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THE DENSITY OF ALGEBRAIC POINTS ON CERTAIN

PFAFFIAN SURFACES

G. O. JONES AND M. E. M. THOMAS

Abstract. We prove some instances of Wilkie’s conjecture on the density of

rational points on sets definable in the real exponential field. In particular,
we prove that this conjecture is true for surfaces defined using restricted ex-

ponentiation, and that it is true for a general Pfaffian surface provided that

the surface admits a certain kind of parameterization.

1. Introduction

In this paper we combine Pila’s methods ([9],[10]) with a stratification result due
to Gabrielov and Vorobjov ([3]) to prove some instances of Wilkie’s conjecture on
the density of rational points on definable sets in the expansion of the real field
by the exponential function. In order to state the conjecture, we first need some
definitions (which are due to Pila, see [12] for example). Suppose that X is a
subset of Rn. The algebraic part of X is the union of all connected semialgebraic
subsets of X of positive dimension. Write Xalg for the algebraic part of X. The
transcendental part of X, written Xtrans, is X \Xalg. Rather than considering only
rational points, we shall in fact consider points in a fixed real number field. So, fix a
number field K ⊆ R of degree k. Let H be the absolute multiplicative height on K
(as defined in [1], for example). For K = Q, this is given by H(a/b) = max{|a|, b},
where a, b ∈ Z, gcd(a, b) = 1, b > 0. Extend H to Kn by taking the maximum of
the heights of the coordinates. Then for X in Rn and T a positive real number, we
set

X(K,T ) = {x̄ ∈ X ∩Kn : H(x̄) ≤ T},
NK(X,T ) = #X(K,T ).

The subsets of Rn that we work with in this paper will be definable in some o-
minimal expansion of the real field, and we shall assume that the reader is familiar
with the basic theory of these structures (see van den Dries’s book, [2]). Wilkie con-
jectures an improvement, in certain cases, of the bound in the Pila-Wilkie Theorem.
One version of this theorem is as follows (see [12],[11]).

Theorem. Suppose that X ⊆ Rn is definable in some o-minimal expansion of the
real field. Then for all ε > 0 there exists c(X, k, ε) such that for all T ≥ 1,

NK(Xtrans, T ) ≤ c(X, k, ε)T ε.
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As usual, the notation c(X,Y, Z, . . .) is used to mean that c is allowed to depend
only on the displayed parameters.

Now, the bound in this theorem is essentially best possible (see [12]). However,
Wilkie conjectures that it can be substantially improved by restricting the structure
considered. Let Rexp be the expansion of the real ordered field by the exponential
function.

Conjecture (Wilkie,Pila see [12],[10]). Suppose that X ⊆ Rn is definable in Rexp.
Then there exist c(X, k) and γ(X) such that

NK(Xtrans, T ) ≤ c(X, k)(log T )γ(X)

for all T ≥ e.

Following Pila ([8, 9]) we will in fact work with the expansion of the real field by
Pfaffian functions, rather than just the exponential function. A sequence f1, . . . , fr :
U → R of analytic functions on an open set U ⊆ Rn is said to be a Pfaffian chain
of order r and degree α if there are polynomials Pi,j ∈ R[X1, . . . , Xn+j ] of degree
at most α such that

dfj =

n∑
i=1

Pi,j(x̄, f1(x̄), . . . , fj(x̄))dxi for all i = 1, . . . , r and j = 1, . . . , n.

Given such a chain, we say that a function f : U → R is Pfaffian of order r and de-
gree (α, β) with chain f1, . . . , fr, if there is a polynomial P ∈ R[X1, . . . , Xn, Y1, . . . , Yr]
of degree at most β such that f(x̄) = P (x̄, f1(x̄), . . . , fr(x̄)). Let RPfaff be the ex-
pansion of the real ordered field by all Pfaffian functions f : Rn → R, for n ≥ 1.
Pila ([9]) proved the following.

Theorem. Suppose that a, b ∈ R ∪ {±∞}, a < b and that f : (a, b) → R is a
transcendental Pfaffian function. Then there exist c(f, k) and γ(f) such that

NK(graph(f), T ) ≤ c(f, k)(log T )γ(f).

Our first result improves this by replacing the assumption that f is Pfaffian
with the assumption that f is existentially definable in RPfaff. By Wilkie’s model
completeness result for Rexp ([16]), this implies the following.

Theorem. Wilkie’s conjecture (in the form stated above) holds for one-dimensional
X.

This result has also been obtained by Lee Butler.

