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The work addresses an important question of whether a discontinuity in wall
curvature can cause boundary layer separation at transonic speeds. Firstly an inviscid
transonic flow in the vicinity of a curvature break is analyzed. Depending on the ratio
of the curvatures, several physically different regimes can exist, including a special
type of supersonic flows which decelerate to subsonic speeds without a shock wave,
transonic Prandtl–Meyer flow and supersonic flows with a weak shock. It is shown
that if the flow can be extended beyond the limiting characteristic, it subsequently
develops a shock wave. As a consequence, a fundamental link between the local and
the global flow patterns is observed in our problem. From an asymptotic analysis
of the Karman–Guderley equation it follows that the curvature discontinuity leads
to the singular pressure gradients ∂p/∂x ∼ G∓ (∓x)−1/3 upstream and downstream
of the break point, respectively. In order to find the amplitude coefficients G∓,
computations are performed and both the hodograph method and the phase portrait

technique are employed.
The focus is then turned to analyzing how the given pressure distribution affects

the boundary layer. It is demonstrated that the singular pressure gradient propor-
tional to (−s)−1/3 corresponds to a special resonant case for the boundary layer
upstream of the singularity. Consequently, the boundary layer approaches the inter-
action region in a pre-separated form. This changes the background on which the
viscous-inviscid interaction develops, allowing to construct an asymptotic theory of
the incipient viscous-inviscid interaction for our particular problem. The analysis
of the interaction which takes place near a weak curvature discontinuity leads to a
typical three-tier structure. It appears to be possible to obtain analytical solutions
in all the tiers of the triple deck when the curvature break is small. As a result,
the interaction equation may be derived in a closed form. The analytical solution
of this equation reveals a local minimum in the skin friction distribution, suggesting
that a local recirculation zone can develop near the curvature break. In fact, the
recirculation zone is formed when the ratio of the curvatures satisfies

κ+

κ−
= 1− k̂0

ln Re
+

k̂1

(ln Re)2
+ ... ,

where Re� 1 is the flow’s Reynolds number, k̂0 is a fixed positive order one quantity
which depends on certain physical parameters of the flow, and k̂1 is an order one
controlling parameter affecting the size of the recirculation zone. This discovery
proves that a discontinuity in wall curvature does evoke boundary layer separation at
transonic speeds. The result is fundamentally different from the effect of a curvature
break at subsonic and supersonic speeds, as no separation takes place in these two
regimes (Messiter & Hu 1975).
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Chapter 1

Introduction

1.1 Asymptotic Theory of Separated Flows

One hundred years passed since the 3rd International Mathematics Congress in Hei-

delberg, 1904, where Prandtl presented his landmark paper on the boundary layer

theory. In this paper an important idea was put forward which later became known

as the principle of singular perturbations. Prandtl’s boundary layer theory is applica-

ble for the flows with a high Reynolds number, i.e. with a relatively small viscosity,

which is the case for most liquid and gas flows observed in nature and encountered

in engineering applications. The viscosity appears to be a small coefficient at the

highest order derivatives in the Navier–Stokes equations governing the fluid motion.

As a result, viscous forces are insignificant almost everywhere in the flow apart from

a thin boundary layer near a rigid body surface where certain flow functions develop

strong normal gradients.

Based on these ideas, Prandtl deduced the equations describing the fluid motion

in the boundary layer. At the time he did not offer any solutions to these equations;

instead, he speculated at length on the separation phenomenon (Prandtl 1904). This

phenomenon is very common amongst all high Reynolds number flows, and has been

observed experimentally on numerous occasions. According to Prandtl, the separa-

tion can be expected when the pressure starts to rise in the direction of the flow,

17



CHAPTER 1. INTRODUCTION 18

therefore causing the fluid in the boundary layer to decelerate. Should such a situ-

ation occur, the separation is going to take place at the point of zero skin friction.

The latter may be located by solving the boundary layer equations.

Later, however, it was discovered that the boundary layer theory in its classical

form, as given by Prandtl in 1904, leads to a certain mathematical contradiction.

Landau & Lifshitz (1944) were the first to point out that a classical boundary layer

exposed to a regular adverse pressure gradient develops a singularity as the point

xs of zero skin friction is approached. This was followed by the famous work of

Goldstein (1948) who gave a detailed mathematical explanation of the singularity

and showed that solutions of the boundary layer equations cannot be extended to the

region downstream of xs. Even though Goldstein’s analysis clearly fails to describe

the real situation in the vicinity of the boundary layer separation point, it has a great

importance in attesting to the impossibility of unseparated flow to exist.

A key element of the separation process, which was not fully appreciated both

in Prandtl’s classical description and in Goldstein’s work, is a mutual interaction

between the boundary layer and external inviscid flow, termed the viscous-inviscid

interaction. It is now known that a typical boundary layer separation takes place

not as a result of a gradual growth of pressure in an inviscid flow over a curved body

surface (leading to a regular adverse pressure gradient). Instead, it is caused by a

sharp pressure rise developing ‘spontaneously’ due to the viscous-inviscid interaction

at a certain location on the body surface where the boundary layer would still be

well attached according to Prandtl’s classical theory. This kind of a separation has,

therefore, been classified as self-induced.

The asymptotic theory of the viscous-inviscid interaction, also known as the triple-

deck theory, was formulated simultaneously by Neiland (1969) and Stewartson &

Williams (1969) for the self-induced separation in a supersonic flow. In this case the

spontaneous growth in the pressure is due to the formation of a compression wave

in the external flow, a wave which in the limit transforms into a shock wave. After

undergoing a rapid deceleration because of the rising pressure, the boundary layer

separates from the surface along a free streamline and forms a mixing layer with a
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recirculation zone behind. The study by Neiland, Stewartson and Williams led to

the introduction of a three-tier structure around the point of separation composed of

(i) the viscous near-wall sublayer, (ii) the main part of the boundary layer and (iii)

the inviscid potential flow region outside the boundary layer.

The interaction process in the triple deck may be described as follows. In the

viscous sublayer the fluid motion is relatively slow, and the lower deck exhibits high

sensitivity to pressure variations. Even a small pressure rise in the direction of the

flow may cause significant deceleration of fluid particles in the sublayer. As a result,

the flow filaments become thicker and the streamlines are being displaced from the

wall. The slope of the streamlines is then transmitted through the main part of the

boundary layer to the potential flow in the upper deck, which converts the displace-

ment into pressure perturbations. The latter are transmitted back to the lower deck

and cause extra displacement in it. Therefore, there is mutual interaction between the

two outer tiers of the triple deck, and the system adjusts itself until a certain ‘equi-

librium’ pressure distribution across the interaction region is achieved. One of the

main goals of every study related to boundary layer separation is to find this pressure

distribution along with the relevant displacement and skin friction distributions.

The case of a self-induced separation in an incompressible fluid is more compli-

cated because the problem of an incompressible flow around a body is of the elliptic

nature and, therefore, is unable to provide the appropriate singular pressure distri-

bution in the vicinity of the separation point. However, if one refers to the theory

of ideal fluid flows with free streamlines, one may find that it contains a local solu-

tion with the necessary properties (Sychev 1972). In this case the singular pressure

gradient

∂p

∂x
∼ k (xs − x)−1/2

is generated upstream of the separation point xs due to a singularity in local curvature

of the free streamline emerging from a smooth surface of the body.1) According to

Sychev (1972), the constant k depends on the Reynolds number of the flow and tends

1) Note that this streamline does not satisfy the so-called Brillouin–Villat condition of smooth
separation.
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to zero when Re→∞, being estimated as k ∼ Re−1/16.

In addition to the self-induced separation from a smooth rigid body surface, it

has long been observed that various irregularities in the shape of a body contour

can also lead to viscous-inviscid interaction and, in certain cases, to boundary layer

separation. One of the classical examples is the flow near the trailing edge of a

flat plate; the irregularity develops because the flow undergoes an abrupt change

in the boundary condition when the solid surface ends, resulting in viscous-inviscid

interaction. Stewartson (1969) and Messiter (1970) described this phenomenon for

the case of an incompressible fluid flow by applying the triple deck model to the

interaction region.

The most obvious surface irregularities that can cause boundary layer separation

include corner points,2) discontinuities in wall curvature (Messiter & Hu 1975), humps

(Smith 1973), etc. In all of the above examples an inviscid flow around the body con-

tour develops singular pressure gradients which lead to a breakdown in the classical

boundary layer theory. This situation clearly indicates that the viscous-inviscid inter-

action starts to take place once the irregularity is approached. The interaction acts

towards smoothening of the pressure distribution and ultimately enables to obtain

continuous solutions for all physical functions of the flow near the irregularity. In

contrast to the self-induced separation, the nature of the interaction process appears

to be predetermined by the exact type of the surface irregularity.

This year marks the 40th anniversary of the asymptotic theory of separated flows.

Since first landmark papers on the subject were published in 1969, many researchers

have been involved in the development of the theory, and it is now clear that the

viscous-inviscid interaction plays a key role in a wide variety of separation phenomena.

Most notably, the triple deck theory has been extended to describe the boundary layer

separation from a smooth body surface in an incompressible fluid flow, supersonic flow

separation provoked by a shock wave impinging upon the boundary layer, incipient

and large scale separations at corner points of the body contour both in subsonic and

2) Separation at corners was studied by Ackerberg (1970), Stewartson (1970), Ruban (1974) for
an incompressible fluid and by Neiland (1974) for supersonic flows.
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supersonic flows, separation at a trailing edge of a thin airfoil, leading-edge separation,

separation of the boundary layer in a hypersonic flow on a hot or cold wall, separation

caused by a wall roughness, etc. A detailed account of the fundamentals of the theory

and a complete set of references to the now classic papers in this field may be found

in the monograph by Sychev, Ruban, Sychev & Korolev (1998).

1.2 Viscous-Inviscid Interaction in Transonic Flows

Despite the significance of the progress made in the asymptotic theory of separated

flows since it was established in the late 1960s, a lot of important questions still

remain unanswered. Historically the application of the theory has been focused on

describing separation at either subsonic or supersonic speeds, but very little is still

known about separation of transonic flows. The reason behind this is that the equa-

tions of the transonic small perturbation theory, referred to as Karman–Guderley

equations, are nonlinear (Cole & Cook 1986), whereas the corresponding sub- and

supersonic equations are linear. The latter may be solved to give the so-called inter-

action law in a closed form, which allows to calculate the pressure generated by the

inviscid flow in response to the displacement effect of the boundary layer.3)

The majority of the studies related to transonic viscous-inviscid interaction has

been based on certain simplifications, needed to leave out the nonlinearity in the

Karman–Guderley equations.4) For example, in the series of works by Bodonyi &

Kluwick describing transonic interaction near the trailing edge of a flat plate, the

free stream flow was assumed to be supersonic and uniform, leading to a simple

analytical solution in the upper tier of the triple deck in the form of a wave integral.

These restrictions were removed when Bodonyi & Kluwick (1998) applied a special

numerical algorithm of solving Karman–Guderley equations (Cole & Cook 1986).

With the aid of the refined numerical methods, Ruban & Turkyilmaz (2000)

3) For subsonic flows the interaction law is expressed by Cauchy’s integral of the thin aerofoil
theory. In supersonic flows it has a much simpler form, being given by the Ackeret formula which
establishes a simple local relationship between the streamline slope and the induced pressure.

4) See Buldakov & Ruban (2002) for a detailed review.
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considered transonic version of the classical problem of a flow near the corner point.

Their analysis showed that as the interaction region is approached, the pressure

gradient generated by the inviscid transonic flow develops the singularity

∂p

∂x
∼ −(−x)−2/3 ,

where the coordinate x is measured from the corner point in the downstream direction.

This gradient appears to be strong enough to cause a complete re-structuring of the

boundary layer upstream of the interaction region. As a result, the displacement

effect of the boundary layer turns out to be mainly due to its inviscid part rather

that the viscous sublayer. Contrary to what happens in the subsonic (Ruban 1974)

and supersonic (Neiland 1974) analogues of the problem, the transonic flow in the

interaction region is governed by a physically different mechanism involving the two

upper tiers of the triple deck, which may be called the inviscid-inviscid interaction.

This example clearly demonstrates that transonic viscous-inviscid interaction gains

its unique features not just through the upper tier of the triple deck where the nonlin-

ear Karman–Guderley equations replace the simple subsonic and supersonic interac-

tive laws. More importantly, the inviscid transonic flow upstream of the interaction

region proves to be capable of producing strong variations in the internal structure

of the boundary layer approaching the triple deck (such variations will be referred

to as the cumulative effects). The latter might cause drastic changes in the physical

background on which the interaction between the boundary layer and the outer in-

viscid flow develops, leading to fundamentally different mechanisms of separation as

compared to similar sub- and supersonic cases. It turns out that the same situation

takes place in the problem considered in the present work (see Chapter 3).

After the work by Ruban & Turkyilmaz (2000) revealed the importance of struc-

tural variations in the boundary layer upstream of the transonic interaction region,

Buldakov & Ruban (2002) discovered similar effects in the viscous-inviscid interaction

caused by a sonic point on the surface of a smooth rigid body. They investigated the

properties of local self-similar flows near the sonic point in the cases of (i) the local

separation, when the recirculation zone (forming as a result of the boundary layer
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separation) is confined within the dimensions of the interaction region, and (ii) the

global separation, when a free streamline emerges from the body surface, resulting in

a semi-infinite separation region on the scale of the interaction region.5) In order to

describe local transonic flow close to the sonic point, the authors used standard self-

similar expansions of the transonic small perturbations theory (see equations (2.4),

(2.5) from section 2.1.1 for details). It was found that for a certain value of the simi-

larity parameter α from the self-similar expansion (2.4), namely α = 3
2
, the boundary

layer upstream of the interaction region is exposed to the singular pressure gradient

∂p

∂x
∼ (−x)−1/3 , (1.1)

where the coordinate x is measured from the sonic point in the downstream direction.

According to Buldakov & Ruban (2002), this pressure distribution is responsible for

specific cumulative effects in the boundary layer ahead of the singularity, and therefore

it affects the background on which the interaction is taking place. It needs to be

emphasized that the value α = 3
2

was considered by the authors mainly because it

allowed to obtain solutions with local separation zones. However, from the viewpoint

of the inviscid flow outside the interaction region the reasoning behind their choice of

this particular value of α is not very convincing. One of the aims of the present work

is to address this problem by providing an example of a physical phenomenon which

leads to the pressure gradient (1.1) purely from the nature of the potential transonic

flow.

Numerical computations of the transonic interaction problem performed by Bul-

dakov & Ruban (2002) involved solving the Karman–Guderley equations in the upper

tier of the interaction region, with the upstream pressure distribution given by (1.1).

Their results showed the presence of a recirculation zone formed in the interaction

region with the longitudinal scale

∆x ∼ Re−3/10 (ln Re)−21/20 ,

5) These two physical situations lead to different downstream boundary conditions for the potential
transonic flow immediately outside the interaction region, and this affects the pressure distribution
acting on the boundary layer.
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providing the amplitude of the singular pressure gradient is logarithmically small

with respect to Reynolds number:

∂p

∂x
∼ 1

ln Re
(−x)−1/3 .

The actual extent of the separation region was found to be controlled by a pair

of free parameters, the first one being the location of the shock which develops in

the outer inviscid flow, and the second one being related to the structure of the

pre-separated boundary layer upstream of the interaction region. Both of these two

parameters can only be obtained from the global problem of the transonic flow on the

scale of the entire body length. The skin friction upstream of the interaction region

displayed a characteristic logarithmic decay responsible for an unusual behaviour of

the flow inside the interaction region. Moreover, the solution in the interaction region

appeared to be non-unique, revealing a hysteresis nature of the transonic separation.

Despite the significance of the above results, not much has been done in this area

during the last few years. Most recently, Ruban, Wu & Pereira (2006) considered

the viscous-inviscid interaction in transonic Prandtl–Meyer flow. They found that

for the local shape of the body contour given by

yw(x) =





0 , x < 0

c x8/5 , x > 0

the inviscid transonic flow develops a typical expansion fan when the parameter c

is negative. As a result, the boundary layer upstream of the interaction region is

exposed to the singular pressure gradient

∂p

∂x
∼ (−x)−3/5 . (1.2)

Remarkably, in this case the displacement is mostly generated in the overlapping re-

gion between the viscous sublayer and the main part of the boundary layer, therefore

providing yet another example of how the inviscid transonic flow may cause drastic

changes in the structure of the boundary layer ahead of the interaction region. As

already mentioned before, the restructuring of the boundary layer affects the back-

ground on which the interaction develops, and is responsible for the unique nature of

separation at transonic speeds.
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Nevertheless, it remains unclear whether the fundamental difference between tran-

sonic separation and subsonic/supersonic separation appears in other basic cases. In

this respect it is worth comparing the effect of a discontinuity in wall curvature on

subsonic, transonic and supersonic flows. While the more familiar corner points do

affect the flow by causing separation at all speeds, does the curvature break have

similar effects?

Messiter & Hu (1975) considered a flow near the joint between a curved and a flat

walls, both in subsonic and supersonic regimes. If the wall downstream of the joint is

flat, the discontinuity in wall curvature generates an adverse pressure gradient which

has logarithmic singularity in the subsonic case and is discontinuous in the supersonic

case. As a result, the classical boundary layer theory fails in a small vicinity of the

joint, and the flow has to be described by taking viscous-inviscid interaction into

the account. The analysis performed by Messiter & Hu shows that the interaction

smoothes the singularity in the pressure gradient, producing a continuous skin friction

distribution with no separation zones. However, when the flow near a discontinuity

in wall curvature is transonic, the situation may change significantly. The main

goal of this work is to find out whether the curvature break is capable of causing

separation at transonic speeds. If the separation does take place, this would once

again demonstrate the originality of transonic separation phenomena.

1.3 Brief Review of The Work

The thesis consists of two main chapters. Because of the well known hierarchical

strategy applied to high Reynolds number flows in the classical boundary layer theory,

we first of all consider an inviscid transonic flow in a small vicinity of the curvature

break (Chapter 2). The local analysis reveals a complicated pattern depending on the

ratio of the curvatures before and after the break. It is assumed that the sonic point

coincides with the curvature discontinuity, simply to ensure that the flow around it

is transonic, and that the separation is local (i.e., the separation zone is confined

within the small interaction region around the curvature break, as opposed to the
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global separation characterized by a free streamline with a semi-infinite separation

zone behind it). In this case the irregularity in the shape of the surface leads to

the singular pressure gradients ∂p/∂x ∼ G∓ (∓x)−1/3 upstream and downstream of

the break respectively, which follows from an asymptotic analysis of the Karman–

Guderley equations.6) In order to obtain the amplitude coefficients G∓ (and their

signs in particular), we perform computations and also employ the hodograph method

to interpret the numerical results.

Even though the analysis of the inviscid flow in Chapter 2 is just the first step

in the study of the boundary layer separation, it has an importance of its own. The

earliest results in the classical theory of transonic flows date back to the beginning of

the 20th century, and underwent a rapid development in early 1950s, largely due to

the works of Frankl and Guderley. A summary of the main theoretical results in this

area and the key references may be found in the monograph by Cole & Cook (1986).

Guderley (1957) introduced an important technique of analyzing the singular points of

the nonlinear Karman–Guderley equations by considering the so-called phase portrait

of a transonic flow. Combined with the hodograph method introduced by Chaplygin

(1902) in his famous study of compressible jets, this technique provides a powerful tool

for investigating various special cases, for example a transonic far-field flow. It turns

out that our particular problem of an inviscid transonic flow close to a discontinuity

in wall curvature provides a good example of how the two methods can work together.

One of the central concepts of transonic aerodynamics is the limiting character-

istic. It appears to be an important boundary between physically different regions

of transonic flow with respect to a propagation of small perturbations.7) Thanks to

this property, certain low-speed supersonic flows which have not passed through the

limiting characteristic can actually be decelerated to subsonic speeds without forming

a shock wave. However, once a flow has passed through the limiting characteristic, it

can only be decelerated to subsonic speeds by going though a shock. In Chapter 2 we

6) It appears that this type of the singular pressure gradient is due to both the curvature break
and the sonic point, and not just to the sonic point as suggested previously by Buldakov & Ruban
(2002).

7) See Liepmann & Roshko (1957), Landau & Lifshitz (1959) and Cole & Cook (1986).
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apply the combination of the hodograph method and the phase portrait technique to

prove this important result analytically for our specific type of the flow. The analysis

also sheds light on the link between the local and the global flow patterns. Even

though the phase portrait of the flow appears to be identical to the one obtained by

Buldakov & Ruban (2002), our study goes one step further and provides a detailed

explanation of all possible flow regimes depending on the ratio of the curvatures.

The effect of the singular pressure gradients on a thin boundary layer which is

formed near the wall is discussed in Chapter 3. This is essential for addressing the

main question of the work: whether the curvature break is capable of causing flow

separation at transonic speeds or not. It turns out that the pressure gradient pro-

portional to (−s)−1/3 corresponds to a special resonant case for the boundary layer

upstream of the singularity, in agreement with Buldakov & Ruban (2002).8) Con-

sequently, the boundary layer approaches the interaction region in a pre-separated

form, and this affects the background on which the viscous-inviscid interaction de-

velops. The relevant asymptotic solution of the boundary layer equations is obtained

by introducing logarithms along with powers of (−s) into the coordinate expansions

upstream of the singular point. However, such a solution is real only for a favourable

pressure gradient, i.e. for the case of G− < 0, and becomes complex when G− changes

sign to positive, suggesting that the adverse pressure gradient causes separation well

ahead of the curvature break. This important result was not mentioned in the study

by Buldakov & Ruban (2002).

Since there should always be a smooth transition between different flow regimes,

we consider the case of small positive values of G− encountered when the curvature

break is also small (i.e. the ratio of the curvatures is close to 1). This opens up the

way to constructing an asymptotic theory of the incipient viscous-inviscid interaction

in our particular problem. The small but singular pressure gradient upstream of the

curvature break still generates a sufficient displacement in the boundary layer which

leads to a failure of the classical boundary layer theory. As mentioned in the previous

sections, in this kind of a situation one needs to take into account the interaction

8) Here s is the curvilinear coordinate measured along the surface from the curvature break.
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taking place between the boundary layer and the outer inviscid flow close to the

singularity. This leads to a standard three-tier structure of the flow traditionally

called the triple deck, or simply the interaction region.

It appears to be possible to construct analytical solutions in all the tiers of the

triple deck when

Re−1/6 � |G−| �
1

ln Re
, Re→∞ .

As a result, the interaction equation, describing how the pressure perturbations are

converted into the displacement and vice versa, may be derived in a closed form.

Remarkably, in this case the displacement proves to be generated mainly in the

overlapping region between the viscous sublayer and the main inviscid part of the

boundary layer. At the same time the flow in all three tiers of the triple deck has

predominantly subsonic features, and the transonic nature of the viscous-inviscid

interaction is largely due to certain cumulative effects in the boundary layer upstream

of the singularity. The interaction is taking place on the longitudinal spacial scale

| s | ∼ Re−3/10

which does not depend on G− (and hence on the ratio of the curvatures).

The analytical solution of the interaction equation reveals a local minimum in the

skin friction distribution near the curvature break, indicating that a local recirculation

zone (also called a separation bubble) may develop for stronger discontinuities in wall

curvature. In fact, the recirculation zone is formed when the ratio of the curvatures

is estimated as

κ+

κ−
= 1− k̂0

ln Re
+

k̂1

(ln Re)2
+ ... ,

where k̂0 is a fixed positive order one quantity depending on certain physical param-

eters of the flow, and k̂1 is an order one controlling parameter which affects the size

of the separation bubble.



Chapter 2

Inviscid Transonic Flow Near a

Curvature Discontinuity

2.1 Problem Formulation

2.1.1 Governing equations and boundary conditions

Consider a 2D inviscid transonic flow of a perfect gas near a point of a discontinuity

in wall curvature, Fig. 2.1. The local surface shape close to a curvature break may

be expressed in the following way:

ŷw(x̂) = − κ̂±x̂
2

2
+ ... , x̂ ≷ 0 ,

where the hat denotes dimensional variables, κ̂± stand for the wall curvatures, and

PSfrag replacements

x̂

ŷ

κ̂+κ̂−

curvature break

Figure 2.1: Inviscid flow near a discontinuity in wall curvature.

29
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the dots represent higher-order terms in the coordinate expansions. According to our

definition, κ̂± > 0 for convex walls. The cartesian coordinates x̂, ŷ can be scaled

using either of the curvature radii κ̂
−1
± . Hence, if we take L = κ̂

−1
− as a scale, the

body surface will be given by

yw(x) =





−x
2

2
, x < 0 ,

−
(

κ̂+

κ̂−

)
x2

2
, x > 0

in the scaled dimensionless variables, showing that the behavior of the flow is likely

to depend only upon the curvatures’ ratio κ̂+/κ̂−. However, we are not going to

specify the scale since the local inviscid problem considered in this chapter appears

to be invariant with respect to re-scaling of spatial coordinates.1) Furthermore, the

scaled curvatures κ± = L κ̂± will be used henceforth, because they provide the same

curvatures’ ratio.

To make sure the flow near the curvature discontinuity is transonic, let us assume

that the point (x, y) = (0, 0) where the curvature breaks is also a sonic point. We are

going to use the velocity at this point, which is by definition equal to the local speed

of sound â∗, for scaling the velocity components and the speed of sound. Should the

sonic point move towards either side of the curvature break, this would imply that

the flow around the break has either subsonic or supersonic features, and a boundary

layer separation is unlikely to happen (Messiter & Hu 1975). The main goal of the

present work, however, is to study a possibility of a transonic flow separation due

to the curvature discontinuity, and this justifies our assumption regarding the sonic

point location.

Since the flow is inviscid, it also has to be adiabatic (isoentropic). By assuming

that the oncoming flow is isoentalpic, we convert the Euler equations to the system

1) The problem in the interaction region, discussed in Chapter 3, depends on the spatial scale
through the definition of the Reynolds number.
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containing only the velocity components U , V and the local speed of sound a:





(
a2 − U 2

)∂U
∂x

+
(
a2 − V 2

)∂V
∂y

= UV

(
∂U

∂y
+
∂V

∂x

)
,

U2 + V 2

2
+

a2

γ − 1
=

γ + 1

2(γ − 1)
,

(2.1)

where γ is the specific heat ratio.2) A further assumption of the flow’s isentropy leaves

us with potential flows only (due to the 2D Crocco equation linking entropy gradient

with vorticity). In this case the velocity components may be expressed through the

potential function Φ(x, y):

U =
∂Φ

∂x
, V =

∂Φ

∂y
.

System (2.1) is solved subject to the impermeability boundary condition upstream

and downstream of the curvature discontinuity:

V

U

∣∣∣∣
y=yw

=
dyw
dx

= −κ± x , x ≷ 0 . (2.2)

The downstream condition is written in the assumption that the separation zone is

local, being confined within the interaction region (see Chapter 3).3)

2.1.2 Asymptotic expansions for local self-similar solutions

Boundary condition (2.2) may be transferred to the y = 0 axis in the leading order of

approximation, providing |κ± x| � 1 (a small vicinity of the curvature break point

as compared to the body scale determined by the curvature radii):

V
∣∣
y=0, x≷0

= −κ± x . (2.3)

This automatically restricts our attention to the upper half-plane, y > 0. As we move

closer to the origin, no length scale can be assigned to the problem and the Euler

equations are expected to admit self-similar solutions (Cole & Cook 1986); the scaled

coordinates (x, y) can be used as small parameters to construct asymptotic expansions

in this local region around the discontinuity in wall curvature. Our intention to

2) System (2.1) is written using the dimensionless variables.
3) Note that in a small vicinity of the sonic point U = 1 in the leading order.
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consider the local behaviour of the inviscid flow is based on the knowledge that

typical flow separation phenomena are also local (Sychev et al. 1998).

The fact that y > 0 in the problem described by (2.1), (2.3) allows to introduce

the similarity variable

ξ =
x

yα
,

where α is an unknown parameter which is to be determined. The relevant asymptotic

expansion of the velocity potential near the sonic point may be written in the form

Φ(x, y) = x+ yσ
F (ξ)

γ + 1
+ ... , σ = σ(α) , y → 0 , ξ = O(1) . (2.4)

The first term here corresponds to the main unperturbed flow with U = 1, V = 0 at

the sonic point, whereas the second term represents the leading-order perturbation,

with the function F (ξ) being an order one quantity for ξ = O(1). Substituting

this expansion into (2.1) and using the principle of least degeneration results in the

following ordinary differential equation (Frankl 1947):

[
(αξ)2 − F ′]F ′′ − 5α(α− 1) ξF ′ + 3(3α− 2)(α− 1)F = 0 , (2.5)

and shows that α and σ are related as

σ = 3α− 2 .

It can be easily demonstrated that expression (2.4) is, indeed, an asymptotic expan-

sion for y → 0 as long as α > 1 and, consequently, σ > 1. A more strict argument

leading to the introduction of the similarity variable ξ = x/yα (and the relevant

asymptotic form (2.4) with σ = 3α − 2) in order to describe the local flow is based

on group theory (Cole & Cook 1986).

All the terms in equation (2.5) correspond only to the left-hand side of the first

equation in (2.1), with the right-hand side being of a smaller order of magnitude.

Equation (2.5) is nonlinear and has a singular point where the coefficient (αξ)2 − F ′

in front of F ′′ turns zero. The singular point corresponds to the so-called limiting

characteristic in the flow (Guderley 1957); upon passing through this characteristic,

the flow becomes significantly supersonic and cannot be decelerated without a shock
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formation. It is well known that the limiting characteristic is different from the

sonic line on which the local Mach number M = 1 (Cole & Cook 1986). The flow

that has already passed through the sonic line but has not yet reached the limiting

characteristic is formally supersonic; however, it may still be decelerated without a

shock to become subsonic.4)

From now on, we shall employ the notations u, v for the leading-order velocity

perturbations:

u = (γ + 1) (U − 1) = (γ + 1)

(
∂Φ

∂x
− 1

)
= y2α−2 F ′(ξ) ,

v = (γ + 1)V = (γ + 1)
∂Φ

∂y
= y3α−3

[
(3α− 2)F − αξF ′] .

(2.6)

Since y = 0 corresponds to ξ = ±∞ depending on the sign of x, boundary condition

(2.3) reduces to

α
[
λF − ξF ′]∣∣

ξ→±∞ ∼ −(γ + 1)κ±

(
x

y3α−3

)∣∣∣∣
y→0

, x ≷ 0 , (2.7)

where λ = σ
α

= 3− 2
α
. It is easily seen from (2.7) that α has to satisfy the constraint

3α− 3 = α, yielding

α =
3

2
, λ =

5

3
.

Hence, boundary condition (2.7) for F is finally written in the form

lim
ξ→±∞

[
λF

ξ
− F ′

]
= −(γ + 1)κ±

α
, x ≷ 0 . (2.8)

Equation (2.5) with boundary condition (2.8) define a boundary-value problem for

the potential function F (ξ), which can be either solved numerically or studied analyt-

ically. In the subsequent sections of Chapter 2 we shall solve the problem numerically

first and compute the so-called phase portrait of the flow (Guderley 1957); the lat-

ter is essential in understanding the flow’s behavior for different values of κ+/κ−.

This will be followed by a theoretical explanation of the numerical results using the

hodograph method (Chaplygin 1902), based on self-similar solutions of the Trikomi

equations.

4) This is one of the main results of the first part of the thesis, and it is essential for the subsequent
analysis of the boundary layer separation. See section (2.4.7) for details.
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Our ultimate goal is to find pressure gradients on both upstream and downstream

walls as functions of the curvatures’ ratio, and to investigate a possibility of a bound-

ary layer separation near the curvature discontinuity. In the subsequent sections it

will be shown that the pressure gradients can be obtained from a simple algebraic

system of equations containing κ+/κ− as a parameter.

The wall pressure gradients are closely related to the asymptotic behavior of F (ξ)

at ξ → ±∞; the latter can be easily derived from equation (2.5) to be

F (ξ) = C±(±ξ)3− 2
α +D±(±ξ)3− 3

α +O
(
(±ξ)3− 4

α

)
, ξ → ±∞ ,

where C± and D± are constants. Since α = 3
2
, the general expression takes the form

F (ξ) = C±(±ξ)λ ±D±ξ + ... , ξ → ±∞ , λ =
5

3
. (2.9)

Substituting this into boundary condition (2.8), we get

D± = ∓(γ + 1)κ± ,

which means that the second term of the asymptotic form (2.9) is directly related to

the impermeability condition on the wall. The first term, on the other hand, describes

the pressure distribution on the wall. Indeed, the scaled pressure perturbation

p =
p̂− p̂∗
ρ̂∗â2

∗

can be expressed in terms of F (ξ) using the Bernoulli equation:

p = −y2(α−1)F ′ + ... ∼ −u ; (2.10)

p̂∗ and ρ̂∗ stand for the pressure and the density at the sonic point. Plugging (2.9)

into (2.10) and setting y = 0 yields:

∂p

∂x

∣∣∣∣
ξ→±∞

= −C±
2λ(α− 1)

α
(±x)1− 2

α , x ≷ 0 .

For the case of α = 3
2

the gradient develops a singular behavior of (±x)− 1
3 as long

as C± 6= 0. Therefore, we need to find the relationship between C± and κ+/κ−, and

then see whether a boundary layer separation takes place in these conditions or not.
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Finally, it is worth deriving a formula for the local Mach number in terms of F (ξ),

based on the second equation from (2.1) and on the self-similar expansions (2.6) for

U , V near the sonic point:

M =

√
U2 + V 2

a
= 1 +

1

2
y2(α−1)F ′ + ... . (2.11)
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2.2 Phase Portrait

In this section we are going to introduce the concept of a phase portrait, widely used

in the theory of transonic flows (Guderley 1957). Even though the phase portrait

analysis is considered to be quite well established and has been expounded in various

works (see, for example, Cole & Cook (1986) and Ruban et al. (2006)), we find it

necessary to give a detailed explanation of it in this thesis. The reason is that the

concepts and the techniques introduced while describing the phase portrait will be

used throughout the whole work.

2.2.1 Invariant transformations

Let us start from the obvious fact: the self-similar boundary-value problem for F (ξ)

described by equation (2.5) and boundary conditions (2.8) has to be invariant with

respect to a change in the scaling of the spatial coordinates x and y. The re-scaling

leads to the following group transformation:

x = B x , y = B y , (2.12)

where B > 0 is a “stretch” coefficient, and the bar denotes transformed variables.

Since α > 1 in the definition of the self-similar variable ξ, transformation (2.12)

results in its stretching:

ξ =
x

yα
= B1−α x

yα
≡ Aξ ,

with A = B1−α being a new deformation coefficient.

It is easy to notice further that the main equation (2.5) admits the invariant group

transformation

ξ = Aξ , F = A3 F . (2.13)

We now need to show that boundary conditions (2.8) are also invariant with respect

to this transformation. Indeed, the change of the spatial scale described by (2.12)

means that dimensionless curvatures undergo the transformation

κ± = B−1
κ± . (2.14)
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Plugging (2.13), (2.14) into (2.8) yields

αA2

[
λF

ξ
− dF

dξ

]∣∣∣∣
ξ→±∞

= − 1

B
(γ + 1) κ± ,

and from the relationship between A and B it follows that the boundary conditions

are invariant when α = 3
2
.

In order to make the solution independent on a choice of the group constant A,

we shall introduce two new functions of ξ proportional to the velocity perturbations

u, v: 5)

f(ξ) =
F ′

α2ξ2
≡ (u/y)

α2ξ2
,

g(ξ) =
λF − ξF ′

α2ξ3
≡ (v/x)

α3ξ2
.

(2.15)

Introducing a new independent variable χ through

dχ =
dξ

(f − 1)αξ
, (2.16)

one can easily convert equation (2.5) to the following non-singular autonomous sys-

tem: 



df

dχ
= 2f + 3(α− 1)g − 2αf 2 ,

dg

dχ
= 3g + 2(α− 1)f 2 − 3αfg .

(2.17)

Now each solution of equation (2.5) may be treated as a phase trajectory in the (f, g)

plane, as shown in Fig. 2.2. Each such trajectory represents a family of solutions for

all possible values of A, i.e. is invariant with respect to coordinate transformation

(2.12), and runs in a certain direction as ξ is changing from −∞ to ∞. However,

few difficulties arise immediately.

First of all, transformation (2.16) of the independent variable has two singular

points:

ξ = 0 , f = 1 ,

and passing through either of them alters the direction of changing of χ with respect to

the old variable ξ (the latter is increasing monotonely from −∞ to +∞). Hence, the

phase plane should have several sheets, with different parts of the trajectory running

5) Defined in (2.6), u and v are also invariant with respect to transformation (2.12).
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Figure 2.2: A typical phase trajectory in the (f, g) plane, with P1, P2 and P3 being
the stationary points of equations (2.17).

on different sheets according to (2.16).6) Since F (0) and F ′(0) are not equal to zero

in most of the cases, typical phase trajectories stretch to infinity when ξ → 0 and,

in addition to moving onto a new sheet of the phase plane, undergo reflection in the

g = 0 axis as ξ changes sign. The latter immediately follows from expression (2.15)

for the phase variables. The line f = 1 (see Fig. 2.2) needs a particular attention.

It corresponds to the singular point F ′ = α2ξ2 of equation (2.5), and therefore will

be called the singular line. Later we shall prove that phase trajectories are only

able to pass through the singular line at the point with coordinates (f, g) =
(
1, 2

3

)
;

the relevant value ξc of variable ξ defines the so-called limiting characteristic in the

physical plane. This characteristic is important because it forms a boundary between

two physically different regions, and will be examined comprehensively in section

2.2.2.

Secondly, equations (2.17) are strongly nonlinear and cannot be integrated ana-

lytically for the case of α = 3
2
; in this formulation the problem may only be solved

numerically. Nevertheless, analyzing stationary points of system (2.17) provides an

insight regarding several important properties of the transonic flow.

6) Note that we are going to plot all the fragments of a single curve (running on different sheets)
on the same graph; for example, this was done in Fig. 2.2.
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2.2.2 Stationary points of equations (2.17)

Equations (2.17) have three stationary points, where their right-hand sides simulta-

neously become equal to zero (Guderley 1957). They are P1 = (0, 0), P2 =
(
1, 2

3

)

and P3 =
(

1
α2 ,− 2

3α3

)
, as shown in Fig. 2.2.7) Let us examine these points one after

another, linearizing (2.17) near each point.

1) P1 = (0, 0). The linearized equations are





df

dχ
= 2f + 3(α− 1)g ,

dg

dχ
= 3g ,

(2.18)

|f |, |g| � 1. This system has a pair of positive eigenvalues λ1 = 2 and λ2 = 3,

yielding the local solution

f = C |g|2/3 + 3(α− 1)g , C = const .

Hence, P1 is a node with half lines g = 0 and g = 1
3(α−1)

f (the latter becomes g = 2
3
f

when α = 3
2
).

Being the origin in the phase plane, point P1 corresponds to both the upstream

and downstream walls (ξ → ∓∞), which can be seen from definition (2.15) of the

phase variables and asymptotic form (2.9) of F (ξ). Therefore, the trajectories start

from the origin when ξ = −∞ and return to it when ξ =∞. Depending on the sign

of f , the flow in the vicinity of the wall can be either subsonic or supersonic. In the

limiting cases C =∞ and C = 0 the trajectories follow the first and the second half

line, respectively. In all other cases f ∼ |g|2/3 in the leading order, which means that

specifying the first two terms of the asymptotic form (2.9) (related to the near-wall

pressure gradient and the wall curvature) is equivalent to setting the constant

C = lim
ξ→±∞

(
f

|g|2/3
)
.

This result will be used in section 2.4.3 to obtain boundary conditions in the hodo-

graph plane.

7) We are not specifying the value of α to make the results look more general.
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2) P2 =
(
1, 2

3

)
. Note that this point is located on the singular line. Introducing

small deflections f = f − 1, g = g − 2
3
, we get the linearized equations





df

dχ
= 2(1− 2α)f + 3(α− 1)g ,

dg

dχ
= 2(α− 2)f − 3(α− 1)g ,

(2.19)

valid for |f |, |g| � 1. The system has a pair of negative eigenvalues λ1 = −(α + 1),

λ2 = −6(α − 1), which means that P2 is a node with half lines g = f and g = µf ,

where µ = 2(2−α)
3(α−1)

. In particular, µ = 2
3

for α = 3
2
. The trajectories of (2.19) are

expressed by the equation

∣∣∣∣
g − µf
1− µ

∣∣∣∣
λ1

= C

∣∣∣∣
f − g
1− µ

∣∣∣∣
λ2

, C = const .

The presence of the node P2 on the singular line leads to important consequences.

It appears that the coordinate line ξ = ξc in the physical plane, with ξc being the

common root of the equations f(ξc) = 1, g(ξc) = 2
3
, coincides with a characteristic of

the Euler equations. Indeed, at any point of a supersonic flow one can draw a pair

of characteristics with local slope

dŷ

dx̂
=
Û V̂ ±

√
(Û2 + V̂ 2)− â2

Û2 − â2
, (2.20)

where the hat denotes unscaled physical variables, Û , V̂ are the velocity components

and â is the local speed of sound. Transforming to the dimensionless variables intro-

duced in section 2.1.1 and using the asymptotic expansions for u, v and a near the

sonic point (resulting from expansion (2.4) of the velocity potential), equation (2.20)

may be converted into

dy

dx
=

±1

yα−1 αξ
√
f(ξ)

≡ ± y

αx
√
f(x/yα)

. (2.21)

On the other hand, the local slope of a coordinate line ξ = const is

dy

dx
=

1

yα−1 αξ

∣∣∣∣
ξ=const

≡ y

αx
. (2.22)

Comparing (2.21) with (2.22), we see that the characteristics coincide with the coor-

dinate lines when f = 1, i.e. on the singular line of the phase plane. In this particular



CHAPTER 2. INVISCID TRANSONIC FLOW 41

case f = f(ξc) = 1 along the entire integral curve of (2.21); otherwise (2.21) and

(2.22) lead to different integrals, and the characteristics intersect with the coordinate

lines.8)

However, we also need to make sure that on those coordinate lines which coin-

cide geometrically with the characteristics the so-called compatibility condition holds.

This is the necessary condition for a solution to exist along the characteristics, and

it imposes a certain restriction on the velocity components, leading to the introduc-

tion of the Riemann invariants (Liepmann & Roshko 1957). Upon substituting the

expansions for the velocity components into the compatibility condition and setting

f = 1, it yields g = 2
3

in the leading order, thus proving that the only place where

the phase trajectories can pass through the singular line is P2.

There appears to be a fundamental connection between the limiting characteristic

and the way small perturbations propagate in transonic flows. When ξ < 0, the

coordinate lines have a negative slope and can coincide with the characteristics of the

second family; the latter bring information from the outer flow to the wall. Now, if

f < 1, i.e. the phase trajectory has not yet passed to the right of the singular line,

the characteristics are steeper than the coordinate lines (see Fig. 2.3), and the normal

component of velocity on these lines is smaller than the local speed of sound.9) On
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Figure 2.3: Physical meaning of the limiting characteristic.

8) Equation (2.21) can only be integrated if the solution for f(ξ) is known.
9) The velocity component normal to the characteristics is always equal to the local speed of

sound.
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the contrary, if f > 1, then the characteristics are flatter than the coordinate lines,

and the normal component of velocity on these lines is greater than the local speed of

sound (Fig. 2.3). Consequently, small perturbations from the downstream regions do

not penetrate through the coordinate lines in the upstream direction. It means that if

a transonic flow passes through the limiting characteristic (i.e., the phase trajectories

tunnel to the right of the singular line through the point P2), the downstream regions

do not affect the flow upstream. In sections 2.4.9–2.4.12 we shall see that this property

provides one extra degree of freedom in the local solution, requiring to specify one

parameter from the global flow (say, the upstream wall pressure gradient, along with

the wall curvatures) in order to describe the local flow uniquely.

When ξ > 0, the above results hold for the characteristics of the first family (with

a positive slope) transferring information from the wall to the outside flow. Again,

in the flow with f > 1 there is no influence of the downstream regions on the the

upstream ones, and that is the reason why the limiting characteristic is so important.

