χ0, . . . , χn) is a finite sequence of positive integers. It gives
rise to a weighted action of S1 on S2n+1 ⊂ Cn+1,

(1.1) g · z =
(
gχ0z0, . . . , gχnzn

)
for g ∈ S1, z ∈ S2n+1.

The quotient S2n+1/S1⟨χ⟩ is the weighted projective space P(χ). Alternatively,
P(χ) may be defined as the quotient of Cn+1 \ {0} by the same weighted action
of C×; this exhibits P(χ) as a complex projective variety.

Scaling the weight vector χ leads to isomorphic weighted projective spaces P(χ)
and P(mχ), for any integer m ≥ 1. Moreover, if all weights except, say, χ0 are
divisible by some prime p, then the map

(1.2) P(χ)→ P(χ0, χ1/p, . . . , χn/p),
[
z0 : · · · : zn

]
7→

[
zp

0 : z1 : · · · : zn

]
is an isomorphism as well, cf. [5, §5.7]. This leads to the notion of normalized
weights: a weight vector χ is normalized if for any prime p at least two weights
in χ are not divisible by p. Any weight vector can be transformed to a unique
normalized vector by repeated application of scaling and (1.2). Consequently, two
weighted projective spaces are isomorphic as algebraic varieties and homeomorphic
as topological spaces if they have the same normalized weights, up to order. We
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prove that the converse is also true. In particular, we recover Al Amrani’s classifi-
cation up to isomorphism of algebraic varieties [1, §8.1].
Theorem 1.1. The following are equivalent for any weight vectors χ and χ′:

(1) The normalizations of χ and χ′ are the same, up to order.
(2) P(χ) and P(χ′) are isomorphic as algebraic varieties.
(3) P(χ) and P(χ′) are homeomorphic.

For any prime p, the p-content pχ of χ is the vector made up of the highest
powers of p dividing the individual weights. For example, 2(1, 2, 3, 4) = (1, 2, 1, 4).
Let χ and χ′ be two normalized weight vectors. It follows from Kawasaki’s result
that the cohomology rings H∗(P(χ);Z) and H∗(P(χ′);Z) are isomorphic if and only
if, for all primes p, the p-contents pχ and pχ′ are the same up to order. The same
phenomenon can be observed in K-theory and KO-theory. In fact, no cohomology
theory can tell such spaces apart:
Theorem 1.2. Two weighted projective spaces are homotopy equivalent if and only
if for all primes p, the p-contents of their normalized weights are the same, up to
order.

The torus T = (S1)n+1/S1⟨χ⟩ ∼= (S1)n and its complexification TC act on P(χ)
in a canonical way, and the resulting equivariant homotopy type is a finer invariant.
As shown in [3, Thm. 5.1], the equivariant cohomology ring H∗

T (P(χ);Z) determines
the normalized weights up to order.

Let pχ∗ be the p-content of χ, ordered as an increasing sequence. By Theo-
rem 1.2, P(χ) is homotopy equivalent to P(χ∗), where the weights in the prod-
uct χ∗ of the pχ∗ form a divisor chain, in the sense that each divides the next. The
space P(χ∗) is particularly easy to work with because
(1.3) ∗ = P(χ∗

n), P(χ∗
n−1, χ∗

n) \ P(χ∗
n), . . . , P(χ∗

0, . . . , χ∗
n) \ P(χ∗

1, . . . , χ∗
n)

is a cell decomposition of P(χ∗) (see Remark 3.2 below), and
(1.4) ∗ = P(χ∗

0) ⊂ P(χ∗
0, χ∗

1) ⊂ · · · ⊂ P(χ∗
0, . . . , χ∗

n−1) ⊂ P(χ∗
0, . . . , χ∗

n)
displays P(χ∗) as an iterated Thom space [4, Cor. 3.8].

The Mislin genus of a weighted projective space P(χ) is the set of all homotopy
classes of simply connected CW complexes Y of finite type such that for all primes p
the p-localizations of Y and P(χ) are homotopy equivalent. The Mislin genus of a
space is rigid if it contains only the class of the space itself.
Theorem 1.3. The Mislin genus of any weighted projective space is rigid.

For CPn, this has been established by McGibbon [9, Thm. 4.2 (ii)].
In Section 2 we review Kawasaki’s results on which our work is based. Theo-

rem 1.1 is proved in Section 3, and Theorems 1.2 and 1.3 in Section 4.