The constant and the exponent in this result are sufficiently uniform to enable
us to prove a result for surfaces. We follow Pila’s method from [10] and so we
need the surface to admit a particular kind of parameterization, namely, a mild
parameterization (see section 5 and also [5] and [14] for further information). Rather
than giving the general result here, we state a corollary for a reduct of RPfaff

in which the required parameterizations are known to exist. To every function
f : U → R, where U ⊆ Rn is an open set containing [0, 1]n, we associate a new

function f̂ : Rn → R defined by

f̂(x̄) =

{
f(x̄) if x̄ ∈ [0, 1]n,

0 otherwise.
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Now let RresPfaff be the expansion of the real field by all functions f̂ , where f : U →
R is Pfaffian, [0, 1]n ⊆ U and n ≥ 1.

Theorem. Suppose that X ⊆ Rn is definable in RresPfaff and has dimension 2.
Then there exist c(X, k) and γ(X) such that

NK(Xtrans, T ) ≤ c(X, k)(log T )γ(X)

As Pila observes in the introduction of [10], the independence of the exponent
from the number field is related to transcendence theory. At the end of the paper,
we give further evidence of this by using our methods to give a new proof of a
rather weak version of a theorem first proved by Waldschmidt ([15]).

2. Pfaffian functions

In this section, we recall the results on Pfaffian functions that we shall need later.
We follow the presentation in [4]. First, a couple of easy lemmas.

Lemma 2.1 ([4]). Suppose that f, g are Pfaffian on an open set U ⊆ Rn with
a common chain of order r and that f and g have degree (α1, β1) and (α2, β2)
respectively. Then both f + g and f · g are Pfaffian on U , with the same chain
as f and g (and so of order r) and with degree (max{α1, α2},max{β1, β2}) and
(max{α1, α2}, β1 + β2) respectively.

Lemma 2.2 ([4]). Suppose that f : U → R, of order r and degree (α, β). Then

any partial derivative ∂f
∂xi

of f is Pfaffian with the same chain as f and with degree

(α, α+ β − 1).

The foundation for the theory of Pfaffian functions is Khovanskii’s theorem on
the number of connected components of a Pfaffian variety ([7]). Given functions
f1, . . . , fI : Rn → R, we write V (f1, . . . , fI) = {x̄ ∈ Rn : f1(x̄) = · · · = fI(x̄) = 0}.

Theorem 2.3 (Khovanskii, see [4]). Suppose that f1, . . . , fI : Rn → R are Pfaffian
functions, with a common chain of order r, and degree at most (α, β). Then the
variety V (f1, . . . , fI) has at most

2r(r−1)/2+1β(α+ 2β − 1)n−1((2n− 1)(α+ β)− 2n+ 2)r

connected components.

The other result we shall need is an effective stratification theorem due to
Gabrielov and Vorobjov. The sets involved are more general than varieties: an
elementary semi-Pfaffian set is a set of the form

{x̄ ∈ Rn : f1(x̄) = · · · = fI(x̄) = 0, g1(x̄) > 0, . . . , gJ(x̄) > 0}

where f1, . . . , fI , g1, . . . , gJ : Rn → R are Pfaffian functions. If these functions
have a common chain, order r, and degree (α, β), we say that the set has format
(I, J, r, α, β). For a real number t, we let

B(t) = (α+ β + 1)(r+2)tn .
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Theorem 2.4 (Gabrielov-Vorobjov, [3]). There is an absolute constant c such that
the following holds. Suppose that X ⊆ Rn is an elementary semi-Pfaffian set with
format (I, J, r, α, β). Then there is a partition of X into at most InB(c) smooth (not
necessarily connected) elementary semi-Pfaffian sets, with all functions involved
having the same chain as the functions defining X, and the format of each stratum
of the partition coordinate-wise bounded by (InB(c), J+2n, r, α,B(c)). Further, for
each stratum Y of codimension m, there are, among the functions defining Y , some
h1, . . . , hm vanishing identically along Y such that dh1∧· · ·∧dhm 6= 0 at each point
of Y .

3. Functions implicitly defined by Pfaffian functions

In this section, we compute bounds on the number of zeros of the derivatives of
an implicitly defined unary function in the structure RPfaff.

Recall ([6]) that a function f : U → R definable in RPfaff, with U ⊆ Rm is said to
be implicitly defined (by Pfaffian functions) if there exist n ≥ 1, Pfaffian functions
p1, . . . , pn : Rm+n → R and definable smooth functions f1, . . . , fn : U → R such
that f1 = f and

p1(x̄, f1(x̄), . . . , fn(x̄)) = · · · = pn(x̄, f1(x̄), . . . , fn(x̄)) = 0,

det
( ∂(p1, . . . , pn)

∂(xn+1, . . . , xn+m)

)
(x̄, f1(x̄), . . . , fn(x̄)) 6= 0,

for all x̄ ∈ U . If in this situation the functions p1, . . . , pn have order r, with a
common chain, and degree (α, β), then we say that f has an implicit definition of
complexity (n, r, α, β).

