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Abstract

We present a constructed explicit example of a three-dimensional Filippov
type flow where we show the birth of multiple attractors in grazing-sliding
bifurcations. To the best of our knowledge, it is the first such an example
of a Filippov type flow where grazing-sliding bifurcation is shown to trigger
birth of multiple attractors, reported in the literature. Three qualitatively
different scenarios are shown; namely, birth of period-two and period-three
stable orbits with one sliding segment, chaotic attractor coexisting with sta-
ble period-three orbit characterised by a segment of sliding motion, and a
coexistence of a period-three sliding orbit with two sliding segments and a
limit cycle with no sliding segments. Our work reveals an important feature
of the normal form map used to construct the Filippov flow that would pro-
duce the desired dynamics. Namely, due the fact that the normal form that
we use is valid only locally around the grazing-sliding bifurcations, the scale
of the variation of the bifurcation parameter past the grazing-sliding had
to be carefully chosen to see the dynamics predicted by the map. In other
words, sufficiently small neighbourhood where the normal form is valid, in
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the context of nonsmooth bifurcations, seems to mean different order of mag-
nitude in the range of the bifurcation parameter variation than in the context
of smooth bifurcations.

Keywords: grazing-sliding, multiple attractors, Filippov flows, explicit
example
2000 MSC: 05.45.Ac, 05.45 -a, 02.30.Oz

1. Introduction

The dynamics of systems characterised by the continuous and discrete
evolution has recently been given much research attention, see for instance
[1, 2, 3, 4, 5]. This interest is motivated by the use of digital devices (mi-
croprocessors), which communicate with sensors that operate in continuous
time, in many industries, e.g. car industry, telecommunications or aerospace.
Also, on the macroscopic level, there are many physical processes which can
be modelled using a combination of continuous and discrete dynamics. To
give a few examples: genetic regulatory networks [6] have recently been mod-
elled using switched vector fields, similarly power electronic converters [7, 8],
mechanical systems friction, [9] or modern control systems [10].

Such systems have been shown to undergo topological transitions (bi-
furcations) which are triggered solely due to the combination of both – the
continuous and discrete dynamics. In particular, systems characterised by
the presence of manifolds in phase space where continuous time evolution un-
dergoes a sudden jump, either in state variables or its derivatives, have been
shown to exhibit so called discontinuity induced bifurcations (DIBs for short).
These manifolds where switchings take place are termed in the literature as
switching manifolds or discontinuity sets. A DIB occurs if, for instance, a
limit cycle exhibits a grazing contact with a discontinuity set. It has been
shown that such an instance may cause a sudden onset of chaotic dynamics
[11]. Another intriguing scenario, observed solely in systems characterised by
the presence of discontinuity manifolds, is the possibility of the birth of mul-
tiple attractor triggered by a DIB [12, 2]. However, so far, such scenario has
been reported to occur only in piecewise smooth maps. In the current paper,
for the first time, we present an example of a Filippov type flow, that is a
flow generated by the vector field which is discontinuous across the switching
surface, where grazing-sliding bifurcation leads to the onset of multiple at-
tractors. We believe that the multiple attractors found in our model example
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may occur in many systems of relevance to applications, and perhaps they
can be utilised in developing control strategies; depending on the application
certain type of an attractor may have a more desirable characteristics than
another one, and by appropriate choice of system parameters we may force
our system on the desired attractor. Of course, these are speculations, and
their validity can only be verified by further research.

The rest of the paper is outlined as follows. In Sec. 2 the methodology
used to construct the explicit examples is shown. In the following Sec. 3, the
derivation of the linearised return map about the grazing-sliding bifurcation
having sufficient freedom to allow for the presence of complex Floquet multi-
pliers characterising the grazing orbit, in the absence of an interaction with
the switching surface, is presented. The method of determining the sliding
vector field is shown in Sec. 4, and Sec. 5 is then devoted to presenting differ-
ent cases of multistability according to our recent finding presented in [13].
Finally, Sec. 6 concludes the paper.