2. Kawasaki’s results

From now on, χ = (χ0, . . . , χn) always denotes a normalized a weight vector, and
cohomology is taken with integer coefficients unless otherwise stated. In order to
make Kawasaki’s description of H∗(P(χ)) explicit, we recall two of his definitions.
For 0 ≤ i ≤ n we set
(2.1) li = li(χ) =

∏
p prime

rn−i+1(χ; p) · · · rn(χ; p),
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where r0(χ; p) ≤ · · · ≤ rn(χ; p) are the p-contents of the weights in increasing order.
We also consider the map
(2.2) φ = φχ : CPn → P(χ), [z0 : · · · : zn] 7→ [zχ0

0 : · · · : zχn
n ].

Theorem 2.1 ([8, Thm. 1]). Additively, H∗(P(χ)) ∼= H∗(CPn). Furthermore,
there exist generators ξi ∈ H2i(P(χ)) and η ∈ H2(CPn) such that φ∗(ξi) = liη

i for
0 ≤ i ≤ n; the multiplicative structure is specified by

ξiξj = lilj
li+j

ξi+j

in H2(i+j)(P(χ)), for 0 ≤ i + j ≤ n.

Kawasaki also determined the cohomology of the generalized lens space L(k; χ) =
S2n+1/Zk⟨χ⟩, where in this case χ describes the weights of the k-th roots of unity.
The answer depends on the augmented weight vector (χ, k) = (χ0, . . . , χn, k).

Theorem 2.2 ([8, Thm. 2]). The non-zero cohomology groups of L = L(k; χ) are
H0(L) ∼= H2n+1(L) ∼= Z and H2i(L) ∼= Zq for 1 ≤ i ≤ n, where q = li(χ, k)/li(χ).

3. Classification up to homeomorphism

Consider a point z ∈ P(χ). Let I and J be the subsets of {0, . . . , n} corresponding
to the zero and non-zero homogeneous coordinates of z, respectively, and let q =
gcd{χi : i ∈ J}. Also, let UI = {[z0 : · · · : zn] : zi ̸= 0 for i /∈ I}, and write χI ∈ ZI

for the weights indexed by I.

Lemma 3.1 (cf. [5, §5.15]). There is an isomorphism of algebraic varieties

UI
∼= (C×)|J|−1 × CI/Zq⟨χI⟩,

sending z to a point of the form (z̃, 0).

Observe that CI/Zq⟨χI⟩ is the unbounded cone over L(q; χI).

Proof. The weight vector χJ determines a morphism C× → (C×)J with kernel Zq.
Let T ′ be its image and T ′′ ∼= (C×)|J|−1 a torus complement. Then

UI =
(
(C×)J × CI

) /
C×⟨χ⟩ =

(
T ′′ × T ′ × CI

) /
C×⟨χ⟩ = T ′′ × CI/Zq⟨χI⟩. �

Remark 3.2. If χ0 = 1 and z = [1 : 0 : · · · : 0], then UI
∼= Cn. If the weights form

a divisor chain, we have P(χ)\UI = P(χ1, . . . , χn) = P(1, χ2/χ1, . . . , χn/χ1), hence
we inductively get a decomposition of P(χ) into n + 1 cells ∗, C, C2, . . . , Cn.

Lemma 3.3. H2n−1(
P(χ),P(χ) \ {z}

) ∼= Zq.

Proof. Set X = (C×)|J|−1, Y = CI/Zq⟨χI⟩ and m = |I| − 1. Excision, Lemma 3.1
and the Künneth formula for relative cohomology imply

H∗(
P(χ),P(χ) \ {z}

) ∼= H∗(
UI , UI \ {z}

)
∼= H∗(X × Y, (X \ {z̃})× Y ∪X × (Y \ {0}))
∼= H∗(X, X \ {z̃})⊗H∗(Y, Y \ {0}).

Since X is a manifold of dimension 2(n−m + 1), we find

H2n−1(
P(χ),P(χ) \ {z}

) ∼= H2m+1(
Y, Y \ {0}

) ∼= H̃2m(L(q; χI)).
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If m = 0, then q = 1 because χ is normalized, and the claim holds. Otherwise,
Theorem 2.2 gives H2m(L(q; χI)) ∼= Zq′ , where the p-content of q′ is given by

(3.1) p-content of lm(χI , q)
lm(χI)

=
m∏

i=1

rm+2−i(χI , q; p)
rm+1−i(χI ; p)

.

We have to show q′ = q, which means that q′ and q have the same p-content for
all p. This is clearly true if q is not divisible by p. Otherwise, χI inherits from the
normalized weight vector χ two weights not divisible by p. (Recall that q is the
gcd of the weights appearing in χ, but not in χI .) Hence, r1(χ; p) = 1, and the
numerator of (3.1) differs from the denominator by the p-content of q. This finishes
the proof. �

Proof of Theorem 1.1. By the remarks preceding the theorem, we only have to
prove the implication (3) ⇒ (1). In order to do so, we show how to read off the
normalized weights from topological invariants of a weighted projective space P(χ).
For z ∈ P(χ), let q′(z) be the order of the finite group H2n−1(

P(χ),P(χ) \ {z}
)
.