We now consider unary implicitly defined functions. So, suppose that φ1, . . . , φn :
I → R are smooth definable functions on some open interval I ⊆ R and that
p1, . . . , pn : R1+n → R are Pfaffian functions such that for all x1 ∈ I,

pi(x1, φ(x1)) = 0 for i = 1, . . . , n(1)

∆(x1, φ(x1)) 6= 0(2)

where φ = 〈φ1, . . . , φn〉,∆ = detJ and J = ∂(p1,...,pn)
∂(x2,...,xn+1) . Suppose that the implicit

definition has complexity (n, r, α, β).

Now, differentiating the above equations, we have

(3)

φ
′
1(x1)

...
φ′n(x1)

 = − 1

∆
AdjJ


∂p1
∂x1

...
∂pn
∂x1

 ,

where AdjJ is the adjugate matrix of J and the right hand side is evaluated at
the point 〈x1, φ(x1)〉. Both the determinant of J and the entries of the adjugate
matrix of J are polynomials of degree n in the partial derivatives of p1, . . . , pn.
Each partial ∂pi

∂xj
has (by 2.2) the same chain as p1, . . . , pn, order r, and degree

(α, α + β − 1). A polynomial of degree n in these partials thus has (by 2.1) the
same chain as p1, . . . , pn (and so order r) and degree (α, n(α+β− 1)). So, for each
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i = 1, . . . , n there is a Pfaffian function Fi : R1+n → R with the same chain as
p1, . . . , pn and degree (α, (n+ 1)(α+ β − 1)) such that

(4) φ′i(x1) =
Fi(x1, φ(x1))

∆(x1, φ(x1))

for all x1 ∈ I. We need a similar representation of the higher derivatives of the
functions φi.

Proposition 3.1. For each i = 1, . . . , n and k ≥ n, there is a Pfaffian function
Gi,k : R1+n → R with the same chain as p1, . . . , pn, of degree at most (α, (2k −
1)(n+ 1)(α+ β − 1) + (k − 1)(α− 1)) such that

φ
(k)
i (x1) =

Gi,k(x1, φ(x1))

∆2k−1(x1, φ(x1))

for all x1 ∈ I.

Proof. For each i, this is proved by induction on k ≥ 1. The case k = 1 is (4), so
suppose that k ≥ 1 and that G = Gi,k : R1+n → R is Pfaffian with the same chain
as p1, . . . , pn, has degree (α, (2k− 1)(n+ 1)(α+β− 1) + (k− 1)(α− 1)) and is such
that

(5) φ
(k)
i (x1) =

G(x1, φ(x1))

∆2k−1(x1, φ(x1))

for all x1 ∈ I. Differentiating (5) and using (4), we have (with the right hand sides
evaluated at 〈x1, φ(x1)〉):

φ
(k+1)
i (x1) =

1

∆2(2k−1)

(
∆2k−1

( ∂G
∂x1

+

n+1∑
j=2

∂G

∂xj
· Fj

∆

)
−(2k − 1)∆2k−2G

( ∂∆

∂x1
+

n+1∑
j=2

∂∆

∂xj
· Fj

∆

))

=
1

∆2k+1

(
∆2 ∂G

∂x1
+ ∆

n+1∑
j=2

∂G

∂xj
Fj

−(2k − 1)
(
G∆

∂∆

∂x1
+G

n+1∑
j=2

∂∆

∂xj
Fj
))
.

This has the required form, and it follows easily from 2.1 and 2.2 that Gi,k+1 has
the required degree (in fact, we can do slightly better as the degree of ∆ is lower
than that of Fi, but in later computations it is easier to have the bound in the form
given). �

Theorem 3.2. Let k ∈ N, k ≥ 1. Suppose that φi is not a polynomial. Then the

number of zeros of φ
(k)
i on I is at most

2r(r−1)/2+1
((

2kα+ 4k(n+ 1)(α+ β)
)n+1(

(2n+ 1)(kα+ 2k(n+ 1)(α+ β))
)r)

.

Proof. Fix i and k. The zeros of φ
(k)
i are isolated and so by (1) and 3.1, the

number of zeros of φ
(k)
i is bounded by the number of connected components of

V (p1, . . . , pn) ∩ V (Gi,k). The functions p1, . . . , pn, Gi,k are Pfaffian on R1+n of
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order r and degree as given above. So we can apply 2.3 and conclude that the
required bound holds. �

Another application of 2.3 yields the following.