In section 2.4.10 it will be shown that for our particular problem ξc < 0; the value of

ξc will be obtained analytically.

3) P3 =
(

1
α2 ,− 2

3α3

)
. In the vicinity of this point equations (2.17) are reduced to

the following linear system for the small deflections f = f − 1
α2 and g = g + 2

3α3 :




df

dχ
=

1

α

[
2(α− 2)f + 3α(α− 1)g

]
,

dg

dχ
=

1

α2

[
2(2α− 1)f + 3α(α− 1)g

]
.

(2.23)

This system has eigenvalues λ1 = −α+1
α

, λ2 = 6(α−1)
α

with different signs, which means

that P3 is a saddle point. Its half-lines are directed along the vectors

∥∥∥1 , 2(2α−1)
3α(α−1)

∥∥∥
T

,
∥∥∥1 , − 1

α

∥∥∥
T

.

When the phase trajectories approach the saddle point, their direction undergoes

an abrupt change. In section 2.4.9 we shall see that this affects the physics of the

flows by providing a border between the trajectories corresponding to different flow

regimes (Fig. 2.4). The saddle point creates an obstacle for those trajectories that

move towards the singular line in the lower half-plane g < 0 (Fig. 2.2), and makes
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them turn either towards the subsonic region, or towards the point P2 where an

intersection with the singular line is allowed. In some special cases the trajectories

find themselves moving along the saddle point half-lines. Integrating (2.16) along the

first half-line yields

ξ = C |f |−α+1
6 , C = const ,

and |ξ| → ∞ when f → 0. This situation contradicts with one of the basic properties

of the phase trajectories that (f, g)→ (0, 0) as |ξ| → ∞ (on approaching the walls).

However, it becomes allowed in the limiting case of κ+/κ− → ∞, interpreted as

κ+ →∞, κ− = const.10) Integrating (2.16) along the second asymptote gives

PSfrag replacements

P3

Figure 2.4: Phase trajectories near the saddle point.

ξ = C |f |α−1 , C = const ,

so that |ξ| → 0 when f → 0. This refers to the same limiting case of κ+/κ− → +∞,

now interpreted as κ− → 0, κ+ = const, arising from an entirely different flow

regime. Due to the fact that the local solution does not depend on the way the

coordinates (and, hence, the curvatures) are scaled, these two interpretations are

identical, therefore providing an important link between the two completely different

flow regimes via the saddle point.

10) A detailed explanation is given at the end of section 2.4.12.
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2.3 Numerical Solutions of the Karman-Guderley

equation

The local analysis of the phase trajectories near the stationary points P1, P2 and

P3 gives a valuable information about some basic properties of the flow. However,

we need to obtain the phase trajectories for all ξ ∈ (−∞,∞) in order to find the

pressure gradients on both walls for a given ratio of the curvatures. The only way to

do that, as long as equation (2.5) or system (2.17) are being considered, is to solve

the relevant boundary-value problem numerically. In this section we are going to

develop a simple numerical technique of solving boundary-value problem (2.5)–(2.8)

and calculating the phase trajectories as ξ runs from −∞ to ∞.

2.3.1 Transformation of the variables

To increase the accuracy of numerical results, a specific transformation of the variable

ξ and the function F (ξ) has to be introduced, allowing us to work with a finite

computational domain and simpler boundary conditions.

According to the asymptotic behavior (2.9) of F (ξ) at ξ → ±∞, let us introduce

a new function G(s):

F (ξ) =
[
(γ + 1)κ−

]1/α
sign(ξ) |ξ|λG(s) , (2.24)

with the new independent variable s defined as

ξ =
[
(γ + 1)κ−

]α−1
sign(s)

(
tan|s|

)α
(2.25)

on the finite domain −π
2

6 s 6 π
2
. The |ξ|λ term is used in (2.24) to make G(s) finite

when s = ±π
2
, and taking tan|s| to the power of α in (2.25) ensures that dG/ds is

also finite. Both s and G(s) are invariant with respect to re-scaling (2.13), thanks to

the terms with κ− in the above equations.

Transformation (2.25) monotonely maps the infinite region −∞ < ξ < ∞ into

the domain −π
2
< s < π

2
which is more suitable for numerical computations. As
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mentioned before, the new function G(s) is finite at s = ± π
2
. Its limiting values,

defined as

G± = ∓G
(
±π

2

)
,

are directly related to the pressure gradients on the walls:

∂p

∂x

∣∣∣∣
y=0, x≷0

= G±
[
(γ + 1)κ−

]1/α 2λ(α− 1)

α
(±x)1− 2

α + ... , |x| � 1 . (2.26)

Equation (2.26) is deduced from expansion (2.10) for the pressure and the asymptotic

form (2.9) of F (ξ); the latter may be written as

F (ξ) = −G±
[
(γ + 1)κ−

]2/3
(± ξ)5/3 − (γ + 1)κ± ξ + ... , ξ → ±∞ (2.27)

after setting α = 3
2
.

The general expression (2.26) is reduced to

∂p

∂x

∣∣∣∣
y=0, x≷0

= ∓ k G± (±x)−1/3 + ... , k =
10
[
(γ + 1)κ−

]2/3

9
(2.28)

when α = 3
2
, thus yielding the (±x)−1/3 singularity in the pressure gradients. Our

main task now is to find the signs and the absolute values of G± for any given ratio

of the curvatures.

Transformations (2.24)–(2.25) result in the simple boundary conditions for G(s):

dG

ds

∣∣∣∣
s=±π

2

=





κ+

κ−
, x > 0 ,

−1 , x < 0 ,

(2.29)

and the equation for G(s) is

sin2s
d

ds

(
sin2s

dG

ds

)
=

(
λG+

sin(2s)

2α

dG

ds

)
·

[
λ(λ− 1)G+

λ sin(2s)

2α

dG

ds
+

cos2s

α2

d

ds

(
sin2s

dG

ds

)]
.

(2.30)

The solution of the boundary-value problem (2.30)–(2.29) obviously depends only

on the ratio of the curvatures. Since the problem does not contain γ, the pressure

gradients, according to (2.28), are related to the specific heat ratio via the factor

(γ + 1)2/3.
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Equation (2.30) can be integrated numerically for any s 6= 0; however, the solution

develops a singularity, namely G(s) ∼ |s|−αλ, as |s| → 0. Thus, original equation (2.5)

has to be solved in the vicinity of ξ = 0, and the corresponding solution should be

matched with G(s) on both sides of ξ = 0 at two points of our choice (these points

should be located at finite distances from ξ = 0 to avoid the singularity in G). By

restricting the domain for s (where equation (2.30) is solved) to − π
2
< s < −π

4
and

π
4
< s < π

2
, we get the relevant domain for ξ (where equation (2.5) is solved):

−
√

(γ + 1)κ− < ξ <
√

(γ + 1)κ− ,

as shown in Fig. 2.5. At the joints, one needs to match F (ξ) with G(s) using (2.24),

and dF/dξ with dG/ds via

dF

dξ

∣∣∣∣
ξ=±
√

(γ+1)κ−

= ± (γ + 1)κ− tan s

[
λG+

sin(2s)

2α

dG

ds

]∣∣∣∣
s=±π

4

.

In order to reconstruct the phase trajectories, we use original definition (2.15) within

the computational domain for ξ, whereas in the domain of the transformed variables

s, G(s) equations





f(s) =
1

α2 tan2s

[
λG+

sin(2s)

2α

dG

ds

]
,

g(s) = − sin(2s)

2α3 tan2s

dG

ds

(2.31)

are employed.
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Figure 2.5: Computational domains for ξ and s.

Finally, for those trajectories that happen to pass through the point P2 both

equations (2.5) and (2.30) fail, as the coefficient in front of the second derivative
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becomes zero at this point. Therefore, on approaching P2 equation

dg

df
=

3g + 2(α− 1)f 2 − 3αfg

2f + 3(α− 1)g − 2αf 2
, (2.32)

obtained from (2.17) and written directly for the phase variables, is solved. In the

point P2 itself both the numerator and the denominator in (2.32) are equal to zero,

but their ratio is finite and is equal to 1 when α = 3
2

(according to the local analysis

performed in section 2.2.2). This result is used to eliminate the singularity in (2.32)

and pass through the critical point P2.

Now we have enough tools to proceed with the numerical technique.

2.3.2 Numerical results for the phase portrait and the pres-

sure gradients

Instead of dealing with the original boundary-value problem which arises when both

curvatures are specified, one can consider a different physical situation. Namely,

let us assume that we know both the curvature and the pressure gradient on the

upstream wall, while the downstream curvature and pressure gradient are unknown.

From (2.26) we see that specifying the upstream pressure gradient yields the relevant

value of G−, and along with the upstream condition (2.29) for dG/ds this defines an

initial-value problem for G(s). The initial-value problem can be solved numerically

using marching with the second-order prediction-correction scheme.

Integrating equation (2.30) for −π
2
< s < −π

4
, then equation (2.5) for

−
√

(γ + 1)κ− < ξ <
√

(γ + 1)κ− ,

and then (2.30) again for π
4
< s < π

2
(plus equation (2.32) for those trajectories

that approach the point P2), we cover all the values of ξ ∈ (−∞,∞), calculate the

phase variables f , g and plot the relevant phase trajectory along the way. Once the

final point s = π
2

is reached, we get the values of G+, dG
ds

∣∣
+
, and therefore can work

out both the downstream pressure gradient and the curvatures ratio from equations

(2.28), (2.29). Since κ− is specified, the latter provides κ+.
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Notice that for α = 3
2

equation (2.5) admits a simple analytical solution

F (ξ) = C ξ , (2.33)

where C is an arbitrary constant. We shall write (2.33) as

F (ξ) = −(γ + 1)κ ξ , −∞ < ξ <∞ (2.34)

and use it as a starting point in our calculations. According to (2.24), this solution

yields G± = 0, i.e. zero pressure gradients on both walls in the leading order. The

perturbations of the velocity components, defined in (2.6), in this case are:

u = y F ′ = −(γ + 1)κ y ,

v = αy3/2
[
λF − ξF ′] = −(γ + 1)κ x .

(2.35)

Therefore, (2.34) describes a potential vortex flow outside a wall with a constant

curvature κ = κ− = κ+; for convex walls κ > 0 and the flow in the vortex is

subsonic. Functions (2.35) are the leading-order terms in the Taylor expansions of

the general solution for a potential vortex flow, constructed near any given point of a

smooth body surface (with no curvature breaks). The corresponding phase trajectory

is simply a straight line g = 2
3
f , f < 0, starting from the origin when ξ = −∞, then

moving to (f = −∞, g = −∞) as ξ → 0, and finally returning back to the origin

when ξ → ∞ (Fig. 2.6). Note that the reflection rule, derived in section 2.2.1 for

a typical trajectory when ξ changes its sign, is not applicable in this case since g

appears to be an even function of ξ.11) The g = 2
3
f line also coincides with one of

the half-lines of the stationary point P1.

Based on the above results we integrated the initial-value problem for a small

negative value of G− (favorable pressure gradient on the upstream wall), calculating

the phase trajectory and the downstream wall parameters in the process. Once the

solution was obtained, we increased |G−| slightly (keeping G− negative) and solved

the problem numerically again. By repeating the procedure, we obtained a family of

11) In most of the cases g is an odd function of ξ in the vicinity of ξ = 0, which follows from the
definition of g in (2.15). Being proportional to ξ−3 if F (0) 6= 0, g undergoes a jump from −∞ to ∞
or vice versa when ξ changes sign.
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Figure 2.6: Numerical results for the phase trajectories corresponding to different
ratios of the curvatures; (a): κ+

κ−
= 1; (b) and (c): 1 < κ+

κ−
< ∞; (d): κ+

κ−
= ∞; (e):

trajectories which cross the singular line in an illegitimate place and therefore have
to be rejected.

the phase trajectories for negative values of G− (few of them are shown in Fig. 2.6),

and plotted κ+/κ− versus G− (Fig. 2.7, left). Fig. 2.6 suggests that when G− < 0,

the trajectories start into the subsonic half-plane (f < 0), i.e. the oncoming flow

with a favorable pressure gradient is subsonic. After crossing the line g = 0 (where

v changes the sign), the trajectories head on to infinity as ξ → 0, get reflected in

the g = 0 line, then enter the supersonic half-plane (f > 0) and finally return to

the origin, thanks to the presence of the saddle point P3. Thus, the flow becomes

supersonic near the downstream wall. The larger |G−| is, the wider the trajectories

go with respect to line g = 2
3
f , and their supersonic fragments come closer to the

saddle point. As a result, for some G− = Gmin < 0 the trajectory ends at the saddle

point.12) The consequences of this kind of a behavior have already been mentioned

in section 2.2.2, and will be described in detail in section 2.4.8. Finally, when |G−|

becomes greater that |Gmin|, the trajectories turn to the right of the saddle point and

approach the singular line, attempting to cross it at an illegitimate place (Fig. 2.6).

Hence, these solutions have to be rejected, which means that no favorable upstream

12) Analytical expression for Gmin will be obtained in section 2.4.5.
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pressure gradients stronger than |Gmin| can exist.
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Figure 2.7: Numerical results for the ratio of the curvatures and the ratio of the
gradients for different values of the upstream pressure gradient G−.

From Fig. 2.7, left, we see that oncoming subsonic flows (which have G− < 0)

correspond to κ+/κ− > 1.13) The ratio increases with |G−|, leading to a flatter

upstream wall for stronger favorable pressure gradients, and tends to∞ when G− →

G+
min. This limit can correspond either to κ+ →∞, κ− > 0 or κ− → 0+, κ+ > 0, due

to the problem’s invariance with respect to re-scaling (2.12). In the first case the size

of the region where the self-similar solutions are valid tends to zero;14) however, for the

observer who ‘sits’ in the self-similar region itself (small enough for the solutions to

be valid) the upstream wall becomes a flat plate (κ− → 0), whereas the downstream

wall has κ+ = O(1), thus corresponding to the second interpretation. By choosing

L =
[
max(κ̂−, κ̂+)

]−1

as a scale, we can restrict dimensionless curvatures to 0 6 κ± 6 1 to avoid the

infinities and additional re-scaling.

The pressure gradients’ ratio G+/G− is shown in Fig. 2.7, right, as a function

of G−. As with the curvatures’ ratio, it is greater than 1 when G− < 0, suggesting

that the downstream pressure gradient is also favorable and is stronger than the

13) Positive values of G− in Fig. 2.7 correspond to a supersonic flow on the upstream wall which
will be discussed later.

14) Recall that transferring boundary condition (2.2) to the y = 0 axis is only possible when
|κ± x| � 1, which means that the regions between the curved walls and the line y = 0 are negligible.
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upstream gradient. Both gradients vanish in the limit κ+/κ− → 1 (no discontinuity

in the curvature), although the gradient’s ratio tends to 1. In the opposite limit

κ+/κ− →∞ the ratio also tends to infinity. Indeed, on a much flatter upstream wall

the pressure gradient should be significantly smaller.

1 53
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Figure 2.8: The ratio of the pressure gradients on the walls as a function of the ratio
of the curvatures (plotted for the case of κ+

κ−
> 1).

In Fig. 2.8 the gradients’ ratio is plotted versus κ+/κ−.15) When κ+/κ− is in-

creasing from 1, G+/G− at first becomes slightly bigger than the curvatures’ ratio,

but at κ+/κ− ≈ 4.7 the situation changes to the opposite, ultimately leading to the

following asymptotic behavior:16)

G+

G−
∼
(

κ+

κ−

)2/3

,
κ+

κ−
→∞ .

Let us now move on to positive G− in the initial value problem; in this case the

upstream pressure gradient is adverse; see (2.28). By increasing G− slightly after

each computation, we cover the whole range of possible values of adverse pressure

gradients, plot the relevant phase trajectories and obtain the downstream wall pa-

rameters (G+ and κ+/κ−). A selection of the trajectories is shown in Fig. 2.9. This

time they start into the supersonic half-plane f > 0 (i.e. the flow near the upstream

15) This graph, unlike the previous one, is plotted for the case of a subsonic flow on the upstream
wall only, i.e. for κ+/κ− > 1.

16) This comes from the analysis of equations (2.67) in section 2.4.5.



CHAPTER 2. INVISCID TRANSONIC FLOW 52

wall is supersonic), but soon after that turn abruptly towards the subsonic half-plane,

thanks to the presence of the saddle point. Despite the fact that the flow is orig-

inally supersonic, it does decelerate to subsonic speeds without a shock formation.

In subsequent sections we shall give a rigorous proof that this is only possible when

the phase trajectories remain on the left of the singular line. Recall that in section

2.2.2 we argued that when f < 1, small perturbations may penetrate back through

the coordinate lines, resulting in an influence of the downstream regions on the up-

stream ones (essential property of subsonic flows). Therefore, supersonic flows with

0 < f < 1 are somewhat inferior and allow smooth deceleration. However, once the

trajectories find themselves on the right of the singular line (f > 1), the only way

back is through a shock, which may lead to either a subsonic or a supersonic flow

near the downstream wall.
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Figure 2.9: Numerical results for the phase trajectories corresponding to different
ratios of the curvatures; (a): κ+

κ−
= 1; (b), (c): 0 < κ+

κ−
< 1; (d): κ+

κ−
= 0; (e):

trajectories which pass through the singular line via the only allowed point P2. The
dashed lines represent the limiting shape of the trajectories from the family (a), (b),
(c) when κ+

κ−
→ 0+, and the so-called critical lines in the supersonic half-plane (see

section 2.4.2).

After crossing the sonic line, the trajectories travel to (f = −∞, g =∞), reflect

in the g = 0 axis and return back to the origin (crossing line g = 0 on the way).
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Thus, the behavior totally resembles the one of the trajectories in the previous regime

(subsonic oncoming flows), with the only difference in the direction of travelling along

the trajectories. Again, the larger the adverse pressure gradient on the upstream wall

is, the wider the trajectories go with respect to g = 2
3
f . As for the curvature’s ratio, it

is plotted versus G− in Fig. 2.7, left. Now the ratio is within (0, 1) and is diminishing

with G−. From the plot it follows that for some G− = Gmax > 0 it becomes zero,

referring to either κ+ → 0+ or κ− →∞ (with the second curvature being an order-

one quantity in both cases).17) As G− → G−
max, the trajectory approaches the saddle

point P3, and ends up in it when G− = Gmax. This time it reaches the saddle point

when ξ → 0− along the second linear asymptote (section 2.4.8). Later we shall

see that this particular phase trajectory then jumps from point P3 into the origin,

creating a weak discontinuity at ξ = 0 and a uniform flow for ξ > 0 (over a flat plate

with κ+ = 0).

For G− > 0 the downstream pressure gradient is also adverse (Fig. 2.7, right),

thus yielding the general rule: for subsonic flows on the downstream wall the pressure

gradient is always adverse, whereas for supersonic flows near the downstream wall it

has to be favorable. However, once the upstream wall is considered, the opposite is

true: subsonic flows on the upstream wall lead to favorable pressure gradients, while

supersonic flows near the upstream wall develop adverse pressure gradients. Summa-

rizing, in the first regime considered (subsonic upstream flows becoming supersonic

downstream) both pressure gradients are favorable, and in the second regime (su-

personic upstream flows with f < 1, becoming subsonic downstream) both of the

gradients are adverse.18) Overall, there appears to be a symmetry between the two

regimes discussed above with respect to the transformation x←→ −x; in other words,

physical processes in these flows are reversible.

To make the results more clear, it is worth plotting both G− and G+ as functions

of the curvature’s ratio (Fig. 2.10). The two regimes discussed above have a similar

property: knowing any pair of the physical parameters, for example (κ−,κ+), or

17) Note that Gmax 6= |Gmin|; analytical expression for Gmax will be given in section 2.4.7.
18) The latter may lead to a separation of the boundary layer.
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Figure 2.10: Upstream and downstream pressure gradients as functions of the ratio
of the curvatures.

(κ−, G−), allows to determine the other two uniquely ((G−, G+) or (κ+, G+) respec-

tively). It means that by knowing, say, both of the curvatures (which is physically

reasonable) one can work out the local flow regardless of the global flow, since no

free parameters remain in the local solutions. Later we shall call these two regimes

subcritical and provide proofs for all the proposals from this section.
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Figure 2.11: A typical phase trajectory which tunnels through the singular line.

Finally, we need to say a few words about what happens when G− becomes
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larger that Gmax. Recall that in the opposite case when G− < Gmin < 0 we had

physically meaningless solutions with the trajectories trying to cross the singular

line in an illegitimate place. However, for G− > Gmax the trajectories go above the

saddle point; the latter makes them turn upwards and head on towards the node P2

standing for the limiting characteristic (Fig. 2.9). As already shown previously, this

point provides the only possible passage through the singular line, and, being a node,

attracts all those trajectories which come close enough. Upon passing through P2, the

trajectories travel further on the right of the singular line towards (f = ∞, g = ∞)

(corresponding to ξ → 0−), are reflected in axis g = 0 and return back to the singular

line, trying to cross it slightly below P2 (Fig. 2.11). Since this kind of a crossing

is prohibited, the only way to return into the origin and satisfy the downstream

boundary condition is to undergo a jump to the other side of the singular line. The

jump would obviously correspond to a shock in the physical plane. A detailed analysis

of such flows (which are irreversible due to the shock formation, and therefore will

be called supercritical) is given in sections 2.4.9–2.4.12. It appears that the points

S1 and S2 on Fig. 2.11, referring to the front and the back sides of the shock, are

symmetric with respect to the singular line f = 1. Moreover, due to the fact that the

flow passes through the limiting characteristic before developing the shock, it gains

one extra degree of freedom (through the loss of a mutual interaction between the

downstream and the upstream regions). In this case one needs to specify any three

of the four main parameters κ−, κ+, G−, G+ of the local flow to find the remaining

one. This is totally different from the situation with the subcritical flows, and may be

treated as a dependence of the local solution upon the global solution. Thus, along

with both curvatures we now have to specify one of the pressure gradients in order

to obtain a unique local flow pattern. Having one extra free parameter results in

a greater variety of regimes, for example flows over concave downstream walls with

κ+ < 0 (see section 2.4.12).

This completes the numerical analysis, and we can now proceed with a theoretical

interpretation of the above results.
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2.4 Hodograph Method

In this section we are going to give a theoretical explanation of the numerical results

obtained in section 2.3.2. This will provide a better understanding of all the possible

scenarios describing how a local inviscid transonic flow generated by a discontinuity in

wall curvature may behave depending on the curvatures’ ratio. Even though only one

specific inviscid flow regime, highlighted in section 2.4.6, will be subsequently chosen

for the analysis of a viscous-inviscid interaction in Chapter 3, a complete picture

of the inviscid flow has its own scientific significance. Several important proposals

regarding the limiting characteristic, shock formation and the link between the local

and the global flows will be proved analytically in this section.

2.4.1 Direct and Inverse problems

By analogy with the Quantum Mechanics, our 2D problem admits a momentum repre-

sentation, as opposed to the coordinate representation used in previous sections. This

implies treating the perturbations u, v of the velocity components as the independent

variables, with the spatial coordinates being their functions:

x = x(u, v) , y = y(u, v) .

In the coordinate representation the flow in a small vicinity of the sonic point is

described by the potential

Φ(x, y) = x+
φ(x, y)

(γ + 1)
+ ... ,

where φ(x, y) is a leading-order perturbation related to u, v and F (ξ) in the following

way (see (2.6), (2.4)):

u =
∂φ

∂x
, v =

∂φ

∂y
, φ(x, y) = y3α−2F (ξ) , y → 0 , ξ = O(1) .

It satisfies the Karman–Guderley equation

∂φ

∂x

∂2φ

∂x2
− ∂2φ

∂y2
= 0 , (2.36)
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which results from the Euler equations in the assumption of small transonic pertur-

bations (Cole & Cook 1986); (2.36) is equivalent to the system





u
∂u

∂x
− ∂v

∂y
= 0 ,

∂u

∂y
=
∂v

∂x
.

(2.37)

After inverting the roles of independent and dependent variables, equations (2.37) are

transformed into the so-called Trikomi equations; the latter are linear and describe a

flow in its momentum representation:





u
∂y

∂v
− ∂x

∂u
= 0 ,

∂x

∂v
=
∂y

∂u
.

(2.38)

These may be easily converted into a pair of linear second order equations for the

functions x(u, v) and y(u, v) separately:





u
∂2y

∂v2
− ∂2y

∂u2
= 0 ,

u
∂2x

∂v2
− ∂2x

∂u2
+

1

u

∂x

∂u
= 0 .

(2.39)

The transformation from system (2.37) to system (2.38) is possible when the Jacobian

∆ = det

∥∥∥∥∥∥∥∥

∂x

∂u

∂y

∂u

∂x

∂v

∂y

∂v

∥∥∥∥∥∥∥∥
(2.40)

is not equal to zero. If ∆ = 0 for certain solutions of (2.38), the corresponding

functions u(x, y) and v(x, y) are many-valued and these solutions have no physical

meaning.19) On the contrary, if ∆ = ∞ at some point, the functions x(u, v), y(u, v)

are many-valued, suggesting that the same values of u, v occur in several different

places within the flow, which is a normal situation. However, in this case the original

equations (2.37) have to be solved in order to avoid the difficulties in transforming

x(u, v), y(u, v) to u(x, y), v(x, y).

19) In fluid mechanics one expects to find a single pair of values of the velocity components u, v
at any given point (x, y) unless there is a shock wave.
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From now on we shall call the problem described by system (2.37) with bound-

ary conditions (2.2) the direct problem (coordinate representation), and the problem

described by system (2.38) with the appropriate boundary conditions the inverse

problem (momentum representation). The (u, v) plane in which the inverse problem

is being solved is known as the hodograph plane, and gives its name to the method

(Chaplygin 1902).

2.4.2 Self-similar solutions of the Trikomi equations

Let us assume that the inverse problem also admits a self-similar solution near the

sonic point (in which the wall curvature breaks). Introducing the similarity variable

ζ =
u

vβ
, (2.41)

where β is an unknown parameter, we represent x(u, v) and y(u, v) in the form

x(u, v) = v ψ(ζ) + ... ,

y(u, v) = uϕ(ζ) + ... ,

(2.42)

with the functions ϕ(ζ), ψ(ζ) being of the same nature as F (ξ) in the direct prob-

lem.20) The quasi-linear structure of these dependencies follows from the fact that v

is linear with respect to x according to boundary condition (2.2), and also from the

fact that in the limiting case κ− = κ+ = κ the direct problem admits the simple

solution

u = −(γ + 1)κ y , v = −(γ + 1)κ x ;

the latter corresponds to a potential vortex flow outside a uniformly curved cylinder

(see section 2.3.2). Plugging the ansatz (2.42) into (2.38) it can be shown (based

on the least degeneration principle) that the powers of u and v are balanced in the

leading order only when

β =
2

3
≡ 1

α
;

in this case the equations for ϕ(ζ) and ψ(ζ) become self-similar. Note that the

similarity parameter of the inverse problem, β, is determined from the similarity

20) From now on we are going to neglect the higher order perturbations in (2.42).
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requirement itself, whereas α (the similarity parameter of the direct problem) is

obtained from boundary condition (2.2). On the contrary, the powers of u and v in

expansions (2.42) follow from the boundary condition as explained above, whereas

the power σ in the analogous expansion (2.4) for the direct problem is obtained from

the similarity requirement. This ‘cross-relationship’ between the two problems is an

important mathematical property.

Substituting (2.42) into the first equation of (2.39), we get the following equation

for ϕ(ζ):21)

(
β2ζ3 − 1

)
ϕ′′ +

(
β(β + 1)ζ2 − 2

ζ

)
ϕ′ = 0 , ϕ′ =

dϕ

dζ
.

This is a particular case of a hypergeometric equation. The transformation from ζ to

a new variable z,

z =
1

1− β2ζ3
, (2.43)

yields

6z(1− z)ϕ̈+ (3− 11z)ϕ̇ = 0 , ϕ̇ =
dϕ

dz
. (2.44)

The general solution of equation (2.44) can be expressed via an incomplete beta func-

tion B(a, b, z), see Abramovitz & Stegun (1972):

ϕ(z) = C1 + C2B
(

1
2
,−1

3
, z
)
, (2.45)

where

B(a, b, z) =

∫ z

0

ωa−1(1− ω)b−1dω , (2.46)

and C1, C2 are arbitrary constants. For the sake of simplicity we will employ a shorter

notation for the incomplete beta function from (2.45):

B(z) ≡ B
(

1
2
,−1

3
, z
)

=

∫ z

0

dω

ω1/2(1− ω)4/3
. (2.47)

The equation for ψ(ζ) is obtained by substituting (2.42) into the second equation

of (2.39):

(
β2ζ3 − 1

)
ψ′′ +

(
β(β − 1)ζ2 +

1

ζ

)
ψ′ = 0 , ψ′ =

dψ

dζ
,

21) Wherever symbol ‘β’ is used instead of its value 2/3, this is done to make the equations look
more general and compact at the same time. This would also be the case with the parameters α
and λ.
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which can be further transformed using (2.43) to get the general solution in terms of

ψ(z):

ψ(z) = C3 + C4

[
B(z)− 3

z1/2(1− z)1/3

]
. (2.48)

The four integration constants in the solutions for φ and ψ are not independent; from

the second equation in (2.38) and (2.42) it follows that

C1 = C3 , C2 = C4 ,

allowing to write the general self-similar solutions for x, y in the form




y = u ·
[
C1 + C2B(z)

]
,

x = v ·
[
C1 + C2

(
B(z)− 3

z1/2(1− z)1/3

)]
.

(2.49)

The functions B(z) and z1/2(1− z)1/3 are defined on a 6-sheet Riemann surface, with

the sheets joined via brunch-cuts (−∞, 0) (due to z1/2) and (1,∞) (due to (1−z)1/3),

as shown in Fig. 2.12. Each sheet is characterized by a pair of integer numbers (n,m)

denoting brunches of the functions z1/2 and (1 − z)1/3 accordingly, hence taking on

the values n = 1, 2 and m = 1, 2, 3.

0 1

PSfrag replacements

(n,m) z

a bc

Figure 2.12: A sheet of the Riemann surface for the many-valued functions in (2.49);
a, b, c mark the regions on the real axis which correspond to physically different flow
regimes.

Let us derive some important properties of solutions (2.49). The variable z may

be expressed via u, v explicitly:

z =
1

1− β2 u3

v2

, (2.50)
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which follows from (2.41) when β = 2
3
. It means that physical solutions correspond

to real z and are represented by certain trajectories running along the real axis on the

Riemann surface. The branching point z = 0 corresponds to v = 0 (streamlines in the

physical plane reach either a local maximum or a minimum at this point), whereas

the branching point z = 1 corresponds to the sonic line u = 0. From (2.50) it can

be spotted that subsonic regimes (u < 0) are contained in the domain z ∈ (0, 1), and

supersonic regimes are located along the branch cuts z ∈ (1,∞) and z ∈ (−∞, 0)

(regions a, b and c in Fig. 2.12 respectively). The latter, obviously, provides stronger

supersonic regimes which will be called supercritical. Weaker supersonic regimes are

located within the branch-cut z ∈ (1,∞) and will be called subcritical ; a connection

between these two types of supersonic solutions is made via the point z =∞ achieved

when

ζ3 = ζ3
c , ζc =

(
1

β2

)1/3

≡
(

3

2

)2/3

.

Using this important value, we can rewrite (2.43) as

z =
1

1−
(
ζ
ζc

)3 .

The equation (ζ/ζc)
3 = 1 is equivalent to f 3 = ζ3

c g
2, and defines the two lines

g = ±2

3
f

3
2 (2.51)

in the supersonic part of the phase plane (f > 0) (see Fig. 2.13). These lines will be

called the critical lines as they demarcate sub- and supercritical supersonic regimes,

with the latter located within the shaded zone in Fig. 2.13. It is easy to show that

the upper critical line passes through the node P2 =
(
1, 2

3

)
(which also lies on the

singular line f = 1), and the lower critical line passes through the saddle point

P3 =
(

1
α2 ,− 2

3α3

)
.

In subsequent sections we are going to formulate and prove several important con-

jectures for the supercritical flow regimes. One of them says that none of the phase

trajectories corresponding to (2.49) can intersect with the critical lines; the trajec-

tories may at best be tangent to the critical lines or coincide with them. Moreover,

if the phase trajectory does not completely coincide with either of the critical lines,
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Figure 2.13: Supercritical region in the phase plane.

then the only possible point of the contact is P2. Hence, if the trajectory starts into

the supercritical region, it is guaranteed to stay in it, and passes through the singular

line at the only allowed point P2, thanks to the presence of the saddle point P3, and

also because P2 itself is a node attracting all the trajectories.

We shall then see that the only possibility for the trajectory to return from the

right-hand side of the singular line back to the origin is to undergo a jump, corre-

sponding to a shock in the physical plane. This result provides a universal criterion

of a shock formation in our problem. However, our analysis will start from the two

simplest regimes without shocks described in section 2.3.2 and involving either a

subsonic or a subcritical supersonic flow upstream of the curvature break.

The phase variables f , g may be expressed via general solutions (2.49) of the

inverse problem in the following way:




f(z) =

(
y/u

x/v

)2
z − 1

z
≡
(
ϕ(z)

ψ(z)

)2
z − 1

z
,

g(z) = β

(
y/u

x/v

)3
z − 1

z
≡ β

(
ϕ(z)

ψ(z)

)3
z − 1

z
.

(2.52)

Thus, there appears to be a link between the self-similar solutions of both the direct

and the inverse problems, since f and g can be expressed either as functions of ξ or as
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functions of z. The original representation in terms of ξ was, in fact, used to derive

(2.52). Indeed, according to (2.15),

f(ξ) =
F ′(ξ)

α2ξ2
≡ u/y

α2ξ2
;

this may be rewritten in the form

f =
1

α2ξ2

1

y/u
,

where y/u refers to the general solution of the inverse problem (see (2.49)). Writing

ξ2 as

ξ2 =
x2

y3
≡ (x/v)2

(y/u)3

v2

u3
=

(x/v)2

(y/u)3

1

ζ3
, (2.53)

and recalling (2.50) immediately yields the first equation in (2.52). The expression

for g(z) (second equation in (2.52)) is obtained in exactly the same way, through the

original definition of g(ξ).

2.4.3 Boundary conditions in the Inverse problem

We now need to formulate boundary conditions for the inverse problem in order to

find the constants C1, C2 in (2.49). The crucial thing is to determine the values of

z which correspond to the physical boundaries ξ = ±∞. Using the asymptotic form

(2.27) of F (ξ), we can work out the velocity perturbations

u = yF ′(ξ) , v = αyα
[
λF − ξF ′]

in the vicinity of both the upstream and the downstream walls, and plug them into

the definition of ζ to get the relevant values ζ±:

ζ3
± =

u3

v2

∣∣∣∣
ξ→±∞

= κ
2
−

(
∓λG±

)3

κ2
±

, λ = 3− 2

α
=

5

3
.

Along with equation (2.50), this yields the required limiting values of z:

z− =
1

1− β2
(
λG−

)3 , z+ =
1

1 + β2
(
λG+

)3(κ−

κ+

)2 , z± ∈ R . (2.54)
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Hence, the boundary conditions for the inverse problem depend upon the curvatures

and the pressure gradients’ amplitudes on either of the walls.22) These four parame-

ters play the key role in the entire study, and our main task is to find an analytical

relationship between them. Equations (2.54) prove the proposals given in section

2.3.2 (based on the numerical results) for adverse and favorable pressure gradients on

both walls. Indeed, if the flow on the upstream wall is subsonic, then z− ∈ (0, 1), and

according to (2.54) G− < 0, which corresponds to a favorable upstream pressure gra-

dient (see equation (2.28)). The same arguments can be used to prove the proposals

for supersonic flows on the upstream wall and for both subsonic and supersonic flows

on the downstream wall.

To obtain the trajectories representing the flow in the z plane, we first of all need

to know the directions in which they emerge from the starting point z− and return to

the final point z+ (running along the real axis in between). These may be obtained

from the relationship between the differentials dz and dξ as ξ → ±∞. Since ξ is

increasing from −∞ to +∞ along the phase trajectory, dξ > 0 and the sign of dz is

the same as of dz/dξ. According to (2.43), dz = (βζ)2dζ3; recalling that

ζ3 =
u3

v2
=

(
F ′)3

α2
(
λF − ξF ′

)2

and using the asymptotic form (2.27) of F (ξ), we arrive at the following equation in

the leading order:

dζ3 = ± C

κ±

[
1−

(
ζ±
ζc

)3
]

(±ξ)−λdξ , ξ → ±∞ ,

where

C = (α− 1)
(
3βλG±

)2 [
(γ + 1)κ−

]4/3
.

Let us assume that on the upstream wall κ− > 0. Thus, the regimes with ζ3
− < ζ3

c

(oncoming subsonic and subcritical supersonic flows) correspond to dz < 0 in the

vicinity of z− – the trajectories in the z plane are leaving to the left of z−. On the

contrary, for ζ3
− > ζ3

c (oncoming supercritical supersonic flows) we get dz > 0 – the

trajectories in the z plane are leaving to the right of z− (see Fig. 2.14, left).

22) Recall that the coefficients G± are related to the pressure gradients via (2.28).
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subcriticalsubcritical supercriticalsupercritical

Figure 2.14: Tails of the trajectories in the z plane corresponding to a flow near
the upstream wall, left, and the downstream wall, right. The trajectories’ direction
appears to be the opposite for the subcritical and the supercritical flow regimes.

If on the downstream wall κ+ > 0 and ζ3
+ < ζ3

c (the flow is either subsonic or

subcritical supersonic), then the trajectories in the z plane are returning towards

z+ from the left, whereas for ζ3
+ > ζ3

c (supercritical supersonic flow) the trajectories

are returning towards z+ from the right (see Fig. 2.14, right). However, for concave

downstream walls with κ+ < 0 the situation is the opposite, as shown in Fig. 2.15.23)

10

PSfrag replacements

z

z+z+

κ+ < 0

subcriticalsupercritical

Figure 2.15: Tails of the z plane trajectories corresponding to a flow near a concave
downstream wall.

Now we only need to formulate boundary conditions for the functions x = v ψ(z)

and y = uϕ(z) at z = z±. From the boundary condition (2.3) of the direct problem,

23) In subsequent sections we will get the same results directly from solutions (2.49) with the
appropriate boundary conditions.



CHAPTER 2. INVISCID TRANSONIC FLOW 66

which has to be modified slightly according to re-definition (2.6) of v, it follows that




y
∣∣
z=z±

= 0 ,

x
∣∣
z=z±

= − v

(γ + 1)κ±
.

(2.55)

Regardless of the flow regime, we can always apply these conditions at one of the two

points z± in order to find the constants C1,2. Let us choose z− as it is more natural to

start constructing the solutions from the upstream part of the flow. Applying (2.55)

(evaluated only at z−) to (2.49) yields




C1 = −C2B(z−) ,

C2 =
z

1/2
−
(
1− z−

)1/3

3(γ + 1)κ−
,

leading to the following form of the solutions for x, y:





y = u · z
1/2
−
(
1− z−

)1/3

3(γ + 1)κ−

[
B(z)−B(z−)

]
,

x = v · z
1/2
−
(
1− z−

)1/3

3(γ + 1)κ−

[
B(z)− 3

z1/2(1− z)1/3
−B(z−)

]
.

(2.56)

Equations (2.56) are valid subject to an appropriate choice of branches for all the

complex-valued functions, including

z
1/2
− ,

(
1− z−

)1/3
, B(z−)

(functions of the constant z−), and this choice solely depends on the flow regime near

the upstream wall. The main criterion is that x and y should always remain real.

As it will be shown later, even for the simplest flow regimes the trajectory in the z

plane runs on at least two sheets of the Riemann surface, thus requiring to construct

regular branches of all the many-valued functions in (2.56). To do this we shall use

the standard exponential representation

z = r eiϑ

of a complex number z, with −π < ϑ < π on the sheets (1,m) and π < ϑ < 3π on

the sheets (2,m). The values ϑ = 0, 2π correspond to real positive z ∈ (0,∞) (see
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Fig. 2.16). Similarly,

(1− z) = Reiθ ,

with−π < θ < π on the sheets (n, 1), π < θ < 3π on the sheets (n, 2) and 3π < θ < 5π

on the sheets (n, 3). The values θ = 0, 2π, 4π correspond to real z ∈ (−∞, 1) (see

Fig. 2.16). The arguments ϑ, θ have been chosen to run through when z moves from

one sheet to another because this is convenient for describing transitions between the

sheets; however, one can always use local arguments ϑ̄, θ̄ which are restricted within

(−π, π) on each sheet, thus giving the following expression for the regular branch of

z1/2(1− z)1/3

on the sheet (n,m):

z1/2(1− z)1/3 = r1/2R1/3 exp

{
iϑ̄

2
+
iθ̄

3
+ iπ(n− 1) +

2πi

3
(m− 1)

}
, (2.57)

n = {1, 2}, m = {1, 2, 3}. Finally, R can be expressed in terms of r for real z:

R =





1 + r , z ∈ (−∞, 0) ,

1− r , z ∈ (0, 1) ,

r − 1 , z ∈ (1,∞) .

(2.58)

Now we have enough tools to analyze the main flow regimes, in the order chosen in

section 2.3.2 for the numerical computations. But before that it is worth mention-

ing some important special cases when solutions (2.56) lead to singularities in the

Jacobian (2.40).

2.4.4 Special cases resulting in a singular Jacobian

Based upon solutions (2.56) of the inverse problem represented in the form

y/u = C ϕ , x/v = C ψ , (2.59)

where

ϕ(z) = B(z)−B(z±) , ψ(z) = ϕ(z)− 3

z1/2(1− z)1/3
, C =

z
1/2
−
(
1− z−

)1/3

3(γ + 1)κ−
,
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Figure 2.16: Arguments of the complex variables z and 1− z.

one can easily derive the following expression for the Jacobian (2.40):

∆ =

∣∣∣∣
∂(x, y)

∂(u, v)

∣∣∣∣ = −C2

[(
ϕ− 3z1/2

(1− z)1/3

)2

+ 9(1− z)1/3

]
≡ z

(x
v

)2

(f − 1) .24)

(2.60)

The structure of expressions (2.52) for the phase variables suggests that when |z| → ∞

(with finite z±) solutions (2.59) yield the asymptotic forms

f = 1 +O
(
r−5/6

)
+O

(
r−1
)
, g = β +O

(
r−5/6

)
+O

(
r−1
)
, r = |z| → ∞ ,

i.e. the phase trajectories reach the point P2 on the singular line. Plugging the above

expression for f into (2.60), we see that on approaching P2 the Jacobian is estimated

as ∆ = O
(
r1/6
)
, and therefore ∆ → ∞. As it was mentioned at the end of section

2.4.1, an infinite Jacobian does not cause any problems because the functions x(u, v)

and y(u, v) are allowed to have multiple values.

However, if the trajectory described by (2.59) crosses the singular line at any point

with a finite z = zs (see section 2.4.11), then from (2.60) it follows that the Jacobian

becomes equal to zero, leading to many-valued solutions for u(x, y) and v(x, y). The

latter is physically impossible, and makes the crossing illegitimate. This provides

an alternative proof that the phase trajectories can only pass through the singular

line via the point P2 which corresponds to the limiting characteristic. The two other

singularities occurring in (2.60) when x→ 0 and v → 0 are removable since in these

cases f ∼ x−2 and z ∼ v2 respectively.

24) We used expression (2.52) for f to obtain the last equality.
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The Jacobian may also be represented in terms of the phase variables only: 25)

∆ =
y6−4α

α4ξ4(α− 1)2

[
f − 1

9g2 − 4f 3

]
.

From this it follows that on both critical lines, defined in (2.51), ∆ =∞. Therefore,

in the case when a phase trajectory coincides with one of the critical lines, solutions

(2.59) do not work, and we have to solve the direct problem (section 2.4.8).