Lemma 3.3 implies that for all d ≥ 1 the space

X(d) =
{

z ∈ P(χ) : d | q′(z)
}

is again a weighted projective space or empty. In fact,

X(d) =
{

[z0 : · · · : zn] ∈ P(χ) : zi = 0 if d - χi

}
because d divides q′(z) = q if and only if it divides χi for all i such that zi ̸= 0. For
each d, the dimension of X(d) (which equals the degree of the highest non-vanishing
cohomology group) therefore tells us the number of weights divisible by d. This
determines the normalized weights completely up to order. �

4. Classification up to homotopy equivalence

This section relies heavily on the theory of localization and homotopy pullbacks.
We refer readers to [7], especially Chapter II, for all background information.

Throughout the section, every unlocalized space is a simply connected CW com-
plex of finite type. A map f : X → Y is therefore a homotopy equivalence (written
X ≃ Y ) if and only if it induces an isomorphism H∗(f) of integral cohomology; in
this case, f−1 denotes a homotopy inverse for f .

Given any set P of primes, the algebraic localization of Z is denoted by ZP ,
and the homotopy theoretic localization of f by fP : XP → YP . Each XP is
unique up to homotopy equivalence, and admits a homotopy class of localization
maps lP : X → XP . If P = {p}, then fP is abbreviated to fp : Xp → Yp; if P = ∅,
then localization is rationalization and abbreviated to f0 : X0 → Y0. It follows
from the definitions that H∗(lP ;ZP) is an isomorphism, and that f : XP → YP is
a homotopy equivalence if and only if H∗(f ;ZP) is an isomorphism.

The homotopy pullback of a diagram X → Z ← Y is well-defined up to homotopy
equivalence. It may be constructed by replacing either map with a fibration, and
pulling it back along the other in the standard fashion; homotopic defining maps
therefore lead to homotopy equivalent pullbacks. If P and Q are disjoint sets of
primes, then the homotopy pullback of XQ → X0 ← XP is XP∪Q, for any X,
cf. [10, Prop. 2.9.3] or [7, proof of Thm. 7.13].
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Lemma 4.1. Given two disjoint sets P and Q of primes, assume that f : XP →
YP and g : XQ → YQ are homotopy equivalences, and let h = f−1

0 g0; then YP∪Q is
the homotopy pullback of the diagram

(4.1) XQ
hl0−−−−→ X0

l0←−−−− XP .

Proof. The vertical maps in the homotopy commutative ladder

(4.2)

XQ
hl0−−−−→ X0

l0←−−−− XP

g

y yf0

yf

YQ −−−−→
l0

Y0 ←−−−−
l0

YP

are homotopy equivalences, and the homotopy pullback of the lower row is YP∪Q.
For strictly commuting such diagrams, the homotopy pullbacks of both rows are
homotopy equivalent by the Mayer–Vietoris sequence, cf. [7, p. 95]. By passing
through the diagram XQ → Y0 ← XP in two different ways, we can replace the
ladder (4.2) by a strictly commutative version, and the claim follows. �

In Theorem 2.1 we selected a generator ξ1 ∈ H2(P(χ)) ∼= Z, whose localization
in H2(P(χ)P ;ZP) ∼= ZP is necessarily a generator for any set P of primes. We define
the degree deg(h) of a self-map h : P(χ)P → P(χ)P by H∗(h;ZP)(ξ1) = deg(h) ξ1.
This determines a multiplicative map
(4.3) deg : [P(χ)P ,P(χ)P ]→ ZP .

Proposition 4.2.
(1) A self-map of P(χ)P is a homotopy equivalence if and only if its degree is

a unit in ZP .
(2) The degree map (4.3) is surjective.
(3) If P contains no divisor of any χj, then the degree map is a bijection.

Proof. Let f be any self-map of P(χ)P , and assume that it has degree a. By
Theorem 2.1, H∗(f ;ZP) induces multiplication by ak on H2k(P(χ)P ;ZP) ∼= ZP ,
for every 1 ≤ k ≤ n. If f is a homotopy equivalence, then a ∈ ZP is a unit and f−1

has degree a−1. Conversely, if deg(f) is a unit, then H∗(f ;ZP) is an isomorphism,
and f is a homotopy equivalence. Thus (1) holds.