Lemma 3.3. Suppose that P ∈ R[X,Y ] has degree d and is such that P (x1, φ1(x1))
is not identically zero on I. Then P (x1, φ1(x1)) has at most

2r(r−1)/2+1dβ · (α+ 2dβ)n((2n+ 1)(α+ dβ))r

zeros on I.

Proof. By (1) the number of zeros of P (x1, φ1(x1)) on I is at most the number

of connected components of V (P̃ ) ∩ V (p1, . . . , pn), where P̃ (x1, x2, . . . , xn+1) =
P (x1, x2). Now apply 2.3. �

Finally, all of the above also applies to the inverses of the functions φi (where
they exist), by the following.

Lemma 3.4. Suppose that J ⊆ I is an interval on which φ′i does not vanish. Then
φ−1
i (exists and) has an implicit definition on φi(J) with the same complexity as

the definition of φi.

Proof. Use the same functions p1, . . . , pn but let xi+1 be the independent variable.
The required Jacobian does not vanish since φ′i does not vanish. �

4. Wilkie’s conjecture for existentially definable Pfaffian curves

We now use the bounds from the previous section to prove Wilkie’s conjecture
for curves which can be existentially defined using Pfaffian functions. We follow
Pila’s proof for curves which are the graphs of Pfaffian functions of one variable
(see [11]). Accordingly, we need to introduce another height function.

Definition 4.1. Suppose that α is an algebraic number. The denominator of α
is the smallest positive integer den(α) such that den(α) · α is an algebraic integer.
We let

Hsize(α) = max{den(α), |α1|, . . . , |αk|}
where α1, . . . , αk are the conjugates of α.

If α is algebraic of degree k then Hsize(α) ≤ H(α)k (see [11, Section 6]) and so,
in order to prove the theorems in the introduction, we may work with Hsize rather
than H. So, for X ⊆ Rn and K ⊆ R a number field, we let

Xsize(K,T ) = {x̄ ∈ X(K) : Hsize(x̄) ≤ T}

and

N size
K (X,T ) = #Xsize(K,T ).

Now fix a number field K ⊆ R of degree k. The following result is due to Pila
([11, 6.8]).
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Proposition 4.2. Let d ≥ 1, D = (d + 1)(d + 2)/2, T ≥ e and let I ⊆ R be an
interval of length L, where 1

T 4k ≤ L ≤ 2T . Suppose that φ : I → R is a CD

function with |φ′| ≤ 1 and with the derivatives φ(j) either identically zero on I or
non-vanishing on the interior of I, for j = 1, . . . , D. Let X be the graph of φ. Then
Xsize(K,T ) is contained in the union of at most

12(4k + 3) · 6kD · T
4(4k+1)
3(d+3) · log T

intersections of X with real algebraic curves of degree at most d.

Using this result together with the bounds in the previous section, we can prove
Wilkie’s conjecture for implicitly defined functions of one variable. The proof is
the same as the proof of [11, 6.2] but we include the details as, in order to use this
result in the case of surfaces, we need to be rather careful with the constant and
the exponent.

Proposition 4.3. Suppose that I ⊆ R is an open interval in R and that φ : I → R
is a transcendental function and is implicitly definable in RPfaff, with complexity
(n, r, α, β). Then there are explicit constants c1(k), c2(n, r, α, β) such that for T ≥ e

N size
K (X,T ) ≤ c1 · c2 · (log T )3n+3r+8.

Furthermore, for fixed r, n and α, c2 is a polynomial in β of degree 2(n+ r + 1).

Proof. For now, fix a natural number d ≥ 1 and let D = (d+ 1)(d+ 2)/2. Divide I
into intervals on which either |φ′| ≤ 1 or |φ′| > 1. Then further divide these subin-
tervals into intervals on the interior of which either φ has non-vanishing derivatives
up to order D or the inverse ψ of φ has non-vanishing derivatives up to order D.
The total number of intervals needed is at most

#V (φ′ + 1) + #V (φ′ − 1) +

D∑
i=1

#V (φ(i)) +

D∑
i=1

#V (ψ(i)) + 1.

By 3.2 and 3.4 this number is bounded by

2r(r−1)/2+2
(

(3α+ 4(n+ 1)(α+ β))n+1(2(2n+ 1)α+ 2(2n+ 1)(n+ 1)(α+ β))r+

D∑
i=1

(
(2iα+ 4i(n+ 1)(α+ β))n+1((2n+ 1)iα+ 2i(n+ 1)(α+ β))r

))
+ 1

which is less than

2r(r−1)/2+2
(

(3α+ 4(n+ 1)(α+ β))n+1(2(2n+ 1)α+ 2(2n+ 1)(n+ 1)(α+ β))r+

D
(
(2Dα+ 2D(n+ 1)(α+ β))n+1((2n+ 1)Dα+ 2D(n+ 1)(α+ β))r

))
which is bounded by

c3(n, r, α, β)Dn+r+2

where, for fixed n, r and α the constant c3 is a polynomial in β of degree n+ r+ 1.