Finally, an immediate connection between the self-similar solutions of the di-

rect and the inverse problems (the latter given by (2.59)) is described by the one-

dimensional Jacobian26)

dξ

dζ
=

β u z

y1/2 v1/3

[
f − 1

f

]
,

which has only one nontrivial singularity when f = 1 for a finite z, again referring

to the illegitimate crossing of the singular line (the singularity associated with the

branching point z = 0 is eliminated by moving the trajectory to the next sheet of the

Riemann surface, see section 2.4.5). In other words, whenever the Jacobian dξ/dζ,

treated as a function of z, becomes zero at any finite point of the trajectory in the

z plane (except for the origin), the transformation ξ(ζ) is no longer monotonic, thus

creating physically unfeasible multiple values in the functions u(x, y) and v(x, y).27)

We shall now move on to describe all the possible local flow regimes which can

develop near the curvature break.

2.4.5 Subsonic flow on the upstream wall

In section 2.4.2 it was shown that subsonic flows correspond to z ∈ (0, 1). Hence, for

the regime considered in this section, the upstream boundary conditions are applied

at z− ∈ (0, 1), and the trajectory leaves to the left if this point towards z = 0, due to

the property discussed above. To make general solutions (2.56) real in the subsonic

region, one needs to use the branch with n = 1, m = 1 of the function z1/2(1− z)1/3

25) Note that ∆ becomes self-similar when α = 3
2 .

26) This formula is deduced from equations (2.53) and (2.52).
27) The point z = ∞ is excluded because it corresponds to the removable singularity associated

with a limiting characteristic.
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(see 2.57). Since ϑ = θ = 0 for z ∈ (0, 1), equations (2.57), (2.58) yield

z1/2(1− z)1/3 = r1/2(1− r)1/3 , 0 < r < 1 .

The function B(z) contains exactly the same regular branch and is real:

B(z) ≡ B(r) =

∫ r

0

dρ

ρ1/2(1− ρ)4/3
, ρ ∈ R ;

this is also true for the coefficient z
1/2
−
(
1− z−

)1/3
, in which z− can simply be replaced

by r−. Applying these results to (2.56), we get the following solutions in the vicinity

of the upstream wall:




y = u · r
1/2
−
(
1− r−

)1/3

3(γ + 1)κ−

[
B(r)−B(r−)

]
,

x = v · r
1/2
−
(
1− r−

)1/3

3(γ + 1)κ−

[
B(r)− 3

r1/2(1− r)1/3
−B(r−)

]
.

(2.61)

Since

dB(r)

dr
=

1

r1/2(1− r)4/3
> 0 , 0 < r < 1 ,

B(r) grows steadily with r. Together with the inequality u < 0 valid for all subsonic

flows and the first equation in (2.61), this implies that the restriction y > 0 holds for

0 < r 6 r− < 1, which means that the trajectory in the z plane indeed goes to the

left of r−. At the same time the second equation in (2.61) gives x < 0 when v > 0,

which is, indeed, the case near a convex upstream wall.

Once the trajectory has left the point r−, its further behavior in the z plane is

quite obvious. First of all, the trajectory cannot turn backwards at any regular point

because the transformation ξ(z), as expected, appears to be monotonic for solutions

(2.61) (see end of section 2.4.4). Hence, the trajectory goes towards the origin z = 0

(which is also the branching point of function z1/2). When z = 0 is reached, it means

that v = 0 and the sign of v is to be changed, as it can be seen from the relevant

computations in section 2.3.2 (Fig. 2.6). Without a loss of generality, one can say

that the change of the sign leads to ∆ arg v = +π. Writing the Taylor expansion of

(2.50) when v → 0, u 6= 0 yields

z = − v2

β2u3

(
1 +O(v2)

)
.
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Therefore, the change in sign of v corresponds to ∆ arg z = +2π, which means that

the trajectory makes a single turnover along an infinitesimal circle around the point

z = 0, and finds itself in the subsonic region on the sheet (2, 1), as shown in Fig. 2.17.

0

0

PSfrag replacements

+π

+π

r− r0

(1, 1) (2, 1)

=⇒

Figure 2.17: First two fragments of the z plane trajectory for an oncoming subsonic
flow. The sign of v changes as the trajectory makes a complete turnover around the
branching point z = 0 and finds itself on the next sheet of the Riemann surface. This
is followed by the change of sign of x when z = r0.

There is a theoretical explanation for the fact that v must change sign, based

upon the following requirements: a z plane trajectory should always remain on the

real axis and cannot turn backwards at any point, while the corresponding solutions

for x and y, given by (2.61), should be real for all values of z along the trajectory.

The only possibility for a trajectory to comply with these requirements is to make a

single turnover around the origin and find itself in the subsonic region on the second

sheet of the function z1/2, thus providing a change in sign of v. Moreover, the above

arguments suggest that a flow which is originally subsonic or subcritical supersonic

cannot accelerate to become supercritical supersonic. Should this happen, solutions

(2.61) would lead to complex x and y. Due to the same reason supercritical flows

cannot decelerate to subcritical supersonic or subsonic speeds. The latter also means

that for supercritical supersonic flows the phase trajectories always remain in the

supercritical region (Fig. 2.13) unless the flow undergoes a shock, and the relevant

trajectories in the z plane have to stay within the left branch-cut.

In the subsonic region on the sheet (2, 1), according to (2.57) and (2.58), z1/2 =

−r1/2, (1 − z)1/3 = (1 − r)1/3, and from (2.47) B(z) = −B(r). Hence, the turnover



CHAPTER 2. INVISCID TRANSONIC FLOW 72

transforms solutions (2.61) into





y = −u · r
1/2
−
(
1− r−

)1/3

3(γ + 1)κ−

[
B(r) +B(r−)

]
,

x = v · r
1/2
−
(
1− r−

)1/3

3(γ + 1)κ−

[
3

r1/2(1− r)1/3
−
(
B(r) +B(r−)

)]
.

(2.62)

These are the analytical continuations of (2.61) through the singular point z = 0 in

the equations for ϕ(z) and ψ(z) (see (2.44)). The singularity is trivial, because the

relevant solutions in the physical plane are regular near the line v = 0, and is simply

due to the transformation of the variables associated with the inverse problem. That

is the reason why it is removed by means of the analytical continuation.

After the turnover, the trajectory in the z plane leaves to the right of z = 0 and

travels towards z = 1 (see Fig. 2.17) as ξ(z), according to (2.53), continues to grow

when r is increasing in (2.62). The expression for y in (2.62) is guaranteed to be

positive for 0 < r < 1 because u < 0. However, the solution for x changes its sign

from negative to positive at some point r0 ∈ (0, 1) which satisfies the transcendental

equation

3

r
1/2
0

(
1− r0

)1/3 = B(r0) +B(r−) . (2.63)

The latter has a clear graphic solution for certain values of the parameter r− (see

Fig. 2.18). This solution appears to be unique and exists when r− ∈ (r∗, 1), with

0 1

PSfrag replacements
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B
(r

−
)

RHS

LHS

Figure 2.18: Left-hand side (LHS) and right-hand side (RHS) of the transcendental
equation (2.63) plotted as functions of r0.
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r∗ ≈ 0.3039 being the only root of the equation

B(r∗) =
3
√
π Γ(2/3)

Γ(1/6)
. (2.64)

Here

Γ(s) =

∫ ∞

0

ts−1 e−t dt

is the Euler’s Gamma function.28) The corresponding trajectory in the phase plane

stretches into infinity when r → r−0 , and reflects itself from the g = 0 axis when x

changes sign (Fig. 2.6).

Upon passing through r0, the trajectory in the z plane approaches the branching

point z = 1 on the sheet (2, 1). This branching point corresponds to the sonic line

(u = 0). From the numerical solution we already know that the phase trajectories

cross this line and enter the supersonic region, i.e. u needs to change sign once the

sonic point z = 1 is reached in the plane of complex z. Applying the Taylor expansion

to (2.50) when u→ 0, v 6= 0 yields

z = 1 +
β2u3

v2
+O(u6) .

Hence, the change in sign of u, which can be expressed as ∆ arg u = +π without

a loss of generality, results in ∆ arg(1 − z) = +3π. The latter is equivalent to the

trajectory making one and a half revolutions along an infinitesimal circle around

z = 1, finding itself at the lower side of the branch cut (1,∞) on the sheet (2, 2), as

shown in Fig. 2.19.29)

To continue the function B(z) analytically through singular point z = 1, we use

its equivalent representation on the sheet (n,m): 30)

B(z) = (−1)n
3
√
π Γ(2/3)

Γ(1/6)
+

3

2

∫ z

1

dω

ω3/2(1− ω)1/3
+

3

z1/2(1− z)1/3
. (2.65)

Setting n = m = 2, ϑ̃ = 0, θ̃ = π in (2.57), (2.58) and substituting the results into

(2.65) gives the real expression for B(z) at the lower side of the branch cut (1,∞) on

28) Equation (2.64) follows from the asymptotic behavior of B(z) when z → 1−.
29) Again, there is a theoretical explanation for this, similar to the one given previously for the

change in sign of v.
30) This formula implies using expression (2.57) for z1/2(1− z)1/3 and ω1/2(1− ω)1/3 on the sheet

(n,m).
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Figure 2.19: Final fragments of the z plane trajectory for an oncoming subsonic flow.
The branching point z = 1 corresponds to the sonic line (u = 0).

the sheet (2, 2):

B(z) =
3
√
π Γ(2/3)

Γ(1/6)
+

3

2

∫ r

1

dρ

ρ3/2(ρ− 1)1/3
+

3

r1/2(r − 1)1/3
, ρ ∈ R , 1 < r <∞ .

With this expression in mind, one can write down the solutions for x, y in this region,

describing a subcritical supersonic flow:





y = u · r
1/2
−
(
1− r−

)1/3

3(γ + 1)κ−

[
−B(r−) +

9
√
π Γ(2/3)

Γ(1/6)
+ I(r)

]
,

x = v · r
1/2
−
(
1− r−

)1/3

3(γ + 1)κ−

[
−B(r−) +

9
√
π Γ(2/3)

Γ(1/6)
+ I(r)− 3

r1/2(r − 1)1/3

]
,

(2.66)

where

I(r) =

∫ ∞

r

dρ

ρ1/2(ρ− 1)4/3
, 1 < r <∞ .

Now we have u > 0, v < 0. Again, the functions in (2.66) are the analytical continu-

ations of (2.62) through the singular point z = 1.

In order to provide a monotonic increase of ξ with x and y given by (2.66), the

trajectory in the z plane has to move further to the right of z = 1 along the branch

cut. It can be easily proved that x remains positive when r is increasing, whereas y

becomes zero at some finite point r+ > 1 corresponding to the downstream wall (see

Fig. 2.19).31) Applying boundary conditions (2.55) to solutions (2.66) at this point,

31) Note that the trajectory returns to r+ from the left, in agreement with the general rule derived
earlier.
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we arrive at the following algebraic system of two equations:




B(r−) =
9
√
π Γ(2/3)

Γ(1/6)
+ I(r+) ,

κ+

κ−
=
r
1/2
+

(
r+ − 1

)1/3

r
1/2
−
(
1− r−

)1/3 .
(2.67)

These equations allow to determine any two of the three parameters r−, r+, κ+/κ−

for a given value of the third one. The most physically meaningful case is when the

curvatures’ ratio κ+/κ− is known and r± are expressed as functions of it, yielding

the coefficients G± related to the wall pressure gradients.

Let us discuss some basic properties of equations (2.67). First of all, the first of

them, which implicitly sets a functional dependence r+(r−) (or vice versa), admits

the limit

r− → 1− , r+ → 1+ ,

and the rate of the approach is the same from both sides:

lim
r−→1−

[
r+(r−)− 1

1− r−

]
= 1 .

This limit corresponds to κ+/κ− → 1 due to the second equation, and reduces

solutions (2.61), (2.62), (2.66) to

y = − u

(γ + 1)κ
, x = − v

(γ + 1)κ
,

where κ = κ− = κ+. The flow described by these linear functions is nothing else than

a potential vortex outside a convex cylindrical surface (with no curvature break), and

is related to the simple analytical solution F (ξ) = −(γ+1)κ ξ of the direct problem,

thus being an important reference point for the whole study.32) One of the properties

of this flow is that there is no pressure gradient on both walls in the leading order,

i.e. G± = 0.

Secondly, system (2.67) also admits the limit r+ → ∞, for which r− tends to a

finite value r∗∗ ≈ 0.8302, the latter being the only root of the transcendental equation

B(r∗∗) =
9
√
π Γ(2/3)

Γ(1/6)
. (2.68)

32) This basic flow regime has already being used in section 2.3.2 to prepare the ground for the
computations.
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This property is illustrated graphically in Fig. 2.20, where the left-hand side of the

first equation in (2.67) is plotted as a function of r−, and the right-hand side of the

same equation – as a function of r+. Hence, we get the important restriction for the

possible values of r− (within this particular regime):

r∗∗ < r− 6 1 . (2.69)

As r+ increases from 1+ to ∞, r− decreases steadily from 1− to r∗∗ (because both

0 2 41

PSfrag replacements

r∗∗ r− r+

B
(r

∗∗
)

RHSLHS

Figure 2.20: Left-hand side (LHS) and right-hand side (RHS) of the first equation in
(2.67), plotted as functions of r− and r+ respectively.

curves plotted in Fig. 2.20 are monotonic functions of their arguments). Applying

this result to the second equation in (2.67), it can be shown that κ+/κ− increases

monotonely from 1 to ∞ with r+, thus covering all the possible values of the cur-

vatures’ ratio for the oncoming subsonic flows. Essentially, the upstream flow is

subsonic whenever κ+/κ− > 1, i.e. when the upstream wall is flatter compared to

the downstream wall.33) The limiting value Gmin of the upstream pressure gradient

discovered in section 2.3.2 numerically is then given by

Gmin = lim
r−→r+∗∗

G− = − 1

λβ2/3

[
1− r∗∗
r∗∗

]1/3

,

according to the first equation in (2.54).

33) For certain supercritical supersonic flows the curvatures’ ratio may also be greater than one,
although the wall pressure gradients would be completely different (section 2.4.12).
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The relevant flow structure in the physical plane is shown in Fig. 2.21. The

oncoming subsonic flow (i.e., the subsonic flow near the upstream wall) firstly passes

through the line where v = 0, and the streamlines reach a local maximum. This line

corresponds to

ξ = ξ
∣∣
v=0

= − 2
[
B(r−)

] 3
2

(
3(γ + 1)κ−

r
1/2
−
(
1− r−

)1/3

)1/2

,

which follows from both (2.61) and (2.62) after applying the limit v → 0, r ∼ v2 → 0.

The flow then passes through the symmetry axis x = 0 and accelerates, transforming

to a subcritical supersonic flow; this transition takes place at the sonic line with the

position

ξ = ξ
∣∣
u=0

= β

[
1

3
B(r−)−

√
π Γ(2/3)

Γ(1/6)

](
(γ + 1)κ−

r
1/2
−
(
1− r−

)1/3

)1/2

,

obtained from both (2.62) and (2.66) by taking the limit

u→ 0 , r = 1 +O(u3)→ 1 .

The subcritical supersonic flow occupies the entire space between the sonic line and

the downstream wall (see Fig. 2.21).

supersonic
subcritical

PSfrag replacements
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=
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Figure 2.21: Regime with a subsonic flow near the upstream wall.

For the particular flow regime described in this section, the two following limiting

cases prove to be important and can be studied analytically:

κ+

κ−
= 1 + ε ,

κ+

κ−
=

1

ε
,

where 0 < ε� 1. Let us discuss them separately.
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2.4.6 Two main limiting cases for oncoming subsonic flows

a) κ+

κ−
= 1 + ε – a small difference between the curvatures. In this case the set of

equations (2.67) yields




(1− r−) = C ε3 ·
(
1 +O(ε)

)
,

(r+ − 1) = C ε3 ·
(
1 +O(ε)

)
,

(2.70)

where

C =

(
Γ(1/6)

2
√
π Γ(2/3)

)3

.

The asymptotic expansion of F (ξ) at large |ξ|, represented as

F (ξ → ±∞) = δ± |ξ|
5
3 − (γ + 1)κ± ξ +O

(
δ2
± |ξ|

1
3

)
, (2.71)

has the small coefficient

δ±(ε) = ε · Γ(1/6)

2
√
π Γ(2/3)

[
(γ + 1)κ±

]2/3

λβ2/3

(
1 +O(ε)

)
� 1 (2.72)

in front of the leading term.34) Hence, if |ξ| is not large enough, the second term of

the expansion actually dominates, and the flow is close to a potential vortex outside

a cylinder with a constant curvature (solutions (2.35)). However, in small vicinities

of both walls the |ξ|5/3 term, which is responsible for the singular pressure gradients,

comes into play. The first two terms in the asymptotic expansion of F (ξ) are of the

same order when |ξ| ∼ ε−3/2, thus giving an estimate for the size of the perturbed

regions where the flow is essentially different from the potential vortex and generates

the singularities in the pressure gradients (see Fig. 2.22). Outside of these regions,

i.e. in the rest of the space corresponding to the estimate |ξ| < ε−3/2, we have the

leading-order solution35)

F (ξ) = −(γ + 1)κ ξ ·
(
1 +O(ε)

)
. (2.73)

This important result will be used in chapter 3 to prove that small breaks in wall

curvature may lead to a boundary layer separation. Therefore, it is worth providing

another argument in support of the simplified expression (2.73).

34) This is deduced from (2.70), (2.54) and (2.27).
35) One can use either κ− or κ+ for κ.
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Indeed, let us find out what happens with the function

y = u · r
1/2
−
(
1− r−

)1/3

3(γ + 1)κ−

[
B(r)−B(r−)

]
(2.74)

from solutions (2.61) for the upstream flow when r− → 1−. In this limit the incom-

plete beta function B(r−) has the asymptotic form

B(r−) =
3

(1− r−)1/3
− 3
√
π Γ(2/3)

Γ(1/6)
+O

(
(1− r−)2/3

)
. (2.75)

Unless the variable r in (2.74) is close to 1 itself, which would correspond to one of

the above mentioned perturbed regions with |ξ| & ε−3/2, the leading-order term in

(2.75) is going to dominate the expression for y. Solution (2.74) is then reduced to

y = −u · r
1/2
−

(γ + 1)κ−

[
1−

(
1− r−

) 1
3

(
1

3
B(r) +

√
π Γ(2/3)

Γ(1/6)

)
+O

(
1− r−

)]
; (2.76)

since (1− r−)1/3 = O(ε) according to (2.70), this yields

y = − u

(γ + 1)κ−

[
1 +O(ε)

]
,

as long as B(r) = O(1). The same result obviously follows from the downstream

solutions (2.62), and it is in agreement with the simplified expression (2.73) for F (ξ)

outside the small perturbed regions near the wall.

The (γ + 1)κ ξ term clearly dominates the asymptotic form (2.71) for relatively

large |ξ|, providing

|ξ| � ε−3/2 .

According to (2.76), however, its dominance is also extended to the values |ξ| . 1,

because in this case B(r) = O(1). As a result, the potential vortex solution works

for all ξ from

−ε−3/2 � ξ � ε−3/2 ,

and is suppressed by the |ξ|5/3 term only when |ξ| & ε−3/2. Thus, the first two

asymptotic terms in (2.71) may be used to construct a simplified composite solution

for F (ξ) which is uniformly valid for all ξ ∈ (−∞,∞) and matches the exact solution

with the given accuracy:

F (ξ) =
(
δ−(±ξ) 5

3 − (γ + 1)κ−ξ
)[

1 +O(ε)
]
, δ− = O(ε) .
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This will be exploited in Chapter 3.

The value of ξ corresponding to v = 0 in the case of κ+

κ−
= 1 + ε is

ξ
∣∣
v=0

= −ε β
√

(γ + 1)κ
Γ(1/6)

2
√
π Γ(2/3)

(
1 +O(ε)

)
∼ −ε ,

and this coordinate line is close to the symmetry axis x = 0, whereas the sonic line

approaches the downstream surface:

ξ
∣∣
u=0

=
β
√

(γ + 1)κ

ε3/2

(
2
√
π Γ(2/3)

Γ(1/6)

)3/2 (
1 +O(ε)

)
∼ 1

ε3/2
.

Therefore, a small supersonic region is created near the downstream wall, and its

size coincides with the size of the downstream perturbed region (where the singular

pressure gradient develops). The relevant flow structure is shown in Fig. 2.22.

supersonic
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=
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Figure 2.22: Local structure of the flow around a small break of curvatures, with a
slightly flatter upstream wall (κ+

κ−
= 1+ ε). Singular pressure gradients are generated

in thin layers near both walls (|ξ| & ε−3/2). The pressure gradients have the small
amplitudes δ± = O(ε) which are defined in (2.72).

b) κ+

κ−
= 1

ε
– the upstream surface is close to a flat plate, assuming that κ+ is

an order one quantity. In this case equations (2.67) yield the following asymptotic

solutions for the parameters r±:





r− = r∗∗ +
6

5
ε+O(ε2) ,

r+ =

[
r
1/2
∗∗
(
1− r∗∗

)1/3

ε

]6/5
(
1 +O(ε)

)
∼ 1

ε6/5
,
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with r∗∗ given by (2.68). The lines on which v = 0 and u = 0 are given, respectively,

by

ξ|v=0 = −2 ε1/2

(
Γ(1/6)

9
√
π Γ(2/3)

)3/2
[

3(γ + 1)κ+

r
1/2
∗∗
(
1− r∗∗

)1/3

]1/2 (
1 +O(ε)

)
∼ −ε1/2 ,

ξ|u=0 = β ε1/2 2
√
π Γ(2/3)

Γ(1/6)

[
(γ + 1)κ+

r
1/2
∗∗
(
1− r∗∗

)1/3

]1/2 (
1 +O(ε)

)
∼ ε1/2 ,

and the flow structure is shown in Fig. 2.23, left. Hence, when ε→ 0, interpreted as

κ− → 0 with κ+ = O(1), the upstream wall becomes a flat plate, and the flow above

it becomes uniform, i.e. u = v = 0 for x < 0. It can be further shown that this kind of

a flow develops a weak discontinuity at x = 0, with a break in the second derivatives

of the velocity components, and becomes supersonic in the region x > 0 (where the

wall is curved). This situation is demonstrated in Fig. 2.23, right, and corresponds to

the phase trajectory which coincides with lower critical line g = − 2
3
f

3
2 . In section

supersonic
Prandtl-Meyer

weak

PSfrag replacements
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=
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Figure 2.23: Local structure of the flow around a strong break of curvatures ( κ+

κ−
=

1
ε
� 1), left, and in the case of a flat upstream wall (κ+

κ−
=∞), right.

2.4.4 it was shown that the Jacobian (2.40) becomes equal to ∞ on the critical lines,

and the flow has to be expressed in the physical variables only, being essentially a

transonic Prandtl–Meyer flow (see section 2.4.8). As ε → 0, the phase trajectory

approaches the saddle point P3, and splits into two fragments when ε = 0: the point

P1 = (0, 0) itself which represents the uniform flow (u, v = 0) above the plane with

κ− = 0, and the fragment of the lower critical line between the saddle point and the

origin (Fig. 2.24). The weak discontinuity at x = 0 is represented by the trajectory’s
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jump from the origin to the saddle point. Once in the saddle point, the trajectory

returns back to the origin along the lower critical line when the downstream wall is

approached. The relevant solution for the velocity potential will be given in section

2.4.8, along with a more rigorous proof of the above results.

PSfrag replacements

f
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1g = − 2
3 f 3

2

P1
P3

Figure 2.24: Phase trajectories approach the saddle point P3 when κ+

κ−
→ ∞; in the

limit they coincide with a fragment of the lower critical line g = − 2
3
f

3
2 .

This completes our study of the limiting cases within the oncoming subsonic flow

regime, for which 1 < κ+

κ−
<∞. Let us now move to the next flow regime.

2.4.7 Subcritical supersonic flow on the upstream wall

The phase trajectories obtained for the oncoming subsonic flows can be run in the

opposite direction, because they stay within the subcritical zone and do not develop

discontinuities (except for the trivial jump at ξ = 0). Indeed, the substitution ξ → −ξ

does not change the variable χ in (2.16), and any continuous trajectory described by

autonomous system (2.17) can be run in both directions while ξ changes from −∞ to

∞. These arguments suggest that there should exist a regime which is symmetrical

with respect to the oncoming subsonic flow, i.e. with a subcritical supersonic flow on

the upstream wall decelerating to subsonic speeds without a shock formation. From

the reflection rule it follows that such a flow would exist when 0 < κ+

κ−
< 1 (flatter

downstream wall).36)

36) This result was also obtained in the computations, see section 2.3.2.
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Mathematically the reflection requires the following substitutions in all the ana-

lytical solutions derived for the subsonic upstream flows in section 2.4.5:

r− ←→ r+ , κ− ←→ κ+ .

Now r− ∈ (1,∞), r+ ∈ (r∗∗, 1), and the trajectory in the z plane travels in the

opposite direction. The whole flow pattern again comprises of three regions. In the

first one the solution of the inverse problem is given by





y = u · r
1/2
+

(
1− r+

)1/3

3(γ + 1)κ+

[
−B(r+) +

9
√
π Γ(2/3)

Γ(1/6)
+ I(r)

]
,

x = v · r
1/2
+

(
1− r+

)1/3

3(γ + 1)κ+

[
−B(r+) +

9
√
π Γ(2/3)

Γ(1/6)
+ I(r)− 3

r1/2(r − 1)1/3

]
,

(2.77)

with u > 0, v > 0, r− > r > 1, corresponding to the subcritical supersonic flow near

the upstream wall (see Fig. 2.25). The z plane trajectory starts from the point r−
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Figure 2.25: Regime with a subcritical supersonic flow near the upstream wall.

on the lower side of the branch cut (1,∞) on the sheet (2, 2), and moves to the left

of r− towards z = 1, where u changes sign. The sonic line is located at

ξ = ξ
∣∣
u=0

= −β
(

(γ + 1)κ+

r
1/2
+

(
1− r+

)1/3

)1/2 [
1

3
B(r+)−

√
π Γ(2/3)

Γ(1/6)

]
.

Passing through the sonic line is equivalent to one and a half turnovers around z = 1

along an infinitesimal circle, which brings the trajectory into the subsonic region on

the sheet (2, 1). The trajectory then continues to move to the left towards z = 0,
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with the solutions of the inverse problem given by





y = −u · r
1/2
+

(
1− r+

)1/3

3(γ + 1)κ+

[
B(r+) +B(r)

]
,

x = −v · r
1/2
+

(
1− r+

)1/3

3(γ + 1)κ+

[
B(r+) +B(r)− 3

r1/2(1− r)1/3

]
.

(2.78)

Now u < 0, v > 0 and 1 > r > 0. It is this region that contains the point r0 where

x = 0 (symmetry axis in the physical plane); r0 can be found from the transcendental

equation

3

r
1/2
0 (1− r0)1/3

= B(r0) +B(r+) .

Once the branching point z = 0 is reached, the trajectory makes a single turnover

around it, moving to the subsonic zone on the sheet (1, 1). Thus, v changes sign, and

the streamlines reach local maxima on the line

ξ = ξ
∣∣
v=0

=
2

[
B(r+)

] 3
2

(
3(γ + 1)κ+

r
1/2
+

(
1− r+

)1/3

)1/2

in the physical plane. After that the z plane trajectory moves to the right towards

the final point r+ on the sheet (1, 1) (the downstream wall), and the solutions in this

region are





y = u · r
1/2
+

(
1− r+

)1/3

3(γ + 1)κ+

[
B(r)−B(r+)

]
,

x = v · r
1/2
+

(
1− r+

)1/3

3(γ + 1)κ+

[
B(r)− 3

r1/2(1− r)1/3
−B(r+)

]
,

(2.79)

with u < 0, v < 0 and 0 < r < r+. This completes the construction of the analytical

solutions for the given regime. The relevant phase trajectories are shown in Fig. 2.9;

as mentioned above, they match with the trajectories for the oncoming subsonic flow

regime, but run in the opposite direction. Therefore, the two regimes discussed in

sections 2.4.5 and 2.4.7 provide the flow patterns which are symmetrical with respect

to the x = 0 line.

Finally, satisfying the upstream boundary conditions in (2.77) (as the downstream

condition is already satisfied in (2.79)), we arrive at the system of two algebraic
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equations similar to (2.67):





B(r+) =
9
√
π Γ(2/3)

Γ(1/6)
+ I(r−) ,

κ+

κ−
=
r
1/2
+

(
1− r+

)1/3

r
1/2
−
(
r− − 1

)1/3 .
(2.80)

As before, this system allows to determine the parameters r± for a given ratio of the

curvatures, and has the same properties as (2.67) (in particular, the two limiting cases

discussed in section 2.4.6). The curvatures’ ratio is now changing between 1− (when

r− = 1+, r+ = 1−) and 0+ (when r− → ∞, r+ → r+
∗∗). Solving (2.80) numerically

with respect to r± finally yields the coefficients G± (related to the wall pressure

gradients) as functions of the curvatures’ ratio; these are plotted in Fig. 2.10. This

time the pressure gradients on both walls are adverse (and singular), and a boundary

layer separation is expected to take place for this regime. The limiting value Gmax of

the upstream pressure gradient discovered in section 2.3.2 numerically is given by

Gmax = lim
r−→∞

G− =
1

λβ2/3
> |Gmin| ,

again following from the first equation in (2.54). In Fig. 2.26 the gradients’ ratio is

shown as a function of the curvatures’ ratio when 0 < κ+

κ−
< 1.37)

2.4.8 Transonic Prandtl–Meyer flow

Let us now consider the limiting case κ+

κ−
= ε → 0 (interpreted as κ− = O(1),

κ+ → 0+), which is symmetrical as compared to the limit κ+

κ−
= 1

ε
discussed in section

2.4.6. Now r− → ∞, r+ → r+
∗∗, and solution (2.77) yields that the Jacobian (2.40)

tends to infinity as r →∞. It means that the inverse transformation (u, v)→ (x, y)

is not uniquely defined, and one has to solve the direct problem (either for F (ξ) or

for f(ξ), g(ξ)).

To understand this limiting case better, we need to look at the behavior of the

corresponding phase trajectories. For small κ+

κ−
the trajectory, after leaving the origin,

is located slightly below the lower critical line g = − 2
3
f

3
2 in the supersonic region.

37) This graph is the inversion of Fig. 2.8 plotted for 1 < κ+

κ
−

<∞.
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Figure 2.26: The ratio of the gradients plotted verses the ratio of the curvatures when
0 < κ+

κ−
< 1.

When approaching the saddle point P3, it abruptly turns to the left and moves towards

the subsonic region, see Fig. 2.9. However, in the limit κ+

κ−
→ 0 the trajectory merges

with the lower critical line, being confined within the fragment of the line between

the origin and the saddle point (Fig. 2.9, trajectory d). The Jacobian is equal to ∞

on the critical lines, and, as already mentioned above, in this case one has to solve

the direct problem. Luckily, this solution can be obtained analytically.

For this purpose we integrate system (2.17) along the lower critical line. On this

line f and g are related through g = − 2
3
f

3
2 , and both equations in (2.17) are reduced

to

df

dχ
= 2f − f 3/2 − 3f 2 .

Introducing a new function q(ξ) = 1 + f 1/2 and returning to the original variable ξ

via (2.16), we arrive at the following equation:

(q − 2) ξ
dq

dξ
= (λ− q)(q − 1) , λ =

5

3
,

which has the general solution

λ− q
(q − 1)3

= C ξ2 , C = const . (2.81)

For the fragment of the lower critical line between the origin and the saddle point

we have 0 6 f 6 1
α2 , so that 1 6 q 6 λ. Applying this result to (2.81), we see that
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C > 0. Therefore, (2.81) yields the implicit algebraic equation for f(ξ):

β − f 1/2

f 3/2
= C ξ2 . (2.82)

Once f(ξ) has been obtained from (2.82), F (ξ) can be calculated using the first of

equations (2.15). The constant C has to be determined from the boundary condition

at ξ → −∞ (upstream wall with κ− = O(1)). Indeed, the relevant asymptotic form

of F (ξ) is

F (ξ) = −κG−(−ξ)λ − καξ + ... , ξ → −∞ , κ =
[
(γ + 1)κ−

]1/α
,

with G− > 0 for the oncoming supersonic flow. Differentiating once and dividing by

α2ξ2 gives the asymptotic form of f(ξ) near the upstream wall, which can be plugged

into (2.82):

α2ξ2

(κλG−)α
+
α2(−ξ)2−β

κ

[
α

(λG−)α+1
− 1

λG−

]
+ ... = C ξ2 .

This allows to find the parameters G− and C:

G− =
α

1
α

λ
≡ Gmax , C =

α

(γ + 1)κ−
. (2.83)

The exact solution may then be represented in one of the following ways:

β

f 3/2
− 1

f
=

αξ2

(γ + 1)κ−
,

β

g
+
α

f
= − α2ξ2

(γ + 1)κ−
. (2.84)

From the local analysis of the trajectory’s behavior in the vicinity of the saddle

point one can find that the critical line g = − 2
3
f

3
2 coincides with the second half-

line of the saddle (see end of section 2.2.2). Moreover, the trajectory arrives to the

saddle point strictly when ξ = 0, which can also be obtained from (2.84). All other

trajectories, which do not coincide with the lower critical line, either turn to the left

(subcritical supersonic flows) or to the right (supercritical supersonic flows) when

approaching the saddle point, as shown in Fig. 2.9. Hence, the point somewhat acts

as a switch between two physically different regimes. The only trajectory coinciding

with the lower critical line may therefore be called the critical trajectory, and the

relevant solution for f(ξ), given by (2.84), describes the transonic Prandtl–Meyer

compression wave (Liepmann & Roshko 1957).
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Once this trajectory reaches the saddle point, it cannot go further along the

critical line as this would lead to an illegitimate intersection with the singular line

f = 1. Instead, the trajectory jumps back into the origin and stays there for all

ξ ∈ (0,∞), thus giving a uniform flow with u = v = 0 above the flat downstream

wall (see Fig. 2.27). The jump leads to a weak discontinuity along the x = 0 line

weak

Prandtl-Meyer

PSfrag replacements

κ− κ+ = 0

v = 0

u = 0Prandtl–Meyer

weak

discontinuity

x

y

Figure 2.27: Local structure of the flow in the case of a flat downstream wall.

in the physical plane; namely, the second derivatives of the velocity components are

broken. Indeed, since the solution for F (ξ) near the saddle point is given by

F (ξ) =
ξ3

3

(
1 +O(ξ2)

)
, ξ → 0− ,

the second derivatives

∂2(u, v)

∂xn y2−n ∼ F ′′′(ξ)→ 2 , n = 0, 1, 2 .

Therefore, we have the nonzero second derivatives when ξ → 0− and zero second

derivatives when ξ → 0+ because the flow is uniform for all ξ > 0.

The downstream wall pressure gradient (proportional to G+) is obviously zero in

the uniform flow over a flat downstream wall. By applying the limit κ+

κ−
→ 0 to the

flow regime described in section 2.4.7 it can be shown that

lim
κ+→0

[
G+

κ
2/3
+

]
=

1

λ

(
1

βκ−

)2/3(
1− r∗∗
r∗∗

)1/3

, κ− = O(1) ,

with r∗∗ defined in (2.68). Thus, G+ ∼ κ
2/3
+ → 0 when κ+ → 0.

All these results are symmetric to the case of κ− = 0, κ+ = O(1), which was

considered qualitatively in section 2.4.6. This is, in fact, the last regime with the
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reversibility property with respect to the transformation x → −x. The next regime

to follow (when the phase trajectory is slightly above the critical line and turns to

the right upon passing by the saddle point) involves supercritical supersonic flows.

The latter inevitably develop shock waves and therefore cannot be inverted.

2.4.9 Supercritical supersonic flow on the upstream wall

This regime takes place when phase trajectories start into the supercritical region

(Fig. 2.13), i.e. when G− > Gmax, ζ
3
− > ζ3

c and z− is somewhere within the branch

cut (−∞, 0). Without losing generality, we can continue solutions (2.56) analytically

to the lower side of the branch cut on the sheet (1, 1) to get the following solution

near the upstream wall:





y = u · r
1/2
−
(
1 + r−

)1/3

3(γ + 1)κ−

[
J(r−)− J(r)

]
,

x = v · r
1/2
−
(
1 + r−

)1/3

3(γ + 1)κ−

[
J(r−)− J(r)− 3

r1/2(1 + r)1/3

]
;

(2.85)

here

J(r) =

∫ r

0

dρ

ρ1/2(1 + ρ)4/3
.

Since y > 0 and u > 0 in the oncoming supersonic flow, r 6 r− in (2.85), and the z

plane trajectory leaves to the right of z−, travelling towards the origin (see Fig. 2.28).

This result has already been obtained in section 2.4.3.

0 1PSfrag replacements

+2π

−r−

(1, 1)

Figure 2.28: Initial fragment of the z plane trajectory corresponding to a supercritical
supersonic flow near the upstream wall. Note that z− = −r− in this case.
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The subsequent behavior of the z plane trajectory is obvious. Due to presence

of the saddle point P3 the relevant phase trajectory gradually turns upwards and

crosses the line g = 0, i.e. the sign of v changes. This can be clearly seen from the

computations in section 2.3.2. Hence, in the z plane the trajectory reaches the point

z = 0, and makes a single turnover along an infinitesimal circle around it, finding itself

on the upper side of the supercritical branch cut (−∞, 0). The turnover transforms

solutions (2.85) into





y = u · r
1/2
−
(
1 + r−

)1/3

3(γ + 1)κ−

[
J(r−) + J(r)

]
,

x = v · r
1/2
−
(
1 + r−

)1/3

3(γ + 1)κ−

[
J(r−) + J(r) +

3

r1/2(1 + r)1/3

]
.

(2.86)

Now v < 0, and x is still negative. The trajectory then moves from the origin to the

left along the upper side of the branch cut, and runs towards z = −∞ (see Fig. 2.28).

From solutions (2.86) and the general formulae (2.52) for the phase variables, one can

easily obtain that f → 1, g → 2
3

when r →∞. It means that the phase trajectory is

moving towards the point P2 =
(
1, 2

3

)
located at the intersection of the upper critical

line g = 2
3
f

3
2 and the singular line f = 1 (Fig. 2.9, trajectory e). A detailed study

of this point was performed in section 2.2.2; P2 is one of the three stationary points

of equations (2.17) and is a node. The latter means that all the trajectories in the

supercritical zone eventually tend to pass through this point. Moreover, P2 is the

only point where the phase trajectories are allowed to cross the singular line, and it

corresponds to the limiting characteristic.

To understand how the trajectories behave near the critical point P2 and what

happens after they have passed through this point, let us consider the asymptotic

behavior of (2.86) as r →∞. By introducing

C =
r
1/2
−
(
1 + r−

)1/3

3(γ + 1)κ−
, σ = J(r−) + J(∞) , (2.87)

where

J(∞) =
3
√

3π Γ(2/3)

Γ(1/6)
,
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we get: 



y/u = Cσ

[
1− 6

5σ
r−5/6 + ...

]
,

x/v = Cσ

[
1 +

9

5σ
r−5/6 + ...

]
,

r →∞ . (2.88)

It immediately follows from these equations that

ξ2 =
x2

y3
=

β2

Cσ

[
1 +

36

5σ
r−5/6 + ...

]
, r →∞ . (2.89)

Therefore, ξ → ξ−c when r →∞, where

ξc = − β
[
J(r−) + J(∞)

]1/2

(
3(γ + 1)κ−

r
1/2
−
(
1 + r−

)1/3

)1/2

(2.90)

refers to the position of the limiting characteristic in the physical plane.38) Note that

ξc may only be obtained if both κ− and r− (or κ− and G−) are known.

Plugging (2.88) into (2.52) yields the relevant asymptotic forms for the phase

variables near P2:



f = 1− 6

σ
r−5/6 + r−1 + ... ,

g = β

[
1 +

9

σ
r−5/6 + r−1 + ...

]
,

r →∞ . (2.91)

From these we can work out dg/df and d2g/df 2 along the phase trajectories approach-

ing P2 from the left:




dg

df
= 1 +

σ

15
r−1/6 + ... ,

d2g

df 2
= − σ2

2 (15)2
r2/3 + ... ,

r →∞ . (2.92)

The first equation in (2.92) suggests that the trajectories become tangent to the upper

critical line when they reach the critical point. Indeed, the line has the equation

g = 2
3
f

3
2 which yields dg/df =

√
f = 1 when f = 1.39) According to the second

equation in (2.92), the trajectories’ curvature has a singularity at this point. Hence,

the function g(f) is likely to have fractional powers of f in its expansion near P2,

making f = 1 a branching point in the plane of complex f (the latter is obviously

different from the phase plane). We now need to continue the solutions analytically

through this point, so that they would remain real when f > 1.

38) In our case ξc < 0 because x < 0 in (2.86).
39) One of the node’s half lines also corresponds to dg/df = 1, see section 2.2.2.
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2.4.10 Passing through the limiting characteristic

Let us perform the analytical continuation of the function g(f) through the singular

line via the point P2. Equation (2.32) yields the following expansion of ḡ = g − 2
3

over the powers of f̄ = f − 1:

ḡ(f̄) = f̄
[
G1(f̄) + (−f̄)ν G2(f̄)

]
, f̄ < 0 , |f̄ | � 1 , (2.93)

where

ν =
5α− 7

α + 1
,

and the functions

G1(f̄) = 1 +
∞∑

n=1

an f̄
n , G2(f̄) =

∞∑

n=0

bn f̄
n

are analytical functions of their argument. It is clearly seen that f̄ = 0 is a branching

point in the complex plane f̄ unless ν is an integer. Since ν = 1
5

when α = 3
2
, the

function ḡ(f̄) has a total of 5 branches due to this point, defined on the relevant

Riemann surface.

Writing the first two of terms of (2.93) explicitly gives

ḡ(f̄) = f̄ + b0 (−f̄)6/5 +O
(
f̄ 2
)
.

The constant b0 remains a free parameter upon substituting (2.93) into the equation

(2.32) for the direct problem; analytical expression for b0 can only be obtained from

the inverse problem. Indeed, by plugging the last expression into the asymptotic

expansions (2.92) we get the equation

ν(ν + 1)b0 = − (σ/15)6

2
[
(ν + 1)b0

]4 ,

which has the single real root 40)

b0 = −1

3

(σ
6

)6/5

.

As expected, b0 depends upon the value of r− on the upstream wall (via σ). In

other words, the phase trajectories corresponding to different upstream boundary
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Figure 2.29: Supercritical phase trajectories before passing through the critical point
P2. The trajectories corresponding to larger values of G− (stronger adverse pressure

gradients on the upstream wall) are closer to the upper critical line g = 2
3
f

3
2 .

conditions enter the point P2 slightly differently, although dg/df → 1+ and d2g/df 2 →

−∞ when f → 1− anyway (Fig. 2.29).

Expansion (2.93) is equivalent to the following asymptotic form of the function

F (ξ) as ξ → ξ−c :

F (ξ) = Fc + F ′
c (ξ − ξc) +

F ′′
c

2
(ξ − ξc)2 + A (ξc − ξ)11/5 + ... ; (2.94)

here

Fc =
5α2ξ3

c

3λ
, F ′

c = α2ξ2
c , F ′′

c = α(α− 1)ξc , A =
15

88

ξc
|ξc|1/5

(
5σ

18

)6/5

.

The fractional power term leads to a singularity in F ′′′, causing singularities in the

second derivatives of u, v. The function (ξ − ξc)1/5 also has 5 branches defined on

the relevant 5-sheet Riemann surface, and needs to be continued analytically to the

right of ξc.

To perform the continuation, we are going to employ the general solutions (2.56)

of the inverse problem, which take the form of (2.86) just before the phase trajectories

reach the point P2. For example, the first expression in (2.56) may be written as

y/u = C̃

∫

L

dω

ω1/2(1− ω)4/3
, C̃ =

z
1/2
−
(
1− z−

)1/3

3(γ + 1)κ−
, (2.95)

40) σ is defined in (2.87).
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where the contour L (also called ‘the z plane trajectory’ in previous sections) is shown

in Fig. 2.30 and represents the supercritical supersonic upstream flow before passing

through the limiting characteristic.41) The regular branches of the functions

ω1/2(1− ω)1/3 , z
1/2
−
(
1− z−

)1/3

are defined according to (2.57). Splitting the integral in (2.95) into two fragments

along the lower and then the upper side of the branch cut (−∞, 0) on the sheet (1, 1)

(n = m = 1, θ̄ = 0), and substituting ϑ̄ = ∓π respectively into (2.57), we obtain the

regular branches of ω1/2(1− ω)1/3 on these sides. This immediately yields (2.86).

