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Newton’s cradle for two balls with Hertzian interactions is considered as a hybrid system, and this
makes it possible to derive return maps for the motion between collisions in an exact form despite
the fact that the three halves interaction law cannot be solved in closed form. The return maps
depend on a constant whose value can only be determined numerically, but solutions can be written
down explicitly in terms of this parameter, and we compare this with the results of simulations.
The results are in fact independent of the details of the interaction potential.
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Newton’s cradle is a paradigm for the treatment of
Newtonian impulses. This executive toy consists of N
balls (usually five) fixed to a frame as pendulums so that
they can oscillate in one direction and when hanging in
equilibrium under gravity they are just touching. If one
of the end balls is set in motion it strikes the line and
an impulse travels through the line and the ball at the
other end lifts off, with the others stationary and the
cycle continues. This is a standard theoretical narrative,
but experiments show that what actually happens is con-
siderably more complicated: all the balls move and the
subsequent motion is heavily influenced by the break up
of the line.

A more realistic model of Newton’s cradle will involve
either the interaction of the pendulums via the frame or a
more detailed model of the short time interactions of the
balls in collision. Following [1, 3, 4] we adopt the latter
modification. One of the standard visco-elastic models
of this interaction is a Hertzian three halves power law
force, and the approach below applies to this and indeed
any other potential force which satisfy some mild condi-
tions. A second principle when faced with complicated
behaviour is to consider the simplest case in some detail.
Thus we consider the dynamics of a two ball Newton’s
cradle. This was analyzed in [4] by making simplify-
ing assumptions about the interaction terms (essentially
that the contact interaction is linear and gravity can be
ignored), which makes it possible to see that the likely
outcome of the model is slow modulation between a cra-
dle like dynamics (with each ball approximately at rest
during half a cycle) and a more symmetric collision and
bounce in which both balls oscillate significantly during
a half-period.

More complicated collisions between balls have also
been considered recently [5], but the aim of this note is to
show that a slightly more sophisticated analysis, consid-
ering the collisions and the motion when the balls are not
in contact as defining a hybrid system, makes it possible
to derive explicit return maps (if gravity is considered

as a linear potential in the angle of the pendulums, i.e.
in the small displacement limit) for the state of the sys-
tem immediately after collisions. This return map has
one free parameter which is determined by the details of
the interaction potential and the initial conditions, but
is otherwise completely determined by standard param-
eters of the system.

Choose one-dimensional coordinates, y1 and y2 for the
centre of mass of the two equal balls labelled by 1 and 2
in the obvious way, with ball one to the left of ball two.
In equilibrium the balls are separated by 2R, where R is
the radius of the balls, so it is natural to write y1 = x1

and y2 = 2R + x2, so xi represents the displacement of
ball i from its equilibrium position. The distance between
the centres of mass is 2R− (x1 − x2), so the balls are in
contact, and the interaction potential comes into play if
x1 − x2 > 0.

If x1 − x2 < 0 then the balls are not in contact and
each behaves as a linearized pendulum, so

ẍ1 = −ω2x, ẍ2 = −ω2x2 (1)

where ω2 = mg/`, where m is the mass of each ball, g
the acceleration due to gravity, and ` the vertical length
of the pendulum wires.

If x1 − x2 > 0 then the balls are in contact then there
is an elastic force (we ignore dissipation here) in addition
to the gravitational force and

ẍ1 = −ω2x− V ′(x1 − x2), ẍ2 = −ω2x2 + V ′(x1 − x2)
(2)

where the potential V models the visco-elastic forces, so
for the Hertzian case

V (q) =
K

1 + α
q1+α. (3)

and in the simulations below we use the standard
Hertzian force, α = 3

2 . In what follows we can treat
more general potentials having the properties

V ′(0) = 0, V ′(q) > 0 if q > 0 (4)
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and

V (q) →∞ as q →∞. (5)

It is natural to work in centre of mass (times two) and
relative position coordinates

Q = x1 + x2, q = x1 − x2 (6)

in terms of which

Q̈ = −ω2Q (7)

independent of the sign of q and

q̈ =
{ −ω2q if q < 0
−ω2q − V ′(q) if q > 0 . (8)

Note that if q < 0 then the relative position equation is
Hamiltonian with

H = 1
2p2 + U(q), U(q) = 1

2ω2q2 + V (q) (9)

and U satisfies the same conditions (4) and (5) as V .
To describe solutions of (7) and (8) we will assume that

the values of Q and q are known immediately after the nth

collision, together with the corresponding velocities, and
derive a recursion equation for their values immediately
after the following collision. Suppose that immediately
after the nth collision, t = tn and

Q = Qn, Q̇ = Pn, q = 0, q̇ = pn < 0 (10)