Fix T ≥ e and intersect I with the interval [−T, T ]. Then each of the subintervals
found above has length ≤ 2T . Suppose that J is one of these subintervals, and has
length > 1

T 2 . If J is an interval on which |φ′| ≤ 1 then let XJ be the graph of
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φ restricted to J and otherwise let XJ be the graph of ψ restricted to J . By 4.2,
Xsize
J is contained in a most

12(4k + 3) · 6k · T
4(4k+1)
3(d+3) D log T

intersections of XJ with algebraic curves of degree at most d. The number of points
in each of these intersections is at most

2r(r−1)/2+1d · β(α+ 2dβ)n
(
(2n+ 1)(α+ dβ)

)r
,

by 3.3. Write this bound as c4(n, r, α, β)dn+r+1, where c4 is, for fixed n, r, α, a
polynomial in β of degree n+ r + 1.

Any subinterval J of length < 1
T 2 contains at most one point of height T , so

combining the estimates above we have

N size
K (X,T ) ≤ c3(n, r, α, β)Dn+r+212(4k + 3) · 6k ·

T 4(4k+3)/3(d+3) ·D · log T · c4(n, r, α, β)dn+r+1

≤ c5(n, r, α, β)d3n+3r+7 · (4k + 3)6k · T 4(4k+3)/3(d+3) · log T.

For fixed n, r, α we can express c5 as a polynomial in β of degree 2(n+ r + 1).

Taking d = [log T ], where [·] is the integer part, the expression T 4(4k+3)/3(d+3) is
bounded by some c1(k) and we have

N size
K (X,T ) ≤ c1(k)c2(n, r, α, β)(log T )3n+3r+8,

where the constants have the required properties. �

Now suppose that φ : I → R is existentially definable in RPfaff. Then by Wilkie’s
method (see for example [6]) there are intervals I1, . . . , Im ⊆ I which cover I up to
a finite set, such that on each interval Ii the function φ is implicitly defined. We
can then apply the proposition above to each restriction in turn. This proves the
following.

Theorem 4.4. Suppose that I ⊆ R is an interval and that φ : I → R is existentially
definable in RPfaff and transcendental. Then there exist c, γ, depending only on φ,
such that

N size
K (X,T ) ≤ c1c(log T )γ .

In particular, the result applies to any unary function definable in a model com-
plete reduct of RPfaff.

Corollary 4.5. Suppose that R̃ = 〈R̄, f1, . . . , fr〉 is a model complete expansion of
the real field by a Pfaffian chain on Rn. Suppose that I ⊆ R is an interval and
that φ : I → R is a transcendental function definable in R̃. Then there exist c, γ,
depending only on φ, such that

N size
K (X,T ) ≤ c1c(log T )γ .

Combining this Corollary with Wilkie’s model completeness result for the real
exponential field ([16]), we see that Wilkie’s conjecture holds for one dimensional
sets.
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5. Surfaces

This section contains the main results of the paper. As mentioned in the intro-
duction, we need a certain kind of parameterization. Before introducing this, we
first recall some standard notation. Given a function φ : U → R on some open set
U ⊆ Rn, and a mutiindex α ∈ Nn, we let |α| =

∑n
i=1 αi, α! =

∏n
i=1 αi! and

Dαf =
∂|α|f

∂xα1
1 · · · ∂x

αn
n
.

We need some definitions and results due to Pila ([10]) (for a discussion of the
relationship between mildness and the similar notion of Gevrey see the introduction
of [5]).

Definition 5.1. Let A > 0, C ≥ 0. A function φ : (0, 1)l → (0, 1) is said to be
(A,C)-mild if it is smooth and for all α ∈ Nl and x̄ ∈ (0, 1)l,

|Dαφ(x̄)| ≤ α!(A|α|C)|α|.

We call a map θ : (0, 1)l → (0, 1)n (A,C)-mild if each of its coordinates functions
is (A,C)-mild. Finally, we say that a set X ⊆ (0, 1)n, definable in some o-minimal
structure, admits a (J,A,C)-mild parameterization if there exist (A,C)-mild maps
θ1, . . . , θJ : (0, 1)dimX → (0, 1)n such that

X =

J⋃
i=1

θi
(
(0, 1)dimX

)
.

The following result links mild parameterizations and rational points.