When L reaches −∞, solution (2.95) is reduced to

y/u = C
[
J(r−) + J(∞)

]
, C = C̃ eiπ/2 ≡ r

1/2
−
(
1 + r−

)1/3

3(γ + 1)κ−
∈ R .

Once at −∞, the only possibility for the contour to move further is to join the

infinite circle centered at the origin (Fig. 2.30) and make several turnovers until the

function ω1/2(1−ω)1/3 becomes real again on a different sheet of the Riemann surface.

The minimal required change of arg z in these turnovers is simply equal to the least

common multiple of 2 and 3 times π, thus giving ∆ arg z = 6π (three turnovers).

Indeed, the function z1/2 requires the transitions with ∆ arg z = 2πk, k ∈ Z to keep

solution (2.95) real, and the function (1 − z)1/3 needs ∆ arg(1 − z) = 3πk, k ∈ Z.

On the infinite circle ∆ arg z = ∆ arg(1− z), which means that z1/2(1− z)1/3 takes a

minimum of three turnovers along the circle to provide another real solution for y.

It can be easily shown that the three turnovers bring the z plane trajectory to the

upper side of the branch cut (−∞, 0) on the sheet (2, 1) (Fig. 2.31); as a result, the

function ω1/2(1− ω)1/3 gains an extra multiple of eiπ ≡ −1. Now the contour has to

move along the branch cut from −∞ to the right as there is no other alternative of

how to keep y real and ensure that the transformation ξ(z) is monotonic. Since the

integral along the infinite circle vanishes, solution (2.95) takes the form of

y/u = C

[
J(r−) + J(∞)−

∫ r

∞

dρ

ρ1/2(1 + ρ)4/3

]
≡ C

[
J(r−) + 2J(∞)− J(r)

]
(2.96)

41) The contour starts at the point z−, ends at any given point z (upper limit of the integral), and
has to stay within the real axis everywhere in between.
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Figure 2.30: Analytical continuation of the solutions through the limiting character-
istic is performed when the integration contour L moves to the infinite circle in the
plane of complex z.

after the transition. The structure of this expression, which is the analytical continu-

ation of (2.86) from the upper side of the branch cut (−∞, 0) on the sheet (1, 1) to the

upper side of the branch cut (−∞, 0) on the sheet (2, 1), is due to the additive prop-

erty of an integral, and also due to the change in sign of the integrand upon the three

turnovers. Expression (2.96) is, in fact, the only nontrivial continuation of (2.86), as

the next possible transition, characterized by ∆ arg z = 12π, brings the trajectory

back to where it started and yields (2.86) again; a transition with ∆ arg z = 18π

results in (2.96), and so on.

0 1 0 1

PSfrag replacements

+2π −2π

−r−

−r0
−rs

LL

(1, 1) (2, 1)

⇒ ...⇒

Figure 2.31: As a result of the analytical continuation describing how the flow passes
through the limiting characteristic, the integration contour L in the z plane moves
to another sheet of the Riemann surface.
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Let us now find out what happens with the expansion (2.93) for ḡ(f̄) when the z

plane trajectory makes three turnovers along the infinite circle. From (2.91) it follows

that f̄ ∼ z−5/6 when z →∞. Thus,

|f̄ | → 0 , ∆ arg f̄ = −5

6
∆ arg z = −5π ,

which means the complex variable f̄ makes two and a half turnovers along an in-

finitesimal circle around the point f̄ = 0 (in the plane of complex f̄), and finds itself

on the right of this point, having moved 2 sheets down on the relevant Riemann

surface. The move produces ∆ arg(f̄ 6/5) = −6π, transforming expansion (2.93) into

ḡ(f̄) = f̄
[
G1(f̄) + f̄ ν G2(f̄)

]
= f̄ + b0 f̄

6/5 +O(f̄ 2) , 0 < f̄ � 1 .

Hence, the phase trajectories tunnel through P2 to the right of the singular line, with

dg/df → 1− and d2g/df 2 → −∞ when f̄ → 0+ (Fig. 2.11). They literally get reflected

from the upper critical line and stay within the supercritical region. The latter can

also be seen from the fact that the z plane trajectory always remains on the branch

cut (−∞, 0) unless a shock is developed (creating a jump in both the phase and the

z plane trajectories – see section 2.4.11). Indeed, should it leave the branch cut for

either the subsonic region z ∈ (0, 1) or the subcritical supersonic region z ∈ (1,∞),

solution (2.95) would become complex.

As the z plane trajectory makes three turnovers along the infinite circle, the

complex variable ξ also undergoes two and a half turnovers around the point ξc and

moves to the right of ξc along an infinitesimal ark, which follows from expansion

(2.89). The asymptotic form (2.94) of F (ξ) then yields the right-hand side expansion

F (ξ) = Fc+F
′
c (ξ−ξc)+

F ′′
c

2
(ξ−ξc)2−A (ξ − ξc)11/5 + ... , 0 < (ξ−ξc)� 1 , (2.97)

characterized by the opposite sign in front of the singular term as compared to the

left-hand side expansion (2.94).

This completes the continuation of the main functions through the singular line.
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Based upon (2.96), we write the analytically continued solutions of the inverse prob-

lem in the form




y/u = C [ J(r−) + 2J(∞)− J(r) ] ,

x/v = C

[
J(r−) + 2J(∞)− J(r)− 3

r1/2(1 + r)1/3

]
,

(2.98)

with the contour L running along the upper side of the branch cut (−∞, 0) on the

sheet (2, 1) from −∞ towards the origin (Fig. 2.31, right). These solutions express

the flow immediately after passing through the limiting characteristic.

2.4.11 Shock formation

It has already been observed in the computations that, after passing through the

point P2, the phase trajectory travels to (∞,∞) and reflects in the g = 0 axis when x

(and ξ) changes sign (Fig. 2.11). This is exactly what solutions (2.98) give; rewriting

them as




y/u = C

[
−J(r) + J(r0) +

3

r
1/2
0

(
1 + r0

)1/3

]
,

x/v = C

[
−J(r)− 3

r1/2(1 + r)1/3
+ J(r0) +

3

r
1/2
0

(
1 + r0

)1/3

]
,

where

C =
r
1/2
−
(
1 + r−

)1/3

3(γ + 1)κ−

and r0 satisfies the equation

J(r0) +
3

r
1/2
0

(
1 + r0

)1/3 = J(r−) + 2J(∞) , (2.99)

we see that x, indeed, changes sign. This happens when the z plane trajectory passes

through the point z0 = −r0 on the upper side of the branch cut (−∞, 0) (Fig. 2.31,

right). Since u > 0, v < 0 in the region considered, x is negative for ∞ > r > r0

and positive for r0 > r > 0, in agreement with the requirement that ξ(z) should

grow monotonely along the contour L. Equation (2.99) has a clear graphic solution

which depends on the value of r−, as shown in Fig. 2.32. When r− decreases from

the infinity to zero, r0 increases steadily and remains finite for all the values of r−.
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Figure 2.32: The left-hand side (LHS) of equation (2.99), plotted as a function of
r0, intersects with the shaded area representing all the possible values of the right-
hand side (RHS) of (2.99). As a result, the solution for r0 is confined within a finite
interval.

After passing through the point z0, the z plane trajectory keeps moving towards

the origin. Once in the origin, it makes a single turnover along an infinitesimal circle,

funding itself on the lower side of the brunch cut (see Fig. 2.31, right). Thus, v

changes sign for the second time, as predicted in the computations, with the loci of

streamlines minima at

ξ = ξ
∣∣
v=0

=
2

[
J(r−) + 2J(∞)

] 3
2

(
3(γ + 1)κ−

r
1/2
−
(
1 + r−

)1/3

)1/2

;

in comparison, the first change of sign of v corresponds to

ξ
∣∣
v=0

= − 2
[
J(r−)

] 3
2

(
3(γ + 1)κ−

r
1/2
−
(
1 + r−

)1/3

)1/2

.

The relevant phase trajectory crosses the axis g = 0, still remaining on the right of

the singular line. In fact, the f -coordinate of the point where g = 0 is given by

f
∣∣
g=0

=

[
J(r−) + 2J(∞)

3

]2

>

[
2J(∞)

3

]2

≈ 2.231 > 1 ∀ r− .

As shown in the computations, the phase trajectory then moves towards the node

point P2, but never reaches it. Instead it tries to cross the singular line below P2
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(Fig. 2.11). This behavior can be explained theoretically. Indeed, after the turnover

around the origin solutions (2.98) are transformed into





y/u = C
[
J(r) + J(r−) + 2J(∞)

]
,

x/v = C

[
J(r) +

3

r1/2(1 + r)1/3
+ J(r−) + 2J(∞)

]
,

(2.100)

with u > 0, v > 0. The z plane trajectory now moves along the lower side of the

supercritical branch cut to the left, so that r is increasing in (2.100). Plugging (2.100)

into the expression (2.60) for the Jacobian and setting it to zero, we get the equation

[
J(r)− 3 r1/2

(1 + r)1/3
+ J(r−) + 2J(∞)

]2

= 9 (1 + r)1/3 , (2.101)

which again has a clear graphical solution at some finite point rs, see Fig. 2.33.42)

This is because the function

J(r)− 3r1/2

(1 + r)1/3

decreases steadily from 0 to −∞ with r; therefore, the left-hand side of (2.101)

decreases from
[
J(r−) + 2J(∞)

]2
to 0 (when the whole expression in the brackets

becomes equal to zero) and then starts to grow again. On the way down it crosses

the right-hand side of (2.101) which goes lower than the left-hand side at r = 0 since

9 <
[
J(r−) + 2J(∞)

]2
for all r−, but then monotonely grows with r.

After setting r = rs and performing a few trivial transformations, equation (2.101)

can be rewritten as

J(rs) + J(r−) + 2J(∞) =
3

(1 + rs)1/3

[
r1/2
s +

(
1 + rs

)1/2]
.

Solutions (2.100) then yield the following values of f and g when r = rs:

f
∣∣
r=rs

= 1 , g
∣∣
r=rs

=
2

3

√
rs

1 + rs
<

2

3
. (2.102)

Therefore, the trajectory is trying to pass through the singular line where it is not

allowed to do so (which is, basically, at any point except for P2, see sections 2.2.2,

2.4.4). This is illustrated in Fig. 2.34 for the supercritical phase trajectories cor-

42) The graph is plotted in a logarithmic scale.
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Figure 2.33: Left-hand side (LHS) and right-hand side (RHS) of equation (2.101)
plotted as functions of r. The mutual intersection which takes place when r = rs
corresponds to an illegitimate crossing of the singular line in the phase plane.
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Figure 2.34: Supercritical phase trajectories corresponding to different values of r−.
After passing through the limiting characteristic (point P2 on the singular line), the
trajectories return to the singular line and tend to cross it below P2.

responding to different values of r−. The only way to resolve this situation is to

introduce a shock at a certain point r1 < rs on the z plane trajectory, before the

prohibited intersection with the singular line occurs.

The above results prove that any oncoming supercritical supersonic flow neces-

sarily leads to a shock formation. Now we need to perform a local analysis of the
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û1 û2
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Figure 2.35: Geometry of an oblique shock wave produced by a wedge.

Hugoniot equations in order to continue the solutions through the shock.43) Intro-

ducing the angles shown in Fig. 2.35, these equations can be written in the form

(Liepmann & Roshko 1957)





sin(ϑ)

M2
2 cos(ϑ+ θ)

− sin(ϑ+ θ)

M2
1 cos(ϑ)

= γ sin(θ) ,

1 + γ−1
2

M2
1

1 + γ−1
2

M2
2

=

tan(ϑ)
tan(ϑ+θ)

−
(
γ+1
γ−1

)

tan(ϑ+θ)
tan(ϑ)

−
(
γ+1
γ−1

) ,

Ûτ1 = Ûτ2 ,

â2
1

γ − 1
+
Û2
n1

2
=

γ + 1

2(γ − 1)
Ûn1 Ûn2 ,

(2.103)

where the indices 1 and 2 correspond to the parameters before and after the shock

respectively, the indices n and τ refer to the normal and tangent directions with

respect to the shock, the hat denotes the dimensional (unscaled) variables, and M1,2 =

Û1,2/â1,2.
44) In the physical coordinates (x, y) the flow before and after the shock

forms the angles θ1 and θ2 with the x axis; the shock itself is inclined and forms the

angle χ with the y axis (see Fig. 2.36). Hence,





ϑ = χ+ θ1 ,

θ = θ2 − θ1 .

(2.104)

43) Even though this has been done in various works (Cole & Cook 1986), it is worth giving a
detailed explanation here.

44) We used the Prandtl’s law, â2
n∗ = Ûn1 Ûn2, in order to derive the last equation in (2.103), with

ân∗ being the critical speed of the flow normal to the shock.
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Figure 2.36: Geometry of an oblique shock in the cartesian coordinates (x, y).

By further assuming that the shock is attached to the wall and coincides with

the coordinate line ξ = ξsh = const (Fig. 2.37), we get in the leading order of

approximation:

χ = χ(y) = αξsh y
1/2 � 1 ,

as y � 1 in the local problem. Similarly,

θ1,2 ≈
v̂

û
≈

v
γ+1

1 + u
γ+1

≈ v

γ + 1
,

where u = yF ′(ξ), v = αyα
[
λF − ξF ′] are our main velocity perturbations. We see

that all the angles in (2.104) are small, and this allows to simplify (2.103) significantly

using χ as a small parameter. From equation (2.11) for the local Mach number

M2
1,2 =

[
1 + yF ′(ξ) + ...

]∣∣
1,2

= 1 + χ2f1,2 + ... , (2.105)

with f1,2 referring to the values of f immediately before and after the shock. Note that

the corresponding entropy change in the shock is of order of χ6, and the flow behind

the shock can be treated as potential with the accuracy provided by asymptotic

expansions (2.4), (2.10) and (2.11).

The trigonometric functions in (2.103) can also be expanded:

tan(χ+ θ1,2) = χ

[
1 + χ2

(
g1,2

γ + 1
+

1

3

)
+ ...

]
,

sin(χ+ θ1,2) = χ

[
1 + χ2

(
g1,2

γ + 1
− 1

6

)
+ ...

]
,

cos(χ+ θ1,2) = 1− 1

2
χ2 + ... ,

(2.106)
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Figure 2.37: After passing through the limiting characteristic (l.c.), a supercritical
supersonic flow inevitably develops a shock.

g1,2 being the values of g immediately before and after the shock. Substituting ex-

pansions (2.105), (2.106) into the first three equations of (2.103) leads to the same

equation

f1 + g1 = f2 + g2 (2.107)

in the leading order. On the other hand, the last equation of (2.103) yields

f1 + f2 = 2 . (2.108)

The above analysis shows that the 2D Hugoniot system, containing four equations

(continuity equation, two momentum equations and energy equation), is degenerated

into the system of only two equations ((2.107) and (2.108)) when the asymptotic

limit x, y � 1 is considered. System (2.107)–(2.108) describes the jump of the phase

trajectories due to the shock. The second equation determines the shock strength

and suggests that the points (f1, g1) and (f2, g2) are symmetric with respect to the

singular line f = 1, whereas the first one provides the relevant change g2 − g1 of the

vertical velocity component.

This result gives a basic understanding of how the supercritical supersonic flows

behave. As opposed to the case of the subsonic and the subcritical supersonic flows,

we shall assume that both of the parameters κ− and G− for the oncoming flow are

known, therefore defining r− uniquely according to (2.54) (provided that the upstream

pressure gradient G− is strong enough for the starting point z− to be located in the
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supercritical region, i.e. on the branch cut (−∞, 0)). In this case solutions (2.85),

(2.86), (2.98) and (2.100) allow to construct the relevant phase trajectory until the

illegitimate crossing with the singular line (occurring at z = −rs), and to determine

the values of ξ along this trajectory (see equations (2.52), (2.53) for f , g and ξ in

terms of the inverse problem solutions). Theoretically the shock can form at any

point of the final fragment L1 of the phase trajectory with positive ξ (see Fig. 2.38).

Note that we only consider shocks originated at the wall, which have ξsh > 0.45)

-60 -30 30

-30

-15

15

30

PSfrag replacements f
=

1
L1

L2

Figure 2.38: In the language of the phase variables, the upstream side of the shock
may be located anywhere on the fragment L1 of the phase trajectory coming from
the upstream wall, while the downstream side of the shock lies somewhere on the
curve L2. The latter is the image of L1 described by equations (2.107) and (2.108).
The grey trajectories represent the flow between the shock and the downstream wall
for different values of κ+; the lowermost of these trajectories does not intersect with
L2 and therefore has no physical meaning.

Thus, for any given supercritical pair of the parameters κ− and G−, the locus L1 of

the points (f1, g1) (possible locations of the left-hand side of the shock in the phase

plane) is uniquely defined. Due to (2.107) and (2.108) this yields the corresponding

locus L2 of the points (f2, g2) (possible locations of the right-hand side of the shock

in the phase plane), as shown in Fig. 2.38. The latter has a clear maximum, and then

goes towards (f2, g2) = (−∞,−∞).

45) The shocks induced by other sources and impinging upon the wall are located at ξsh < 0; they
are excluded from our study.
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The final fragment of the phase trajectory starts somewhere on L2 and returns

to the origin, but the available data (κ−, G−) is insufficient for obtaining the exact

position of this curve (Fig. 2.38). Depending on the value of z+, which is responsible

for the asymptotic behavior of the trajectory close to the origin, the last fragment

may either be completely subsonic, partially or completely subcritical supersonic,

or entirely supercritical supersonic. Hence, to get a unique solution one has to fix

z+ along with κ−, G−, therefore leading to the fundamental difference between the

supercritical flows and all other flows. Recall that for the oncoming subsonic and the

subcritical supersonic flows it was sufficient to set any two of the four parameters
{
κ−, r−,κ+, r+

}
, or

{
κ−, G−,κ+, G+

}
, in order to get the remaining two from either

(2.67) or (2.80). Now we need to fix any three parameters from these sets, say
{
κ−, r−, r+

}
, to find the forth one (in this case κ+). In other words, passing through

the limiting characteristic (which inevitably leads to the shock formation) gives one

extra degree of freedom to the supercritical supersonic flows. The local solution

cannot be constructed based upon κ± only (as it was clearly the case for the subsonic

and the subcritical supersonic regimes), and requires one parameter from the global

solution, be it a value of the pressure gradient on the upstream wall or a location of

the shock.

When r− and r+ are specified, the phase trajectory can be constructed uniquely.

If, in addition, κ− is known, the relevant value of κ+ can be obtained from an

obvious condition that ξ should be continuous at the shock. Indeed, the curvatures

drop out of the expressions (2.52) for the phase variables, and therefore do not affect

the phase trajectory. However, they are present in formula (2.53) which provides the

values of ξ along the trajectory. It means that knowing r−, r+, together with the

shock conditions (2.107)–(2.108), is sufficient for reconstructing both fragments of

the phase trajectory (before and after the shock), whereas the values of ξ along these

fragments depend upon κ− before the shock and upon κ+ after the shock respectively.

Thus, the continuity condition ξ1 = ξ2 ≡ ξsh at the shock provides the required link

between the curvatures.
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2.4.12 Structure of the flow behind the shock

Let us now perform a detailed analysis of all the possible phase trajectories after the

shock. Since ξ monotonely increases from 0 along L1, it also increases along L2 when

moving from the left to the right (Fig. 2.38), due to the continuity of ξ at the shock.

The increase of ξsh means that the shock becomes more inclined, and its intensity

drops (this can also be seen from the decrease of the parameter H = f1 − 1 = 1− f2

while moving along L2 to the right). Based on this result, we shall list all the regimes

which occur as ξsh keeps increasing.

1) Regime I – a subsonic flow immediately behind the shock, transforming into a

subcritical supersonic flow on the downstream wall with κ+ > 0, see Fig. 2.39. The

supercritical
supersonic

subcritical
supersonic

sh
o
ck

PSfrag replacements
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y

κ+κ−
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shock
v =

0 u =
0

l.c.

subcritical
supercritical

subsonic

supersonic

Figure 2.39: Regime I for the flow behind the shock.

relevant phase trajectory behind the shock consists of two fragments (Fig. 2.41). The

first one is subsonic (the flow right behind the shock), with the solutions





y = −uD
[
B(r) + I(r+) +

9
√
π Γ(2/3)

Γ(1/6)

]
,

x = −v D
[
B(r)− 3

r1/2(1− r)1/3
+ I(r+) +

9
√
π Γ(2/3)

Γ(1/6)

]
,

where

D =
r
1/2
+

(
r+ − 1

)1/3

3(γ + 1)κ+

,

u < 0, v < 0 and r2 6 r < 1,46). The second fragment is supersonic (the flow near

46) The point r2 corresponds to the right-hand side of the shock.
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the downstream wall), with the solutions





y = uD
[
I(r)− I(r+)

]
,

x = v D

[
I(r)− 3

r1/2(r − 1)1/3
− I(r+)

]
,

u > 0, v < 0, 1 < r 6 r+. For this final fragment of the phase trajectory the

corresponding z plane trajectory runs on two separate sheets of the Riemann surface,

shown in Fig. 2.40.47)

1

1

PSfrag replacements

+π

+2π

r+r2

(n,m) (n,m+ 1)

=⇒

Figure 2.40: Final fragments of the z plane trajectory in Regime I.

If r+ is large, the phase trajectory described by the above solutions moves down-

wards fairly quickly (Fig. 2.38), and no intersection with L2 occurs. However, as r+

decreases, the minimal distance between the trajectory and L2 also decreases, lead-

ing to the intersection at the infinite point (f = −∞, g = −∞) when r+ = rm (see

Fig. 2.41). It may be shown that rm is the only root of the equation

I(rm) =
3

r
1/2
00

(
1− r00

)1/3 −B(r00)−
9
√
π Γ(2/3)

Γ(1/6)
, rm > 1 , (2.109)

where

r00 =
r0

1 + 2r0
, (2.110)

and r0 is defined in (2.99) for a given r−. Thus, rm is itself a function of r−. The

intersection between L2 and the last fragment of the phase trajectory at the infinite

point means f1 → ∞, f2 → −∞, corresponding to the normal shock with ξsh = 0.

47) Note that v remains negative both before the shock (on L1) and after she shock.
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The relevant curvatures’ ratio can also be obtained analytically:

(
κ+

κ−

)

m

=
r
1/2
m

(
rm − 1

)1/3

r
1/2
−
(
1 + r−

)1/3
r
1/2
0

(
1 + r0

)1/3

r
1/2
00

(
1− r00

)1/3 . (2.111)

Equation (2.111), together with (2.99), (2.109) and (2.110), shows that
(
κ+/κ−

)
m

is

a function of r−; it monotonely decreases from ∞ to 0 while r− is increasing from 0

to ∞.

PSfrag replacements

f
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3
f
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=
r m

Figure 2.41: Location of the phase trajectories describing the flow behind the shock
in Regime I (shaded area). The trajectories at the boundaries of the shaded area
correspond to r+ = rm (rm is defined in (2.109)) and r+ = 1, the latter giving the
straight line g = 2

3
f .

As r+ diminishes further, so that rm > r+ > 1, the final fragment of the phase

trajectory comes closer to the line g = 2
3
f . Its intersection point with L2 moves

upwards (Fig. 2.38), resulting in a monotonic increase in ξsh. The curvatures’ ratio

can now be expressed via

κ+ ≡
κ+

κ−
=
r
1/2
+ (r+ − 1)1/3

r
1/2
− (1 + r−)1/3

(
χ1

χ2

)
,

with

χ1 =
1

f1

[
−J(r1) + J(r−) + 2J(∞)

]−1

, f1 = f(r1) ,

χ2 = − 1

f2

[
B(r2) + I(r+) +

9
√
π Γ(2/3)

Γ(1/6)

]−1

, f2 = f(r2) .

To illustrate how κ+ behaves when r+ is decreasing, it is plotted versus the scaled

shock position ξsh = ξsh√
κ−

in Fig. 2.42, left, for all the possible flow regimes behind the
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shock.48) The curve, which appears to be invariant with respect to transformation

(2.12), corresponds to one particular value of r− (or G−); one can plot a family of

such curves for different r−, and they would all look similar, simply being stretched

along both axes in a certain way. We see that within the regime I the curvatures’ ratio

decreases steadily with ξsh. Moving a few steps forward, it is worth mentioning that

the function κ+(ξsh) has a distinct minimum, therefore providing two different shock

locations for any given curvatures’ ratio: a strong shock (ξsh < ξmin) and a weak

shock (ξsh > ξmin).
49) It is also clearly seen from Fig. 2.42 that ξsh does not exceed

a certain maximum value ξmax, the latter obviously corresponding to the shock’s

degeneration into a characteristic of a supersonic flow (Liepmann & Roshko 1957).

0 0
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Figure 2.42: An illustration of the connection between relative location of the shock
( ξsh√

κ−
) and the downstream parameters κ+

κ−
, G+. Roman numerals denote physically

different regimes for a flow behind the shock. The graphs are plotted for a fixed value
of the supercritical upstream pressure gradient G−, and are invariant with respect to
re-scaling of the spatial coordinates.

The pressure gradient on the downstream wall has the amplitude

G+ = − 1

λβ2/3

(
κ+

κ−

)2/3 (
r+ − 1

r+

)1/3

, (2.112)

and is favorable (as it is for any supersonic flow on the downstream wall, see section

2.4.5); G+ plotted in Fig. 2.42, right, as a function of ξsh for all the regimes behind

48) The rest of them, denoted by the Roman numerals II–VI, will be examined below.
49) Note that the regimes IV, V and VI could not be shown in Fig. 2.42 properly and require a

zooming which will be given later (see Fig. 2.49).
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the shock. Again, the curve shown in Fig. 2.42 corresponds to one particular value of

G−, which is due to the fact that supercritical flows have one extra degree of freedom.

In the regime I the gradient is always favorable, but its absolute value decreases with

ξsh and becomes equal to zero when r+ = 1+.

2) Regime II – an entirely subsonic flow between the shock and the downstream

wall with κ+ > 0. The flow structure is shown in Fig. 2.43, left. Depending on the

value of r+ ∈ (0, 1), the last fragment of the phase trajectory either runs completely

in the lower half-plane g < 0, or starts in the upper half-plane (immediately after the

shock) and then crosses the line g = 0 before returning to the origin (see Fig. 2.38).50)

In the first case, v stays negative both before and after the shock, and the final

fragment of the phase trajectory is described by the solutions





y = uD
[
B(r)−B(r+)

]
,

x = v D

[
B(r)− 3

r1/2(1− r)1/3
−B(r+)

]
,

(2.113)

where
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Figure 2.43: Regime II for the flow behind the shock, left, and location of the relevant
phase trajectories, right.

D =
r
1/2
+

(
1− r+

)1/3

3(γ + 1)κ+

,

and r2 6 r 6 r+ (the relevant z plane trajectory is shown is Fig. 2.44). In the second

50) The trajectories’ location near the origin is sketched in Fig. 2.43, right.
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Figure 2.44: Final fragment of the z plane trajectory in Regime II for the case when
v < 0 behind the shock.

case v changes sign in the shock first (becoming positive), and then once again in the

downstream subsonic flow. The fragment of the phase trajectory with v > 0 (just

after the shock) corresponds to the solutions





y = −uD
[
B(r) +B(r+)

]
,

x = −v D
[
B(r)− 3

r1/2(1− r)1/3
+B(r+)

]
,

(2.114)

r2 > r > 0, and the final fragment is given by (2.113) with 0 < r 6 r+. Now the z

plane trajectory runs on two sheets of the Riemann surface (Fig. 2.45).

1
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PSfrag replacements
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Figure 2.45: Final fragments of the z plane trajectory in Regime II for the case when
v > 0 behind the shock.

As r+ decreases from 1 to 0, ξsh keeps increasing (the shock becomes more oblique

and weakens), the curvatures’ ratio decreases to 0; at the same time the downstream

pressure gradient is adverse (as it should be for any subsonic flow) and increases
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monotonely (see Fig. 2.42). The two limiting cases are important: r+ = 1− corre-

sponds to a potential vortex flow and leads to a zero pressure gradient on the wall,51)

while r+ → 0+ yields κ+ ∼
√
r+ → 0, i.e. a flat downstream wall. However, in the

second case the downstream pressure gradient (proportional to G+) is not equal to

zero and depends upon κ−, r−; solutions (2.114) are degenerated into




y = −u B(r)

2
(
λG+

)3/2 ,

x = −v 1

2
(
λG+

)3/2
(
B(r)− 3

r1/2(1− r)1/3

)
,

(2.115)

r2 > r > 0 ≡ r+. Therefore, the subsonic flow between the shock and the flat

downstream wall with κ+ = 0 is not uniform, as opposed to a similar special case for

the oncoming subcritical supersonic flow discussed in section 2.4.6.

It is also worth mentioning that the trajectory described by solutions (2.114)

changes its behavior significantly when r+ = r∗, with r∗ ≈ 0.3039 defined in (2.64).

For 1 > r+ > r∗ it stays in the subsonic half-plane, and, if not restricted by L2, would

go towards (−∞,∞). On the other hand, for r∗ > r+ > 0 it starts turning right at

a certain point, enters the subcritical supersonic region, and attempts to cross the

singular line in an illegitimate place above P2. However, the restricting curve L2 (on

which the trajectory must terminate) is well below the place where the described

turning takes place, and the last fragment of the phase trajectory remains entirely

subsonic for all r+ ∈ (0, 1).52)

Finally, the curvatures’ ratio is given by

κ+

κ−
=
r
1/2
+

(
1− r+

)1/3

r
1/2
−
(
1 + r−

)1/3
(
χ1

χ2

)
,

where

χ1 =
1

f1

[
−J(r1) + J(r−) + 2J(∞)

]−1

, f1 = f(r1) ,

χ2 = − 1

f2

[
±B(r2) +B(r+)

]−1

, f2 = f(r2) ,

and ± corresponds to v ≷ 0 immediately behind the shock.

51) The phase trajectory in this case coincides with the line g = 2
3 f .

52) Note that for the subsonic and the subcritical supersonic oncoming flows there was a natural
restriction r± > r∗∗ due to the saddle point, with r∗∗ ≈ 0.8302 defined in (2.68); since r∗∗ > r∗, this
kind of a turning never happened.
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Figure 2.46: Regime III for the flow behind the shock, left, and location of the relevant
phase trajectories, right.

3) Regime III – a subsonic flow on the downstream wall with κ+ < 0. The flow

structure is shown in Fig. 2.46, left. Depending on the value of r+, the phase trajec-

tory can either run entirely in the subsonic half-plane, or start from the subcritical

supersonic region (see Fig. 2.46, right). In the first case the inverse problem solutions

are 



y = uD
[
B(r+)−B(r)

]
,

x = v D

[
B(r+)−B(r) +

3

r1/2(1− r)1/3

]
,

(2.116)

where

D =
r
1/2
+

(
1− r+

)1/3

3(γ + 1)|κ+|
,

and r2 > r > r+. The sign of v changes either in the shock itself when

f1 >

(
J(r−) + 2J(∞)

3

)2

,

or in the flow just before the shock when

f1 <

(
J(r−) + 2J(∞)

3

)2

,

so that v is positive on the concave downstream wall anyway. In the second case

there is a subcritical supersonic flow immediately after the shock corresponding to
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the solutions




y = uD

[
B(r+) +

9
√
π Γ(2/3)

Γ(1/6)
+ I(r)

]
,

x = v D

[
B(r+) +

9
√
π Γ(2/3)

Γ(1/6)
+ I(r)− 3

r1/2(r − 1)1/3

]
,

(2.117)

r2 > r > 1; this flow then decelerates to a subsonic regime without a shock formation,

and is described by solutions (2.116) with 1 > r > r+. In the z plane the relevant

trajectory runs on two sheets of the Riemann surface.53)

As r+ increases from 0 to 1, ξsh increases monotonically. From Fig. 2.42 it can be

seen that, firstly, the downstream wall pressure gradient reaches its maximum and

starts decreasing (remaining adverse throughout the entire regime), and, secondly,

the ratio of the curvatures, now being negative, reaches its minimum and starts

increasing. The latter yields the largest possible value of |κ+/κ−| for a concave

downstream wall (κ+ < 0) at which the attached shock can exist, and creates a

demarcation line between the strong and the weak solutions for the shock.54) This

also provides an explanation for a well known experimental result that for a supersonic

flow above a flat plate transforming into a concave wall the shock is always detached

(see Fig. 2.47). Indeed, in this case κ+/κ− = −∞, whilst the largest possible value

of |κ+/κ−| resulting in the attached shock is finite.

sh
oc

k

supercritical
supersonic

PSfrag replacements

κ+ < 0κ− = 0

shock
supercritical

supersonic

Figure 2.47: Detachment of the shock from the surface caused by a concave down-
stream wall (in this illustration κ+/κ− = −∞).

The regime ends with the limiting case of r+ = 1−, when the entire trajectory is

in the supersonic region and coincides with g = 2
3
f . This kind of a flow is essentially

53) We are skipping the plot of the z plane trajectory for the sake of simplicity.
54) However, the value (κ+/κ−)min and the corresponding shock location ξmin cannot be obtained

analytically.
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a potential vortex flow over a concave wall, and there is no pressure gradient on the

downstream wall in this case.

Finally, the analytical expression for κ+/κ− is structurally similar to the ones in

the previous regimes, with χ1,2 depending on the exact solutions immediately before

and after the shock. From now on we are going to skip it, in order to save paper and

the reader’s patience.

supercritical
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Figure 2.48: Regime IV for the flow behind the shock, left, and location of the relevant
phase trajectories, right.

4) Regime IV – a subcritical supersonic flow between the shock and the down-

stream wall with κ+ < 0 (Fig. 2.48, left). The final fragment of the phase trajectory

is located in the region confined between the three lines: g = 2
3
f (corresponding to

r+ = 1), g = 2
3
f

3
2 (the upper critical line, r+ = ∞) and L2, as shown in Fig. 2.48,

right; therefore, r+ ∈ (1,∞). The inverse problem solutions are





y = uD
[
I(r+)− I(r)

]
,

x = v D

[
I(r+)− I(r) +

3

r1/2(r − 1)1/3

]
,

where

D =
r
1/2
+

(
r+ − 1

)1/3

3(γ + 1)|κ+|
,

and r2 > r > r+. In the limiting cases, when the phase trajectory coincides either

with g = 2
3
f or with g = 2

3
f

3
2 , r2 → r+ → 1+ and r+ → r2 →∞ respectively.
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Figure 2.49: Connection between the relative location of the shock, the ratio of wall
curvatures and the downstream pressure gradient in Regimes III–VI for the flow
behind the shock.

As r+ is increasing from 1 to ∞, ξsh continues to increase monotonely. At the

same time |κ+/κ−| is diminishing (the ratio itself is negative, because κ+ < 0), while

|G+| is increasing (the downstream pressure gradient is now favorable) – see Fig. 2.49.

5) Regime V – a supercritical supersonic flow between the shock and the down-

stream wall with κ+ < 0 (Fig. 2.50, left). The phase trajectories for this regime are

shown in Fig. 2.50, right. The relevant value of r+ is decreasing from ∞ to 0, and

the inverse problem solutions are given by





y = uD
[
J(r)− J(r+)

]
,

x = v D

[
J(r) +

3

r1/2(1 + r)1/3
− J(r+)

]
,

where

D =
r
1/2
+

(
1 + r+

)1/3

3(γ + 1)|κ+|
,

and r2 > r > r+.

With the decrease of r+, ξsh increases monotonely, |κ+/κ−| continues to decrease

(becoming zero when r+ = 0) and the absolute value of the downstream wall pressure

gradient (which is favorable) keeps increasing, see Fig. 2.49. In the limiting case

r+ → 0 we have κ+ = 0−; however, the flow above the flat downstream wall is not

uniform, as opposed to the subcritical flow for the same wall geometry considered in
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section 2.4.8, and the wall pressure gradient is non zero, being a function of κ−, r−.
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Figure 2.50: Regime V for the flow behind the shock, left, and location of the relevant
phase trajectories, right.

6) Regime VI (final) – a supercritical supersonic flow between the shock and

the downstream wall with κ+ > 0 (Fig. 2.51, left). The phase trajectories are now

crossing the line g = 0 (Fig. 2.51, right), so that the z plane trajectory runs on both

sides of the supercritical branch cut. The solutions on the upper side of the branch

cut (for which v > 0) are





y = uD
[
J(r+) + J(r)

]
,

x = v D

[
J(r+) + J(r) +

3

r1/2(1 + r)1/3

]
,

where

D =
r
1/2
+

(
1 + r+

)1/3

3(γ + 1)κ+

,

and r2 > r > 0. On the lower side (corresponding to v < 0)





y = uD
[
J(r+)− J(r)

]
,

x = v D

[
J(r+)− J(r)− 3

r1/2(1 + r)1/3

]
,

0 < r 6 r+. The parameter r+ is now increasing from 0 to∞, followed by a monotonic

increase of ξsh right up to the largest possible value
(
ξsh
)
max

for a given upstream
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pressure gradient G−.55) At the same time κ+/κ− is increasing from 0 to ∞ (see

Fig. 2.49, left), and the absolute value of the favorable downstream pressure gradient

keeps increasing (Fig. 2.49, right); the latter has the following asymptotic behavior:

G+ ∼ −
1

λβ2/3

(
κ+

κ−

)2/3

→ −∞ (2.118)

as κ+/κ− → ∞. Equation (2.118) does not contain G− (or r−), suggesting that

in the limit κ+/κ− → ∞ the flow near the downstream wall depends only upon

the curvatures’ ratio. In other words, the additional degree of freedom, typical for

the supercritical flows, vanishes, which makes the supercritical flow behave like the

subcritical.
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Figure 2.51: Regime VI for the flow behind the shock, left, and location of the relevant
phase trajectories, right.

In this limiting case of κ+/κ− →∞ the phase trajectory moves towards the saddle

point along its first asymptote (Fig. 2.51). It means that the flow asymptotically

becomes the Prandtl–Meyer flow as the downstream wall with κ+ →∞ is approached

(assuming κ− = O(1)), thus being the only case when the phase trajectory does not

return to the origin. However, the domain of the applicability of the above solutions

in the physical plane is being degenerated to a point, and we need to perform a re-

scaling. Indeed, since the problem is invariant with respect to transformation (2.12),

the above limiting case may be treated as κ− → 0 for κ+ = O(1). It can be shown

55) This value cannot be represented as an explicit function of G−.
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that this re-normalization leads to a uniform flow with u = v = 0 above the upstream

wall with κ− → 0, and the three coordinate lines where v = 0, as well as the limiting

characteristic (ξc) and the shock (ξsh), all tighten to the vertical axis x = 0 (see

Fig. 2.23, right). The shock itself degenerates to a weak discontinuity located at

x = 0, whereas the flow in region x > 0 corresponds to the phase trajectory running

along the lower critical line g = − 2
3
f

3
2 from the saddle point to the origin (Fig. 2.24).

This regime has already been considered previously in section 2.4.6, but at that time

it appeared as the limiting case for the oncoming subsonic flow (when κ− → 0).

subsonic

supercritical
supersonic

subcritical
supersonic

oncoming

flow

oncoming

flow

oncoming

flow

Prandtl-Meyer

PSfrag replacements

κ+ = 0κ− = 0

κ− = κ+

Figure 2.52: Links between all the possible transonic flow regimes near a discontinuity
in wall curvature.

We have just derived a fundamental property linking all the transonic flows near

the curvature-break point, which is illustrated in Fig. 2.52. The oncoming subsonic

flows (for which κ+/κ− > 1) are succeeded by the subcritical supersonic flows, with

the special case κ− = κ+ in between. The subcritical supersonic flows upstream,

taking place for 0 < κ+/κ− < 1, are succeeded by the supercritical supersonic

flows when κ+ → 0. As it was shown in sections 2.4.9–2.4.11, the supercritical

regimes are physically different from all other regimes because they require one extra

parameter in order to determine the local flow pattern. In the limiting case κ+ →

0 the supercritical flow pattern is completely different from the one obtained for

the similar limit in the subcritical flows. Therefore, the local flow parameters (in
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particular the downstream wall pressure gradient) show a bifurcation-like behavior at

the turn of the subcritical and the supercritical supersonic regimes. The supercritical

regimes also allow the solutions with κ+ < 0 (concave downstream walls), and are

linked with the subsonic regimes via the limiting case κ− → 0.56) Therefore, we have

a sequence of the possible regimes transforming from one into another, depending on

the values of the basic input parameters (for example, κ− and G−).

PSfrag replacements

κ+

κ−

G+

Figure 2.53: A family of the curves representing the downstream pressure gradient as
a function of the curvatures’ ratio in the supercritical regime. The curves are plotted
for different values of the supercritical upstream pressure gradient G−; wider curves
correspond to larger values of G−.

Finally, let us summarize the results obtained for the supercritical flows by plotting

the downstream wall pressure gradient G+ (Fig. 2.53) versus the curvatures’ ratio for

different values of G− (or r−). As opposed to the subcritical regimes, now we have

a family of the curves, which is due to the presence of one extra degree of freedom

in the supercritical flows (for the subsonic and the subcritical supersonic flows there

was only one such curve, shown in Fig. 2.8 and Fig. 2.26 respectively). All the curves

in Fig. 2.53 have the same asymptotic behavior when κ+/κ− → ∞, in accordance

with (2.118); they match with the appropriate curve for G+ in subsonic regimes

56) In this limiting case one extra degree of freedom degenerates, since the (physical) downstream

pressure gradient ∂p/∂x, according to (2.118) and (2.28), is finite and proportional to κ
2/3
+ only.

Although G− still remains a free parameter in the supercritical solutions, the latter are reduced to
a uniform flow upstream and the Prandtl–Meyer flow downstream of the curvature break. It can

also be seen from (2.28) that the (physical) upstream pressure gradient is proportional to G−κ
2/3
− ,

and it vanishes with κ− regardless of the value of G−.
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(Fig. 2.10), therefore providing a link between the supercritical supersonic and the

subsonic regimes discussed above. The clearly observed pair of the solutions for

the pressure gradient within certain values of κ+/κ− corresponds to the strong and

the weak shocks (Fig. 2.54). However, the strong solution seems to be physically

unreasonable for our particular problem because it leads to

dξsh
dκ+

< 0 , ξsh =
ξsh√
κ−

, κ+ =
κ+

κ−
,

and might be linked to a flow with an impinging shock. Moreover, it is the weak

solution that yields the important limiting case κ+/κ− → ∞, bringing the whole

pattern back to the subsonic flows. On the weak branch in Fig. 2.54 the downstream

pressure gradient monotonely decreases with κ+, and can be either adverse (for the

most negative values of κ+, close to the shock’s detachment from the wall) or favorable

(for all other values of κ+).

Both the subcritical and the supercritical solutions for the coefficients G± are

plotted in Fig. 2.55 as functions of the curvatures’ ratio. This plot completes our

study of the inviscid flow generated by a discontinuity in wall curvature. Now we can

move on to the boundary layer, and find out how the latter is affected by the singular

pressure gradients.
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Figure 2.54: Physical interpretation for different fragments of a typical supercritical
curve describing the downstream pressure gradient.
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Figure 2.55: The pressure gradients G± plotted as functions of the curvatures’ ratio
for subcritical regimes (solid lines) and supercritical regimes (dashed lines). The non-
uniqueness in the supercritical solution is due to an extra degree of freedom gained
after passing through the limiting characteristic.



Chapter 3

Viscous-Inviscid Interaction

Caused by a Curvature Break

3.1 Boundary Layer Upstream of the Singularity

Having obtained a complete picture of the outer inviscid flow near a break in wall

curvature, let us now turn our focus to the boundary layer and find out how it

responds to the singular pressure gradients (2.28) generated by the break.