(noting that at the beginning and end of a collision inter-
action q = 0, with q̇ > 0 at the beginning of the collision
and q̇ < 0 at the end of the collision). Since q̇ < 0, q be-
gins to decrease and whilst q < 0 the evolution is defined
by (7) and the first of equations (8) and so

Q = Qn cosω(t− tn) + Pn

ω sin ω(t− tn)
P = −ωQn sin ω(t− tn) + Pn cos ω(t− tn)
q = −pn

ω sin ω(t− tn)
p = pn cosω(t− tn)

(11)

and these remain valid until the first time t′n > tn such
that q(t′n) = 0. Due to the simple form of q this implies

t′n = tn +
π

ω

at which value the cosine is −1 and so p(t′n) = −pn > 0
and the corresponding values of Q and P are −Qn and
−Pn respectively. Since p > 0 q increases and the
(q, p) dynamics is determined by the Hamiltonian sys-
tem with Hamiltonian (9). Since U satisfies the poten-
tial conditions (4) and (5) the solutions are symmetric
under reflections p → −p and cannot tend to a station-
ary point in q > 0 (as U ′(q) > 0) nor to infinity (as
U(q) → ∞ as q → ∞), see e.g. [2]. Hence there ex-
ists time τ > 0 such that q = 0 again for the first time

and p = −(−pn) = pn < 0. Thus after this time τ ,
t = tn+1 = tn + π

ω + τ and

Q = Qn+1 = −Qn cosωτ − Pn

ω sin ωτ
P = Pn+1 = ωQn sin ωτ − Pn cosωτ
q = 0
p = pn+1 = pn < 0.

(12)

Since p does not change from one collision to another,
the same τ is used in each collision, and this is determined
by both pn and the details of the potential U , but once
fixed it doesn’t change from collision to collision.

It is not hard to solve this difference equation. In terms
of the complex variable Zn = ωQn + iPn the first two
equations of (12) are

Zn+1 = −Zne−iωτ , so Zn = (−1)nZ0e
−inωτ (13)

or

Qn = (−1)nQ0 cos(nωτ) + (−1)n P0
ω sin(nωτ)

Pn = −(−1)nωQ0 sin(nωτ) + (−1)nP0 cos(nωτ)
pn = p0 < 0

(14)
or, in terms of the original variables x1 and x2 using (6)
and the fact that q = 0 just after a collision

x1(tn) = x2(tn) = 1
2Qn

ẋ1(tn) = 1
2 (Pn + p0)

ẋ2(tn) = 1
2 (Pn − p0)

(15)

Equations (15) provide a general solution to the two ball
Newton’s cradle, but the classic Newton’s cradle solu-
tion would correspond to initial conditions after the first
collision (having set ball one in motion first) of

x1 = x2 = ẋ2 = 0, ẋ2 = v > 0

and this translates to

Q0 = q0 = 0, P0 = v, p0 = −v. (16)

Substituting these values into (14) and (15) gives

x1(tn) = x2(tn) = v
2ω (−1)n sin(nωτ)

ẋ1(tn) = −v
2 (1− (−1)n) cos(nωτ)

ẋ2(tn) = v
2 (1 + (−1)n) cos(nωτ).

(17)

On the reasonable assumption that ωτ is small (as the
contact time τ is small) these solutions have an interest-
ing interpretation. If nωτ ≈ kπ then the behaviour is like
the classically described Newton cradle: there is negligi-
ble oscillation from the vertical of the collision point, and
immediately after the collision one ball is at rest and the
other moves off, with the balls interchanging roles at each
collision. On the other hand, if nωτ ≈ (2k + 1)π

2 then
the position of the collision oscillates and after the colli-
sion both balls recoil back and swing with approximately
equal initial speeds.
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Thus there is a slow periodic oscillation having ap-
proximately π/(ωτ) collisions (since there is no discern-
able difference between the cases cos(nωτ) ≈ 1 and
cos(nωτ) ≈ −1 apart from an odd/even n exchange, we
consider the period of these oscillations to be half the dull
period of oscillation of the trigonometric functions) each
taking time π

ω + τ , so the total time of the full period is

π

ω2τ
(π + ωτ)

representing a modulation of frequency

2ω2τ

π + ωτ
.

This is the same expression as derived by [4], but crucially
their derivation relies on an assumption of constant small
contact time (which is proved above in the general case)
with the collision being modelled by a potential 1

2kq2 in
q > 0, which also means that they associate a frequency
and spring constant to the collision interaction.

-2 0-1 1 x
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FIG. 1: Trajectory of a solution projected onto the (x1, x2)
plane. Initial conditions and paramters are given in the text.