Theorem 5.2 (Pila, [10]). Suppose that X ⊆ (0, 1)3 has dimension 2 and admits
a (J,A,C)-mild parameterization. Let k be a positive integer and K ⊆ R a number
field of degree k over Q. Then Y size(K,T ) is contained in the union of at most

Jcr6A
c7(log T )c8C

intersections of Y with algebraic surfaces of degree [(log T )2], for some absolute
constants c6, c7, c8.

In order be able to use this theorem, we shall need to study the intersection
of definable surfaces with algebraic surfaces. So, suppose that f : U → R is
an implicitly defined function on an open analytic cell U ⊆ R2, and that the
definition has complexity (n, r, α, β). That is, there exist n ≥ 1, Pfaffian functions
p1, . . . , pn : R2+n → R and functions f1, . . . , fn : U → R such that f = f1 and

pi(x1, x2, f1(x1, x2), . . . , fn(x1, x2)) = 0 for i = 1, . . . , n,

det
( ∂(p1, . . . , pn)

∂(x3, . . . , xn+2)

)
(x1, x2, f1(x1, x2), . . . , fn(x1, x2)) 6= 0,

and the functions p1, . . . , pn have a common chain, order r and degree (α, β). We

also assume that det
(

∂(p1,...,pn)
∂(x3,...,xn+2)

)
is non-vanishing at all points of V (p1, . . . , pn).

This can be arranged by adding a further equation

det
( ∂(p1, . . . , pn)

∂(x3, . . . , xn+2)

)
(x1, . . . , xn+2) · xn+3 − 1 = 0
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and so increasing n by 1. We fix k ∈ N and suppose that K ⊆ R is a number field
of degree k. Let X = graph(f).

Proposition 5.3. There exist positive integers γ(n, r), N(n, r) and a polynomial
Q ∈ R[X] of degree N with coefficients depending only on n, r, α, β such that for all
d ∈ N if P : R3 → R is a polynomial of degree d then

N size
K ((X ∩ V (P ))trans, T ) ≤ c1(k)Q(d)(log T )γ

Proof. Fix a polynomial P : R3 → R of degree d. First suppose that dimX∩V (P ) =
2. Then there is some open set U0 ⊆ U such that P (x1, x2, f(x1, x2)) = 0 for all
〈x1, x2〉 ∈ U0. This equation extends to all of U so that in this case f is algebraic,
and the transcendental part of X (and so of X ∩ V (P )) is empty.

So we can suppose that the dimension of X ∩ V (P ) is at most one. Let P̃ :

R2+n → R be defined by P̃ (x̄) = P (x1, x2, x3), so P̃ is a polynomial of degree d
and can be considered as a Pfaffian function of order 0 and degree (1, d). We apply

2.4 to find a stratification of V (p1, . . . , pn) ∩ V (P̃ ), with at most

(6) (n+ 1)n+2 ·B
strata, and with each stratum an elementary Pfaffian set defined by Pfaffian func-
tions with the same chain as p1, . . . , pn and with degree (α,B). Recall that

B = (α+ max{β, d}+ 1)(r+2)c9(n+2)

,

for an absolute constant c9. Note that B is a polynomial in d, of degree (r+2)c9(n+2)

with coefficients depending only on n, r, α and β.

We count the points on each stratum, so fix a stratum Y . Since the projection
map π from V (p1, . . . , pn) to X is finite-to-one, the dimension of Y is at most one.
If dimY = 0 then Y is contained in a finite Pfaffian variety defined by functions of
order r and degree (α,B), and #π(Y ) ≤ #Y . By 2.3, this latter will certainly be
bounded by the bounds below. Suppose that dimY = 1. Then, as Y is a stratum in
a weak elementary stratification, there are Pfaffian functions h1, . . . , hn+1 : Rn+2 →
R with the same chain as p1, . . . , pn and with degree (α,B) such that these functions
vanish identically along Y and such that dh1 ∧ · · · ∧ dhn+1 6= 0 at every point of Y .
In particular, Y is a (not necessarily connected) embedded submanifold of Rn+2.
Let

Y1 =
{
x̄ ∈ Y : det

(∂(h1, . . . , hn+1)

∂(x2, . . . , xn+2)

)
(x̄) = 0

}
,

Y2 =
{
x̄ ∈ Y : det

( ∂(h1, . . . , hn+1)

∂(x1, x3, . . . , xn+2)

)
(x̄) = 0

}
.

We look separately at π(Y \Y1), π(Y \Y2) and π(Y1∩Y2). The method for π(Y \Y1)
and π(Y \Y2) is the same, so we only give the details for π(Y \Y1). Each connected
component of Y \ Y1 is the graph of some analytic map from I to Rn+1, for some
open interval I ⊆ R. Rather than estimating the number of components of Y \ Y1

we in fact work with a slightly larger set. So, let

Y ′ =
{
x̄ ∈ Rn+2 : h1(x̄) = · · · = hn+1(x̄) = 0,det

(∂(h1, . . . , hn+1)

∂(x2, . . . , xn+2)

)
(x̄) 6= 0

}
.