3.1.1 Peculiarities in the boundary layer exposed to the pres-

sure gradient ∂p/∂x = G−(−x)−1/3

PSfrag replacements
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r

κ+κ−

boundary
layer

Figure 3.1: Curvilinear coordinates related to the body surface.

From now on we are going to use the curvilinear coordinates (s, r) related to the

123
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body surface (see Fig. 3.1). According to the classical boundary layer theory, we intro-

duce the following asymptotic expansions of the functions describing a compressible

flow of a Newtonian fluid:

U(s, r,Re) = U0(s, Y ) +O
(
Re−1/2

)
,

V (s, r,Re) = Re−1/2V0(s, Y ) +O
(
Re−1

)
,

p(s, r,Re) = P0(s, Y ) +O
(
Re−1/2

)
,

h(s, r,Re) = h0(s, Y ) +O
(
Re−1/2

)
,

ρ(s, r,Re) = R0(s, Y ) +O
(
Re−1/2

)
,

µ(s, r,Re) = µ0(s, Y ) +O
(
Re−1/2

)
.

(3.1)

Here Re = ρ̂∗â∗L
µ̂∗
� 1 is Reynolds number referred to the sonic point (∗), L is the

spatial scale related to curvature radii (see section 2.1.1), Y = rRe1/2 is a standard

scaled normal coordinate, U and V stand for velocity components, p for pressure, h

for enthalpy, ρ for density and µ for dynamic viscosity. All the functions have been

non-dimensionalised using their values in the sonic point:

Û = â∗U, V̂ = â∗V, p̂ = p̂∗ + ρ̂∗â
2
∗ p , ρ̂ = ρ̂∗ ρ , ĥ = â2

∗ h , µ̂ = µ̂∗ µ ,

with the hat denoting physical variables. Index ‘0’ in all the functions on the right-

hand side of (3.1) indicates that they are the leading-order terms of the correspondent

expansions based on powers of Re−1/2.

Plugging (3.1) into the Navier–Stokes equations written in the curvilinear coordi-

nates (s, r) (see Appendix), we obtain the classical boundary layer equations in the
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leading order:





∂(R0U0)

∂s
+
∂(R0V0)

∂Y
= 0

R0

(
U0
∂U0

∂s
+ V0

∂U0

∂Y

)
= −∂p0

∂s
+

∂

∂Y

(
µ0
∂U0

∂Y

)

∂p0

∂Y
= 0

R0

(
U0
∂h0

∂s
+ V0

∂h0

∂Y

)
= U0

∂p0

∂s
− 1

Pr

∂

∂Y

(
µ0
∂h0

∂Y

)
+ µ0

(
∂U0

∂Y

)2

h0 =
1 + γp0

(γ − 1)R0

,

(3.2)

where Pr = O(1) is Prandtl’s number.1) The absence of centrifugal terms in the

system suggests that the effects of wall curvature do not affect the leading-order

boundary layer. As a result, the pressure remains constant across the boundary layer

and is a function of s only, prescribed by the outer inviscid flow. Transforming the

known pressure distribution (2.28), originally obtained in the cartesian coordinates

(x, y), to the curvilinear coordinates yields

∂p(s, r,Re)

∂s
= kG±(±s)−1/3 + ...+O

(
Re−1/2

)
,

so that

∂p0

∂s
= k G±(±s)−1/3 + ... , 0 6 Y <∞ , |s| → 0 . (3.3)

Here “±” corresponds to s ≷ 0, the dots stand for higher-order terms of the coordinate

expansion within the framework of the classical boundary layer theory (these terms

also include the effects of the coordinate transformation itself), while the O
(
Re−1/2

)

terms represent the leading-order displacement effects.

On the wall the no-slip condition should hold:

U0

∣∣
Y=0

= V0

∣∣
Y=0

= 0 ,

which means that in a small vicinity of the wall the motion is relatively slow and

the gas behaves like an incompressible fluid. Slow fluid particles near the wall are

1) To close the system, we need to specify how the viscosity depends on the enthalpy, i.e. to set
the function µ0(h0). However, this will not be required for the analysis below.
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the ones mostly affected by singular pressure gradient (3.3), the latter trying either

to accelerate or to decelerate the gas (depending on the signs of G±). Therefore, for

the no-slip conditions to hold, the singular pressure gradient must be balanced by

viscous forces and inertial terms, which may be expressed as

R0U0
∂U0

∂s
∼ ∂p0

∂s
∼ ∂

∂Y

(
µ0
∂U0

∂Y

)
. (3.4)

If we assume that the wall is not heated/cooled artificially, then the value of enthalpy

on the wall is an order one quantity: hw = h0

∣∣
Y=0

= O(1). Due to the equation of

state, gas density near the wall is then estimated as Rw = R0

∣∣
Y=0

= O(1), and the

viscosity µw = µ0

∣∣
Y=0
≡ µ0(hw) = O(1) (Goldstein 1930). Changing the differentials

to finite differences in (3.4), and assuming further that ∆U0 ∼ U0, i.e. the pressure

gradient is strong enough to cause nonlinear perturbations of the velocity, we find:

Rw
(∆U0)

2

∆s
∼ µw

∆U0

(∆Y )2
+

∆U0

∆Y

∆µ0

∆Y
∼ ∂p0

∂s
∼ |∆s|−1/3 , (3.5)

where ∆s and ∆Y are small deviations from s = 0 and Y = 0 respectively.2) Finally,

it is obvious that ∆µ0 � µw ∼ 1, and (3.5) yields the following closed system of

estimates:

(∆U0)
2

∆s
∼ ∆U0

(∆Y )2
∼ |∆s|−1/3 .

This system can be easily solved to give

∆U0 ∼ ∆Y ∼ |∆s|1/3 (3.6)

Therefore, the so-called viscous sublayers are formed upstream and downstream of

the singularity, with their thickness vanishing according to (3.6). This physical mech-

anism allows to generate strong viscous and inertial forces capable of balancing the

singular pressure gradient.

Let us now focus on the sublayer upstream of the singularity. The parabolic nature

of the boundary layer equations suggests that information is carried downstream, thus

2)We used the same value of ∆U0 to approximate both ∂U0/∂s and ∂2U0/∂Y 2 because each of
these terms has to balance the singular pressure gradient in the momentum equation; as a result,
velocity increments in the two different directions are not independent. Similar ideology was used
when swapping U0 with ∆U0 in the inertial term.
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requiring to consider regions upstream of the singularity first. Due to the second

estimate in (3.6) the relevant solution should depend on the similarity variable

η =
Y

(−s)1/3
.

In the sublayer itself η = O(1); η = 0 corresponds to the wall, and η →∞ when the

main part of the boundary layer is reached (it is denoted as region 2a in Fig. 3.2).

It turns out that the latter is mostly inviscid and only inertial terms balance the

pressure gradient (the flow is fast enough, so that U0 � ∆U0 in the main inertial

term). To simplify the analysis in the sublayer, we introduce a compressible stream

function ψ0(s, Y ):

∂ψ0

∂Y
= R0U0 ,

∂ψ0

∂s
= −R0V0 . (3.7)

With (3.7) the continuity equation is satisfied automatically, while the no-slip con-

PSfrag replacements
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Figure 3.2: Singular pressure gradients lead to the typical two-tier structure of the
boundary layer upstream of the singularity.

dition reduces to

ψ0

∣∣
Y=0

=
∂ψ0

∂Y

∣∣∣
Y=0

= 0 . (3.8)

With this in mind, one can obtain an estimate

ψ0 = ∆ψ0 ∼ R0U0 ∆Y ∼ Rw ∆U0 ∆Y ∼ (∆Y )2 ∼ |∆s|2/3

for the stream function in the sublayer. Therefore, we write an asymptotic expansion

for ψ0 in the sublayer as

ψ0(s, Y ) = (−s)2/3 ψ(η) + ... . (3.9)
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The leading order term here represents a response to the singular pressure gradient,

while the higher-order terms (not shown explicitly) stand for the eigen modes of the

sublayer (see Goldstein (1948) for details). From now on we are going to neglect the

eigen modes because in our case the main physical effect proves to be described by

the leading-order term in (3.9).

Strictly speaking, we also need to consider a thermal sublayer and construct the

appropriate expansions for the remaining functions R0, h0 and µ0. Simple estimates

in the energy equation from (3.2) suggest that the heat generated by internal friction

is balanced by heat conductivity when ∆h0 ∼ |∆s|1/3. On the other hand, convective

terms and mechanical work produced by the pressure are in balance with the heat

generation when ∆Y ∼ |∆s|1/3. Thus, the thermal and dynamical sublayers coincide.

The relevant expansions for R0, h0 and µ0 are

h0 = hw + (−s)2/3 h̃(η) + ... ,

R0 = Rw + (−s)2/3 R̃(η) + ... ,

µ0 = µw + (−s)2/3 µ̃(η) + ... ;

(3.10)

parameters Rw, hw and µw are assumed to be known from the global solution of the

boundary layer equations (3.2). Plugging these expansions along with (3.9) into the

momentum equation in (3.2) yields a single equation for ψ(η) in the leading order

approximation:

µwψ
′′′ − 2

3
ψψ′′ +

1

3
(ψ′)2 = RwkG− , ψ′ =

dψ

dη
, (3.11)

suggesting that the gas, indeed, behaves like an incompressible fluid in the sublayer.

The energy equation and the equation of state split from the system, and equation

(3.11) (which combines the continuity and the momentum equations) can be solved

independently.

We need three boundary condition to obtain a unique solution of (3.11). Two of

them come from no-slip condition (3.8) after applying it to (3.9):

ψ
∣∣
η=0

= ψ′∣∣
η=0

= 0 . (3.12)
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The remaining condition states that ψ(η) is not allowed to grow exponentially when

η →∞. Should such a growth occur, we won’t be able to obtain a finite solution for

the main part of the boundary layer, making it impossible to perform matching with

the outer inviscid flow when Y →∞ (Goldstein 1948). The asymptotic form of ψ(η)

at infinity can still have positive powers of η as well as ln η.

It is easy to spot that equation (3.11) admits an exact solution in terms of a

quadratic polynomial

ψ(η) = a0η
2 + a1η + a2 ,

as long as the constant coefficients satisfy a constraint a2
1 − 4a0a2 = 3RwkG−. How-

ever, the no-slip condition (3.12) requires a1 = a2 = 0, leading to a contradic-

tion with the constraint when G− 6= 0. Therefore, if we want to obtain a solu-

tion for ψ corresponding to a non-zero pressure gradient, we need to assume that

ψ(η) 6= a0η
2 + a1η + a2; the latter implies there is a nontrivial solution for ψ ′′′.

Differentiating (3.11) once we get

µwψ
(4) − 2

3
ψψ′′′ = 0 , ψ(4) =

d4ψ

dη4
.

Introducing a new function

χ(η) =

∫ η

0

ψ(ξ) dξ ,

this equation may be represented in the form

µw
dχ(4)

dχ
− 2

3
χ(4) = 0 , χ(4) =

d4χ

dη4
,

and so

ψ′′′ =
d4χ

dη4
= C e

2χ

3µw . (3.13)

In order to find the integration constant C, we simply need to set η = 0 in (3.11),

and note that with η = 0, (3.13) reduces to ψ′′′
∣∣
χ=0

= C. Thus,

C =
RwkG−

µw
;

(3.13) may be rewritten as

ψ′′′ =
d4χ

dη4
=
RwkG−

µw
e

2χ

3µw . (3.14)
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This equation is equivalent to (3.11) along with no-slip condition (3.12). It suggests

that, unless we consider solutions describing a reverse flow, any polynomial repre-

sentation of ψ fails when η → ∞. Indeed, we are expecting to have a well attached

boundary layer upstream of the interaction region, especially in the case of G− < 0,

and therefore need to restrict our attention to the solutions which give U0 > 0 across

the sublayer 2b (no reverse flow). The latter means ψ′ > 0 for all η ∈ (0,∞), and

both ψ and χ grow steadily with η. As a result, the matching condition with the

main part of the boundary layer 2a implies that χ, treated as a function of η, tends

to +∞ according to a certain power dependance when η →∞.3) But this generates

exponentially growing terms due to (3.14), and we are unable to perform the required

matching. Moreover, equation (3.14) may simply have no solutions that would grow

indefinitely with η.

The contradiction hints that the boundary-value problem for ψ(η) has no solutions

when G− 6= 0 (i.e., when there is a discontinuity in wall curvature). To find out what

causes this situation and how to obtain a suitable solution for the sublayer, we shall

consider a more general pressure gradient

∂p

∂s
= G (−s)−λ ;

in our case λ = 1/3. Again, assuming that the pressure gradient is strong enough to

cause nonlinear effects in the viscous sublayer, we can estimate

∆U0 ∼ U0 (3.15)

in the convective terms; balancing them with the viscous forces and the pressure

therefore requires

∆U0 ∼ |∆s|
1−λ

2 , ∆Y ∼ |∆s| 1+λ
4 . (3.16)

This indicates that a viscous sublayer is formed close to the wall when the singularity

is approached (∆s→ 0).

According to (3.15) and (3.16), the stream function is estimated as

ψ0 = ∆ψ0 ∼ U0 ∆Y ∼ |∆s| 3−λ
4 ,

3) To be more specific, χ should be proportional to η3 in the overlapping region between the
viscous sublayer and the main part of the boundary layer, which gives a linear profile for U0(Y ).
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resulting in the following asymptotic expansion:

ψ0 = (−s) 3−λ
4 ψ(η) + ... , η =

Y

(−s) 1+λ
4

. (3.17)

Plugging this into the momentum equation gives

µwψ
′′′ − 3− λ

4
ψψ′′ + (1− λ) (ψ′)2 = 2RwG . (3.18)

The boundary conditions for ψ(η) are same as before, i.e. ψ
∣∣
η=0

= ψ′
∣∣
η=0

= 0, plus

no exponential growth as η →∞.

To be able to see how variations in λ affect the solution of the boundary-value

problem, it is helpful to consider the asymptotic behaviour of ψ(η) when η → ∞.

Equation (3.18) can be transformed to

µw
√
ω
d2ω

dψ2
− 3− λ

4
ψ
dω

dψ
+ (1− λ)ω = 2RwG , ω(ψ) = (ψ′)

2
, (3.19)

with the no-slip condition requiring that

ω
∣∣
ψ=0

= 0 . (3.20)

We now need to look at the asymptotic form of ω(ψ) when ψ →∞ in terms of power

functions, which corresponds to having powers of η in ψ(η) when η →∞:

ω(ψ) = Aψα +
2RwG

1− λ +
B

ψβ
+ ... , ψ →∞ . (3.21)

Here α = 4(1−λ)
3−λ , β = 4λ

3−λ , the free parameter A can be determined by solving equation

(3.19) numerically for all ψ and satisfying the no-slip condition on the wall, and

B = −4µwA
3/2(1− λ)(1− 3λ)

(3− λ)2
. (3.22)

The first two terms in (3.21) come from balancing the convective terms with the

pressure gradient, while B/ψβ corresponds to the viscous forces. It can be clearly

seen from (3.22) that B → 0 if λ→ 1/3, indicating that power expansion (3.21) fails

to include viscous effects when λ = 1/3. Since the latter are necessary to satisfy the

no-slip condition when integrating (3.19) down to the wall, the only way to keep the

viscosity alive is to introduce specific terms into (3.21) decaying with ψ much faster

than power functions (for example, exponentially small terms).
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There is also a possibility that λ = 1/3 is a real degenerate case, when the

boundary value problem for ω(ψ) has no solutions. A better understanding of what

happens when λ→ 1/3 can be achieved by solving the problem (3.19), (3.20), (3.21)

numerically. Introducing a small deviation ε:

λ =
1

3
+ ε , |ε| � 1 .

and setting A in (3.21), we integrated (3.19) starting from large ψ (when (3.21) holds)

down to the wall. By means of an iteration process the only value of A, denoted as

A∗, which allows to satisfy the no-slip condition (3.20) was obtained. Repeating the

procedure for different values of ε, we computed the function A∗(ε); it turned out to

be a straight line with a negative slope close to −3/4 when plotted in logarithmic

scale. Thus,

A∗(ε) = |ε|−ν , ν ≈ 0.75 , |ε| � 1 ,

and A∗ → ∞ when |ε| → 0. This situation resembles a resonance and suggests that

λ = 1/3 is, indeed, a degenerate case. As a result, certain logarithmic terms should

be added to the power functions in the original expansion (3.17) when λ = 1/3.

To make the effect even more clear, let us use asymptotic form (3.21) to obtain

the velocity profile U0(Y ) at the bottom of the main inviscid part of the boundary

layer (i.e. in the overlapping region with the viscous sublayer) for various λ. First of

all, since ω = (dψ/dη)2, (3.21) yields

dη =
dψ

A1/2 ψα/2

[
1− 1

λ− 1

RwG

Aψα
− B

2Aψα+β
+ ...

]
.

Secondly, α = 1 +O(ε) when λ = 1
3

+ ε, and the integration simply results in

η =
2ψ1−α/2

A1/2(2− α)
(1 + ...) . (3.23)

Now, from (3.17)

U0 ∼
1

Rw

∂ψ0

∂Y
∼ 1

Rw

(−s) 1−λ
2
dψ

dη
≡ 1

Rw

(−s) 1−λ
2
√
ω .

Using (3.21) for ω(ψ) when ψ → ∞, and expressing ψ via η according to (3.23), we

get in the leading order:

U0 ∼ (−s) 1−λ
2 η

α
2−α ∼ Y

2(1−λ)
1+λ . (3.24)
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This profile (describing the flow in the overlapping region) is plotted in Fig. 3.3 for

λ > 1/3, λ = 1/3 and λ < 1/3. The illustration clearly shows that the λ = 1/3 case

demarcates two physically different regimes. Stronger gradients (λ > 1/3) lead to

∂2U0/∂Y
2 < 0, which means viscous forces are slowing fast fluid particles down, so

that the no-slip condition can hold. Weaker gradients (λ < 1/3), however, result in

∂2U0/∂Y
2 > 0 regardless of whether the gradient is favourable or adverse, suggesting

that viscous forces actually accelerate fluid particles which is an unlikely situation

for our particular problem. Finally, when λ = 1/3, we get ∂2U0/∂Y
2 = 0; this leads

to the degeneration of viscous forces in equation (3.11) for the sublayer, and hence

to the inability to satisfy the no-slip condition.

PSfrag replacements

U0(Y )U0(Y )U0(Y )

YYY

λ > 1
3

λ = 1
3

λ < 1
3

Figure 3.3: Velocity profiles in the overlapping region between tiers 2a and 2b for
three characteristic values of λ, obtained in the assumption that the pressure gradient
causes nonlinear velocity perturbations in the viscous sublayer 2b.

The regime with λ < 1/3, which results in ∂2U0/∂Y
2 > 0, can still have a physical

meaning. For example, in the theory of marginal separation the flow, after being

exposed to a regular adverse pressure gradient acting along the upper surface of an

airfoil, enters the interaction region in a pre-separated state (Sychev et al. 1998). In

this case the leading-order velocity profile is U0 ∼ Y 2, which corresponds to λ = 0 in

our analysis of the effects produced by the singular pressure gradient ∂p/∂s ∼ (−s)−λ.

Therefore, ∂2U0/∂Y
2 > 0, and the velocity profile has the shape shown in Fig. 3.3,

right.4)

Nevertheless, if a pre-separated state does not develop, one has to reconsider the

4) The pre-separated solution U0 ∼ Y 2 providing the background for marginal separation is valid
everywhere inside the viscous sublayer, and not just in the overlapping region with the main part
of the boundary layer.



CHAPTER 3. VISCOUS-INVISCID INTERACTION 134

estimates made for the local pressure gradient with λ < 1/3. Indeed, by saying that

∆U0 is of the same order as U0 in convective terms, i.e. that the perturbations are

nonlinear, we actually bound the velocity value directly to the pressure gradient.

However, when λ < 1/3 the pressure gradient apparently is not strong enough to

cause nonlinear perturbations (locally) – hence the physically unreasonable solution

with ∂2U0/∂Y
2 > 0. A more meaningful estimate in this case is ∆U0 � U0, so that

the velocity perturbation generated in the viscous sublayer by the weaker pressure

gradient is much smaller than a ‘regular’ velocity near the wall in the absence of this

gradient. The ‘regular’ velocity profile may be given, for example, by the well-known

Blasius solution, and has to be linear close to the wall:

U0 = τwY +O
(
Y 2
)
, Y → 0 .

When the singularity is approached, the viscous sublayer is still formed, but the

estimates for ∆U0 and ∆Y as functions of ∆s are different from those that we had

previously. Indeed, balancing terms in the momentum equation requires

U0
∆U0

∆s
∼ |∆s|−λ ∼ ∆U0

(∆Y )2
,

where U0 ∼ Y ∼ ∆Y . Thus, ∆Y ∼ |∆s|1/3 regardless of λ, and

∆U0 ∼ |∆s|−λ+2/3 ∼ (∆Y )2−3λ ,

so that ∆U0/U0 ∼ (∆Y )1−3λ � 1 when λ < 1/3.

Once again, we see that the singular pressure gradient with λ = 1/3 is a special

case. The two physically different solutions which exist when λ < 1/3 (corresponding

to either ∆U0 ∼ U0 or ∆U0 � U0) are expected to coincide in the limit λ→ (1/3)−,

because only one solution exists for λ > 1/3. Therefore, we expect to get an in-

termediate situation when λ = 1/3, with weak cumulative effects upstream of the

singularity actually being prescribed by the nature of the singularity. This clearly

resembles a resonance, and would require logarithmic terms in the original coordi-

nate expansion (3.9) in order to obtain the solution of the relevant boundary-value

problem.
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In the case of λ < 1/3 and no cumulative effects, the estimate ∆U0 � U0 leads

to the following expansion for ψ0:

ψ0 =
τwY

2

2
+ (−s)1−λ ψ(η) + ... , η =

Y

(−s)1/3
. (3.25)

Plugging this into the momentum equation results in a linear equation for ψ(η):

µwψ
′′′ − τw

3

[
η2ψ′′ − 3(1− λ) ηψ′ + 3(1− λ)ψ

]
= RwG .

The asymptotic form of ψ(η) as η →∞ is then given by

ψ(η) = Aη3(1−λ) +B η − RwG

τw(1− λ)
+ C η−3λ + ... ,

where A, B are independent constants obtained from the no-slip condition on the wall,

and C can be expressed via A. If we substitute this into (3.25) and differentiate with

respect to Y once, it will provide velocity profile in the overlapping region between

the sublayer and the main part of the boundary layer:

U0 = τwY + 3A (1− λ)Y 2−3λ +B (−s)−λ+2/3 + ... .

Thus, when λ = 1
3
(1− ε), 0 < ε� 1, a weak logarithmic term is generated:

Y 2−3λ = Y 1+ε = Y
(
1 + ε lnY +O(ε2)

)
.

The Y lnY term is expected to replace the simple linear profile U0 ∼ Y which was

obtained previously for the case of λ = 1/3, thereby removing the degeneration of

viscous forces.

3.1.2 Nonlinear logarithmic expansion in the viscous sub-

layer

To verify the above predictions for the case when ∂p0/∂s ∼ (−s)−1/3, let us intro-

duce logarithms of (−s) into the original coordinate expansion (3.9) for the sublayer

(Buldakov & Ruban 2002):

ψ0(s, Y ) = (−s)2/3
[(
− ln(−s)

)κ
ψ(η) +

(
− ln(−s)

)κ−1
ϕ(η) + ...

]
, (3.26)
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where

η =
Y

(−s)1/3
(
− ln(−s)

)ν ,

and κ, ν are constants. Taking into the account the cumulative effects in the resonant

case of ∂p0/∂s ∼ (−s)−1/3, we choose κ and ν in such a way that, upon plugging (3.26)

into the momentum equation, the pressure gradient only appears in the second order

approximation based on the powers of logarithms. This proves to be the only way

to obtain the solutions for ψ(η) and ϕ(η) which satisfy all the boundary conditions.

Simple estimates, therefore, lead to the unique set of values of κ and ν:

κ =
1

4
, ν = −1

4
,

in agreement with Buldakov & Ruban (2002). Once these values have been chosen,

the leading order function ψ(η) should satisfy the homogeneous equation

µwψ
′′′ − 2

3
ψψ′′ +

1

3
(ψ′)2 = 0 ,

which is a particular case of equation (3.11) when G− = 0. Since (3.11) and the

no-slip conditions are equivalent to (3.14), setting G− = 0 in the latter results in

χ(4) =
d3ψ

dη3
= 0 .

Integrating this simple equation and taking into the account the no-slip conditions,

we obtain the only suitable solution for ψ:

ψ(η) =
τwη

2

2
.

Parameter τw (related to the leading order skin friction) will be determined from the

next order problem describing ϕ(η). The equation for ϕ is linear and contains the

pressure gradient:

ϕ′′′ − τw
3µw

[
η2ϕ′′ − 2ηϕ′ + 2ϕ

]
=
RwkG−

µw
+

3τ 2
w

µw
η2 . (3.27)

The second term on the right-hand side comes from the solution for ψ(η) (leading

order problem), thanks to the nonlinearity of the original momentum equation. It

is this term that allows to construct the solution for ϕ which satisfies the no-slip
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condition and does not grow exponentially when η →∞. Differentiating (3.27) once,

we get an integrable equation for W (η) = ϕ′′′, and can therefore reconstruct ϕ:

ϕ(η) =
1

2

∫ η

0

(η − ζ)2W (ζ) dζ + Cη2 , W (ζ) =
3τ 2
w

4µw

∫ ζ

∞
ξ e−αw(ξ3−ζ3)dξ . (3.28)

Here constant C is expected to be determined from the next order problem, and

parameter αw = τw
9µw

.

Solution (3.28) obviously satisfies all of the three boundary conditions. However,

the differentiation of equation (3.27) while deriving (3.28) resulted in a loss of the

constant RwkG−/µw. Therefore, a certain condition should hold for (3.28) to actually

satisfy (3.27). Plugging (3.28) into (3.27) gives

−3τ 2
w

4

∫ ∞

0

ξ e−αwξ3dξ = RwkG− ; (3.29)

the integral can be transformed to Γ(2/3), and (3.29) eventually takes the form

τw =
1

3
√
µw

[
−4RwkG−

Γ(2/3)

]3/4

. (3.30)

This expression defines the leading order skin friction τw as a function of G− and

other known parameters of the flow.

According to (3.30), real values of τw exist only when G− 6 0, i.e. for favourable

pressure gradients. Any adverse pressure gradient (G− > 0) results in complex τw,

suggesting that an early separation takes place long before the singularity is reached.5)

Once again, it demonstrates why the viscous sublayer is extremely sensitive to the

singular pressure gradient proportional to (−s)−1/3. However, basic physical intuition

says that there should not be an abrupt change in the flow structure when kG−

switches from negative to small positive values.6) In other words, it should be possible

to extend real solutions for τw to at least small positive kG−. This opens up the way to

constructing a linear theory which will be the focus of our attention henceforth. But

before we proceed with the theory, let us find out what happens with the logarithmic

expansion (3.26) when kG− → 0−.

5) This phenomenon was not mentioned in the earlier work by Buldakov & Ruban (2002), and is
one of the main results of this thesis.

6) Both of the parameters k and G− can be small – see section 3.1.3.
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Since ψ(η) = τwη2

2
, (3.26) yields:

U0(s, Y ) ∼ ∂ψ0

∂Y
=
(
− ln(−s)

)3/4
τwY +O

[(
− ln(−s)

)−1/4
]
,

so that the corresponding coordinate expansion of U0 in the main part of the boundary

layer starts with
(
− ln(−s)

)3/4
U00(Y ), where U00(Y ) sets the leading order velocity

profile across the boundary layer near the singularity. On the other hand, there have

to be no logarithmic terms in the solution for U0 when Y →∞. Indeed,

U0

∣∣
Y→∞ = Ue(s) = 1 +O

(
(−s)2/3

)
,

as prescribed by the matching condition with the outer inviscid flow. Thus, U00(Y )→

0 when Y → ∞. It means that the coordinate expansion for U0 should also have a

term without logarithms or powers of (−s), i.e. a function of Y only, which tends to

1 in the overlapping region with the outer flow:

U0(s, Y ) =
(
− ln(−s)

)3/4
U00(Y ) + U01(Y ) +O

[(
− ln(−s)

)−1/4
]
, U01(∞) = 1 .

(3.31)

The fact that there is a relatively large logarithmic term in front of the ‘natural’

boundary layer velocity profile U01(Y ) is a result of the cumulative effects taking

place in the resonant case.

When we enter the sublayer (Y → 0), (3.31) reduces to

U0 =
(
− ln(−s)

)3/4
τwY + τ0Y + ... , (3.32)

where τ0Y stands for the leading term in the Taylor expansion of U01(Y ) near the

wall; its presence in (3.32) is dictated by the matching condition with the outer flow.

However, if we look at what the original expansion (3.26) gives in the overlapping

region between the sublayer and the main part of the boundary layer, we will get:

U0(s, Y ) ∼ Y
(
− ln(−s)

)3/4
{

(τw − a∞) +
3a∞

ln(−s)

[
lnY +

1

4
ln
(
− ln(−s)

)
+ ...

]
+ ...

}
,

a∞ = 3τw/4. This expansion is due to the asymptotic behaviour of ϕ(η) when η →∞,

and clearly does not contain a function of Y on its own. Therefore, it does not match

with what comes from the main part of the boundary layer (expansion (3.32)).
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The contradiction is resolved by inserting the ‘intermediate’ τ0Y 2

2
term between

the two leading order terms of (3.26):

ψ0(s, Y ) = (−s)2/3
(
− ln(−s)

)1/4
ψ(η) +

τ0Y
2

2
+ (−s)2/3

(
− ln(−s)

)−3/4
ϕ(η) + ... ,

(3.33)

with

η =
Y
(
− ln(−s)

)1/4

(−s)1/3
.

It can be easily shown that this modified expansion leads to the same equations for

ψ(η) and ϕ(η) as before, and the relevant solutions obtained for these functions previ-

ously remain valid. Hence, expression (3.30) for τw is not affected by the introduction

of the τ0 term, and τw ∼ (−kG−)3/4. Since ψ(η) = τwη2

2
, the leading order term in

(3.33) is (
C0

[
(−kG−)

(
− ln(−s)

)]3/4
+
τ0
2

)
Y 2 ,

where constant C0 is proportional to τw. This expression has an important conse-

quence: if we are working on a spatial scale (−s) ∼ Re−χ (as it usually is the case in

the problems involving viscous-inviscid interaction), χ = const, then the first term in

the above expression becomes an order one quantity when

−kG− ∼
1

ln Re
� 1 .

With any further diminishing of |kG−| the τ0Y 2

2
term begins to dominate expansion

(3.33) on the given spatial scale for s, and the entire mathematical description of the

flow in the sublayer has to be reconsidered. Thus, nonlinear solution (3.30) for τw is

not valid when |kG−| is smaller than O(1/ ln Re), explaining why (3.30) provides the

abrupt change in the physics of the flow as soon as G− changes the sign to positive.

To summarize, small values of |kG−| need a special consideration. This detail was

missed by Buldakov & Ruban (2002), and therefore their results obtained for the case

of a logarithmically-small pressure gradient can only be treated as approximate. In

the subsequent sections we are going to develop an asymptotic theory which yields

real τw for small positive kG− . 1/ ln Re. This theory will be different from the one

obtained by Buldakov & Ruban, and cannot be viewed simply as an extension of the
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latter to the case of small singular pressure gradients. In order to proceed, we need

to recall the inviscid flow theory developed in Chapter 2 and find out what regimes

correspond to |kG−| � 1.

3.1.3 Special case of a small amplitude in the pressure gra-

dient

According to (2.28), the pressure gradient upstream of the singularity generated by

the outer inviscid flow is

∂p0

∂s
= kG−(−s)−1/3 , k =

10
[
(γ + 1)κ−

]2/3

9
,

with G− being a function of the curvatures’ ratio. It was demonstrated previously in

Chapter 2 that this function (along with G+) has a unique subcritical solution and

a family of supercritical solutions (see Fig. 2.55). After looking at how G− behaves

for different values of κ+/κ−, it is clear that |kG−| can be small in the two following

cases:

• κ− = O(1), |G−| � 1, corresponding to a subcritical flow near a small break

in wall curvature. This inviscid flow regime will be in the focus during the

subsequent study of the viscous-inviscid interaction. It was first mentioned in

section 2.4.6.

• κ− � 1, G− = O(1), corresponding to a supercritical flow over a strong break of

curvatures, with a much flatter upstream wall (κ+/κ− � 1). This regime was

described in section 2.4.12, and features a supercritical supersonic flow near the

upstream and the downstream walls, plus a weak shock in between. Studying

viscous-inviscid interaction in this case may be a subject of an independent

theoretical work.

From now on we are going to consider the first case only. In section 2.4.6 it was

shown that if

κ+

κ−
− 1 = ε0 , |ε0| � 1 ,
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then

G− = − α5/3 Γ(1/6) ε0

2(3α− 2)
√
π Γ(2/3)

(
1 +O(ε0)

)
, α =

3

2
,

and κ− is an order one quantity. Defining the parameters ε, G as

ε =
5α5/3 Γ(1/6)

[
(γ + 1)κ−

]2/3|ε0|
9(3α− 2)

√
π Γ(2/3)

(
1 +O(ε0)

)
, 0 < ε� 1 ,

G = −sign(ε0) ,

(3.34)

we can write

kG− = εG =





ε , κ+

κ−
< 1 ,

−ε , κ+

κ−
> 1 ,

so that the pressure gradient

∂p0

∂s
= εG (−s)−1/3 .

The small parameter ε allows to construct asymptotic expansions and linearize the

theory.

Since ε = 0 corresponds to a continuous curvature, there is no singular pressure

gradient in this case, and the relevant stream function in the sublayer is expected to

have the τwY 2

2
term in the leading order. This term can be treated as the asymptotic

form of a regular solution of the boundary layer equations near the wall; the constant

τw = O(1) is assumed to be known from the global problem (along with Rw and µw).

When ε 6= 0, the presence of the small but singular pressure gradient requires all the

terms in the momentum equation to be balanced in the O(ε) approximation, thus

leading to the following expansion for the stream function:

ψ0(s, Y, ε) =
τwY

2

2
+ ε
[
(−s)2/3 ψ(η) + ...

]
+O(ε2) , η =

Y

(−s)1/3
.

Substituting this into the momentum equation yields

µwψ
′′′ − τw

3

[
η2ψ′′ − 2ηψ′ + 2ψ

]
= RwG . (3.35)

Function ψ(η) should satisfy the no-slip condition on the wall and is not allowed to

grow exponentially when η →∞. It turns out that this boundary-value problem still
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has no solution, even despite the linearization. Indeed, differentiating (3.35) once, we

obtain an integrable equation for W (η) = ψ′′′:

dW

dη
− τw

3µw
η2W = 0 .

A quadruple integration leads to a general solution

ψ(η) = C0

∫ η

0

(η − ζ)2 eαwη3

dζ + C1η
2 + C2η + C3 , αw =

τw
9µw

,

where C0, C1, C2 and C3 are constants. Since it has been obtained by differentiating

(3.35) and, therefore, neglecting the constant on the right-hand side of (3.35), a

certain restriction has to be imposed on one of the integration constants for this

solution to satisfy (3.35):

C3 = −3RwG

2τw
6= 0 .

However, the boundary conditions require C0 = C2 = C3 = 0, suggesting that there

appears to be a conflict between the two different expressions for C3, and the boundary

value problem for ψ has no solution.

This degeneration is similar to the one taking place in the case of strong pressure

gradients (see section 3.1.2), and is resolved by introducing logarithmic terms into

the coordinate expansion for ψ0. Due to the linearity of the order ε problem, we

expect ln(−s) to appear linearly, so that the required expansion has the form:

ψ0(s, Y, ε) =
τwY

2

2
+ ε(−s)2/3

[
ln(−s)ψ(η) + ϕ(η) + ...

]
+O(ε2) , η =

Y

(−s)1/3
.

(3.36)

The presence of ln(−s) in front of ψ(η) leads to the homogeneous version of equation

(3.35):

µwψ
′′′ − τw

3

[
η2ψ′′ − 2ηψ′ + 2ψ

]
= 0 ;

according to the above analysis, the only solution of this equation which satisfies all

the boundary conditions is

ψ(η) =
aη2

2
, a = const .

The logarithmic term in (3.36) not only allows to obtain the solution for ψ, but also

brings additional terms into the equation for ϕ(η):

µwϕ
′′′ − τw

3

[
η2ϕ′′ − 2ηϕ′ + 2ϕ

]
= RwG+ τw(ψ − ηψ′) ≡ RwG−

τwaη
2

2
. (3.37)
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We are now going to show that the η2 term on the right-hand side makes it possible

to construct a suitable solution for ϕ, providing a certain value of the constant a is

chosen. Differentiating (3.37) once and denoting W (η) = ψ ′′′, we get:

dW

dη
− τw

3µw
η2W = −τwaη

µw
.

The general solution is

W (η) = −τwa
µw

∫ η

η0

ξ e−αw(ξ3−η3)dξ .

Integration constant η0 should be adjusted in such a way that no exponential growth

occurs when η →∞; this is only possible if η0 =∞, thus giving

W (η) =
τwa

µw

∫ ∞

η

ξ e−αw(ξ3−η3)dξ . (3.38)

Integrating this three times and applying the no-slip conditions yields

ϕ(η) =
1

2

∫ η

0

(η − ζ)2W (ζ) dζ + bη2 , b = const . (3.39)

We still need to make sure that this solution satisfies (3.37) with the RwG term on

the right-hand side (the constant term was dropped due to the differentiation while

deriving (3.39)). Plugging (3.39) into (3.37) leaves

τwa

∫ ∞

0

ξ e−αwξ3dξ = RwG .

This constraint provides a simple linear algebraic equation for a, and its solution may

be expressed in the form

a =
3α

2/3
w RwG

τw Γ(2/3)
. (3.40)

Unlike the previous solution (3.30) for τw, the constant a is real for both adverse

(G = +1) and favourable (G = −1) pressure gradients, while τw is now a given

parameter (τw = O(1)).

Using the explicit solution for ψ, we can rewrite the original expansion for ψ0 in

the following way:

ψ0(s, Y, ε) =
τwY

2

2
+ ε

[
ln(−s) aY

2

2
+ (−s)2/3ϕ(η) + ...

]
+O(ε2) , (3.41)
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ϕ(η) is defined in (3.38)–(3.39).7) The skin friction on the upstream wall is given by

tw =
µw
Rw

∂2ψ0

∂Y 2

∣∣∣∣
Y=0

=
µw
Rw

(
τw + ε

[
a ln(−s) + 2b+ ...

]
+O(ε2)

)
. (3.42)

If G = 1 (adverse pressure gradient) and, hence, a > 0 according to (3.40), it may

happen so that on a certain spatial scale (−s) = σ � 1 the logarithmic term will

become large enough to cancel τw in the leading order:

τw + εa lnσ = 0 .

If σ, in its turn, represents the size of the interaction region, the latter normally

estimated as Re−χ, χ = const, then the above equation is going to provide an estimate

for the value of ε which gives zero leading-order skin friction:

ε =
τw

aχ ln Re
∼ 1

ln Re
. (3.43)

Thus, a boundary layer separation may take place in this case. Strictly speaking,

asymptotic expansions (3.36), (3.42) fail when the leading order term with τw gets

cancelled due to the growth of the logarithmic term, and the description of the flow

has to be re-considered yet again. The flow regime corresponding to the estimate

(3.43) is weakly nonlinear, demarcating the two logarithmic representations ((3.26)

and (3.36)) introduced so far.

In subsequent sections, however, we are going to focus on the linear case when

expansion (3.36) is valid, which is true for

ε� 1

ln Re
.

The linear theory is expected to provide a better understanding of how the incipient

viscous-inviscid interaction caused by a weak curvature break develops into boundary

layer separation.

3.1.4 Displacement effects of the linear viscous sublayer

Let us now find the displacement generated in the linear viscous sublayer which is

described by asymptotic solution (3.41). To do this, we need to look at the asymptotic

7) The constant b is a free parameter which controls the structure of the boundary layer ahead
of the interactions region; it is similar to the controlling parameter A1 introduced by Buldakov &
Ruban (2002) for the nonlinear case.
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form of (3.41) when η → ∞ and determine the structure of the relevant coordinate

expansions in the main part of the boundary layer. It can be easily shown from

(3.38)–(3.39) that

ϕ(η) =
3a

2
η2 ln η + (a1 + b)η2 + a2η + a3 +

a4

η
+ ... , η →∞. (3.44)

Here constants an, n = 1, 2, ..., are all non-zero order one quantities related to the

main parameter a. In particular, a3 = −3RwG
2τw

, a4 = 3µwa
2τw

, and, what is most impor-

tant,

a2 = 3a

∫ ∞

0

ζ eαwζ3
∫ ∞

ζ

e−αwξ3

ξ2
dξ dζ ≡ a

3α
1/3
w

∫ ∞

0

eζ

ζ1/3

∫ ∞

ζ

e−ξ

ξ4/3
dξ dζ . (3.45)

The integrand from this expression will be reduced to a special case of a hypergeo-

metric function in section 3.2.2, therefore allowing to obtain a simple numerical value

for a2 and confirm that it is an order one quantity.

Plugging (3.44) into (3.41) and noticing that ln η = lnY − 1
3

ln(−s) due to the

definition of η, one can spot that the ln(−s) terms cancel. As a result, the coordinate

expansion of ψ0 in the overlapping region between the sublayer 2b and the main part

of the boundary layer 2a only contains powers of (−s): 8)

ψ0(s, Y, ε) =
τwY

2

2
+

+ε

[
3a

2
Y 2 lnY + (a1 + b)Y 2 + (−s)1/3a2Y + (−s)2/3a3 + ...

]
+O(ε2) .

(3.46)

This expression suggests the form of the coordinate expansions in the main part of

8) In this kind of a situation one could say that the displacement effect of the boundary layer
upstream of the singularity is mainly due to the overlapping region rather than to the viscous
sublayer.
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the boundary layer:

U0(s, Y, ε) = U
(0)
0 (s, Y ) + ε

[
U

(1)
00 (Y ) + (−s)1/3U

(1)
01 (Y ) + (−s)2/3U

(1)
02 (Y ) + ...

]
+O(ε2) ,

V0(s, Y, ε) = V
(0)
0 (s, Y ) + ε

[
(−s)−2/3V

(1)
01 (Y ) + (−s)−1/3V

(1)
02 (Y ) + ...

]
+O(ε2) ,

R0(s, Y, ε) = R
(0)
0 (s, Y ) + ε

[
R

(1)
00 (Y ) + (−s)1/3R

(1)
01 (Y ) + (−s)2/3R

(1)
02 (Y ) + ...

]
+O(ε2) ,

h0(s, Y, ε) = h
(0)
0 (s, Y ) + ε

[
h

(1)
00 (Y ) + (−s)1/3h

(1)
01 (Y ) + (−s)2/3h

(1)
02 (Y ) + ...

]
+O(ε2) ,

µ0(s, Y, ε) = µ
(0)
0 (s, Y ) + ε

[
µ

(1)
00 (Y ) + (−s)1/3µ

(1)
01 (Y ) + (−s)2/3µ

(1)
02 (Y ) + ...

]
+O(ε2) .

(3.47)

Here the first digit in the subscript (which is zero everywhere) corresponds to the

leading-order approximation based on powers of Re−1/2 in the classical boundary layer

theory, the second digit in the subscript shows the number of an approximation in

the coordinate expansion based on the fractional powers of (−s), and the superscript

refers to the power of ε in a given approximation. The leading-order functions,

denoted commonly as f
(0)
0 (s, Y ), describe an unperturbed regular boundary layer

over a smooth wall (ε = 0); they are assumed to be known from the global problem.9)

The analyticity of these functions implies that their coordinate expansions around

s = 0 only have positive integer powers of (−s):

U
(0)
0 (s, Y ) = U

(0)
00 (Y ) + (−s)U (0)

01 (Y ) +O
(
(−s)2

)
,

the same being true for the other functions. Comparing this to the fractional powers

of (−s) in the order-ε terms shown explicitly in (3.47), we see that the latter give

larger derivatives with respect to s. This becomes crucial when substituting (3.47)

into the Navier–Stokes equations and collecting terms with different powers of (−s).