2. A Model System

The starting point, in the construction of a three-dimensional Filippov
system with grazing and sliding for which all the relevant features (return
map, switching surface, the coefficient of the sliding vector field) can be
calculated explicitly, is a simple underlying flow with a periodic orbit. This
flow needs to be chosen so that the (linearized) return map about the periodic
orbit is easy to calculate analytically with sufficient freedom to be able to
match any required linearization.

There are, no doubt, many ways to achieve this. We have chosen to start
with a two-dimensional flow such that one axis is invariant, then to interpret
the invariant axis as the z−axis and restrict to the invariant positive half-
plane in the other variable (r). By arranging for the existence of a stable
fixed point in r > 0 the simple expedient of rotating the entire half-plane by
introducing a polar angle θ with θ̇ > 0 produces a flow on R

3 with a stable
periodic orbit having fixed r and z coordinates. We start by considering the
motion in the (r, z)− plane, i.e.

ṙ = −4kr + 2rz
ż = 4α2 − r2 − z2.

(1)

Fixed points of this equation have r = 0 or z = 2k (from the ṙ equation)
and then if r = 0, z = ±2α; whilst if z = 2k then r = 2

√
α2 − k2 provided
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Figure 1: Schematic solutions of the two dimensional flow: (a) k = 0; (b) k > 0, k small.

α > k. Fixed points in r > 0 correspond to periodic orbits of the full three-
dimensional system, whilst fixed points with r = 0 are also fixed points of
the full system. If k = 0 (1) is Hamiltonian, with

H(z, r) = 4α2r − rz2 − 1

3
r3

which is how we chose this example, and the fixed point in r > 0 is stable
if k > 0 and unstable if k < 0, and is a focus if 5k2 < 4α2 and a node if
5k2 > 4α2 > 4k2. Sample phase portraits are shown in Figure 1.

Introducing an angle θ with θ̇ = ω, gives a flow in R
3 which is given in

cylindrical polar coordinates (r, θ, z) by

ṙ = −4kr + 2rz

θ̇ = ω
ż = 4α2 − r2 − z2

(2)

or, in standard Cartesian coordinates,

ẋ = −4kx− ωy + 2xz
ẏ = ωx− 4ky + 2yz
ż = 4α2 − x2 − y2 − z2

(3)

This system has a periodic orbit if α2 > k2 with r = 2
√
α2 − k2, z = 2k and

0 ≤ θ < 2π. In the next section we analyze this periodic orbit, deriving an
explicit formula for the linear part return map near the periodic orbit on the
plane y = 0. We can then create a Filippov system by defining a flow on a
half-space, e.g. x < 2

√
α2 − k2 + µ.
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3. The linearized return map

Suppose that 5k2 < 4α2, so the periodic orbit of the full system exists

and has period 2π
ω . Consider a small perturbation starting on the surface

θ = 0 at t = 0, and write

z = 2k + u, r = 2
√
α2 − k2 + v.

Substituting into (1) and ignoring higher order terms gives the linearized
system

u̇ = −4ku− 4
√
α2 − k2v

v̇ = 4
√
α2 − k2u

(4)

or
v̈ + 4kv̇ + 16(α2 − k2)v = 0 (5)

with characteristic equation s2 + 4ks+ 16(α2 − k2) = 0 having roots −2k ±
2
√
5k2 − 4α2. Let Ω2 = 4(4α2 − 5k2), Ω > 0, so the roots are −2k ± iΩ and

the solution of (5) is

v = e−2kt (A cosΩt +B sinΩt) (6)

and the second equation of (4) implies

u =
e−2kt

4
√
α2 − k2

((−2kA +BΩ) cosΩt + (−2kB − AΩ) sinΩt) . (7)