Clearly Y \ Y1 ⊆ Y ′ and again, each connected component of Y ′ is the graph of
some analytic map defined on an open interval. Let Z be a connected component of
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Y \Y1. Note that π(Z) is contained in the algebraic part of X ∩V (P ) if and only if
the first two coordinate functions of the map corresponding to Z are algebraic. By
analytic continuation, this holds if and only if the first two coordinate functions of
the map corresponding to Z ′ are algebraic, where Z ′ is the connected component
of Y ′ containing Z. So we may work with the connected components of Y ′ rather
than the connected components of Y \ Y1. Since

Y ′ =
{
x̄ ∈ Rn+2 : ∃z(h1(x̄) = · · · = hn+1(x̄)

= det
(∂(h1, . . . , hn+1)

∂(x2, . . . , xn+2)

)
(x̄)z − 1 = 0)

}
,

Y ′ is the projection of a Pfaffian variety in Rn+3 defined by functions with a common
chain of order r and degree bounded by (α, (n+1)(α+B)). Therefore Khovanskii’s
theorem (2.3) implies that Y ′ has at most

(7) 2r(r−1)/2+1(α+ 2(n+ 1)(α+B))n+3((2n+ 5)(α+ (n+ 1)(α+B))r

connected components. Write this quantity as c10(n, r, α,B) and note that it is a
polynomial in B of degree n+ r+ 3 with coefficients depending only on n, r, α and
β.

Fix a component Z ′ of Y ′. Then π(Z ′) has the form {〈x1, φ(x1), ψ(x1)〉 : x1 ∈ I}
for some open interval I ⊆ R and analytic functions φ, ψ : I → R. If π(Z ′) ∩X is
not contained in the algebraic part of X then at least one of the functions φ, ψ is
transcendental, say φ. Now, φ is implicitly defined by the functions h1, . . . , hn+1.
These functions have the same chain as p1, . . . , pn and have degree (α,B). So the
implicit definition has complexity (n+ 1, r, α,B), and we can apply 4.3 and obtain

N size
K (graph(φ), T ) ≤ c1(k)c2(n+ 1, r, α,B)(log T )γ

where γ = 3(n+ r) + 11 depends only on n and r, and c2 is polynomial in B with
degree 2(n+r+2) and coefficients depending only on n, r, α and β. So we certainly
have

N size
K (π(Z ′), T ) ≤ c1c2(log T )γ .

Applying this bound to each connected component of Y ′, and using (7), we have

(8) N size
K (π(Y ′)trans, T ) ≤ c10c1c2(log T )γ

and so

(9) N size
K (π(Y \ Y1)trans, T ) ≤ c10c1c2(log T )γ .

Repeating the above with Y2 in place of Y1 we have

(10) N size
K ((π(Y \ Y1) ∪ π(Y \ Y2))trans, T ) ≤ 2c10c1c2(log T )γ .

To finish bounding the points coming from π(Y ), we need to consider π(Y1 ∩ Y2).
By Sard’s theorem and o-minimality, the set Y1∩Y2 is finite. The number of points
in Y1 ∩ Y2 is bounded by the number of connected components of

(11)
{
x̄ ∈ Rn+2 : h1(x̄) = · · · = hn+1(x̄) =

det
(∂(h1, . . . , hn+1)

∂(x2, . . . , xn+2)

)
(x̄) = det

( ∂(h1, . . . , hn+1)

∂(x1, x3, . . . , xn+2)

)
(x̄) = 0

}
.
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This is a variety defined by Pfaffian functions with a common chain, order r, and
degree at most (α, (n + 1)(α + B)) and so, by 2.3, has at most c11(n, r, α,B) con-
nected components, where c11 is polynomial in B of degree n+r+2 with coefficients
depending only on n, r, α, β. Combining this bound with those above, we have

N size
K (π(Y ), T ) ≤ 3 · c11c10c1c2(log T )γ .

Finally, we apply this method to each of the (n+ 1)(n+2)B strata of our strati-
fication to obtain

N size
K ((X ∩ V (P ))trans, T ) ≤ 3(n+ 1)(n+2)Bc11c10c1c2(log T )γ .

As observed above, c2, c10 and c11 are polynomials in B of degrees 2(n+ r+ 2), n+
r + 3 and n + r + 2, respectively, and all have coefficients which depend only on
n, r, α and β. Now, B itself is a polynomial in d, of degree

(r + 2)c9(n+2),

again with coefficients depending only on n, r, α and β. It follows that

3(n+ 1)(n+2)Bc11c10c2

is a polynomial in d, with degree N depending only on n and r and coefficients
depending only on n, r, α and β. So we are done, taking Q to be this polynomial. �

We know have everything in place to prove our main result.