In the order ε0 approximation we get standard boundary layer equations with

9) For example, these can be the well-known self-similar solutions for a compressible boundary
layer written in the Dorodnitsyn-Lees variables (Sychev et al. 1998).
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zero pressure gradient:




∂
(
R

(0)
0 U

(0)
0

)

∂s
+
∂
(
R

(0)
0 V

(0)
0

)

∂Y
= 0

R
(0)
0

(
U

(0)
0

∂U
(0)
0

∂s
+ V

(0)
0

∂U
(0)
0

∂Y

)
=

∂

∂Y

(
µ

(0)
0

∂U
(0)
0

∂Y

)

R
(0)
0

(
U

(0)
0

∂h
(0)
0

∂s
+ V

(0)
0

∂h
(0)
0

∂Y

)
= − 1

Pr

∂

∂Y

(
µ

(0)
0

∂h
(0)
0

∂Y

)
+ µ

(0)
0

(
∂U

(0)
0

∂Y

)2

R
(0)
0 h

(0)
0 =

1

(γ − 1)
.

(3.48)

In the order ε1 approximation one obtains fractional powers of (−s) in the first two

terms of the relevant coordinate expansions, namely (−s)−2/3 and (−s)−1/3; this

results in two independent sets of equations. The O
(
ε(−s)−2/3

)
terms yield





−1

3

(
R

(0)
00 U

(1)
01 + U

(0)
00 R

(1)
01

)
+

d

dY

(
R

(0)
00 V

(1)
01

)
= 0

−1

3
U

(0)
00 U

(1)
01 +

dU
(0)
00

dY
V

(1)
01 = 0

−1

3
U

(0)
00 h

(1)
01 +

dh
(0)
00

dY
V

(1)
01 = 0

R
(0)
00 h

(1)
01 + h

(0)
00 R

(1)
01 = 0 ,

(3.49)

where the functions with common notation f
(0)
00 (Y ) represent the leading-order regular

flow profiles in the cross-section s = 0. Similarly, for the O
(
ε(−s)−1/3

)
terms we get:





−2

3

(
R

(0)
00 U

(1)
02 + U

(0)
00 R

(1)
02

)
+

d

dY

(
R

(0)
00 V

(1)
02

)
= 0

R
(0)
00

[
−2

3
U

(0)
00 U

(1)
02 +

dU
(0)
00

dY
V

(1)
02

]
= −G

R
(0)
00

[
−2

3
U

(0)
00 h

(1)
02 +

dh
(0)
00

dY
V

(1)
02

]
= U

(0)
00 G

R
(0)
00 h

(1)
02 + h

(0)
00 R

(1)
02 = −3γ

2
h

(0)
00 R

(0)
00 G .

(3.50)

The function V
(1)
01 (Y ) described by system (3.49) is obviously responsible for the

leading-order displacement effects. However, this system does not contain the pres-

sure gradient, as the latter only appears in the next-order system (3.50). This hierar-

chy is the consequence of the cumulative effects taking place in the viscous sublayer
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2b, and it will be crucial for the subsequent analysis of the viscous-inviscid interaction.

Excluding U
(1)
01 , R

(1)
01 and h

(1)
01 from the last three equations in (3.49) leads to a first

order differential equation for V
(1)
01 (Y ), the solution being V

(1)
01 (Y ) = C U

(0)
00 (Y ). The

integration constant C is determined from matching this solution with the appropriate

term in the asymptotic form (3.46) which comes from the sublayer. Indeed, (3.46)

suggests that

V
(1)
01 ∼

a2Y

3Rw

, U
(0)
00 ∼

τwY

Rw

when Y → 0. Hence, C = a2

3τw
, and

V
(1)
01 (Y ) =

a2

3τw
U

(0)
00 (Y ) .

This solution illustrates how the original displacement produced in the viscous sub-

layer 2b is transmitted into the outer flow via the predominantly inviscid main part

2a of the boundary layer. Now recall that in region 2a, according to (3.47),

V0(s, Y, ε) = V
(0)
0 (s, Y ) + ε

[
(−s)−2/3V

(1)
01 (Y ) + (−s)−1/3V

(1)
02 (Y ) + ...

]
+O(ε2) .

(3.51)

The V
(0)
0 term represents natural displacement produced by the ‘unperturbed’ bound-

ary layer over a smooth wall, and is an order-one quantity when Y ∼ 1. It is followed

by the singular term ε(−s)−2/3V
(0)
01 corresponding to the displacement generated by

the sublayer 2b in response to the singular pressure gradient (3.3). On the spatial

scale (−s) ∼ ε3/2 both terms are order one quantities, making the above expansion

for V0 invalid.

In order to continue V0 into the region (−s) . ε3/2, we are going to introduce a



CHAPTER 3. VISCOUS-INVISCID INTERACTION 149

local variable s = s ε−3/2. Re-expanding (3.47) over the new scale yields:

U0(s, Y, ε) = U
(0)
00 (Y ) +O(ε) + ε3/2 U

(1)

0 (s, Y ) +O(ε2) ,

V0(s, Y, ε) = V
(1)

0 (s, Y ) +O(ε1/2) ,

R0(s, Y, ε) = R
(0)
00 (Y ) +O(ε) + ε3/2R

(1)

0 (s, Y ) +O(ε2) ,

h0(s, Y, ε) = h
(0)
00 (Y ) +O(ε) + ε3/2 h

(1)

0 (s, Y ) +O(ε2) ,

µ0(s, Y, ε) = µ
(0)
00 (Y ) +O(ε) + ε3/2 µ

(1)
0 (s, Y ) +O(ε2) ,

(3.52)

where the functions with common notation f
(0)
00 (Y ) represent the known unperturbed

profiles in the s = 0 cross-section. The intermediate terms denoted as O(ε) do not

affect the displacement, and therefore were not written explicitly. Plugging (3.52) into

the Navier–Stokes equations (written in the (s, Y ) variables), we obtain the following

four PDEs for the functions f
(1)

0 (s, Y ) in the O(ε3/2) approximation:





R
(0)
00

∂U
(1)

0

∂s
+ U

(0)
00

∂R
(1)

0

∂s
+

∂

∂Y

(
R

(0)
00 V

(1)

0

)
= 0

R
(0)
00

[
U

(0)
00

∂U
(1)

0

∂s
+
dU

(0)
00

dY
V

(1)

0

]
=

d

dY

(
µ

(0)
00

dU
(0)
00

dY

)

R
(0)
00

[
U

(0)
00

∂h
(1)

0

∂s
+
dh

(0)
00

dY
V

(1)

0

]
= − 1

Pr

d

dY

(
µ

(0)
00

dh
(0)
00

dY

)
+ µ

(0)
00

(
dU

(0)
00

dY

)2

R
(0)
00 h

(1)

0 + h
(0)
00 R

(1)

0 = 0 .

Differentiating the second and the third equations with respect to s cancels the right-

hand sides since they only depend on Y . The system can then be reduced to a single

PDE for the leading-order displacement function V
(1)

0 (s, Y ), ultimately leading to the

general solution

V
(1)

0 (s, Y ) = C(s)U
(0)
00 (Y ) +D(Y ) .

Matching this solution with the first two terms in (3.51) when s → −∞, we obtain

the functions C(s), D(Y ):

C(s) =
a2

3τw
(−s)−2/3 , D(Y ) = V

(0)
00 (Y ) .
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Consequently, the uniformly-valid (with respect to s) asymptotic expansion for V0

has the form:

V0(s, Y, ε) =
a2

3τw
(−s)−2/3 U

(0)
00 (Y ) + V

(0)
00 (Y ) +O(ε1/2) , s = s ε−3/2 .

The above result allows to calculate the classical displacement angle in region 2a:

Θ = Re−1/2 V0

U0

+O(Re−1) = Re−1/2

[
a2

3τw
(−s)−2/3 +

V
(0)
00

U
(0)
00

+O(ε1/2)

]
+O(Re−1) .

(3.53)

In this expression the first term (in the square brackets) represents the displacement

generated in response to the singular pressure gradient, while the second one stands

for the natural displacement generated by the regular boundary layer. We are inter-

ested in the case when the first term dominates, leading to a typical viscous-inviscid

interaction. Therefore, let us assume that |s| � 1 in (3.53), and estimate an exces-

sive pressure ∆p0 produced by the inviscid flow in response to the boundary layer

displacement.

According to the classical transonic theory of a thin body (see Chapter 2), ∆p0 ∼

Θ2/3, as opposed to the Akkeret’s formula ∆p0 ∼ Θ in the supersonic case. Substi-

tuting the singular term for Θ from (3.53) gives the estimate

∆p0 ∼ Re−1/3(−s)−4/9 .

On the other hand, the original pressure produced by the inviscid transonic flow near

the curvature break is

p0 = −3

2
εG (−s)2/3 ≡ −3

2
ε2G (−s)2/3 .

From these two estimates one can easily spot that as s becomes smaller, ∆p0 increases

while p0 decreases. Eventually, they become of the same order of magnitude when

(−s) ∼ (ε6 Re)−3/10 ,

indicating that viscous-inviscid interaction starts to take place on this scale. For

the singular term to dominate in (3.53), (−s) should be small, which leads to the

following restriction on ε:

ε� Re−1/6 .
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If ε . Re−1/6, then the natural displacement of the regular boundary layer (second

term in (3.53)) dominates, making the singular effects of the weak curvature break

insignificant in the leading order. Thus, from now on we are going to assume that ε

satisfies the restriction

Re−1/6 � ε� 1

ln Re
, Re→∞ , (3.54)

where the upper estimate was mentioned in section 3.1.4 and corresponds to the

situation when the skin friction vanishes in the leading order due to the adverse

pressure gradient.

Finally, recalling that s = ε3/2s, we obtain the scale of the interaction region for

the original variable s:

(−s) ∼ σ(ε,Re) = (εRe)−3/10 . (3.55)

The lower estimate in (3.54) suggests that σ � 1. According to (3.55), the small

parameter ε effectively diminishes the Reynold’s number. This is due to the the

nonlinearity of the transonic analogue of the Akkeret’s formula describing the trans-

formation of streamlines’ displacement into pressure: ∆p0 ∼ Θ2/3. Indeed, if we were

operating in the supersonic regime, then the displacement Θ ∼ εRe−1/2(−s)−2/3

would have generated the pressure ∆p0 ∼ Θ, which would become of the same order

as the original pressure p0 ∼ ε(−s)2/3 when (−s) ∼ Re−3/8.
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3.2 Interaction Region

3.2.1 Main tiers of the interaction region

Now we have everything in order to introduce an interaction region, known as triple

deck. It has a typical 3-tier structure, with the lower deck 5 being a continuation

of the sublayer 2b, the intermediate region 4 being an extension of the main part

of the boundary layer 2a, and the upper tier 3 located in the outer inviscid flow

1 (see Fig. 3.4). As it normally is the case in the problems involving triple deck,

the lower tier 5 generates a displacement in response to the pressure gradient; this

displacement is then transferred via the passive region 4 into the upper deck 3, and the

latter converts it back into the pressure, therefore creating a system with a feedback.

The mechanism is usually referred to as viscous-inviscid interaction. We are going to

start the analysis of the interaction from the lower tier, and will then move upwards.

PSfrag replacements

s

Y

κ+κ−
−σ σ

1

2a

2b

3

4

5

Figure 3.4: A typical three-tier structure of the interaction region.

Region 5 is the continuation of the viscous sublayer. The length of this region has

been estimated in the previous section as (−s) ∼ σ = (εRe)−3/10, which corresponds

to the failure of the classical boundary layer theory. The height of tier 5 is obtained

from the fact that η ∼ 1 in the overlapping region between 2b and 5, yielding Y ∼

(−s)1/3 ∼ σ1/3 = (εRe)−1/10. Therefore, we can introduce the internal variables s∗,
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Y∗:

s = σs∗ , Y = σ1/3 Y∗ , (3.56)

with Y = r ·Re1/2 referring to the classical boundary layer coordinate in the normal

direction. The expansions for the flow-field functions in region 5 follow from solution

(3.41) in region 2b:

U(s, r,Re, ε) = σ1/3
[
U

(0)
∗ (s∗, Y∗) + εU

(1)
∗ (s∗, Y∗) +O(ε2)

]
+ ... ≡ σ1/3 U∗(s∗, Y∗, ε) + ... ,

V (s, r,Re, ε) = Re−1/2σ−1/3
[
εV

(1)
∗ (s∗, Y∗) +O(ε2)

]
+ ... ≡ Re−1/2σ−1/3 V∗(s∗, Y∗, ε) + ... ,

P (s, r,Re, ε) = σ2/3
[
εP

(1)
∗ (s∗, Y∗) +O(ε2)

]
+ ... ≡ σ2/3 P∗(s∗, Y∗, ε) + ... ,

R(s, r,Re, ε) = Rw + ... ,

h(s, r,Re, ε) = hw + ... ,

µ(s, r,Re, ε) = µw + ... ,

(3.57)

where dots stand for the higher-order powers of σ. The asterisk in the subscripts

indicates that these double expansions replace classical boundary layer expansions

(3.1) once the interaction region is approached, and the superscript corresponds to

the power of ε in the inner expansions.

The leading-order terms in (3.57) should match with (3.41) when s∗ → −∞

(matching condition between regions 2b and 5). Note that the pressure P is no longer

assumed to be a given function, and is expected to be obtained from the interaction

problem. However, when s∗ → −∞, function P has to match with the known pres-

sure distribution upstream of the interaction region, i.e. P
∣∣
s∗→−∞ ∼ −

3
2
εG(−s)2/3.
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Plugging (3.57) into the Navier–Stokes equations written in variables (3.56), we get:




∂U
(0)
∗

∂s∗
= 0 ,

∂2U
(0)
∗

∂Y 2
∗

= 0 ,

∂U
(1)
∗

∂s∗
+
∂V

(1)
∗

∂Y∗
= 0 ,

Rw

[
U (0)
∗
∂U

(1)
∗

∂s∗
+
∂U

(0)
∗

∂Y∗
V (1)
∗

]
= −∂P

(1)
∗

∂s∗
+ µw

∂2U
(1)
∗

∂Y 2
∗

,

∂P
(1)
∗

∂Y∗
= 0 .

(3.58)

The thermodynamic equations have split from the system in the leading order because

the flow in region 5 is slow and is close to incompressible. Note that P
(1)
∗ is a function

of s∗ only, according to the last equation. The first two equations in (3.58) imply

U (0)
∗ = U (0)

∗ (Y∗) = C1Y∗ + C2 ;

matching with (3.41) yields

U (0)
∗ =

τwY∗
Rw

.

With this in mind, we introduce the scaled stream function

ψ∗(s∗, Y∗, ε) = σ−2/3ψ = ψ(0)
∗ (s∗, Y∗) + εψ(1)

∗ (s∗, Y∗) +O(ε2) , (3.59)

where ψ is the physical stream function. Comparing ψ
(0)
∗ and ψ

(1)
∗ with the corre-

sponding terms in expansions (3.57) for the velocity components gives:

ψ(0)
∗ = ψ(0)

∗ (Y∗) =
τwY

2
∗

2
,

∂ψ
(1)
∗

∂Y∗
= RwU

(1)
∗ ,

∂ψ
(1)
∗

∂s∗
= −RwV

(1)
∗ .

Therefore, system (3.58) can be reduced to the single linear equation for ψ
(1)
∗ :

τw

[
Y∗
∂2ψ

(1)
∗

∂s∗∂Y∗
− ∂ψ

(1)
∗

∂s∗

]
= −Rw

dP
(1)
∗

ds∗
+ µw

∂3ψ
(1)
∗

∂Y 3
∗

. (3.60)

As mentioned before, its solution should match with (3.41) when s∗ → −∞ for every

fixed Y∗ (overlapping region between 2b and 5). In particular, the asymptotic form

of ψ
(1)
∗ at Y∗ →∞ has to match with (3.46). Re-writing (3.46) in the inner variables

of region 5 yields:

ψ0 = σ2/3

[
τwY

2
∗

2
+ ε

(
3a

2
Y 2
∗ lnY∗ + c Y 2

∗ + (−s∗)1/3a2Y∗ + (−s∗)2/3a3 + ...

)]
+ ... ,

(3.61)
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where

c =
a

2
ln σ + a1 + b . (3.62)

Comparing this with (3.59) and recalling that ψ = ψ0 +O(Re−1/2), we get:

ψ(1)
∗ =

3a

2
Y 2
∗ lnY∗ + c Y 2

∗ + F∗(s∗)Y∗ +G∗(s∗) + ... , Y∗ →∞ . (3.63)

Functions F∗(s∗) andG∗(s∗) are order-one quantities in the interaction region (i.e. when

|s∗| ∼ 1). They should match with the relevant terms in (3.61) when s∗ → −∞:

F∗(s∗) ∼ a2(−s∗)1/3 , G∗(s∗) ∼ a3(−s∗)2/3 , s∗ → −∞ . (3.64)

It is worth mentioning that the problem formulation in region 5 does not require

F∗(s∗) and G∗(s∗) to depend on ε. However, according to the analysis of the flow

in region 3 performed in section 3.2.3, G∗ (as well as F∗) needs to be treated as a

function of ε with the following expansion:

G∗(s∗, ε) = G0(s∗) +
√
εG1(s∗) +O(ε) ,

suggesting that the original expansion (3.59) has fractional powers of ε. The results

obtained for G∗(s∗) by solving equation (3.60) in region 5 will obviously remain valid

for the G0 and G1; only the O(ε) terms in G∗ are going to coincide with the O(ε2)

terms from (3.59) which are ignored in the current study. Knowing both G0 and G1

appears to be sufficient for describing the onset of the separation. The analysis of

these two leading-order functions from the expansion of G∗ (section 3.3.1) leads to

introduction of the inner scale X:

s∗ = ε3/10X ,

with the relevant scaling for G∗:

G∗(s∗, ε) = ε1/5A(X) .

The problem for A(X) does not depend on ε and describes the interaction taking

place in the region |X| ∼ 1. It may be deduced directly by replacing εψ
(1)
∗ (s∗, Y∗) in

(3.59) with ε6/5 ψ
(1)
∗ (X,Y), where Y = ε−1/10 Y∗. This additional re-scaling does not



CHAPTER 3. VISCOUS-INVISCID INTERACTION 156

affect the results obtained in sections 3.2.1–3.2.3 using s∗ as the main inner variable

of the interaction region.

If we plug (3.63) into (3.60), the latter will reduce to

dG∗

ds∗
=
Rw

τw

dP
(1)
∗

ds∗

in the leading order. Integrating this with respect to s∗ and taking into the ac-

count matching condition (3.64), we get a simple relationship between G∗(s∗) and

the leading-order pressure distribution across the interaction region:

G∗(s∗) =
Rw

τw
P (1)
∗ (s∗) . (3.65)

On the other hand, function F∗(s∗) represents the leading-order displacement gener-

ated in region 5 in response to this pressure distribution. In section 3.2.2 we are going

to derive a relationship between F∗ and G∗ by solving equation (3.60) analytically,

with the obvious no-slip conditions

ψ(1)
∗

∣∣∣
Y∗=0

=
∂ψ

(1)
∗

∂Y∗

∣∣∣∣
Y∗=0

= 0 .

Region 4 is the continuation of the main part of the boundary layer 2a into

the interaction region. Therefore, |s∗| ∼ 1 and Y ∼ 1 in this tier. The structure

of the expansions in region 4 can be deduced either from the relevant expansions

(3.47) in region 2a by setting s = σs∗ in the latter, or from the asymptotic form

(3.63) which comes from region 5 by setting Y∗ = σ−1/3 Y in it. However, it is

the matching condition with region 2a that allows to associate more terms from the

required expansions in region 4 with certain terms already known from (3.47). Thus,



CHAPTER 3. VISCOUS-INVISCID INTERACTION 157

we obtain the double-expansions in region 4:

U(s, r,Re, ε) = U
(0)
00 (Y ) + ε

[
U

(1)
00 (Y ) + σ1/3 Ũ

(1)
01 (s∗, Y ) + σ2/3 Ũ

(1)
02 (s∗, Y ) + ...

]
+ ... ,

V (s, r,Re, ε) = Re−1/2 ε
[
σ−2/3 Ṽ

(1)
01 (s∗, Y ) + σ−1/3 Ṽ

(1)
02 (s∗, Y ) + ...

]
+ ... ,

R(s, r,Re, ε) = R
(0)
00 (Y ) + ε

[
R

(1)
00 (Y ) + σ1/3 R̃

(1)
01 (s∗, Y ) + σ2/3 R̃

(1)
02 (s∗, Y ) + ...

]
+ ... ,

P (s, r,Re, ε) = ε
[
σ2/3 P̃

(1)
02 (s∗, Y ) + ...

]
+ ... ,

h(s, r,Re, ε) = h
(0)
00 (Y ) + ε

[
h

(1)
00 (Y ) + σ1/3 h̃

(1)
01 (s∗, Y ) + σ2/3 h̃

(1)
02 (s∗, Y ) + ...

]
+ ... ,

µ(s, r,Re, ε) = µ
(0)
00 (Y ) + ε

[
µ

(1)
00 (Y ) + σ1/3 µ̃

(1)
01 (s∗, Y ) + σ2/3 µ̃

(1)
02 (s∗, Y ) + ...

]
+ ... .

(3.66)

Here the powers of σ appear instead of the powers of (−s) in (3.47), the sub-

script/superscript notation follows the conventions adopted in region 2a (see section

3.1.4), the dots represent the higher-order terms, and the tilde denotes the functions

unique to region 4 (they have to be obtained from the interaction problem). The

rest of the functions, for example U
(0)
00 (Y ), come from region 2a. Note that the O(ε0)

term in the expression for V has been omitted, because the natural displacement of a

regular boundary layer is assumed to be insignificant (this is true when ε� Re−1/6,

see section 3.1.4).

Plugging (3.66) into the Navier–Stokes equations written in variables s∗ and Y ,

we get the following system of homogeneous equations for the leading order functions

f̃
(1)
01 (s∗, Y ): 




R
(0)
00

∂Ũ
(1)
01

∂s∗
+ U

(0)
00

∂R̃
(1)
01

∂s∗
+

∂

∂Y

(
R

(0)
00 Ṽ

(1)
01

)
= 0 ,

U
(0)
00

∂Ũ
(1)
01

∂s∗
+
dU

(0)
00

dY
Ṽ

(1)
01 = 0 ,

U
(0)
00

∂h̃
(1)
01

∂s∗
+
dh

(0)
00

dY
Ṽ

(1)
01 = 0 ,

R
(0)
00 h̃

(1)
01 + h

(0)
00 R̃

(1)
01 = 0 .

(3.67)

The pressure only appears in the next order problem for the functions f̃
(1)
02 (s∗, Y );

there is no need to write all the relevant equations down because the pressure actually
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splits from the system, being described by

∂P
(1)
02

∂Y
= 0 .

Thus, it does not change across the region, and is simply equal to the leading-order

pressure distribution in region 5:

P
(1)
02 (s∗) ≡ P (1)

∗ (s∗) =
τw
Rw

G∗(s∗) .

To sum up, the two main functions of the flow in region 4 are, firstly, to transmit the

displacement generated in the sublayer 5 to the outer flow (this process is described

by (3.67) and does not depend on the pressure in the leading order), and, secondly,

to transmit the pressure generated by the outer flow in response to the displacement

back into region 5.

Equations (3.67) can be integrated easily, resulting in the following solution for

the leading-order displacement function Ṽ
(1)
01 :

Ṽ
(1)
01 (s∗, Y ) = C∗(s∗)U

(0)
00 (Y ) .

To find the distribution function C∗(s∗), we need to match this with the asymptotic

form (3.63) valid in the overlapping region between tiers 4 and 5. Since

ψ = σ2/3 ψ∗ = σ2/3
[
ψ(0)
∗ + εψ(1)

∗ + ...
]
,

equation (3.63), along with the solution ψ
(0)
∗ = τwY 2

∗

2
, gives

ψ =
τwY

2

2
+ ε

[
3a

2
Y 2 lnY + (a1 + b)Y 2 + σ1/3 Y F∗(s∗) + σ2/3G∗(s∗) + ...

]
+ ... ,

where Y∗ has been swapped with σ−1/3 Y . Differentiating with respect to s = σs∗,

and comparing the result with the expansions for V and R from (3.66), we get:

Ṽ
(1)
01 ∼ −

Y

Rw

dF∗

ds∗
, Y → 0 .

Finally, recalling that U
(0)
00 ∼ τw

Rw
Y when Y → 0, one can obtain:

C∗(s∗) = − 1

τw

dF∗

ds∗
,
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so that

V (s∗, Y ) = εRe−1/2 σ−2/3

[
−U

(0)
00 (Y )

τw

dF∗(s∗)

ds∗
+O(σ1/3)

]
+ ... . (3.68)

This provides an estimate for the displacement generated in region 5 and transmitted

via the intermediate region 4 to the inviscid flow in region 3 (upper tier of the triple

deck). Let us now turn our focus to the latter.

Region 3 is an extension of the interaction region into the outer inviscid flow,

and replaces region 4 when Y →∞. It has the same length, |s∗| = σ−1| s | ∼ 1, with

the two other tiers of the triple deck. Since U
(0)
00 → 1 when Y →∞, and |F∗| ∼ 1 for

|s∗| ∼ 1, the leading order displacement angle, according to (3.68), is estimated as

|Θ| =
∣∣V/U

∣∣
Y→∞ ∼ δ(ε,Re) = εRe−1/2 σ−2/3 ≡ ε6/5 Re−3/10 � 1 .

The estimate δ � 1 is a consequence of the original assumption that ε � Re−1/6.

Note that the small parameters σ and δ are closely related to one another:

δ = ε3/2 σ ,

i.e. they depend on Re in exactly the same way.

From the classical transonic theory of a thin body it follows that the O(δ) dis-

placement generates an order δ2/3 perturbation in the pressure, longitudinal velocity

component, density, enthalpy and viscosity. However, the viscosity may be neglected

because the flow in region 3 turns out to be inviscid in the two leading orders of

approximation based on δ, and the relevant asymptotic expansions take the form

U = 1 + δ2/3 u1(s∗, y∗) + δ4/3 u2(s∗, y∗) + ... ,

V = δ v1(s∗, y∗) + δ5/3 v2(s∗, y∗) + ... ,

p = δ2/3 p1(s∗, y∗) + δ4/3 p2(s∗, y∗) + ... ,

ρ = 1 + δ2/3 ρ1(s∗, y∗) + δ4/3 ρ2(s∗, y∗) + ... ,

h =
1

γ − 1
+ δ2/3 h1(s∗, y∗) + δ4/3 h2(s∗, y∗) + ... .

(3.69)
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We have introduced the local normal coordinate y∗ in region 3 according to

r = ν(ε,Re) y∗ , ν � 1 ,

where r is the original curvilinear coordinate in the normal direction. The scale ν

is obtained from the requirement that the normal momentum equation is not degen-

erated (as opposed to what happens in the boundary layer), therefore allowing to

convert the normal velocity component (which represents the displacement effects)

into the pressure perturbation on the scale y∗ ∼ 1. Using the estimate

U
∂V

∂s
∼ ∂p

∂r
,

and recalling (3.69), one may easily get the required expression for ν:

ν = σδ−1/3 ≡ ε−7/10 Re−1/5 � 1 .

Again, the estimate ν � 1 follows from the assumption that ε� Re−1/6. The newly

obtained scaling implies

r

| s | =
y∗
|s∗|

δ−1/3 ∼ δ−1/3 � 1

in region 3, suggesting that it has a shape of a vertically stretched rectangular in the

‘physical’ coordinates (s, r). Expressing y∗ via the classical normal boundary layer

coordinate Y yields:

y∗ = εσ Y ,

so that Y � 1 when y∗ ∼ 1, as expected.

Note that asymptotic expansions (3.66) and (3.57) in regions 4 and 5 are double,

being explicitly based on the independent small parameters ε and σ(ε,Re) (or implic-

itly on ε and Re). Thus, expansions (3.69) should also be double, which means each

term in the main expansion based on δ(ε,Re), for example u1(s∗, y∗), is actually an

expansion itself; these inner expansions should be based on any small parameter other

than δ. This is going to be crucial for the problem in region 3, allowing to linearize

the governing equations and obtain an analytical solution (see section 3.2.3).

The fact that region 3 is significantly stretched in the normal direction results in

the elimination of the viscous forces in the two leading-order problems, but on the
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other hand reanimates some of the centrifugal terms in the Navier–Stokes equations

(written in the scaled curvilinear coordinates (s∗, y∗) – see Appendix). Namely, it

is the −κ v2
τ term in the second momentum equation that balances the pressure

gradient and other convective terms in the leading-order problem with respect to

δ.10) Therefore, plugging (3.69) into the Navier–Stokes equations yields the following

systems in the first two approximations based on the powers of δ:




∂u1

∂s∗
+
∂ρ1

∂s∗
= 0 ,

∂u1

∂s∗
+
∂p1

∂s∗
= 0 ,

∂v1

∂s∗
+
∂p1

∂y∗
=

κ

ε3/2
,

∂h1

∂s∗
− (γ − 1)

∂p1

∂s∗
= 0 ,

ρ1 + h1 − γp1 = 0 ;

(3.70)





∂u2

∂s∗
+
∂ρ2

∂s∗
= −∂v1

∂y∗
− ∂(ρ1u1)

∂s∗
,

∂u2

∂s∗
+
∂p2

∂s∗
= −(u1 + ρ1)

∂u1

∂s∗
,

∂v2

∂s∗
+
∂p2

∂y∗
= −(u1 + ρ1)

∂v1

∂s∗
+

κ

ε3/2

[
u1 − y∗

∂p1

∂y∗

]
,

∂h2

∂s∗
− (γ − 1)

∂p2

∂s∗
= −(u1 + ρ1)

∂h1

∂s∗
+ (γ − 1)u1

∂p1

∂s∗
,

ρ2 + h2 − γp2 = −ρ1h1 .

(3.71)

Integrating the first two equations of (3.70), and taking into the account that the

solutions should match with the known outer inviscid flow in region 1 when |s∗| → ∞,

we get:

p1 = ρ1 = −u1 .

The equation of state in then reduced to h1 = (γ + 1) p1, which makes the energy

equation trivial. It means that system (3.70) is under-defined, and is reduced to the

10)
κ is the local curvature of the wall.
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single differential equation

∂v1

∂s∗
− ∂u1

∂y∗
=

κ

ε3/2
(3.72)

for the two functions u1 and v1. As it usually is the case for many problems in fluid

mechanics, the missing equation is obtained by considering the next-order problem

described by system (3.71). Indeed, the left-hand sides of the equations in (3.71) are

the same as in (3.70), and therefore are linearly dependent. However, the system is

now inhomogeneous, and for it to have a solution, the right-hand sides must satisfy

a compatibility condition. Imposing this condition results in the required second

relationship between u1 and v1:

(γ + 1)u1
∂u1

∂s∗
− ∂v1

∂y∗
= 0 . (3.73)

Equations (3.72), (3.73) are the well-known Karman–Guderley equations for an in-

viscid transonic flow of a perfect gas. The first one is nothing more that the zero

vorticity condition written in curvilinear coordinates. The presence of the small pa-

rameter ε on the right-hand side means that functions u1, v1 (and, consequently, p1,

ρ1, h1) contain ε and may be expanded with respect to it, making the original expan-

sions (3.69) double as predicted before. Thus, the two independent small parameters

in region 3 are δ (outer expansion) and ε (inner expansions). Having ε in u1, v1 will

be crucial for linearizing equation (3.73) in order to obtain analytical solution of the

interaction problem.

It only remains to formulate boundary conditions for the functions u1, v1. Firstly,

they should match with the outer solutions in region 1 when s2
∗ + y2

∗ →∞; the latter

were obtained in Chapter 2 and have a self-similar form. Secondly, as y∗ → 0, u1

and v1 should match with the relevant terms in the asymptotic forms of U and V in

region 4 when Y →∞. Recalling that u1 = −p1 in region 3, and that the pressure is

constant across regions 4 and 5, we get the first boundary condition:

u1

∣∣
y∗=0

= −P∗(s∗) ≡ −
τw
Rw

G∗(s∗) , (3.74)

where P∗(s∗) is the unknown pressure distribution across the interaction region. Fi-

nally, matching v1 with (3.68) when y∗ → 0 and Y → ∞ respectively, yields the



CHAPTER 3. VISCOUS-INVISCID INTERACTION 163

second boundary condition:

v1

∣∣
y∗=0

= − 1

τw

dF∗(s∗)

ds∗
. (3.75)

Boundary-value problem (3.72)–(3.75), plus the matching condition with the outer

flow in region 1, is going to provide the second relationship between the functions

F∗(s∗) and G∗(s∗), therefore allowing to deduce a single equation for either F∗ or G∗

which describes the viscous-inviscid interaction taking place in regions 3, 4 and 5.

Let us turn our attention to the problem in region 5 first. The problem is linear

and should have a relatively straightforward solution.

3.2.2 Analytical solution in region 5

We start with subtracting the cumulative effects from the stream function ψ
(1)
∗ in

region 5 by introducing a new function ϕ∗:

ϕ∗(s∗, Y∗) = ψ(1)
∗ (s∗, Y∗)−

3a

2
Y 2
∗ lnY∗ − c Y 2

∗ . (3.76)

The transformation obviously does not affect the no-slip condition at the wall, so

that

ϕ∗
∣∣
Y∗=0

=
∂ϕ∗

∂Y∗

∣∣∣∣
Y∗=0

= 0 . (3.77)

However, the equation for ϕ∗ gains an extra term from the third derivative of Y 2
∗ lnY∗:

τw

[
Y∗

∂2ϕ∗

∂s∗∂Y∗
− ∂ϕ∗

∂s∗

]
= −Rw

dP∗

ds∗
+ µw

[
3a

Y∗
+
∂3ϕ∗

∂Y 3
∗

]
, (3.78)

where P∗(s∗) ≡ P
(1)
∗ (s∗) is the leading-order pressure distribution across tier 5. Fi-

nally, from (3.63) and (3.76) it follows that

ϕ∗ = F∗(s∗)Y∗ +G∗(s∗) +
H∗(s∗)

Y∗
+O(Y −2

∗ ) , Y∗ →∞ ; (3.79)

the O(Y −1
∗ ) term has been written explicitly for convenience. If we plug (3.79) into

(3.78), this will yield (3.65), and also provide a simple equation for H∗(s∗):

dH∗

ds∗
= −3aµw

2τw
.
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Consequently,

H∗(s∗) = −3aµw
2τw

s∗ + const . (3.80)

Differentiating equation (3.78) with respect to Y∗, we introduce the function

Φ(s∗, Y∗) =
∂2ϕ∗

∂Y 2
∗

; (3.81)

it satisfies the equation

∂2Φ

∂Y 2
∗
− τwY∗

µw

∂Φ

∂s∗
=

3a

Y 2
∗
, (3.82)

and has the following asymptotic behaviour:

Φ = −3a lnY∗ +O(1) , Y∗ → 0 ,

Φ =
2H∗(s∗)

Y 3
∗

+O(Y −4
∗ ) , Y∗ →∞ .

(3.83)

The first formula in (3.83) is deduced directly from (3.76) and (3.81), taking into

the account that ψ
(1)
∗ ∼ Y 2

∗ when Y∗ → 0 due to the no-slip conditions; the second

equation in (3.83) results from (3.79).

Function Φ should also match with with the relevant solution in sublayer 2b when

s∗ → −∞. Since the scaling used in region 5 does not change the variable η, i.e.

η =
Y

(−s)1/3
≡ Y∗

(−s∗)1/3
,

certain terms in solution (3.41) for the sublayer can be related to Φ, yielding the

required matching condition:

Φ ∼ 3a

∫ ∞

η

eαwζ3
∫ ∞

ζ

e−αwξ3

ξ2
dξ dζ ,

η = const , s∗ → −∞ , Y∗ = η(−s∗)1/3 →∞ .

(3.84)

In this formula parameter η is a constant from the range 0 < η <∞.

Boundary-value problem (3.82)–(3.84) is solved using a Fourier transform with

respect to s∗. Equation (3.82) is linear and has an obvious particular solution

Φ = −3a lnY∗ . (3.85)
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Therefore, we only need to apply the transform to the respective homogeneous equa-

tion for Φ, which gives the ordinary differential equation

d2Φω

dY 2
∗
− iω τwY∗

µw
Φω = 0

for the Fourier image function

Φω =

∫ ∞

−∞
Φ(s∗, Y∗) e

−iωs∗ ds∗ .

Introducing a new variable

z = λ(ω)Y∗ , λ(ω) =

(
iω τw
µw

)1/3

, (3.86)

the above equation is reduced to the canonical Airy equation:

d2Φω

dz2
− zΦω = 0 . (3.87)

Its general solution may be expressed in terms of the Airy functions:

Φω(z) = Cω Ai(z) +Dω Bi(z) , (3.88)

Cω and Dω being integration constants.

Let us now find out what happens with (3.88) when ω changes from −∞ to ∞

along the real axis in the inverse transform

Φ(s∗, Y∗) =
1

2π

∫ ∞

−∞
Φω

(
λ(ω)Y∗

)
eiωs∗ dω . (3.89)

Since λ(ω) ∼ (iω)1/3, we need to make a branch-cut in the plane of complex ω and

choose the appropriate regular branches, so that Φω(z) does not grow exponentially

when |z| → ∞. If the branch-cut runs along the imaginary axis in the upper half-

plane (Fig. 3.5), then − 3π
2
< argω < π

2
. For the regular branch of λ(ω) defined

according to the rule

arg λ =
1

3

(π
2

+ argω
)

we obtain the restriction

−π
3
< arg λ <

π

3
.
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PSfrag replacements

ω

argω = −π argω = 0

Figure 3.5: Integration contour in the plane of complex ω.

The same constraint holds for arg z since z = λ(ω)Y∗ and Y∗ is a positive real number.

Now, when |z| → ∞ and | arg z| < π, the first Airy function has the following

asymptotic form (Abramovitz & Stegun 1972):

Ai(z) =
e−ζ

2π1/2 z1/4

[
1 +O(ζ−1)

]
, ζ =

2

3
z3/2 .

Therefore, for the given branch of λ(ω) we have −π
2
< arg ζ < π

2
, and Ai(z) exponen-

tially decays in this sector. On the other hand,

Bi(z) ≡ eiπ/6Ai
(
z e2iπ/3

)
+ e−iπ/6Ai

(
z e−2iπ/3

)

always has at least one component which grows exponentially in the same sector. The

only way to avoid this growth is to set Dω = 0 in (3.88), leaving Φω(z) = Cω Ai(z).

Applying the inverse transform and adding (3.85), we obtain the required solution of

the original equation (3.82) for Φ:

Φ(s∗, Y∗) =
1

2π

∫ ∞

−∞
Cω Ai

(
λ(ω)Y∗

)
eiωs∗ dω − 3a lnY∗ . (3.90)

It remains to check whether this solution is in agreement with asymptotic forms (3.83)

and (3.84). The first condition in (3.83), corresponding to Y∗ → 0, directly follows

from (3.90), providing that the Fourier integral converges in this limit.11) For Φ to be

of the order of Y −3
∗ when Y∗ → ∞ (second condition in (3.83)), the integral should

first of all tend to 3a lnY∗. By considering

∂Φ

∂Y∗
=

1

2π

∫ ∞

−∞
Cωλ(ω) Ai ′

(
λ(ω)Y∗

)
eiωs∗ dω − 3a

Y∗
, Ai ′(z) =

dAi(z)

dz
(3.91)

11) This requirement actually leads to a slightly modified form of the general solution for Φ – see
section 3.3.3.
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instead of Φ for the matter of convenience, one can easily show that the required

asymptotic behaviour occurs if Cω ∼ |ω|−1 for real ω → 0.12) Therefore, we introduce

a new complex function

Kω = κ(ω) eiθ(ω) , κ(ω) = |Kω| , θ(ω) = argKω , (3.92)

that is not necessarily analytical, in order to extract the |ω|−1 singularity in Cω:

Cω =
C0

|ω| Kω , C0 = const . (3.93)

All the functions here are originally defined for real ω, but may be analytically con-

tinued into the entire complex plane. The normalization constant C0 in (3.93) allows

to impose a simple restriction on the value of Kω at ω = 0:

Kω(0) = 1 ⇐⇒





κ(0) = 1 ,

θ(0) = 0 .
(3.94)

Now we need to fix the value of C0 for which the integral in (3.91) tends to 3a/Y∗ +

O(Y −4
∗ ) when Y∗ →∞. Simple calculations yield:

C0 = − πa

Ai(0)
, Ai(0) =

1

32/3 Γ(2/3)
, (3.95)

thereby allowing to match solution (3.91) in sublayer 5 with the relevant solution in

tier 4.

The last matching condition (3.84) may be transformed to the following form:

− ∂Φ

∂Y∗

Y∗
3a
∼ f1(η) = η eαwη3

∫ ∞

η

e−αwζ3

ζ2
dζ , η =

Y∗
(−s∗)1/3

= const , Y∗ →∞ .

(3.96)

Integrating the right-hand side of solution (3.91) by parts, and taking into the account

(3.93), (3.94) and (3.95), we obtain:

− ∂Φ

∂Y∗

Y∗
3a
∼ f2(η) =

1

Ai(0)

∫ ∞

0

Ai
(
ξ(η, t)

)
e−t dt , ξ(η, t) = η

(
τw t

µw

)1/3

, (3.97)

12) The fact that the asymptotic form of the integral at Y∗ → ∞ is related to the asymptotic
form of Cω close to ω = 0 is due to the presence of the rapidly decaying Airy function. The |ω|−1

singularity can be treated as an image of the cumulative effects in the ω-plane, since it provides the
logarithmic term in the stream function.
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again for η = const and Y∗ →∞. Therefore, condition (3.84) is equivalent to proving

that f1(η) ≡ f2(η) for all η ∈ [ 0,∞).

First of all, a simple check yields f1(0) = f2(0) = 1. For η > 0 we are going to use

a well-known representation of the Airy function via the modified Bessel functions

(Abramovitz & Stegun 1972):

Ai(ξ) =

√
ξ

3

[
I− 1

3
(z)− I 1

3
(z)
]
, z =

2

3
ξ3/2 .

The latter are related to the original Bessel function of the first kind:

Iν(z) = e−
iπν
2 Jν

(
z e

iπ
2

)
,

which may be further expressed via the Kummer function of the first kind, denoted

as M(a, b, z):
∫ ∞

0

e−(au)2uµ−1 Jν(bu) du =
Γ
(

1
2
(ν+µ)

)(
b
2a

)ν

2aµ Γ(ν+1)
M
(

1
2
(ν+µ), (ν+µ),− b2

4a2

)
.

By setting µ = 7
3
, ν = ±1

3
, a = 1 and b = b(η) = 2

3
η

3
2 e

iπ
2

√
τw
µw

, we arrive at the

following expression for f2(η):

f2(η) =
1

Ai(0)

∫ ∞

0

Ai
(
ξ(η, t)

)
e−t dt = M

(
1, 2

3
, αwη

3
)
− α1/3

w Γ(2/3) ηM
(

4
3
, 4

3
, αwη

3
)
.

The Kummer function of the second kind, U(a, b, z), is defined according to the

formula

U(a, b, z) =
π

sin(πb)

[
M(a, b, z)

Γ(1+a−b) Γ(b)
− z1−b M(1+a−b, 2−b, z)

Γ(a) Γ(2−b)

]
;

setting a = 1, b = 2
3
, z = αwη

3 yields:

U
(
1, 2

3
, αwη

3
)

= 3f2(η) .

To associate this with f1(η), we need to employ another representation for the Kum-

mer function of the second kind:

Γ(a)U(a, b, z) = ez
∫ ∞

1

e−zt (t− 1)a−1 tb−a−1 dt ,

where a = 1, b = 2
3
, z = αwη

3 as before. Simple transformations in the integral

reduce it to

3η eαwη3

∫ ∞

η

e−αwt3

t2
dt = 3f1(η) .
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Hence,

U
(
1, 2

3
, αwη

3
)

= 3f1(η) ≡ 3f2(η)

for all η > 0, thereby proving the required identity.