Now suppose that at t = 0 (v, u) = (v0, u0), so in terms of the full three-
dimensional system u0 is the perturbation from the periodic orbit in the
z−coordinate, and v the perturbation in the x−coordinate on the plane
y = 0, then

A = v0, B =
1

Ω
(4
√
α2 − k2u0 + 2kv0)

and after a time of 2π
ω the solutions return to the plane y = 0 with pertur-

bations (v1, u1) where
(

v1
u1

)

=

(

a11 a12
a21 a22

)(

v0
u0

)

(8)

with, setting E = exp(−4πk/ω),

a11 = E(cos 2πΩ
ω

+ 2k
Ω
sin 2πΩ

ω
)

a12 = 4
√

α2
−k2E
Ω

sin 2πΩ
ω

a21 = E

4
√

α2
−k2

(−Ω− 4k2

Ω
) sin 2πΩ

ω

a22 = E(cos 2πΩ
ω

− 2k
Ω
sin 2πΩ

ω
).

(9)
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Note that consideration of the divergence of the vector field in (1) shows that
the determinant of the matrix (9) is E2, which can be verified directly from
(9), so if we refer to this matrix as R then

det R = E2 = exp(−8πk/ω), Tr R = 2E cos
2πΩ

ω
(10)

and so, with ω = 1, we can choose det R via k and then Tr R using α.
It is equally possible to treat the case of real eigenvalues, but the complex

eigenvalue case is the one discussed in [13], so we stop the analysis here.

4. Constructing the sliding motion

In [13] the parameters for multistability are specified in coordinates in
which the linear map near the periodic orbit takes the form

(

T 1
D 0

)

(11)

and since we are working in a different set of coordinates we will need to
take care that the coefficients are those corresponding to the correct choice
of coordinates. For simplicity we will place the sliding bifurcation parameter
µ in the switching surface H rather than in the differential equation and
consider

ẋ(t) =

{

F1(x(t)) if H(x(t), µ) > 0

F2(x(t)) if H(x(t), µ) < 0,
(12)

where F1, F2 are sufficiently smooth vector functions, F1, F2 : R
3 7→ R

3

and H(x(t), µ) : R3 × R 7→ R
3 is some smooth scalar function depending on

system states x ∈ R
3, and parameters µ ∈ R; t ∈ R is the time variable.

We will work with

H(x, µ) = 2
√
α2 − k2 + µ− x (13)

and F1 defined by (1) with the fixed parameters chosen below to satisfy
the criteria of [13] for multistability. These choices imply that the periodic
orbit analyzed in the previous section lies entirely in the region H(x, µ) > 0
(where the Filippov flow is defined by F1) provided µ > 0. If µ = 0 then the
periodic orbit grazes H at the point (2

√
α2 − k2, 0, 2k), whilst if µ < 0 then

the periodic orbit intersects the switching surface transversally at two points
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(for small µ) and the flow near the periodic orbit will depend on the choice
of F2 in (12). The linear approximation of the PDM (see the appendix, and
[5] for a detailed derivation) can be given by

PDM(X,Z) =











X for X > 0
(

0 0

Ĉ 1

)(

X

Z

)

for X ≤ 0
(14)

in terms of shifted local coordinates X = (X,Z) on {y = 0}. The constant Ĉ
is a function of the vector field F2 = (F x

2
, F y

2 , F
z
2
)T and the jacobian matrix

fij of F1 evaluated at the grazing point:

Ĉ = −F z
2

F x
2

+

(

f11
f12

+ f12
F z
2

F x
2

)

F z
1 .

The choice of PDM in [13] to derive conditions for multistability is in co-
ordinates in which the linear map takes the form given by (11) with the
coefficient Ĉ replaced by C, with the relation between the coefficients given
by

C = a22 + Ĉa12.

5. The example and multistability

5.1. Case I: Two stable orbits

We now take a specific example of multistability from [13]: T = 0.05,
D = 0.31 and C = −3. Using (10) we require

0.31 = E2 = exp(−8πk/ω), 0.005 = 2E cos

(

2πΩ

ω

)

.