Theorem 5.4. Suppose that R̃ = 〈R̄, f1, . . . , fr〉 is a model complete expansion

of the real field by a Pfaffian chain on Rn. If X ⊆ (0, 1)3 is definable in R̃, has
dimension 2 and admits a mild parameterization, then there are c(X) and γ(X)
such that

N size
K (Xtrans, T ) ≤ c1c(log T )γ .

Proof. The structure R̃ has analytic cell decomposition (in fact, model completeness
is unnecessary for this, see [13]) so we can take a cell decomposition C1, . . . , Cm ofX.
By model completeness, each of these cells is existentially definable and so we may
assume, perhaps after decomposing further, and perhaps permuting coordinates
(which has no effect on algebraic points or the transcendental part), that each of
the two dimensional cells is the graph of an implicitly defined function defined on
an open cell in R2. Suppose that the cells are numbered so that C1, . . . , Cl are
two-dimensional and Cl+1, . . . , Cm are at most one-dimensional. By 4.5 there exist
c′, γ′ such that

N size
K ((Cl+1 ∪ · · · ∪ Cm)trans, T ) ≤ c′(log T )γ

′

Now, fix n, α and β such that the implicit definitions of the functions giving the
cells C1, . . . , Cl have complexity bounded by (n, r, α, β). Let γ,N and Q be as in
the previous proposition. Now, suppose that X admits a (J,A,C)-mild parameter-
ization, for some J,A > 0 and C ≥ 0. Fix T > e. By 5.2, the set Xsize(K,T ) is
contained in the union of at most

M(T ) = Jcr6A
c7(log T )c8C
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intersections ofX with algebraic surfaces of degree at most [(log T )2]. Let P1, . . . , PM(T )

be polynomials of degree at most [(log T )2] defining these surfaces. By the previous
proposition applied to each cell, we have

N size
K (((C1 ∪ · · · ∪ Cl) ∩ V (Pi))

trans, T ) ≤ lc1Q([(log T )2])(log T )γ

for each i = 1, . . . ,M(T ). So we have

N size
K (Xtrans, T ) ≤M(T ) · lc1Q([(log T )2])(log T )γ + c′(log T )γ

′

which has the required form. �

In particular, this shows that if a surface definable in Rexp admits a mild param-
eterization then Wilkie’s conjecture holds for that surface. In the reduct RresPfaff of
RPfaff defined in the introduction, we know that mild parameterizations exist and
so we obtain a result for arbitrary definable surfaces.

Corollary 5.5. Suppose that X ⊆ R3 is definable in RresPfaff and has dimension
2. Then there exist c(X) and γ(X) such that

N size
K (Xtrans, T ) ≤ c1c(log T )γ .

Proof. We can assume that X ⊆ (0, 1)3. Since X is subanalytic, we can use uni-
formization to find a mild parameterization of X. In fact we can also take the
parameterizing maps to be definable in RresPfaff (see [5] for the details of this).
Now, X is definable in some expansion of R̄ by a restricted Pfaffian chain, and such
expansions are model complete ([16]). So we can apply the theorem to finish. �

We conclude with an example of how to obtain a transcendence result using our
theorem. As the result is (a rather weak case of something) known, we shall be
brief. Given real α and β, consider the surface X = {〈x, y, z〉 ∈ (0,∞)3 : z = xαyβ}.
We assume that 1, α and β are linearly independent over Q. It is not hard to see
that this implies that Xalg is empty. Now, Pila ([8]) has shown that the function
t 7→ exp(−1/t) is mild and it follows that the map

(0, 1)2 → (0, 1)3

〈u, v〉 7→ 〈exp(−1/αu), exp(−1/βv), exp(−1/u) · exp(−1/v)〉
is mild. The image of this map is an open subset X ′ of X. Clearly X ′ is definable
in Rexp and so we can apply 5.4 to obtain c(X ′) and γ(X ′) ∈ N such that

#X ′(K,T ) ≤ c1(k)c(log T )γ

for any number field K ⊆ R of degree k. Now, using the group structure on X ′ and
that fact that γ is independent of k, we obtain the following.

Proposition 5.6. Suppose that x1, . . . , xγ , y1, . . . , yγ are two multiplicatively inde-

pendent tuples of positive real numbers. Then at least one of the numbers xαi y
β
i is

transcendental.

As mentioned above, this result it not new. In fact, much more precise results
(in an arbitrary number of variables) have been obtained by Waldschmidt ([15]).
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