The above result confirms that (3.91) is, indeed, the correct solution in region 5

which satisfies all the matching conditions. Moreover, the two different representa-

tions of U(a, b, z) from the proof of the equivalency between f1(η) and f2(η) allow

to find a simple numerical value of the constant a2 describing the leading-order dis-

placement effects in sublayer 2b. According to (3.45),

a2 = a

∫ ∞

0

U
(
1, 2

3
, αwη

3
)
dη .

Using the Airy function representation of the integrand, we have:

a2 =
3a

Ai(0)

∫ ∞

0

e−t
∫ ∞

0

Ai
(
(9t)

1
3 αwη

)
dη dt .

Since ∫ ∞

0

Ai(x) dx =
1

3
,

the required value of a2 is

a2 =
a
[
Γ(2/3)

]2

α
1/3
w

.

The ultimate goal of the analysis in region 5 is to find a relationship between the

functions F∗(s∗) and G∗(s∗). This can be done by expressing both of these functions

via the newly obtained solution (3.90) for Φ. Let us recall that Φ = ∂2ϕ∗

∂Y 2
∗

, where the

function ϕ∗ is defined in (3.76). Integrating this twice and taking into the account

the no-slip conditions for ϕ∗ yields:

ϕ∗(s∗, Y∗) =

∫ Y∗

0

(Y∗ − t) Φ(s∗, t) dt . (3.98)

Both components of the integral converge when Y∗ →∞, which is due to the second

asymptotic form in (3.83), and give the estimates

∫ Y∗

∞
Φ(s∗, t) dt ∼ −

H∗(s∗)

Y 2
∗

,

∫ Y∗

∞
tΦ(s∗, t) dt ∼ −

2H∗(s∗)

Y∗
, Y∗ →∞ .
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With this in mind, we compare (3.98) with the asymptotic form (3.79) of ϕ∗ to obtain

the following important relationships:

F∗(s∗) =

∫ ∞

0

Φ(s∗, Y∗) dY∗ ,

G∗(s∗) = −
∫ ∞

0

Y∗ Φ(s∗, Y∗) dY∗ .

(3.99)

It, therefore, remains to utilize the known solution for Φ and express F∗ via G∗.

Thanks to the asymptotic forms (3.83), the integrals in (3.99) can be further

transformed to include ∂Φ/∂Y∗:

F∗(s∗) = −
∫ ∞

0

Y∗
∂Φ

∂Y∗
dY∗ ,

G∗(s∗) =
1

2

∫ ∞

0

Y 2
∗
∂Φ

∂Y∗
dY∗ .

(3.100)

Using (3.91), along with, (3.93), (3.94) and (3.95), we get:

Y∗
∂Φ

∂Y∗
=

3a

2Ai(0)

[∫ −∞

0−
Ai
(
λ(ω)Y∗

) d

dω

[
Kωe

iωs∗
]
dω +

∫ ∞

0+

Ai(λ(ω)Y∗)
d

dω

[
Kωe

iωs∗
]
dω

]
.

(3.101)

The integration is originally performed along the real axis in the plane of complex ω.

For this expression to be real, function Kω should satisfy the condition

Kω(ω) = Kω(−ω) , ω ∈ R ,

equivalent to 



|Kω| = κ(ω) = κ(−ω) ,

arg(Kω) = θ(ω) = −θ(−ω) ,

(3.102)

where ω ∈ R. This enables to combine the two complex integrals in (3.101), which,

upon plugging them into (3.100) and swapping the integration with respect to Y∗ and

ω, yield the following real Fourier integrals for F∗ and G∗:

F∗(s∗) = −aΓ(2/3)

α
1/3
w

∫ ∞

0

1

ω1/3

d

dω

[
κ(ω) cos

(
θ(ω) + ωs∗ − π/6

)]
dω ,

G∗(s∗) =
aΓ(2/3)

2α
2/3
w Γ(1/3)

∫ ∞

0

1

ω2/3

d

dω

[
κ(ω) cos

(
θ(ω) + ωs∗ − π/3

)]
dω .

(3.103)

Before arriving at (3.103), we used the identities

∫ ∞

0

Ai(x) dx =
1

3
, zAi(z) =

d2Ai(z)

dz2
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to calculate the integrals with respect to Y∗; this provided the ω−1/3 and ω−2/3 mul-

tiples in (3.103). Differentiating (3.103) with respect to s∗ and integrating by parts

gives:

dF∗

ds∗
=
aΓ(2/3)

3α
1/3
w

∫ ∞

0

κ(ω) sin
(
θ(ω) + ωs∗ − π/6

)

ω1/3
dω ,

dG∗

ds∗
= − aΓ(2/3)

3α
2/3
w Γ(1/3)

∫ ∞

0

κ(ω) sin
(
θ(ω) + ωs∗ − π/3

)

ω2/3
dω .

(3.104)

With the aim to find the link between F∗ and G∗, let us introduce complex functions

f∗(s∗) = fr + ifi and g∗(s∗) = gr + igi:
13)

f∗(s∗) =
aΓ(2/3)

3α
1/3
w

∫ ∞

0

ω2/3
κ(ω) ei(θ(ω)+ωs∗−π/6) dω ,

g∗(s∗) = − aΓ(2/3)

3α
2/3
w Γ(1/3)

∫ ∞

0

ω1/3
κ(ω) ei(θ(ω)+ωs∗−π/3) dω ,

(3.105)

assuming the integrals converge due to a decay of κ(ω) when ω → ∞. It can be

easily seen that

fr = <(f∗) =
d2F∗

ds2
∗
, gr = <(g∗) =

d2G∗

ds2
∗
.

Applying a Fourier transform F to (3.105), we have:

fω = F(f∗) =
2πaΓ(2/3)

3α
1/3
w

ω2/3
κ(ω) ei(θ(ω)−π/6)H(ω) ,

gω = F(g∗) = − 2πaΓ(2/3)

3α
2/3
w Γ(1/3)

ω1/3
κ(ω) ei(θ(ω)−π/3)H(ω) ,

where H(ω) is the Heaviside step function. These two equations yield a direct rela-

tionship between fω and gω:

gω = − fω

α
1/3
w Γ(1/3) eiπ/6 ω1/3

.

The inverse Fourier transform then gives

g∗(s∗) =
Γ(2/3)

α
1/3
w Γ(1/3)

[
i

∫ ∞

0

f∗(s∗ + t)

t2/3
dt+ eiπ/6

∫ ∞

0

f∗(s∗ − t)
t2/3

dt

]
. (3.106)

13) The entire interaction problem could be solved in the Fourier space without referring to the
‘intermediate’ integral relationships between F∗ and G∗ in regions 3 and 5 written in physical
variables. However, we are going to spend some time deriving these formulae in order to have a
better understanding of a physical nature of the interaction in each tier.
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We obviously need to find a connection between fr and gr only; since

if∗ = ifr − fi , eiπ/6f∗ =
1

2

(√
3 fr − fi

)
+
i

2

(
fr +

√
3fi
)
,

fi has to be expressed via fr using the Sokhotski-Plemelj formulae. The latter provide

a link between real and imaginary parts of an analytical function f(z) evaluated on

the real axis x = <(z):

fr(x) =
1

π
−
∫ ∞

−∞

fi(ξ) dξ

ξ − x ,

fi(x) = − 1

π
−
∫ ∞

−∞

fr(ξ) dξ

ξ − x .

(3.107)

We are going to use the second formula in (3.107) to express fi via fr. Taking the

real part of (3.106) yields:

gr(s∗) = − Γ(2/3)

α
1/3
w Γ(1/3)

[∫ ∞

0

fi(s∗ + t)

t2/3
dt+

1

2

∫ ∞

0

[√
3 fr(s∗ − t)− fi(s∗ − t)

]

t2/3
dt

]
.

(3.108)

Therefore, the two following double integrals emerge:

I1(s∗) =

∫ ∞

0

fi(s∗ + t)

t2/3
dt = − 1

π

∫ ∞

s∗

1

(x− s∗)
2
3

[
−
∫ ∞

−∞

fr(ξ) dξ

ξ − x

]
dx ,

I2(s∗) =

∫ ∞

0

fi(s∗ − t)
t2/3

dt =
1

π

∫ s∗

−∞

1

(s∗ − x)
2
3

[
−
∫ ∞

−∞

fr(ξ) dξ

ξ − x

]
dx .

It can be shown that swapping the integration order creates double principal value

integrals:

I1(s∗) = − 1

π
−
∫ ∞

−∞
fr(s∗ + ξ)

[
−
∫ ∞

0

dt

t
2
3 (ξ − t)

]
dξ ,

I2(s∗) =
1

π
−
∫ ∞

−∞
fr(s∗ − ξ)

[
−
∫ ∞

0

dt

t
2
3 (ξ − t)

]
dξ .

Here the outer principal value integral eliminates the point ξ = 0 in which the inner

integral is not defined. Simple calculations give

−
∫ ∞

0

dt

t
2
3 (ξ − t)

=





π√
3

1

ξ2/3
, ξ > 0 ,

− 2π√
3

1

(−ξ)2/3
, ξ < 0 ,
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so that I1,2 may be transformed to

I1(s∗) =
2√
3

∫ ∞

−∞

fr(s∗ + ξ)

| ξ |2/3 dξ −
√

3

∫ ∞

0

fr(s∗ + ξ)

ξ2/3
dξ ,

I2(s∗) = − 2√
3

∫ ∞

−∞

fr(s∗ − ξ)
| ξ |2/3 dξ +

√
3

∫ ∞

0

fr(s∗ − ξ)
ξ2/3

dξ .

Plugging these into (3.108), we obtain the required relationship between fr and gr:

gr(s∗) = − 1

α
1/3
w

[
Γ(1/3)

]2
∫ ∞

0

fr(s∗ − ξ)
ξ2/3

dξ . (3.109)

Thus, the value of gr at any given point s∗ is determined only by the values of fr

upstream of this point, and is not affected by the values of fr downstream. Equation

(3.109), written as

d2G∗(s∗)

ds2
∗

= − 1

α
1/3
w

[
Γ(1/3)

]2
∫ s∗

−∞

d2F∗(ξ)

dξ2

dξ

(s∗ − ξ)
2
3

,

can be integrated once to give an expression directly for the pressure gradient:

dG∗(s∗)

ds∗
= − 1

α
1/3
w

[
Γ(1/3)

]2
∫ s∗

−∞

dF∗(ξ)

dξ

dξ

(s∗ − ξ)
2
3

; (3.110)

we used initial conditions (3.64) while deriving (3.110). As mentioned before, only

the values of the displacement function F∗ upstream of s∗ contribute to the pressure

G∗ in this point, which is due to the parabolic nature of the original boundary layer

equations solved in region 5. The non-locality of (3.110) stems from the fact that the

flow in region 5 is nearly incompressible.

Finally, the Abel-type integral in (3.110) may be inverted, yielding the following

formula for the displacement function:

dF∗(s∗)

ds∗
= −α

1/3
w Γ(1/3)

Γ(2/3)

∫ s∗

−∞

d2G∗(ξ)

dξ2

dξ

(s∗ − ξ)
2
3

. (3.111)

Again, the quantity on the left-hand side is determined using only the values of the

function on the right-hand side upstream of a given point. In this particular case,

the displacement at a point s∗ is generated by the pressure distribution ahead of s∗.

However, there is a principal difference between (3.110) and its inverse (3.111), since

it is d2G∗/ds
2
∗ and not dG∗/ds∗ that contributes to dF∗/ds∗.

Having obtained the required relationships between the pressure distribution and

displacement across region 5, we can move to the upper tier 3.
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3.2.3 Analytical solution in region 3

First of all, let us recall how the coordinates and the velocity components in the

outer region 1 are transformed when moving from the cartesian coordinates (x, y) to

the curvilinear coordinates (s, r) related to the surface of the body. The coordinate

transformation is written as



κ x = −(1 + κ r) sinϑ(s) ,

κ y = −1 + (1 + κ r) cosϑ(s) ,

(3.112)

where κ = κ± when x ≷ 0, and

ϑ(s) = −κs , |ϑ| ∼ σ � 1 ,

as shown in Fig. 3.6. Using the notations U and V for the curvilinear velocity

components from the boundary layer analysis in previous sections, we can construct

the following expansions for the inviscid flow close to the sonic point:

U = 1 +
vτ

γ + 1
+ ... , V =

vn
γ + 1

+ ... ,

vτ and vn being the leading-order perturbations. The corresponding cartesian veloc-

PSfrag replacements x

y

s

r

κ− κ+

ϑ

1

3

Figure 3.6: Transformation from the cartesian to the curvilinear coordinates.

ity components ux and uy are

ux =

[
1 +

vτ
γ + 1

]
cosϑ− vn

γ + 1
sinϑ ,

uy =

[
1 +

vτ
γ + 1

]
sinϑ+

vn
γ + 1

cosϑ .
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Comparing this to the definition of the cartesian velocity perturbations u, v used in

the inviscid analysis in region 1 (see (2.6)), we obtain:

u = vτ cosϑ− vn sinϑ ,

v =
[
(γ + 1) + vτ

]
sinϑ+ vn cosϑ .

Note that the trigonometric functions should actually be expanded, since |ϑ| � 1

and only the leading order terms have to remain in the expressions on the right-hand

side; higher order terms contribute to higher order velocity perturbations which are

neglected in the analysis. The inverse of the above equations is

vτ = u cosϑ+ v sinϑ− (γ + 1) sin2ϑ ,

vn = −u sinϑ+ v cosϑ− (γ + 1) sinϑ cosϑ ,

(3.113)

the last two terms representing the projections of the main horizontal velocity onto

the curvilinear axes. Again, the right-hand side has to be linearized, because vτ and

vn are only the leading-order perturbations; we are going to do the linearization later.

To illustrate how transformations (3.113) work, let us consider the exact imper-

meability condition vn
∣∣
r=0

= 0 and obtain the relevant condition in the cartesian

coordinates. Since u is a perturbation itself, the second equation in (3.113) yields

v
∣∣
r=0

= −(γ + 1) κs

in the leading order approximation (after expanding the trigonometric functions). A

subsequent shift from the body surface (r = 0) to the y = 0 axis provides an order

1 − cosϑ = O
(
(κs)2

)
correction which obviously does not affect the leading order

term in v. Therefore, we arrive at the familiar condition

v
∣∣
y=0

= −(γ + 1) κ x+ ... ,

derived at the very start of the inviscid analysis in section 2.1.1 in the assumption

that |κ x| � 1.

Recall that the cartesian velocity perturbations in region 1 are expressed via the
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self-similar function F (ξ), with ξ = x
yα and α = 3

2
:

u = yF ′(ξ) = y α2ξ2f(ξ) ,

v = yα
[
(3α− 2)F − αξF ′] = yαα3ξ3g(ξ) ,

f(ξ) and g(ξ) being the phase variables (see section 2.2.1). Since we are now working

in region 3 with the local variables (s∗, y∗) defined according to

s = σs∗ , r = σδ−1/3y∗ ,

it is necessary to express the outer similarity variable ξ via them:

ξ =
x

y3/2
= ε3/4 ξ∗

[
1 +O

(
δ2/3/ε3/2

)]
, ξ∗ =

s∗

y
3/2
∗

. (3.114)

Here ξ∗ is the inner similarity variable of region 3; note that the estimate ε� Re−1/6

yields δ2/3/ε3/2 � Re−1/12 � 1. Transformation (3.114) directly follows from (3.112),

and only fails when y∗ ∼ δ4/3/ε3/2 ≡ σ4/3ε1/2 � 1, because y becomes negative

and ξ is not defined. However, the small areas next to the wall where the cartesian

coordinate y is negative (see Fig. 3.6) prove to be insignificant for the inviscid analysis,

unless we want to consider higher-order perturbations in the coordinate expansions.

Using the fact that f(ξ) and g(ξ) are invariant with respect to the transformation

ξ = Λξ∗, Λ = ε3/4, i.e. f(ξ) = f(ξ∗) and g(ξ) = g(ξ∗), we get the representation of

the outer solution for u and v (region 1) in the inner variables of region 3:

u = δ2/3

(
αs∗
y∗

)2

f(ξ∗) , v = δ

(
αs∗
y∗

)3

g(ξ∗) . (3.115)

The powers of δ in (3.115) coincide with the relevant powers in front of the u1, v1

terms in expansions (3.69), therefore allowing to match the inner and outer inviscid

solutions. Plugging the inner representation (3.115) of the outer solution into (3.113),

we obtain the corresponding curvilinear velocity components which provide the far-

field matching conditions for the inner solution in region 3:




u1(s∗, y∗, ε)→
(
αs∗
y∗

)2

f(ξ∗) ,

v1(s∗, y∗, ε)→
(
αs∗
y∗

)3

g(ξ∗) +
(γ + 1)κs∗

ε3/2
,

y∗ →∞ , ξ∗ = const .

(3.116)
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These are the exact expressions with no further asymptotic terms on the right-hand

side;14) they should hold for any fixed ξ∗ ∈ (−∞,∞), implying that |s∗| → ∞ along

the ξ∗ = const curves when y∗ → ∞. The (γ + 1) term in the second matching

condition is due to the coordinate transformation. The fact that it contains small

parameter ε does not affect expansions (3.69) in region 3, as the functions (u1, v1),

(u2, v2), etc. in front of the successive powers of δ depend on ε and can be further

expanded based on this small parameter. As mentioned before, all the expansions

introduced in section 3.2.1 for different tiers of the triple deck are effectively double,

simply because of the presence of the two independent small parameters, ε and Re−1,

or their combinations σ and δ.

Functions u1, v1 satisfy the nonlinear Karman equations (3.72)–(3.73), and are

related to F∗(s∗) and G∗(s∗) via boundary conditions (3.74)–(3.75) (matching with

region 4). Solving the problem in region 3 will provide second relationship between

F∗ and G∗ needed for deriving the interaction equation. It turns out that the required

relationship can be obtained in a closed form due to the presence of small parameter

ε in equation (3.72) and in the far-field boundary conditions (3.116).15) To demon-

strate that, let us start with introducing new functions u0(s∗, y∗, ε), v0(s∗, y∗, ε), which

satisfy homogeneous conditions when y∗ →∞ for fixed ξ∗:

u0 = u1 −
(
αs∗
y∗

)2

f(ξ∗) ,

v0 = v1 −
[(

αs∗
y∗

)3

g(ξ∗) +
(γ + 1)κs∗

ε3/2

]
.

(3.117)

Indeed, applying matching conditions (3.116) to (3.117) yields





u0 → 0 ,

v0 → 0 ,

y →∞ , ξ∗ = const . (3.118)

To derive the equations for u0, v0, we need to recall that the phase variables f(ξ∗),

14) Higher-order corrections to the inviscid solutions in region 1, not considered in Chapter 2, match
with the higher-order terms from expansions (3.69) in region 3, i.e. with (u2, v2), etc.

15) The latter also contain ε implicitly through functions f(ξ∗) and g(ξ∗) describing the inviscid
flow in region 1 generated by an order-ε break in wall curvature.
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g(ξ∗) are described by the system





df

dχ
= 2f + 3(α− 1)g − 2αf 2 ,

dg

dχ
= 3g + 2(α− 1)f 2 − 3αfg ,

dχ =
dξ∗

(f − 1)αξ∗
.

(see section 2.2.1). With this in mind, one can express u1, v1 via u0, v0 using (3.117)

and substitute into governing equations (3.72)–(3.73). After a number of simplifica-

tions we arrive at the required equations for u0, v0 in region 3:





u0
∂u0

∂s∗
− ∂v0

∂y∗
+

∂

∂s∗

[
y∗ α

2ξ2
∗ f(ξ∗)u0

]
= 0 ,

∂v0

∂s∗
− ∂u0

∂y∗
= 0 .

(3.119)

Therefore, although the transformation did not remove the nonlinearity, it made the

second equation homogeneous. Note that the outer solution f(ξ∗) is extended into

region 3 and directly affects the triple deck ‘corrections’ u0, v0 through the first

equation; these corrections take into the account the viscous-inviscid interaction, and

are expected to provide regular solutions for u1 and v1 (with no singularity in the

relevant pressure gradient).

Now we only need to derive the boundary conditions for u0, v0 when y∗ → 0,

i.e. in the overlapping region between tiers 3 and 4. To do this, one has to recall that

the outer solution in terms of F (ξ) has the asymptotic forms

F (ξ → ±∞) = δ±(±ξ)λ − (γ + 1)κ±ξ +O
(
(±ξ)1/3

)
,

where λ = 3− 2
α

= 5
3
, and

δ± = ∓3εG

2λ

(see (3.34) for the definition of G). Since F (ξ) ≡ F (Λξ∗) = Λ3F (ξ∗) due to the basic

property of the outer solution discussed in section 2.2.1 (Λ = ε3/4 in this case), we

get the following asymptotic form for F (ξ∗):

F (ξ∗→±∞) =
δ±
ε

(±ξ∗)λ −
(γ + 1)κ±ξ∗

ε3/2
+O

(
(±ξ∗)1/3

)
,

δ±
ε

= O(1) .
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Thus,

lim
y∗→0

{
y∗ α

2ξ2
∗ f(ξ∗)

}
= ∓3G

2
(±s∗)2/3 ,

lim
y∗→0

{
yα∗ α

3ξ3
∗ g(ξ∗)

}
= −(γ + 1)κ±s∗

ε3/2
,

with ± corresponding to s∗ ≷ 0. Taking this into the account, we apply the same

limit to (3.117) to obtain the required boundary conditions:

u0

∣∣
y∗=0

= u1

∣∣
y∗=0
± 3G

2
(±s∗)2/3 ,

v0

∣∣
y∗=0

= v1

∣∣
y∗=0

,

(3.120)

where u1

∣∣
y∗=0

and v1

∣∣
y∗=0

are given by (3.74)–(3.75) and are expressed via F∗, G∗.

Problem (3.118), (3.119), (3.120) can be solved analytically due to the fact that

the outer solution for f(ξ∗) simplifies a lot when the break of curvatures is small

(order-ε). Indeed, in section 2.4.6 it was shown that the relevant solution for F (ξ)

can be expressed by a sum of two main terms, and therefore

y∗ α
2ξ2

∗ f(ξ∗) ≡ F ′(ξ∗) = ∓3G

2
(±ξ∗)2/3− (γ + 1)κ±

ε3/2

(
1+O(ε)

)
, ξ∗ ≷ 0 . (3.121)

This is valid for all ξ∗, and not just when ξ∗ → ±∞. The second term corresponds

to the nearly unperturbed potential vortex flow which takes place when there is no

curvature break, and the first term only comes to play when |ξ∗| & ε−9/4, i.e. in thin

inviscid regions close to the wall (see section 2.4.6). The ε−3/2 multiple in the second

term is the key to dealing with the nonlinearity in equations (3.119).16) Note that it

is also possible to use κ− instead of κ± in (3.121), since κ+ = κ−
(
1 + O(ε)

)
, and

the swap between the two curvatures preserves the accuracy with which the second

term is written. Although the O(ε) correction gives an order ε−1/2 contribution to

F ′(ξ∗), it proves to have the same order of magnitude for all ξ∗, whereas the very first

term in (3.121) grows with ξ∗ and starts to dominate over the correction as soon as

|ξ∗| & ε−3/4.

16) ε−3/2 itself appeared after the re-scaling, due to the fact that region 3 is stretched vertically
in the original physical variables.
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Based on the above observations, let us rewrite the entire problem in region 3:

∂

∂s∗

{
u0

[
u0

2
∓ 3G

2
(±s∗)2/3 − (γ + 1)κ−y∗

ε3/2

(
1 +O(ε)

)]}
=
∂v0

∂y∗
,

∂v0

∂s∗
− ∂u0

∂y∗
= 0 ,

u0

∣∣
y∗=0

= − τw
Rw

G∗(s∗)±
3G

2
(±s∗)2/3 ,

v0

∣∣
y∗=0

= − 1

τw

dF∗(s∗)

ds∗
,

lim
y∗→∞

(
u2

0 + v2
0

)
= 0 , −∞ < ξ∗ <∞ .

(3.122)

The amplitude of the pressure gradient is assumed to be small in the current analysis,

suggesting that finite-distance singularities are unlikely to occur. Therefore, u0, v0

should be order one quantities in region 3 when |s∗| ∼ 1, y∗ ∼ 1. From this it follows

that the ε−3/2 term dominates the left-hand side of the first equation, so that the

latter is reduced to

(γ + 1)κ−y∗
ε3/2

∂u0

∂s∗
+
∂v0

∂y∗
= 0

in the leading order. Differentiating this with respect to s∗ and substituting v0 from

the second equation of (3.122) yields:

∂2u0

∂y2
∗

+
(γ + 1)κ−y∗

ε3/2

∂2u0

∂s2
∗

= 0 .

The general solution is given by the Fourier integral with respect to s∗:

u0 =
1

2π

∫ ∞

−∞
Eω Ai

(
Ω(ω)y∗

)
eiωs∗ dω , Ω(ω) =

ω2/3
(
(γ + 1)κ−

)1/3

ε1/2
,

where Eω is a function of ω only. This form suggests that the solution develops on

the scale y∗ ∼
√
ε � 1, |s∗| ∼ 1, as the Airy function exponentially decays with y∗.

Even at this small scale the y∗ ε
−3/2 term in the first equation of (3.122) is of order

of ε−1 and dominates the rest of the terms on the left-hand side, therefore linearizing

the equation and validating the above asymptotic solution. However, this does not

work when y∗ ∼ ε3/2, which means there is some inner scale in tier 3 close to the wall

where other terms in the nonlinear equation also come to play. We are going to call

this region 3a.
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It is worth clarifying at this stage that the Airy-function representation of the

solution in the main part of region 3 follows from the Karman–Guderley equations for

an inviscid transonic flow, the latter being of a mixed elliptic/hyperbolic type. On the

other hand, the Airy equation solved in region 5 resulted from the parabolic boundary

layer equations for a viscous flow near the wall. Thus, the two solutions with the Airy

function arise from two completely different physical mechanisms, and consequently

exhibit a fundamental difference in the way the argument of Ai(z) depends on ω.

Moving to region 3a, we introduce the inner variable ŷ = ε−3/2 y∗ ∼ 1. The rele-

vant boundary-value problem for u0 follows from (3.122) after re-scaling and excluding

v0:

∂2u0

∂ŷ2
= ε3 ∂2

∂s2
∗

{
u0

[
u0

2
∓ 3G

2
(±s∗)2/3 − (γ + 1)κ−ŷ

(
1 +O(ε)

)]}
,

u0

∣∣
ŷ=0

= − τw
Rw

G∗(s∗)±
3G

2
(±s∗)2/3 ,

∂u0

∂ŷ

∣∣∣∣
ŷ=0

= −ε
3/2

τw

d2F∗(s∗)

ds2
∗

.

(3.123)

One can easily spot that the nonlinear term in the equation once again has a small

parameter in front of it, this time due to the re-scaling of ∂2u0/∂y
2
∗ when entering

region 3a. The structure of the equation and the boundary conditions suggest u0 can

be sought in terms of an expansion based on powers of ε1/2; however, the first three

terms are only represented by the powers of ε3/2:

u0(s∗, y∗, ε) = u(0)(s∗, ŷ) + ε3/2 u(1)(s∗, ŷ) + ε3 u(2)(s∗, ŷ) + ... . (3.124)

Plugging this into (3.123) yields the following equations for u(0), u(1) and u(2):

∂2u(0)

∂ŷ2
= 0 ,

∂2u(1)

∂ŷ2
= 0 ,

∂2u(2)

∂ŷ2
=

∂2

∂s2
∗

{
u0

[
u0

2
∓ 3G

2
(±s∗)2/3 − (γ + 1)κ−ŷ

]}
.

Integrating with respect to ŷ and applying the boundary conditions, we get the exact

solutions:

u(0)(s∗) = − τw
Rw

G∗(s∗)±
3G

2
(±s∗)2/3 ,

u(1)(s∗, ŷ) = − ŷ

τw

d2F∗(s∗)

ds2
∗

,

u(2)(s∗, ŷ) = C(s∗) ŷ
2 +D(s∗) ŷ

3 ,

(3.125)
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where

C(s∗) =
1

2

d2

ds2
∗

{
u(0)

[
u(0)

2
∓ 3G

2
(±s∗)2/3

]}
,

D(s∗) = −(γ + 1)κ−

6

d2u(0)

ds2
∗
.

It can easily be spotted from (3.125) that the functions in the higher-order approx-

imations with respect to ε3/2 contain higher powers of ŷ. Therefore, when matching

with the main part of region 3 is performed, i.e. when ŷ → ∞, expansion (3.124)

fails. Let us find out what determines the maximum power of ŷ in u(n) for all n ∈ N

(for example, the maximum power of ŷ in u(2) is ŷ3; it dominates the expression for

u(2) when ŷ →∞, while ŷ2 only provides a small correction). By writing

u0(s∗, y∗, ε) =
∞∑

n=0

u(n)(s∗, ŷ) ε
3n
2 ,

we obtain the series for (u0)
2:

(u0)
2 =

∞∑

n=0

ε
3n
2

[ n∑

k=0

u(k)u(n−k)
]
.

Hence, according to (3.123) the recurring relationship for u(n) has the form

∂2u(n+2)

∂ŷ2
=

∂2

∂s2
∗

{
1

2

[ n∑

k=0

u(k)u(n−k)
]
− u(n)

[
±3G

2
(±s∗)2/3 + (γ + 1)κ−ŷ

]}
,

(3.126)

n ∈ N. Using solutions (3.125), one can obtain the highest powers of ŷ in the nonlinear

term and compare them to the relevant powers in u(n)ŷ:

n 0 1 2 3 4 5

nonlinear term 1 ŷ ŷ3 ŷ4 ŷ6 ŷ7

u(n)ŷ ŷ ŷ2 ŷ4 ŷ5 ŷ7 ŷ8

etc.

We see that the highest power of ŷ in the nonlinear term is always the same as in

u(n) for any n ∈ N, which may be easily proved by induction. However, due to the

presence of ŷ in the linear multiples of u(n) on the right-hand side of (3.126), the

highest power of ŷ in u(n+2) always comes from the linear term u(n)ŷ. Indeed, the

above table suggests the following pattern for the leading-order powers of ŷ in u(n)



CHAPTER 3. VISCOUS-INVISCID INTERACTION 183

when ŷ →∞:

u(n) = cn ŷ
3k
(
1 +O(ŷ−1)

)
, n = 2k ,

u(n) = cn ŷ
3k+1

(
1 +O(ŷ−1)

)
, n = 2k + 1 ,

k ∈ N. The coefficients cn are functions of s∗, the first three of them being

c0(s∗) = − τw
Rw

G∗(s∗)±
3G

2
(±s∗)2/3 ,

c1(s∗) = − 1

τw

d2F∗(s∗)

ds2
∗

,

c2(s∗) = −(γ + 1)κ−

6

d2c0(s∗)

ds2
∗

(3.127)

according to (3.125). Using this, we can write the corresponding solution for u0 based

only on the highest powers of ŷ in u(n) in order to perform the matching with the

main part of region 3:

u0 =
∞∑

n=0

ε
3n
2 u(n) ∼

∞∑

k=0

ε3k
[
c2k ŷ

3k + ε
3
2 c2k+1 ŷ

3k+1
]
, ŷ →∞ . (3.128)

Thus, the powers of ŷ are combined in pairs, with a jump of 1 inside each pair and

a jump of 2 between two adjacent pairs. As ŷ → ∞, at some point the first term

of any given pair will become of the same order as the second term of the previous

pair. This will obviously happen before the two terms in every single pair become

of the same order, simply because of the bigger jump between the pairs. It may be

easily shown that ε3k u(2k) catches the previous term ε3k− 3
2 u(2k−1) in (3.124) when

ŷ ∼ ε−3/4 � 1. Therefore, introducing the intermediate region 3b with the variable

ỹ = ε3/4 ŷ, we transform (3.128) to

u0 ∼ c0 +
∞∑

k=1

(
ε3/4 ỹ3

)k
[
c2k +

c2k−1

ỹ2
+ ...

]
, ỹ & 1 , (3.129)

which illustrates the effect described above. The dots stand for higher-order terms

corresponding to smaller powers of ŷ in u(n); these terms take into the account the

nonlinear effects in region 3a (see expression for C(s∗) in (3.125)), but vanish in the

limit ỹ →∞, when we move into the main part of region 3 with y∗ ∼ 1.17)

17) Note that when ỹ ∼ 1, we have ŷ ∼ ε−3/4 and y∗ ∼ ε3/4.
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Let us now reconsider the equation for u0 in the newly introduced region 3b:

∂2u0

∂ỹ2
= ε3/4 ∂2

∂s2
∗

{
u0

[
ε3/4

(
u0

2
∓ 3G

2
(±s∗)2/3

)
− (γ + 1)κ−ỹ

]}
. (3.130)

The solution is sought in the form of an asymptotic expansion

u0(s∗, y∗, ε) =
∞∑

n=0

ε
3n
4 ũ(n)(s∗, ỹ) ,

where functions ũ(n) replace u(n) from region 3a. Plugging this into (3.130) yields:

∂2ũ(0)

∂ỹ2
= 0 ,

∂2ũ(1)

∂ỹ2
= −(γ + 1)κ−ỹ

∂2ũ(0)

∂s2
∗
, etc.

The general solution for ũ(0) is

ũ(0) = C(0)(s∗) +D(0)(s∗) ỹ ,

and it has to match with the order ε0 term in (3.129), thus giving C (0) ≡ c0(s∗),

D(0) ≡ 0, so that

ũ(0) = c0(s∗) .

The general solution for ũ(1) is

ũ(1) = C(1)(s∗) +D(1)(s∗) ỹ −
(γ + 1)κ−ỹ

3

6

d2c0
ds2

∗
;

matching this with the ε3/4 term in (3.129) and recalling the expression for c2, we get

C(1) ≡ 0, D(1) ≡ c1(s∗), so that

ũ(1) = c2 ỹ
3 + c1 ỹ .

Continuing the procedure, it can be shown that the entire solution in region 3b has

exactly the same structure as (3.129):

u0(s∗, y∗, ε) = c0 +
∞∑

n=1

(
ε3/4 ỹ3

)n
[
c2n +

c2n−1

ỹ2
+O(ỹ−4)

]
, (3.131)

where O(ỹ−4) represents the contribution of the nonlinear terms in (3.130). The

latter becomes clear when looking at the equation for ũ(2) along with the previously

obtained solutions for ũ(0), ũ(1):

∂2ũ(2)

∂ỹ2
=

∂2

∂s2
∗

{
ũ(0)

[
ũ(0)

2
∓ 3G

2
(±s∗)2/3

]}
− (γ + 1)κ−ỹ

∂2ũ(1)

∂s2
∗
,



CHAPTER 3. VISCOUS-INVISCID INTERACTION 185

and may be proved for all ũ(n), n ∈ N, by induction.

It can easily be spotted from (3.131) that on the scale ỹ ∼ ε−1/4, i.e. y∗ ∼ ε1/2, all

the
(
ε1/4 ỹ

)3n
terms are order one quantities. Therefore, if ȳ = ε1/4 ỹ ≡ ε−1/2 y∗ ∼ 1 is

the variable corresponding to this scale (subsequently referred to as region 3c), then

u0(s∗, y∗, ε) =
∞∑

n=0

c2n(s∗) ȳ
3n +

√
ε

∞∑

n=0

c2n+1(s∗) ȳ
3n+1 +O(ε) , (3.132)

with the O(ε) term being due to the nonlinearity of the main equation.18) Now recall

that the original estimate at the start of this section gave an asymptotic solution for

u0 in terms of the Airy function of y∗/
√
ε ≡ ȳ. The latter obviously has a nontrivial

behaviour when the argument is an order one quantity: ȳ ∼ 1. It remains to prove

that both of the leading-order series in (3.132) can be expressed via the Airy function,

and to make sure that u0 tends to zero when ȳ →∞.

Functions cn(s∗) are defined as the coefficients in front of the highest powers of ŷ

in the respective solutions u(n)(s∗, ŷ) from asymptotic expansion (3.128) in region 3a.

The first three of them are given in (3.127) explicitly. Although in region 3a itself the

terms containing cn have the same order as the rest of the terms with smaller powers

of ŷ (within each given approximation based on the powers of ε), they dominate

the solution for u0 in regions 3b and 3c, ultimately yielding (3.132) in region 3c. It

has already been discussed above that the highest powers of ŷ in u(n+2) are due to

the linear term on the right-hand side of (3.126), namely u(n)ŷ. This leads to the

following recurring relationships for cn(s∗):

c2n(s∗) = − (γ + 1)κ−

3n (3n− 1)

d2c2n−2

ds2
∗

,

c2n+1(s∗) = − (γ + 1)κ−

3n (3n+ 1)

d2c2n−1

ds2
∗

.

Assuming that cn(s∗) are differentiable enough, these equations can be traced back

to c0 and c1:

c2n(s∗) = (−1)n
(

(γ + 1)κ−

9

)n
Γ(2/3)

n! Γ
(
n+ 2

3

) d2n

ds2n
∗

[
c0(s∗)

]
,

c2n+1(s∗) = (−1)n
(

(γ + 1)κ−

9

)n
Γ(4/3)

n! Γ
(
n+ 4

3

) d2n

ds2n
∗

[
c1(s∗)

]
.

(3.133)

18) The series in (3.132) are expected to converge due to a rapid diminishing of the coefficients cn

with n.
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Plugging (3.133) into (3.132) yields:

u0(s∗, y∗, ε) = Γ(2/3)
(z

2

) 1
3
J− 1

3
(z)
[
c0(s∗)

]
+

+
√
ε Γ(4/3) ȳ

(z
2

)− 1
3
J 1

3
(z)
[
c1(s∗)

]
+O(ε) ,

(3.134)

where the operator z contains differentiation with respect to s∗:

z =
2

3

√
(γ + 1)κ− ȳ

3/2 ∂

∂s∗
, (3.135)

and

Jν(z) =
(z

2

)ν ∞∑

n=0

(
− z

2

)2n

n! Γ(ν+n+1)

is the Bessel function of the first kind. If ν = ±1/3, as it is in our case, the Bessel

function may be expressed via the Airy functions (Abramovitz & Stegun 1972):

J± 1
3
(z) =

1

2

(
3

ζ

) 1
2 [√

3 Ai(−ζ)∓ Bi(−ζ)
]
;

here

ζ =

(
3z

2

) 2
3

=
(
(γ + 1)κ−

)1/3
ȳ

(
∂

∂s∗

) 2
3

is also a differential operator, with the fractional derivative defined as follows:

dαf(x)

dxα
=

1

Γ(1−α)

d

dx

∫ x

0

f(t) dt

(x− t)α , <(α) < 1 .

Using the Airy function representation, (3.134) may be written as

u0 =
Γ(2/3) 3

1
6

2

(√
3 Ai(−ζ) + Bi(−ζ)

)[
c0(s∗)

]
+

+
√
ε

Γ(1/3) 3−
1
6

2
(
(γ + 1)κ−

) 1
3

(√
3 Ai(−ζ)− Bi(−ζ)

)( ∂

∂s∗

)− 2
3 [
c1(s∗)

]
+O(ε) .

A Fourier transform of this with respect to s∗ replaces ∂/∂s∗ with iω:

uω =

∫ ∞

−∞
u0(s∗, y∗, ε) e

iωs∗ ds∗ =
Γ(2/3) 3

1
6

2

(√
3 Ai(−Ωȳ) + Bi(−Ωȳ)

)
c0(ω)+

+
√
ε

Γ(1/3) 3−
1
6

2Ω

(√
3 Ai(−Ωȳ)− Bi(−Ωȳ)

)
c1(ω) +O(ε) ,

(3.136)

where

Ω(ω) = (iω)2/3
(
(γ + 1)κ−

)1/3
,
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and c0(ω), c1(ω) are the Fourier transforms of c0(s∗), c1(s∗). Again, the O(ε) terms

(not written explicitly) are due to the nonlinearity.

When working out the inverse transform of (3.136), one has to make a branch-cut

in the plane of complex ω connecting 0 and ∞. If the branch-cut is made in the

upper half-plane, for example along the imaginary axis, then argω = −π for real

negative ω, and argω = 0 for real positive ω. Therefore, for the regular branch of

(iω)2/3 defined according to the rule

arg
[
(iω)2/3

]
=
π

3
+

2

3
argω

we have:

arg
(
−Ω(ω) ȳ

)
=





2π
3
, ω < 0 ,

4π
3
, ω > 0 ,

suggesting that at least one of the Airy functions in (3.136) will grow exponentially

with ȳ. Rewriting (3.136) as

uω = Â(ω) Ai
(
−Ω(ω) ȳ

)
+ B̂(ω) Bi

(
−Ω(ω) ȳ

)
+O(ε) ,

where

Â(ω) =

√
3

2

[
Γ(2/3) 3

1
6 c0(ω) + Γ(1/3)

√
ε

3
1
6 Ω

c1(ω)

]
,

B̂(ω) =
1

2

[
Γ(2/3) 3

1
6 c0(ω)− Γ(1/3)

√
ε

3
1
6 Ω

c1(ω)

]
,

(3.137)

and using the well-known formulae for the analytical continuation of Airy functions

(Abramovitz & Stegun 1972), we get:

uω =





[
B̂ + iÂ

]
e−iπ/6 Ai

(
|Ω| ȳ

)
+
[
B̂ − iÂ

]
eiπ/6 Ai

(
|Ω| ȳ e−2πi/3

)
, ω < 0 ,

2B̂ eiπ/6 Ai
(
|Ω| ȳ

)
+
[
Â− iB̂

]
Ai
(
|Ω| ȳ e−2πi/3

)
, ω > 0 ,

(3.138)

|Ω(ω)| = |ω|2/3
(
(γ + 1)κ−

)1/3
.

Now, since due to the last matching condition in (3.122) u0(s∗, y∗, ε) has to tend

to zero when ȳ →∞, the same should hold for uω, i.e.

lim
ȳ→∞

uω = 0 . (3.139)
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The asymptotic form of Ai
(
|Ω| ȳ

)
contains

exp

{
−2

3

(
|Ω| ȳ

) 3
2

}
, ȳ →∞ ,

which means it exponentially decays with ȳ and satisfies the required condition.

However, Ai
(
|Ω| ȳ e−2πi/3

)
contains the same exponential with plus, leading to an

unbounded growth when ȳ →∞. The only way to satisfy the matching condition for

uω is to set the coefficient in front of Ai
(
|Ω| ȳ e−2πi/3

)
to be zero (3.138), yielding:

B̂ = iÂ , ω < 0 ,

Â = iB̂ , ω > 0 .

The two solutions can be combined together to give:

Â(ω) =
iω

|ω| B̂(ω) , ω ∈ R .

Using the definition of Â, B̂ in (3.137), we get the required link between c0(ω) and

c1(ω):

c0(ω) = −Γ(1/3)

Γ(2/3)

√
ε

(
3(γ + 1)κ−

) 1
3

c1(ω)

|ω| 23
, ω ∈ R . (3.140)

The same result can be obtained if the branch-cut is drawn in the lower half-plane

ω, and therefore is independent on the choice of regular branches in (3.136).

To see how (3.140) works, we are going to assume, subject to subsequent confir-

mation in section 3.3.1, that c1(s∗) ∼ 1 when |s∗| ∼ 1. Thus, equation (3.140) implies

c0 ∼
√
ε on the same scale; according to (3.127), this results in

τw
Rw

G∗(s∗) = ±3G

2
(±s∗)2/3 +O(

√
ε) , (3.141)

and the main asymptotic expansion for the triple deck correction u0 in region 3c

actually starts from the
√
ε term:

u0(s∗, y∗, ε) =
√
ε ū(1/2)(s∗, ȳ) + ε ū(1)(s∗, ȳ) + ... . (3.142)

The ū(1/2) term here combines the first two terms in expression (3.136) for uω, leading

to an order ε2 estimate for the leading-order contributions from the nonlinearity. The
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latter is clearly seen from the structure of the main equation for u0 written in the

internal variables of region 3c:19)

∂2u0

∂ȳ2
+

∂2

∂s2
∗

{
u0

[
(γ + 1)κ−ȳ + ε

(
±3G

2
(±s∗)2/3 − u0

2
+O(1)

)]}
= 0 .