By setting ω = 1 we find α = 0.08 and k = 0.0466. In our case F z
1
= 0

and since F x
2
< 0, if we let F x

2
= −1, we then have F z

2
= −4.7192. A stable

period-three orbit with a sliding segment is depicted in Fig. 2 and a stable
period-two orbit in Fig. 3.

5.2. Case II: A stable orbit and a chaotic attractor

The second case of multistability reported in [13] is the case of a chaotic
attractor coexisting with a stable periodic orbit with sliding. This scenario
was found for T = 0.35, D = 0.3 and C = −3. Fixing ω = 1 gives k =
0.04790, α = 0.07297 and FZ

2 = −5.0727 (for F x
2 = −1). A stable period-

three orbit is depicted in Fig. 4 and a chaotic attractor in Fig. 5.
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Figure 2: Stable period-3 orbit with sliding for ω = 1, k = 0.0466 and α = 0.08, with the
initial condition [x, y, z]T = [0.036291, 0.124810, 0.093028]T and µ = −0.000005
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Figure 3: Stable period-2 orbit with sliding for ω = 1, k = 0.0466 and α = 0.08, with the
initial condition [x, y, z]T = [−0.028117, −0.126974, 0.093209]T and µ = −0.000005
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Figure 4: Stable period-3 orbit with sliding for ω = 1, k = 0.04790, α = 0.07297 and
µ = −0.00005, with the initial condition [x, y, z]T = [0.0259013, 0.1067204, 0.0959262]T
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Figure 5: Chaotic attractor for ω = 1, k = 0.04790, α = 0.07297 and µ = −0.00005. The
initial condition [x, y, z]T = [−0.085976, −0.068551, 0.095775]T
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Figure 6: A stable period-3 orbit with two sliding segments for ω = 1, k = 0.01419,
α = 0.06679 and µ = 5 × 10−6. For the simulations the initial condition [x, y, z]T =
[2
√
α2 − k2 + µ+ 10−4, 10−5, 2k]T was used (we disregard the transient).

5.3. Case III: A stable orbit with sliding and a stable non-sliding orbit

The last case of multistability reported in [13] is that of a stable period-3
orbit coexisting with a stable non-sliding orbit. Representative parameter
values at which these attractors where reported to exist are T = −0.1, D =
0.7, C = −1.8 with µ > 0. Fixing ω = 1 gives k = 0.01419, α = 0.06679,
and FZ

2
= −1.97425287 with FX

1
= −1. A period-three stable orbit detected

for µ = 5 × 10−6 is depicted in Fig. 6, and finally a stable non-sliding orbit
is reported in Fig. 7.

6. Conclusions

In the paper we present, for the first time, an example of a explicit Filip-
pov type flow where grazing-sliding bifurcation leads to the onset of multiple
attractors. Three qualitatively different scenarios of multiple attractors in
grazing-sliding bifurcations are shown. To find the parameter values for
which these qualitatively different scenarios occur we use the analytical con-
ditions reported in [13], where the classification of a one-dimensional normal
form map for grazing-sliding bifurcations for three-dimensional Filippov type
flows was conducted.
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Figure 7: A stable periodic orbit for ω = 1, k = 0.01419, α = 0.06679 and µ = 5.e − 6.
The initial condition on the orbit [x, y, z]T = [0.129880, 0.013031, 0.028383]T

The theoretical predictions verified in this paper are based on the normal
form for grazing sliding bifurcations [5]. This normal form is, by definition,
local, in that it is derived to model solutions near the periodic orbit at graz-
ing in phase space and near the bifurcation value in parameter space. As
with almost all such local theories, the domain on which the normal form is
defined is not specified by the analysis, which holds for a ‘sufficiently small’
neighbourhood of the bifurcation. One of the consequences of our analysis is
that it is possible to make some comments about how small ‘small’ really is
in this example.