Fix a positive integer a, and define the self-map h : P(χ)→ P(χ) by raising each
homogeneous coordinate to the power a; in particular, write h′ : CPn → CPn for
the standard case. Thus h and h′ commute with φ, leading to the commutative
diagram

H∗(P(χ)) H∗(φ)−−−−→ H∗(CPn)

H∗(h)
y yH∗(h′)

H∗(P(χ)) −−−−→
H∗(φ)

H∗(CPn)

.

Since H2(h′) is multiplication by a, it follows that deg(h) = a. But every ele-
ment c ∈ ZP may be written as a quotient c = b/a of integers, where a ∈ ZP
is a positive unit. Then (2) follows from (1), together with the observations that
complex conjugation on a single coordinate has degree −1 and constant self-maps
have degree 0.
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If P contains no divisor of any weight, then φP : CPn
P → P(χ)P is a homotopy

equivalence by Theorem 2.1. To prove (3), it therefore suffices to consider maps
h1, h2 : CPn

P → CPn
P of equal degree. Then their restrictions to the 2-skeleton S2

P ⊂
CPn

P are homotopic, because [S2
P ,CPn

P ] ∼= π2(CPn
P) ∼= ZP . The obstructions to

extending a homotopy over CPn
P lie in the groups Hk(CPn

P ; πk(CPn
P)) for k > 2,

cf. [6, Ex. 4.24]. Furthermore, CPn
P is 2n-dimensional and πk(CPn

P) = 0 whenever
2 < k ≤ 2n, so these obstruction groups vanish. Thus h1 and h2 are homotopic,
deg is injective, and (3) follows. �

Part (3) of Proposition 4.2 is well-known for CPn [9, Thm. 2.2].

Proof of Theorem 1.3. Let Y be an element of the Mislin genus of P(χ). Since
H∗(Y ) ∼= H∗(P(χ)) as abelian groups, Y is homotopy equivalent to a CW com-
plex of dimension 2n, cf. [6, Prop. 4C.1]. Moreover, H∗(P(χ);Q) is multiplicatively
generated by a single element of degree 2, therefore so is H∗(Y ;Q). A generator
of H2(Y ) determines a map e : Y → K(Z, 2) = CP∞ such that H2(e) is an iso-
morphism. Up to homotopy, e factors through the 2n-skeleton CPn ⊂ CP∞, and
its corestriction f : Y → CPn is a rational homotopy equivalence. By Theorem 2.1,
φ : CPn → P(χ) is also a rational equivalence.

Let P = {p1, . . . , ps} be the set of primes that must be inverted for H∗(f) and
H∗(φ) to be isomorphisms, and Q its complement. Define Qi = Q ∪ {p1, . . . , pi},
and note thatQs contains all primes. It therefore suffices to show that YQi ≃ P(χ)Qi

for every 0 ≤ i ≤ s.
We proceed by induction on i; the base case i = 0 is valid because φQ and fQ

induce isomorphisms H∗(φQ;ZQ) and H∗(fQ;ZQ), and are homotopy equivalences.
So assume that YQi ≃ P(χ)Qi , and write p = pi+1. By choice of Y there is a
homotopy equivalence Yp ≃ P(χ)p, so Lemma 4.1 identifies YQi+1 as the homotopy
pullback of (4.1) for some homotopy equivalence h : P(χ)0 → P(χ)0. Since deg(h) ∈
ZQi+1 , it equals b/a for some units a ∈ Zp and b ∈ ZQi .

By Proposition 4.2 (2) there are homotopy equivalences f : P(χ)p → P(χ)p and
g : P(χ)Qi → P(χ)Qi of degrees a and b respectively. So by Proposition 4.2 (3),
h ≃ f−1

0 g0. Lemma 4.1 with X = Y = P(χ) then implies that YQi+1 ≃ P(χ)Qi+1 ,
and completes the inductive step. �

Proof of Theorem 1.2. If χ and χ′ have the same p-content up to order, then some
permutation of homogeneous coordinates defines a homeomorphism P(pχ) ∼= P(pχ′)
for each prime p. This homeomorphism may be localized at p.

Moreover, φχ : CPn → P(χ) factorizes as φχ = fφ
pχ, where

f : P(pχ)→ P(χ), [z0 : · · · : zn] 7→ [zα(0)
0 : · · · : zα(n)

n ],
and α(j) = χj/pχj for 0 ≤ j ≤ n. Theorem 2.1 then implies that H∗(f ;Zp) is an
isomorphism, and hence that fp is a homotopy equivalence. So fp and f−1

p feature
in the chain of maps

P(χ)p ≃ P(pχ)p
∼= P(pχ′)p ≃ P(χ′)p

for any prime p, and the result follows from Theorem 1.3. �
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