In section 3.3.1 we are going to show that the O(
√
ε) correction in (3.141) to the

outer inviscid solution is crucial for the viscous-inviscid interaction.

The higher-order terms in expansion (3.142) for u0 satisfy the outer matching

condition (3.139) as long as their homogeneous solutions contain only exponentially

decaying Airy functions, providing condition (3.140) holds. Thus, equation (3.140)

obtained after imposing (3.139) on the first two terms in (3.142) is the necessary

condition for the entire function u0 to satisfy (3.139). It turns out to be sufficient for

the analysis of the leading-order viscous-inviscid interaction (see section 3.3.1).

Applying the inverse Fourier transform to (3.140) gives:

c0(s∗) =
1

2π

∫ ∞

−∞
c0(ω) eiωs∗ dω =

Q

2π

∫ ∞

−∞

eiωs∗

|ω| 23

[∫ ∞

−∞
c1(x) e

−iωx dx

]
dω ,

where

Q =

√
ε Γ(1/3)

Γ(2/3)
(
3(γ + 1)κ−

) 1
3

. (3.143)

Splitting the integral with respect to ω into two parts, and swapping the integration

order yields:

c0(s∗) =
Q

2π

∫ ∞

−∞
c1(x)

[∫ ∞

0

eiω(s∗−x) dω

ω2/3
+

∫ ∞

0

e−iω(s∗−x) dω

ω2/3

]
dx .

A general formula for the Gamma function-like integrals reads:

∫ ∞

0

eizt dt

tν
= Γ(1−ν)

(
e

iπ
2
−i arg z

|z|

)1−ν

, ν < 1 , arg z ∈ [0, π] . (3.144)

Thus, ∫ ∞

0

e±iω(s∗−x) dω

ω2/3
=

Γ(1/3)

|s∗ − x|
1
3

e±
iπ
6

sign(s∗−x) ,

and

c0(s∗) =

√
3 Γ(1/3)Q

2π

∫ ∞

−∞

c1(x) dx

|s∗ − x|
1
3

. (3.145)

19) The O(1) term is directly related to O(ε) in the first equation of (3.122).
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Equation (3.145), along with the definition of functions c0(s∗) and c1(s∗) in (3.127),

provides the required second relationship between F∗(s∗) and G∗(s∗) generated in the

inviscid region 3:

τw
Rw

G∗(s∗)−
3G

2

s∗

|s∗|
1
3

=

√
3 Γ(1/3)Q

2πτw

∫ ∞

−∞

d2F∗(x)

dx2

dx

|s∗ − x|
1
3

, (3.146)

Q is defined in (3.143) and contains
√
ε. It shows that due to the predominantly

subsonic nature of the flow in tier 3 the pressure at a given point s∗ is influenced by

the boundary layer displacement over the entire interaction region, both upstream

and downstream of s∗. Equation (3.146) is in agreement with the leading-order terms

in the asymptotic forms (3.64) of F∗ and G∗ when |s∗| → ∞.

PSfrag replacements

s

y∗

ŷ = y∗ ε
− 3

2 ∼ 1

ỹ = y∗ ε
− 3

4 ∼ 1

ȳ = y∗ ε
− 1

2 ∼ 1
y∗ ∼ 1

κ+κ− −σ σ

1

2a 4

3a
3b

3c

3d

Figure 3.7: Regions that had to be considered in order to derive the two integral
equations linking F∗ and G∗.

Finally, the remaining part of region 3 where y∗ ∼ 1, referred to as 3d, turns out

to be passive and only has an exponentially small solution for u0 in it. As a result,

the leading order functions u1, v1 in expressions (3.69) for the velocity components

are very close to the solutions for u and v coming from the outer region 1. The entire

structure of tier 3 with all the subregions and the corresponding inner variables is

demonstrated in Fig. 3.7.
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3.3 Solution of the Interaction Problem

3.3.1 Interaction equation

Now we have all the necessary components to derive the interaction equation for

our problem. Equation (3.111) represents the displacement generated by the viscous

sublayer 5 for a given pressure distribution, whereas equation (3.146) describes the

pressure generated by the inviscid flow in region 3 in response to a given displacement

distribution. Combining the two together and using expression (3.143) for Q yields:

τw
Rw

G∗(s∗)−
3G

2

s∗

|s∗|
1
3

=

√
3

2π

(
Γ(1/3)

)3
(
Γ(2/3)

)2
[

αw
3(γ + 1)κ−

]1/3 √
ε

τw
J(s∗) ,

J(s∗) =

∫ ∞

−∞

dx

|s∗ − x|
1
3

d

dx

∫ x

−∞

d2G∗(ξ)

dξ2

dξ

(x− ξ) 1
3

.

The double integral in J(s∗) can be reduced to the following expression with a single

integral:

J(s∗) =

(
Γ(2/3)

)2

Γ(1/3)

∫ ∞

s∗

d2G∗(ξ)

dξ2

dξ

(ξ − s∗)
2
3

.

Therefore, we get a linear integral equation for the pressure distribution function

G∗(s∗) which describes the viscous-inviscid interaction:

τw
Rw

G∗(s∗)−
3G

2

s∗

|s∗|
1
3

=

√
3
(
Γ(1/3)

)2

2π

[
αw

3(γ + 1)κ−

]1/3 √
ε

τw

∫ ∞

s∗

d2G∗(ξ)

dξ2

dξ

(ξ − s∗)
2
3

.

Introducing the coefficients

g1 =
Rw

τw
G , g2 =

√
3
(
Γ(1/3)

)2

2π

[
αw

3(γ + 1)κ−

]1/3
Rw

τ 2
w

, (3.147)

the interaction equation takes the form

G∗(s∗)−
3g1

2

s∗

|s∗|
1
3

= g2

√
ε

∫ ∞

s∗

d2G∗(ξ)

dξ2

dξ

(ξ − s∗)
2
3

. (3.148)

Note that both g1 and g2 are order one quantities, and that there is a small parameter

ε1/2 in front of the integral in (3.148). This suggests G∗ is actually a function of ε

with the asymptotic expansion

G∗(s∗, ε) = G0(s∗) +
√
εG1(s∗) +O(ε) . (3.149)
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Expansion (3.149) may be used to investigate the basic properties of (3.148). Since

the O(ε) terms in G∗ coincide with the accuracy of (3.148) (swapping κ− for κ+ in g2

gives the same order correction in the downstream region s∗ > 0), and also have the

same order as the neglected O(ε2) terms in the original expansion (3.59) for sublayer

5, the main focus should be made on the G0 and G1 terms for which equation (3.148)

appears to be exact. Plugging (3.149) into (3.148) gives:

G0(s∗) =
3g1

2

s∗

|s∗|
1
3

G1(s∗) = g2

∫ ∞

s∗

d2G0(ξ)

dξ2

dξ

(ξ − s∗)
2
3

= −g1g2

3

∫ ∞

s∗

dξ

ξ | ξ | 13 (ξ − s∗)
2
3

.

It means that G0 simply stands for the outer pressure distribution generated in region

1 resulting in the singular pressure gradient

∂P∗

∂s∗
= G (±s∗)−1/3

in the inner triple deck variables, while G1 provides the leading-order correction due

to the interaction. However, evaluating the integral in the expression for G1 yields

G1(s∗) = −g1g2

s∗
, s∗ > 0 ;

for s∗ < 0 the integral diverges, and G1 is not defined.

The key to understanding this situation is to look at what happens to expansion

(3.149) when s∗ → 0+. Since G0 ∼ s
2/3
∗ and

√
εG1 ∼

√
ε

s∗
, the second term becomes of

the same order as the first one when s∗ ∼ ε3/10, making expression (3.149) invalid in

the O
(
ε3/10

)
vicinity of s∗ = 0. Therefore, another inner scale exists in the interaction

region on which the asymptotic solution of equation (3.148) has to be reconsidered.

If we denote the relevant inner variable as X, then

s∗ = ε3/10X , |X| ∼ 1 ;

recalling that the outer physical coordinate s = σs∗, σ = (εRe)−3/10 � 1, we get:

s = Re−3/10X .

Thus, the inner interaction scale in physical variables is determined only by the

Reynolds number and does not depend on ε.
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A simple estimate suggests that G∗ ∼ G0 ∼ ε1/5 when s∗ ∼ ε3/10. Introducing the

scaled inner pressure distribution

A(X) = ε−1/5G∗(s∗, ε)

and the corresponding inner pressure gradient

B(X) =
dA(X)

dX
≡ ε1/10 dG∗

ds∗
∼ 1 ,

equation (3.148) may be transformed to

B(X)− g1

|X| 13
= g2

∫ ∞

X

d2B(ξ)

dξ2

dξ

(ξ −X)
2
3

. (3.150)

This equation describes the interaction taking place in the innermost part of the

triple deck (see Fig. 3.8).

4

PSfrag replacements
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κ+κ− −σ −Re−
3
10 Re−

3
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1
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3

5

Figure 3.8: Viscous-inviscid interaction is taking place on the scale X ∼ 1 (s ∼
Re−3/10) in the innermost part of the interaction region.

3.3.2 Analytical solution of the interaction equation

Equation (3.150) is solved using a Fourier transform with respect toX. The transform

of |X|−1/3 is given by

(
|X|−1/3

)
ω

=

∫ ∞

0

[
eiωX + e−iωX

]dX
X

1
3

.
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Here the first integral converges when 2πn 6 argω 6 π+2πn, n ∈ Z, and is equal to

Γ(2/3)

[
e

iπ
2

+2πin

ω

]2/3

,

while the second one converges when 2πn− π 6 argω 6 2πn, n ∈ Z, and is reduced

to

Γ(2/3)

[
e−

iπ
2

+2πin

ω

]2/3

.

Therefore, the transform of |X|−1/3 exists only for real ω (argω = πk, k ∈ Z):

(
|X|−1/3

)
ω

=
Γ(2/3)

|ω| 23
[
e

iπ
3 + e−

iπ
3

]
=

Γ(2/3)

|ω| 23
, ω ∈ R .

This function, however, may be continued analytically to the complex plane when

calculating the inverse Fourier transform.

The Fourier transform of the integral in the right-hand side of (3.150) exists for

2πn 6 argω 6 π + 2πn, n ∈ Z, and is equal to

−ω2Bω Γ(1/3)

[
e

iπ
2

+2πin

ω

]1/3

,

where

Bω =

∫ ∞

−∞
B(X) e−iωX dX .

Combining these results together, we obtain the following solution for Bω:

Bω =
g1 Γ(2/3)

|ω| 23
[
1 + g2 Γ(1/3) |ω| 53 e iπ

6
signω

] , ω ∈ R . (3.151)

In order to obtain the pressure gradient distribution B(X), one needs to find the

inverse transform of (3.151):

B(X) =
1

2π

∫ ∞

−∞
Bω e

iωX dω .

For the sake of convenience, we are going to apply the affine transform

X ←→
(
g2 Γ(1/3)

)3/5
X , ω ←→ ω

(
g2 Γ(1/3)

)3/5 ,

which preserves eiωX and leaves only numerical coefficients in the integrand with

respect to ω:

B(X) =
g1 Γ(2/3)

2π
(
g2 Γ(1/3)

)1/5
∫ ∞

−∞

eiωX dω

|ω| 23
[
1 + |ω| 53 e iπ

6
signω

] . (3.152)
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This function asymptotically tends to

B∗(X) =
g1(

g2 Γ(1/3)
)1/5

1

|X| 13
when |X| → ∞, where B∗(X) stands for the singular solution coming from region 1.

The inner variable X in (3.152) is related to s∗ and s according to

s∗ = ε3/10
(
g2 Γ(1/3)

)3/5
X , s = σs∗ = Re−3/10

(
g2 Γ(1/3)

)3/5
X ; (3.153)

this definition is going to be used henceforth. Note that parameter g2 (defined in

(3.147)) is a positive order-one quantity, and the g2 Γ(1/3) multiple has been intro-

duced into (3.153) only to make the integral in (3.152) independent on any external

parameters.

Solution (3.152) can be further simplified using analytical continuation of the in-

tegrand into the complex plane and applying Cauchy’s theorem for contour integrals

of analytical functions. This procedure is obviously different for positive and nega-

tive X due to the presence of eiωX in the integral. Let us consider these two cases

separately.

1: X > 0. In this case the contour can be closed using an infinite arc in the upper

half-plane. However, the non-analytical functions |ω| and signω require a branch-

cut to be made from the origin through the upper half-plane (in this particular

case), in order to separate different regular branches. On the left of the branch-cut

|ω| = −ω, signω = −1, while on the right |ω| = ω, signω = 1, thus providing the

required analytical continuation. It will be convenient to draw the branch-cut along

the positive imaginary axis (see Fig. 3.9), and to consider two separate contours in

the shape of a quarter of a circle.

The continuation of function q(ω) = 1 + |ω|5/3 e iπ
6

signω has a single zero at ω =

ω0 = i. Indeed, when 0 6 argω < π/2, we have:

q(ω) = 1 + ω5/3 e
iπ
6 , q

(
e

iπ
2
−i0) = 0 ;

on the other hand, if π/2 < argω 6 π,20) then

q(ω) = 1 +
(
ω e−iπ

)5/3
e−

iπ
6 , q

(
e

iπ
2

+i0
)

= 0 .

20) These values of the argument are chosen for convenience and imply that |ω| = ω e−iπ on the
left of the branch-cut.
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Figure 3.9: Integration contours in the plane of complex ω depending on the sign of
X in the inverse Fourier transform.

The singular point ω0 is a simple pole for the integrand in (3.152), because dq(ω)
dω

∣∣
ω=ω0

6=

0. Its presence on the imaginary axis suggests that both integrals along the sides of

the branch-cuts will have infinitely-small arcs around ω0 (see Fig. 3.9), contributing

half a residue each. As the radius of the arcs tends to zero, the remaining integrals

over the sides of the branch-cut become principle-value integrals, eventually leading

to the following real solution for B(X) when X > 0:

B(X) =
g1 Γ(2/3)

(
g2 Γ(1/3)

)1/5

[√
3

2π
−
∫ ∞

0

e−tX dt

t
2
3

[
1− t 5

3

] +
3

10
e−X

]
, X > 0 . (3.154)

The separate exponential term is due to the residue in the simple pole ω0. According

to (3.154),

B(0+) =
3g1 Γ(2/3)

10
(
g2 Γ(1/3)

)1/5

[
1 +

√
3

(
1 +

2√
5

)]
, (3.155)

and B(X) is finite on the right of X = 0.21)

2: X < 0. In this case the continuation is performed into the lower half-plane

(=(ω) < 0), which needs to have a branch-cut; it is convenient to draw the latter

along the negative imaginary axis as shown in Fig. 3.9, and consider two separate

contour in the shape of a quarter of a circle. As it is the case with the upper half-

plane, |ω| = ω, signω = 1 on the right of the branch-cut, and |ω| = −ω, signω = −1

on the left, thus providing the required analytical continuations. Applying Cauchy’s

21) Recall that the original inviscid pressure gradient developed a singularity of | s |−1/3 as s→ 0.
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integral theorem to the contours in Fig. 3.9, (3.152) can be transformed to following

real solution for B(X) when X < 0:

B(X) =
2
√

3 g1 Γ(2/3)

π
(
g2 Γ(1/3)

)1/5
∫ ∞

0

etX dt

t
2
3

[
3 +

(
1− 2 t

5
3

)2] , X < 0 . (3.156)

According to (3.156),

B(0−) =

√
3 g1 Γ(2/3)

10
(
g2 Γ(1/3)

)1/5

[
1

sin
(
π
15

) +
1

cos
(
π
10

)
]
. (3.157)

Since

cos
(
π
10

)
=

√
5 +
√

5

2
√

2
, sin

(
π
15

)
=

1

8

[√
2 (5 +

√
5)−

√
6 (3−

√
5)

]
,

one can show from (3.157), (3.155) that B(0−) = B(0+), i.e. the triple deck correction

to the pressure gradient is continuous at X = 0.

Scaling solution (3.152) in such a way that the right-hand side does not depend

on any external parameters and tends to |X|−1/3 when |X| → ∞, we get:

B̂(X) =
B(X)

(
g2 Γ(1/3)

)1/5

g1

=
Γ(2/3)

π

∫ ∞

0

[
cos(ωX) + ω5/3 cos(ωX − π/6)

1 +
√

3 ω5/3 + ω10/3

]
dω

ω2/3
.

This definition provides a similarity criterion for the pressure distribution. The scaled

pressure gradient is plotted in Fig. 3.10, with the dashed lines corresponding to the

scaled singular solution

B̂∗(X) =
B∗(X)

(
g2 Γ(1/3)

)1/5

g1

≡ 1

|X| 13

predicted by the classical boundary layer theory.

The triple deck solution for B(X) is continuous thanks to the viscous-inviscid

interaction taking place on the scale |X| ∼ 1 (| s | ∼ Re−3/10). However, dB/dX

appears to have a discontinuity at X = 0; the latter follows directly from (3.154) and

(3.156). This higher-order discontinuity may be eliminated by introducing a further

inner region where the flow is governed by the full Navier–Stokes equations. Also

note that B̂(X) is positive for all X, so that the entire pressure gradient distribution

is adverse when G = +1 and favorable when G = −1.
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Figure 3.10: Pressure gradient distribution across the inner part of the interaction
region (solid line). The dashed curves correspond to the singular pressure gradients
predicted by the classical boundary layer theory.

With the known pressure distribution in the interaction region we can now obtain

the functions κ(ω) and θ(ω) from the Fourier integral representation of the solution

in region 5. Re-denoting the original functions κ and θ from (3.104) as κε(ω) and

θε(ω), we write the integral solution for dG∗/ds∗ in the following way:

dG∗

ds∗
= − aΓ(2/3)

3α
2/3
w Γ(1/3)

∫ ∞

0

κε(ω∗) sin
(
θε(ω∗) + ω∗s∗ − π/3

)

ω
2/3
∗

dω∗ . (3.158)

In order to relate this to the known solution (3.152) for B(X), one has to perform

the re-scaling:

s∗ = ε3/10
(
g2 Γ(1/3)

)3/5
X , ω∗ = ε−3/10

(
g2 Γ(1/3)

)−3/5
ω .

Since by definition B(X) = ε1/10 dG∗/ds∗, the re-scaling of (3.158) yields:

B(X) = − aΓ(2/3)

3α
2/3
w Γ(1/3)

(
g2 Γ(1/3)

)1/5
∫ ∞

0

κ(ω) sin
(
θ(ω) + ωX − π/3

)

ω2/3
dω , (3.159)

where

κ(ω) = κε

(
ε−3/10

(
g2 Γ(1/3)

)−3/5
ω
)
,

θ(ω) = θε

(
ε−3/10

(
g2 Γ(1/3)

)−3/5
ω
) (3.160)
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are the new re-scaled functions. The latter obviously retain the basic properties of

the original functions κε and θε:

κ(−ω) = κ(ω) , θ(−ω) = −θ(ω) , ω ∈ R ,

plus

κ(0) = 1 , θ(0) = 0 .

The first two properties allow to rewrite (3.159) as

B(X) =
aΓ(2/3)

6α
2/3
w Γ(1/3)

(
g2 Γ(1/3)

)1/5
∫ ∞

−∞

κ(ω) eiθ(ω)+iωX+ iπ
6

signω

|ω| 23
dω .

Comparing this with (3.152) and recalling the definitions of a and g1 (see (3.40),

(3.147)), we get:

κ(ω) eiθ(ω) =
2√
3

e−
iπ
6

signω

[
1 + |ω| 53 e iπ

6
signω

] , ω ∈ R . (3.161)

It is clear from (3.161) that both κ(ω) and θ(ω) are not analytical functions, although

they can be continued to the complex plane if necessary. Moreover, the limiting values

of (3.161) are different when ω → 0+ and ω → 0−:

(
κ eiθ

)∣∣
ω=0+ =

2 e−
iπ
6

√
3

,
(
κ eiθ

)∣∣
ω=0−

=
2 e

iπ
6

√
3
. (3.162)

The value of κ eiθ at ω = 0 should be interpolated as an average of the above limiting

values on the left and on the right of the discontinuity:

κ(0) eiθ(0) =

(
κ eiθ

)∣∣
ω=0−

+
(
κ eiθ

)∣∣
ω=0+

2
= 1 ,

yielding κ(0) = 1 and θ(0) = 0, as required. This property follows from a well-known

result for the values of a Fourier integral at its points of discontinuity, and from

the fact that κ(ω) eiθ(ω) is actually expressed via a Fourier transform of the known

function B(X). To illustrate the property, it is helpful to plot κ sin θ versus κ cos θ as

ω runs from −∞ to ∞, ω ∈ R (see Fig. 3.11). Both parts of the plot are symmetric

with respect to the real axis, resulting in the real solution for B(X). The curves leave

the origin when ω → ±∞ tangent to the lines with the direction vectors e∓
iπ
3 , and

enter the points 2√
3
e∓

iπ
6 when ω → 0±.
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Figure 3.11: Real and imaginary parts of the complex function Kω = κ(ω) eiθ(ω)

plotted for all real values of ω.

Since functions κ(ω) and θ(ω) are known, one could reconstruct the stream func-

tion in region 5 using (3.101).22) The ultimate goal, however, is to obtain the skin

friction distribution throughout the interaction region, demonstrating how the bound-

ary layer separation develops.

3.3.3 Skin friction distribution in the interaction region

The skin friction distribution is given by

tw(s∗) = µw
∂U

∂Y

∣∣∣∣
Y=0

≡ µw
Rw

∂2ψ∗

∂Y 2
∗

∣∣∣∣
Y∗=0

,

where s∗, Y∗ are the local coordinates in region 5, and ψ∗ is the relevant stream

function. The latter can be represented in terms of an expansion based on ε (see

(3.59)):

ψ∗ = ψ(0)
∗ (s∗, Y∗) + εψ(1)

∗ (s∗, Y∗) + ... .

Since by definition

∂2ψ
(0)
∗

∂Y 2
∗

∣∣∣∣
Y∗=0

= τw ,

with τw being proportional to the known skin friction of an unperturbed flow, we get:

tw(s∗) =
µw
Rw

[
τw + ε

∂2ψ
(1)
∗

∂Y 2
∗

∣∣∣∣
Y∗=0

+O(ε2)

]
. (3.163)

22) Note that according to re-definitions of κ and θ in (3.160) function Kω from (3.101) is now
equal to κε(ω) eiθε(ω).



CHAPTER 3. VISCOUS-INVISCID INTERACTION 201

In section 3.2.2 we introduced the function Φ(s∗, Y∗) directly related to the ψ
(1)
∗ term

in (3.163):

∂2ψ
(1)
∗

∂Y 2
∗

= Φ + ã lnY∗ + c̃ , (3.164)

where

ã = 3a , c̃ =
9a

2
+ 2c , c =

a

2
lnσ + (b+ a1) .

Constant a is given in (3.40), a1 is defined in (3.44), and b is a free controlling

parameter which comes from the global solution and affects the structure of the pre-

separated boundary layer. The dependence of ∂2ψ
(1)
∗ /∂Y 2

∗ on X (or s∗) is due to

Φ(s∗, Y∗) only. The latter can be represented by Fourier integral (3.90) based on the

Airy function. A formal differentiation of (3.90) with respect to Y∗, along with (3.93),

yields:

∂Φ

∂Y∗
=

3a

2Ai(0)Y∗

[∫ −∞

0−
Ai
(
λ(ω)Y∗

) d

dω

[
Kωe

iωs∗
]
dω+

+

∫ ∞

0+

Ai
(
λ(ω)Y∗

) d

dω

[
Kωe

iωs∗
]
dω

]
.

(3.165)

Here λ(ω) =
(
iωτw
µw

) 1
3
, Kω = κε(ω) eiθε(ω), with κε(ω) and θε(ω) being related to

the known functions κ(ω) and θ(ω) via (3.160), and the lower limits restrict the

integration domains to the regions where Kω is continuous. It can be easily shown

that these integrals converge even in the case Y∗ = 0 when the Airy function becomes

a constant, while the original integral (3.90) diverges in the same limit. Our aim

is to find the skin-friction distribution, and in order to do this we have to make a

correction to (3.90) using (3.165), so that Φ may be evaluated at Y∗ = 0.

Since Φ ∼ Y −3
∗ when Y∗ → ∞ (see (3.83)), expression (3.165) can be integrated

with respect to Y∗ from infinity, thus giving:

Φ(s∗, Y∗) =

∫ Y∗

∞

∂Φ(s∗, t)

∂t
dt .

Plugging (3.165) for ∂Φ/∂t, and swapping the integration order, we get:

Φ(s∗, Y∗) =
3a

2Ai(0)

[∫ −∞

0−

(∫ Y∗

∞

Ai
(
λ(ω)t

)

t
dt

)
d

dω

[
Kωe

iωs∗
]
dω+

+

∫ ∞

0+

(∫ Y∗

∞

Ai
(
λ(ω)t

)

t
dt

)
d

dω

[
Kωe

iωs∗
]
dω

]
.
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If one integrates this by parts with respect to ω and uses the known limiting values

of κ(ω) and θ(ω) when ω → 0± (see (3.162)), it will ultimately lead to a cancellation

of the integration with respect to t, so that Φ may be expressed as follows:

Φ(s∗, Y∗) =
a

2Ai(0)
−
∫ ∞

−∞

[
2√
3
e−

iπ
6

signω −Kω e
iωs∗

]
Ai
(
λ(ω)Y∗

)
dω

|ω| . (3.166)

The principal-value integral over ω ∈ R excludes the singular point ω = 0; its two

fragments (for negative and positive ω) converge at ω = 0 independently because

Kω e
iωs∗ ≡ κε(ω) eiθε(ω)+iωs∗ =

2√
3
e−

iπ
6

signω
[
1 +O(ω)

]
, |ω| → 0 .

Note that changing ω to −ω in the integrand in (3.166) is equivalent to taking

complex-conjugate of it (recall that λ(ω) = |λ(ω)| e iπ
6

signω, ω ∈ R). Therefore,

Φ(s∗, Y∗) =
a

Ai(0)
<
{∫ ∞

0+

[
2√
3
e−

iπ
6 −Kω e

iωs∗

]
Ai
(
λ(ω)Y∗

)
dω

ω

}
. (3.167)

This form allows to study the asymptotic behaviour of Φ when Y∗ → 0, ultimately

leading to the required expression for the skin friction.

Although the integral in (3.167) does converge at 0+ regardless of the Airy func-

tion, the latter becomes crucial for the convergence of the first term at infinity, and

we cannot just set Y∗ = 0 in the expression. For any fixed ω0 ∈ (0,∞) the integral

may be split into two fragments with different types of convergence:

J1 =

∫ ω0

0+

[
2√
3
e−

iπ
6 −Kω e

iωs∗

]
Ai
(
λ(ω)Y∗

)
dω

ω
,

J2 =

∫ ∞

ω0

[
2√
3
e−

iπ
6 −Kω e

iωs∗

]
Ai
(
λ(ω)Y∗

)
dω

ω
.

The first of them has a simple asymptotic form when Y∗ → 0:

J1 = Ai(0)

∫ ω0

0+

[
2√
3
e−

iπ
6 −Kω e

iωs∗

]
dω

ω
+O(Y∗) .

However, the second integral is more subtle and requires a sequence of transformations

to be performed in order to obtain that

J2 = −Ai(0)

∫ ∞

ω0

Kω e
iωs∗ dω

ω
−

−2
√

3

[
Ai(0) e−

iπ
6 ln
(
Y∗ ω

1/3
0

)
+ Λ

∫ ∞

0

ln t Ai ′
(
Λt e

iπ
6

)
dt

]
+O(Y∗) , Y∗ → 0 ,
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where

Λ =

(
τw
µw

) 1
3

, Ai ′(z) =
dAi(z)

dz
.

Combining the above results, we get:

lim
Y∗→0

{
Φ(s∗, Y∗) + 3a lnY∗

}
= −3a ln

(
ω

1/3
0

)
−

−a<
{∫ ω0

0

[
Kω e

iωs∗ − 2√
3
e−

iπ
6

]
dω

ω
+

∫ ∞

ω0

Kω e
iωs∗ dω

ω

}
−

−2aΛ
√

3

Ai(0)
<
{∫ ∞

0

ln t Ai ′
(
Λt e

iπ
6

)
dt

}
.

(3.168)

The right-hand side of (3.168) is independent on the choice of ω0 (this may simply be

checked by differentiation), and so we are going to consider the limit ω0 → 0+. Due

to Cauchy’s integral theorem,

J =

∫ ∞

0

ln t Ai ′
(
Λt e

iπ
6

)
dt =

1

Λ e
iπ
6

[∫ ∞

0

ln t Ai ′(t) dt+ Ai(0) ln
(
Λt e

iπ
6

)]
,

providing that ln z = ln |z|+ i arg z, i.e. the main branch of the logarithmic function

is used. Since ∫ ∞

0

ln t Ai ′(t) dt =
Ai(0)

6

[
π√
3

+ 4γe − ln 3

]
,

where

γe = −
∫ ∞

0

ln t e−t dt ≈ 0.56

is Euler’s constant, we have:

<{J} =
Ai(0)

2
√

3 Λ

[
π√
3

+ 2γe +
3

2
ln 3 + lnαw

]
, αw =

τw
9µw

.

As for the two integrals in (3.168) containing Kω, they yield the following asymptotic

form when ω0 → 0+:
∫ ω0

0

[
Kω e

iωs∗ − 2√
3
e−

iπ
6

]
dω

ω
= O(ω0) ,

∫ ∞

ω0

Kω e
iωs∗ dω

ω
= −2 e−

iπ
6

√
3

lnω0

(
1 +O(ω0)

)
−
∫ ∞

0+

lnω
d

dω

[
Kω e

iωs∗
]
dω .

Plugging the above results into (3.168) gives the required asymptotic behaviour of

Φ(s∗, Y∗) when Y∗ → 0:

lim
Y∗→0

{
Φ(s∗, Y∗) + 3a lnY∗

}
= a

∫ ∞

0+

lnω
d

dω

[
κε(ω) cos

(
θε(ω) + ωs∗

)]
dω−

−a
[
π√
3

+ 2γe +
3

2
ln 3 + lnαw

]
.
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It remains to substitute this into (3.164) to obtain the order-ε correction to the skin

friction distribution:

∂2ψ
(1)
∗

∂Y 2
∗

∣∣∣∣
Y∗=0

= a

[
9

2
− π√

3
− 2γe −

3

2
ln 3− lnαw

]
+ a ln σ + 2 (b+ a1)+

+a

∫ ∞

0+

lnω∗
d

dω∗

[
κε(ω∗) cos

(
θε(ω∗) + ω∗s∗

)]
dω∗ , σ =

(
εRe

)− 3
10 .

If we apply the transformation

s∗ = ε3/10
(
g2 Γ(1/3)

)3/5
X , ω∗ = ε−3/10

(
g2 Γ(1/3)

)−3/5
ω

to the integrand in the above expression, functions κε(ω∗), θε(ω∗) will be converted

into κ(ω), θ(ω), and a ln ε term will be produced. Remarkably, the latter happens to

cancel the ln ε term contained in lnσ, eventually leading to the following skin friction

distribution throughout the innermost part of the interaction region (|X| ∼ 1):

tw(X) =
µw τw
Rw

+

+ ε
µw a

Rw

[
− 3

10
ln Re + q +

∫ ∞

0+

lnω
d

dω

(
κ(ω) cos

(
θ(ω) + ωX

))
dω

]
+

+O(ε2) ,

(3.169)

where

q =
2 (b+ a1)

a
+

9

2
− π√

3
− 2γe +

3

5
ln
(
g2 Γ(1/3)

)
− 3

2
ln 3− lnαw = O(1) ,

κ(ω), θ(ω) are given by (3.161), and the main parameter a is defined in (3.40).23)

From (3.169) it can easily be spotted that the first three terms are constants which

provide a background for the function of X described by the Fourier integral

J(X) =

∫ ∞

0+

lnω
d

dω

[
κ(ω) cos

(
θ(ω) + ωX

)]
dω . (3.170)

This function, plotted in Fig. 3.12 along with its derivative

J ′(X) =

∫ ∞

0+

κ(ω) sin
(
θ(ω) + ωX

)
dω ,

23) Parameters a1 and b are less important since they only appear as additive constants to the
Fourier integral in (3.169), while parameter a multiplies the integral.
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does not depend on any parameters of the flow. It has a unique minimum when X =

X∗ ≈ 0.6, and is equivalent to ln |X| when |X| → ∞; the latter enables matching with

solution (3.42) in the upstream sublayer 2b, and also provides an additional boundary

condition for the downstream sublayer. Note that J ′′(X) develops a discontinuity at

X = 0, revealing the limitations of the classical triple deck model. To resolve the

singularity in J ′′(X), one normally needs to consider a further inner region where

the flow is described by the full Navier–Stokes equations. However, these further

corrections to the triple deck theory are clearly beyond the scope of the current

study which was aimed to provide a smooth solution for the pressure gradient and

skin friction in the vicinity of the curvature break.
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Figure 3.12: Function J(X) describing the skin friction distribution across the inner-
most part of the interaction region, left, and its first derivative, right.

The shape of J(X) with the distinct minimum suggests there is a possibility

for a confined area with negative skin friction to exist, indicating the presence of a

small recirculation zone around the break in wall curvature usually referred to as

a separation bubble (see Fig. 3.13). If the upstream pressure gradient is adverse,

i.e. G = +1 and consequently a > 0, then the first two terms in (3.169) may cancel

each other in the leading order:

τw −
3

10
εa ln Re = O(ε) . (3.171)

In this case the boundary layer enters the interaction region in a pre-separated state,
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Figure 3.13: A typical confined recirculation zone (separation bubble) formed due to
an adverse pressure gradient.

and negative skin friction can occur in the order-ε approximation in (3.169). The

estimate (3.171) is equivalent to the following asymptotic expansion of ε based on

negative integer powers of ln Re:

ε(Re) =
k0

ln Re

[
1 +

k1

ln Re
+ ...

]
, k0 =

10 Γ(2/3) τ 2
w

9α
2/3
w Rw

, (3.172)

with k1 being a controlling parameter which affects the size of the separation bubble.

However, one should bear in mind that all of the above solutions, including the skin

friction distribution (3.169), were obtained in the assumption that ε � 1
lnRe

needed

for the expansion (3.36) in region 5 to be valid. Therefore, (3.169) does not hold

when ε is estimated according to (3.172), and the very onset of the separation needs

to be explained by a different theory.

It is worth mentioning that the case of ε ∼ 1
ln Re

was studied numerically by

Buldakov & Ruban (2002) who discovered a local recirculation zone (confined in the

interaction region) formed due to the singular pressure gradient ∂p/∂s = ε (−s)−1/3.

The relevant theory of the incipient separation caused by this pressure gradient is yet

to be developed.



Chapter 4

Conclusions

Looking back on a century long development in the asymptotic theory of separated

flows, it is clear that, despite a very good progress, certain problems remain unre-

solved. In particular, very little is still known about the nature of separation at

transonic speeds, and the present work was aimed to address one of the important

questions in this area. It was previously demonstrated by Messiter & Hu (1975) that

a discontinuity in wall curvature is not capable of causing boundary layer separation

both at subsonic and supersonic speeds. However, one might expect a different be-

haviour at transonic speeds. The main goal of this work, therefore, was to investigate

whether boundary layer separation takes place due to a curvature break when the

flow around it is transonic.

Firstly, guided by the well-known hierarchical structure of Prandtl’s classical

boundary layer theory, we considered an inviscid transonic flow in the vicinity of

a curvature break assuming the separation is local (Chapter 2). This study revealed

a complicated physical picture of the flow depending on the ratio of the curvatures.

In particular, we discovered a certain type of supersonic flows which decelerate to

subsonic speeds without a shock wave, transonic Prandtl–Meyer flow and supersonic

flows with a weak shock. It was also shown that extending the flow beyond the

limiting characteristic is both the necessary and the sufficient condition of a shock

formation. As a consequence, a fundamental link between the local and the global

flow patterns is observed in our problem. Eventually, from an asymptotic analysis of

207
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the Karman–Guderley equation it was demonstrated that the curvature discontinuity

leads to the singular pressure gradients ∂p/∂s ∼ G∓ (∓s)−1/3 upstream and down-

stream of the break point respectively. In order to find the amplitude coefficients

G∓, we performed computations and employed the hodograph method along with the

so-called phase portrait of the flow.

With the known pressure distribution generated by the inviscid flow near the

curvature break, we turned the focus on analyzing how this distribution affects the

boundary layer (Chapter 3). It was discovered that the singular pressure gradient

proportional to (−s)−1/3 evokes a kind of a ‘resonance’ in the boundary layer upstream

of the singularity, significantly changing its displacement effect as compared to other

known cases. The relevant solution for the viscous sublayer, a region at the bottom

of the boundary layer mostly affected by the outer pressure distribution, appears to

exist only for a favourable pressure gradient upstream, i.e. for the case of G− < 0,

and becomes complex when G− changes sign to positive.

This information suggested that the adverse pressure gradient actually causes

separation well ahead of the curvature discontinuity. However, since there should

always be a smooth transition between different physical regimes, we expected the

real solution to exist at least for small positive values of G− when the curvature

break is also small. This allowed to develop an asymptotic theory of the incipient

viscous-inviscid interaction in our particular problem. Our analysis of the interaction

between the boundary layer and the inviscid transonic flow which takes place near the

weak curvature break lead to a typical three-tier structure of the flow (triple deck). It

appeared to be possible to construct analytical solutions in all the tiers of the triple

deck when

Re−1/6 � |G−| �
1

ln Re
,

where Re is the flow’s Reynolds number, assumed to be large. As a result, the

interaction equation, describing how the pressure perturbations are converted into

the displacement and vice versa, was derived in a closed form. Remarkably, in this

case the displacement was found to be generated mainly in the overlapping region

between the viscous sublayer and the main inviscid part of the boundary layer. At
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the same time the flow in all three tiers of the triple deck has predominantly subsonic

features, and the transonic nature of the viscous-inviscid interaction is largely due to

the cumulative effects in the boundary layer upstream of the singularity. As it was the

case in the work by Ruban & Turkyilmaz (2000), the structure of the boundary layer

ahead of the interaction region is largely affected by the singular pressure gradient

generated in the inviscid transonic flow. Consequently, the background on which the

interaction develops appears to be different.

The analytical solution of the interaction equation revealed a local minimum in the

skin friction distribution near the curvature break, indicating that a local recirculation

zone (also called a separation bubble) may develop for stronger discontinuities in wall

curvature. In fact, the recirculation zone is formed when the ratio of the curvatures

is estimated as

κ+

κ−
= 1− k̂0

ln Re
+

k̂1

(ln Re)2
+ ... ,

where k̂0 is a fixed positive order one quantity depending on certain physical parame-

ters of the flow, and k̂1 is an order one controlling parameter which affects the size of

the separation bubble.1) These results suggest that boundary layer separation does

take place due to a curvature break at transonic speeds. Nevertheless, the relevant

theory of the incipient separation caused by the pressure gradient

∂p

∂s
∼ 1

ln Re
(−s)−1/3

is yet to be developed.

Our theoretical prediction may be helpful in improving aerodynamic characteris-

tics of airplanes by suggesting to avoid curvature breaks on the aerodynamic surfaces.

The study also leaves few open questions.

First of all, both the incipient and the large-scale separation still need to be stud-

ied theoretically. The incipient separation is characterized by a transition between

two different asymptotic solutions for the boundary layer upstream of the singular-

ity, posing certain difficulties for a correct mathematical description of the flow in

the viscous sublayer. The large-scale separation implies introducing a free streamline

1) Parameters k̂0, k̂1 are related to the constants k0 and k1 from expansion (3.172).
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into the model of the inviscid transonic flow, and is likely to involve solving nonlinear

equations in at least two tiers of the triple deck numerically. The free streamline sce-

nario would explain why the boundary layer equations yield complex solutions in the

case of strong adverse pressure gradients upstream of the singularity (section 3.1.2).

It may also be possible to obtain some analytical solutions for the second special

case leading to a small upstream pressure gradient (section 3.1.3). However, this

would require to deal with a complicated inviscid flow pattern including the limiting

characteristic and a weak shock, and solution of the interaction problem is likely to

rely on the success of numerical methods. Since this particular inviscid flow regime

is close to the transonic Prandtl–Meyer flow, we expect a finite distance singularity

to develop in this case (Ruban et al. 2006).

Finally, it might be worth considering the effect of small displacements of the

sonic point with respect to a curvature break on the separation phenomenon. The

shift is going to create local subsonic/supersonic zones surrounding the curvature

discontinuity; this is likely to diminish the size of the separation bubble since no

separation should exist due to a curvature break at essentially subsonic or supersonic

speeds (Messiter & Hu 1975). It might be possible to establish a criterion for the

degree of the sonic point shift required to completely suppress the bubble formation

in the incipient separation regime.
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Appendix

Navier–Stokes Equations in The

Curvilinear Coordinates

The general vector form of the steady Navier–Stokes equations for the scaled param-

eters of a compressible Newtonian fluid reads:

div(ρv) = 0 ,

ρ(v∇)v = −∇p+
1

Re

[
2 Div(µD)− 2

3
∇(µ divv)

]
,

ρ(v∇)h = (v∇)p+
1

Re

[
2µD

2 − 2

3
µ(divv)2 +

1

Pr
div(µ∇h)

]
.

Here v stands for the velocity vector, ρ for density, p for pressure, µ for dynamic

viscosity, h for enthalpy, Re for Reynolds number, Pr for Prandtl number, and D is

the rate-of-strain tensor:

D =

∥∥∥∥∥∥
D11 D12

D21 D22

∥∥∥∥∥∥
=

∥∥∥∥∥∥

∂u
∂x

1
2

(
∂u
∂y

+ ∂v
∂x

)

1
2

(
∂v
∂x

+ ∂u
∂y

)
∂v
∂y

∥∥∥∥∥∥
,

with x, y being the Cartesian coordinates and u, v – the relevant velocity compo-

nents.1) Finally,

D
2 = D2

11 +D2
22 + 2D2

12 ,

and Div denotes the divergence of a tensor. The above system needs to be closed by

specifying the function µ(h), as well as the equation of state.

1) We restrict our attention to the two-dimantional case for the sake of simplicity.
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In our analysis of the boundary layer and the interaction region (Chapter 3) the

curvilinear coordinates (s, r) related to the surface of a rigid body are used (Fig. 3.1).

This affects the form of the Navier–Stokes equations through addition of extra ‘cen-

trifugal’ terms. There is no need to list the complete set of the Navier–Stokes equa-

tions written in the curvilinear coordinate system because of the degeneration which

takes place in different regions of the flow. For example, in the viscous sublayer 2b

(Fig. 3.4) and consequently in the lower tier 5 of the triple deck the flow is slow

and behaves like incompressible, therefore excluding the thermodynamics from the

system. On the other hand, the flow in regions 2a, 3 and 4 is predominantly inviscid,

effectively cancelling the groups of terms with the Reynolds number. However, the

continuity equation and the inertial terms in the momentum equation are always

present, and their structure in the curvilinear coordinates is obviously crucial for the

correct description of the flow in the interaction region. Thus, we are going to write

only these terms explicitly, leaving all the other terms of the Navier–Stokes equations

in the vector form as given above.

Let s, r be the curvilinear coordinates and vτ , vn – the relevant velocity compo-

nents. In the new coordinates the continuity equation has the form

1

H

∂(ρvτ )

∂s
+
∂(ρvn)

∂r
+

κρvn
H

= 0 ,

where κ(s) stands for the local curvature of the surface and H(s, r) = 1 + κ(s) r.

The convective terms are converted to

(v∇)v =
vτ
H

∂

∂s

∥∥∥∥∥∥
vτ

vn

∥∥∥∥∥∥
+ vn

∂

∂r

∥∥∥∥∥∥
vτ

vn

∥∥∥∥∥∥
+

κ vτ
H

∥∥∥∥∥∥
vn

−vτ

∥∥∥∥∥∥
.

Therefore, the source terms have been added to all of the expressions as a result of

the transformation.