The attentive reader will have noted that the examples are shown for
µ of the order of 10−4 to 10−6. For larger, but still small, values of µ we
observe dynamics which is different from that predicted, though in some
cases it is consistent with the expectations of the normal form, but not for
the parameter values we have so carefully chosen. In other words, had we
simply matched behaviour in the flow with behaviour in the normal form
we would have found no contradiction for some examples, but this would
have been due to the fact that we were matching to parameters other than
those that really apply. It is only at the smaller values of µ used in the
reported simulations that the precise predictions of the normal form analysis
are observed.
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This poses two questions. First, why is ‘small’ so small (in smooth systems
one can frequently get away with 10−2 or even larger)? It may of course be
bad luck, and induction from a single example is notoriously fool-hardy, but
we could speculate that this is generally true for grazing bifurcations; the
parameter

√
µ intervenes naturally here as the width of the sliding region,

and small
√
µ implies very small µ. In other words, the corrections to the

normal form are order |x| 32 rather than the standard x2 terms for smooth
systems – this is because the PDM is of the form

PDM(X,Z, q;µ) =

(

X
Z

)

+ β(X,Z, q;µ)q2, (15)

where q =
√

−H(x, µ), so we require q2 to be small compared to q3.
The second question is about how normal forms are used. If the aim is

simply to make the numerical results more reasonable theoretically, then it
might not be necessary to obtain a precise match up between parameters
in the normal form and parameters in the flow, but if the aim is to use the
normal form as a predictive tool then the examples here underline the impor-
tance of ensuring that parameters really are close enough in the two cases.
Whether our somewhat pessimistic view of the domain of strict applicabil-
ity of the normal form analysis in nonsmooth sliding bifurcations is justified
remains to be seen.

Our finding of the explicit Filippov flow with multiple attractors points
to a number of research directions and open problems. First of all, it would
be interesting to determine if the number of possible attractors born in the
grazing-sliding bifurcations in three-dimensional type flows is limited to two.
Secondly, using the explicit example presented in the current paper it would
be interesting to construct Filippov type flows where corner-collision bifur-
cations lead to the onset of multiple attractors. The question then arises
if the possible pattern of emerging attractors is equivalent to the ones for
grazing-sliding bifurcations. Finally, an interesting point would be the use
the knowledge on the existence on multiple attractors in grazing-sliding bi-
furcations to use it as a control strategy. Suppose we have a Filippov system
operating in some stable oscillatory state, now, can we use the knowledge on
the existence of multiple attractors in discontinuity induced bifurcations to
make our system evolve on some other attractor.

12



7. Appendix

Following [5] we can write the two-dimensional PDM, in the case of a
three-dimensional Filippov type flow and using (X,Z) coordinates, as

PDM(X,Z, q;µ) =

(

X
Z

)

+ β(X,Z, q;µ)q2, (16)

where
q2 +H(X,Z;µ) = 0

with q being an independent variable that measures the penetration of trajec-
tories below the switching surface for orbits sufficiently close to the grazing
orbit. The coordinates (X,Z) are chosen such that the grazing incidence
takes place at (X,Z, q;µ) = (0, 0, 0; 0). The linearisation of (16) at grazing
gives

PDML(X,Z, q;µ) =

(

X
Z

)

− β(0, 0, 0; 0)〈Hx, [X,Z]〉 − β(0, 0, 0; 0)Hµµ,

(17)
where

β(0, 0, 0 0) =
1

〈Hx, (F2 − F1)〉
F2 +

〈(HxF1)x, F2〉
〈(HxF1)x, F1〉

F1

with the right-hand side evaluated at the grazing point (0, 0, 0; 0), and 〈, 〉
denoting the standard dot product. At grazing the X-component of the
vector field F1 is naught. Using the definition of the switching function given
in Sec. 4, and ignoring the parameter dependence we arrive at the map (14)
given in Sec. 4.
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