To investigate this behaviour numerically we have cho-
sen units with

ω2 = 1, K = 5000, α = 3
2 ,

where the value of K (the Hertzian constant, cf. (3)) is
chosen so that the contact time is small enough to make
the slow drift described above observable. The equations
were integrated using a fixed step (h = 0.00006) third
order Verlet method that preserves the symplectic struc-
ture of solutions. A sample trajectory projected onto the
(x1, x2) plane is shown in Figure 1, which has initial con-
ditions x1(0) = −2, with ẋ1(0) = x2(0) = ẋ2(0) = 0,
integrated for time equal to 60 units. A classic Newton’s
cradle solution would move close to the x1-axis in x1 < 0
and then up the x2−axis and return. As shown in Figure
1 the actual behaviour is a drift out to a region with both
x1 and x2 large, and (though not shown) if the solution
had been extended it would have returned close to the

ideal Newton’s cradle solution. The non-cradle motion
(cos(nωτ) close to zero in the terminology of (17)) moves
between a collision in x1 > 0 through x2 large and x1

large and negative, back to a collision in x1 < 0.

0-0.1 x
1

0

0.1

x
2

FIG. 2: Trajectory of a solution to the model with nonlinear
terms in the pendulum equations projected onto the (x1, x2)
plane with . The initial condition has small amplitude (x1 =
−0.1, see text)and parameters are otherwise the same as in
Figure 1.

Of course, the model described here is for small dis-
placement, and for larger displacements both the nonlin-
ear nature of the gravitational force on the angle of dis-
placement and the effect of geometry due to the balls no
longer striking each other symmetrically due to the offset
at the hanging points would need to be modelled. How-
ever, the advantage of having a simple model that can
be accurately analyzed makes the approach here worth
taking into account. The addition of nonlinearity in the
pendulum does change the dynamics when the angle is
large. Figures 2 and 3 shows the results of simulations of
the equations (1) and (2) with the small amplitude ω2x
approximations replaced by ω2 sin x and the same values
of the other parameters. Figure 2 has initial conditions
x1 = −0.1 with ẋ1 = x2 = ẋ2 = 0, and the result is
similar in nature to the simulation of the linear system,
as would be expected from the small amplitude of the
initial condition. Interestingly, Figure 3 shows a solution
with initial condition x1 = −2 and the other variables
all zero. In this case the solution is closer to the ideal
Newton’s cradle solution than the linear approximation
studied above. A fuller investigation of this case might
prove worthwhile.

Another feature of the dynamics of the two ball New-
ton’s cradle that can be described using this framework
is the effect of dissipation. If we assume that most of the
dissipation is in the collisions, so that these are inelastic
rather than elastic, then the natural model would be to
replace the conclusion that p is simply reversed during a
collision to a reversal with a reduction in the modulus.
In this case, the inelastic collisions would lead eventually
to p = 0 with q = 0, and hence the asymptotic dynamics
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FIG. 3: As Figure 2 except with initial conditions and pa-
rameters the same as in Figure 1.

has both balls touching, with the pendulums swinging in
phase. This of course would then decay due to friction.

Using a commercial cradle (e.g. by Zeon Tech, en-
dorsed by the Science Museum, UK) it is easy to confirm
the asymptotic in-phase oscillation and also to observe
solutions corresponding to the motion described by Fig-
ures 1 and 2 provided the base is kept clamped (a heavy
hand will do!). In the latter case the key observation
is that the every other collision moves from being in one
phase of the swing to the other on a slow timescale, pass-
ing close to an ideal cradle solution in the process. (In
other words the even collisions will occur in x1 > 0 for a
while, and then in x1 < 0 and so on; this can be observed
by viewing a film of the interaction in slow motion.) How-
ever, the system does not spend long close to the ideal
cradle motion, but passes through it fairly rapidly and so
it is hard to detect. This would, of course, also be true
of the motion depicted in the figures.

The analysis reported here uses the hybrid nature of

the collisions to derive return maps that can be solved
explicitly, and through this a very accurate description
of the motion is possible. The analysis is not hard, but
it is revealing, and I have been unable to find an equiv-
alent analysis in the literature. Although this deals with
a situation that is considerably simpler than the many
ball Newton’s cradle, it shows that the finer details of
the interactions between the ball are unimportant to the
outcome of any experiment except insofar as they deter-
mine τ for a given p0. This suggests that an experiments
with long pendulums could be made to determine the
dependence of τ and p0, and then this in turn could be
fitted to different powers of α in the Hertzian model as
a means of assessing the effective α independent of the
classical Hertzian force arguments.

I am grateful to David Harris for pointing out the po-
tential application of these results to a more careful ex-
perimental verification of the Hertzian interaction. This
work is partially funded by EPSRC grant EP/E050441/1.
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