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For a group G and X a subset of G, the commuting graph of G on X, denoted

by C(G,X), is the graph whose vertex set is X with x, y ∈ X joined by an edge if

x 6= y and x and y commute. If the elements in X are involutions, then C(G,X)

is called a commuting involution graph. This thesis studies C(G,X) when G is ei-

ther a 4-dimensional projective symplectic group; a 3-dimensional unitary group;

4-dimensional unitary group over a field of characteristic 2; a 2-dimensional pro-

jective general linear group; or a 4-dimensional affine orthogonal group, and X a

G-conjugacy class of involutions. We determine the diameters and structure of the

discs of these graphs.
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Chapter 1

Introduction

One powerful method for investigating the structure of a group is by studying its

action on a graph. In the study of finite simple groups from the 1950s, the method

of embedding a group into the automorphism group of a graph has been used with

many successful results. Recent methods within this realm of study have still shown

to be beneficial. For G a group and X a subset of G, the commuting graph of G

on X, C(G,X), is the graph whose vertex set is X with vertices x, y ∈ X joined

whenever x 6= y and xy = yx. In essence commuting graphs first appeared in the

seminal paper of Brauer and Fowler [17], famous for giving a proof that for a given

isomorphism type of an involution centraliser, only finitely many non-abelian simple

groups can contain it, up to isomorphism. The commuting graphs considered in [17]

had X = G \ {1} - such graphs have played an important role in recent work related

to the Margulis–Platanov conjecture (see [35]). The complement of this type of com-

muting graph, called a non-commuting graph, appeared in [33] where B.H. Neumann

solved a problem posed by Erdös. Moreover, a conjecture of Abdollahi, Akbari and

Maimani states that if G is a finite simple group and M is a finite group with trivial

centre, and the non-commuting graphs of G and M are isomorphic as graphs, then

G and M are isomorphic as groups. This conjecture has been shown to be true in

a variety of cases, in particular those where a conjecture of J. Thompson also holds

(see [1], [23] and [21]). Various kinds of commuting graph have been deployed in the

study of finite groups, particularly the non-abelian simple groups. For example, a

13
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computer-free uniqueness proof of the Lyons simple group by Aschbacher and Segev

[9] employed a commuting graph where the vertices consisted of the 3-central sub-

groups of order 3.

A commuting involution graph is a specific kind of commuting graph of G, where

the vertex set is a conjugacy class of involutions. Commuting involution graphs first

arose in Fischer’s work during his investigation into the 3-transposition groups (this

work remains largely unpublished [25], [26]). Here, the vertices of the commuting

involution graph were conjugate involutions such that the product of any two had

order at most 3. This graph led, in part, to the construction of the three sporadic

simple groups of Fischer; Fi22, Fi23 and Fi′24. The construction and uniqueness of

these groups are detailed in [8]. Shortly after, Aschbacher [7] found a condition on a

commuting involution graph of a finite group, to guarantee the existence of a strongly

embedded subgroup.

The detailed study of commuting involution graphs came to prominence with the

work of Bates, Bundy, Hart (nèe Perkins) and Rowley; in particular, the diameters

and disc sizes were determined. For G a symmetric group, or more generally a finite

Coxeter group; a projective special linear group; or a sporadic simple group, and X a

conjugacy class of involutions of G, the structure of C(G,X) has been investigated at

length by this quartet ([11], [13], [14], and [15]). The commuting involution graphs of

Affine Coxeter groups have also been studied in Perkins [34]. Further work on com-

muting graphs of the symmetric groups were explored in [12] and [18]. A different

flavour of commuting graph has been examined in Akbari, Mohammadian, Radjavi,

Raja [3] and Iranmanesh, Jafarzadeh [29]. There, for a group G, the vertex set is

G\Z(G) with two distinct elements joined if they commute. Recently there has been

work on commuting graphs for rings (see, for example, [2] or [4]).

This thesis presents a sequel of sorts to the research of Bates, Bundy, Hart and

Rowley, in particular the commuting involution graphs of special linear groups [15].

Here, we present analogous results for the diameter and disc sizes of C(G,X) when G

is a finite 4-dimensional projective symplectic group; a finite 3-dimensional unitary
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group; or a finite 4-dimensional unitary group over a field of characteristic 2. More-

over, we investigate the structure of C(G,X) when G is an affine orthogonal group,

or a projective general linear group.

In Chapter 2, we give a brief overview of the finite classical groups, which we will be

primarily working with. This chapter will be elementary, but fundamental in laying

the foundations of what is to come. A review of the current research on commuting

involution graphs will also be undertaken. Notation and general conventions will be

set in stone in this chapter.

Chapter 3 explores the structure of the 4-dimensional projective symplectic groups

H = Sp4(q) ∼= PSp4(q) = G when q = 2a for some natural number a. There are

three conjugacy classes of involutions in G denoted by

X1 =
{
x ∈ G

∣∣x2 = 1, dim CV (x) = 3
}

;

X2 =
{
x ∈ G

∣∣x2 = 1, dim CV (x) = 2, dim V (x) = 3
}

; and

X3 =
{
x ∈ G

∣∣x2 = 1, dim CV (x) = 2, V (x) = V
}

.

where V (x) = {v ∈ V | (v, vx) = 0}. This chapter focusses on the proofs of Theorems

1.1 and 1.2.

Theorem 1.1. The commuting involution graph C(G,Xi), for i = 1, 3 is connected

of diameter 2, with disc sizes

|∆1(t)| = q3 − 2; and

|∆2(t)| = q3(q − 1).

Theorem 1.2. The commuting involution graph C(G,X2) is connected of diameter

4, with disc sizes

|∆1(t)| = q2(2q − 3);

|∆2(t)| = 2q2(q − 1)2;

|∆3(t)| = 2q3(q − 1)2; and

|∆4(t)| = q4(q − 1)2.
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The general collapsed adjacency diagrams for C(G,Xi), i = 1, 3, are presented in

Figure 3.1.

Chapter 4 retains the family of classical groups but changes the field to that of odd

characteristic. A brief examination of the commuting involution graphs of H = Sp4(q)

is given, before the study of the commuting involution graphs of G = H/Z(H) ∼=
PSp4(q) is undertaken. There are two classes of involutions in G, denoted by Y1 and

Y2. We denote Y1 to be the conjugacy class of involutions whose elements are the

images of an involution in H, and Y2 to be the conjugacy class of involutions whose

elements are the image of an element of H of order 4 which square to the non-trivial

element of Z(H). The following two theorems are proved in this chapter.

Theorem 1.3. The commuting involution graph C(G, Y1) is connected of diameter

2, with disc sizes

|∆1(t)| = 1

2
q(q2 − 1); and

|∆2(t)| = 1

2
(q4 − q3 + q2 + q − 2).

Theorem 1.4. (i) If q ≡ 3 (mod 4) then C(G, Y2) is connected of diameter 3. Fur-

thermore,

|∆1(t)| = 1

2
q(q2 + 2q − 1);

|∆2(t)| = 1

16
(q + 1)(3q5 − 2q4 + 8q3 − 30q2 + 13q − 8); and

|∆3(t)| = 1

16
(q − 1)(5q5 − 4q4 − 2q3 + 4q2 + 5q + 5).

(ii) If q ≡ 1 (mod 4) then C(G, Y2) is connected of diameter 3. Furthermore,

|∆1(t)| = 1

2
q(q2 + 1);

|∆2(t)| = 1

16
(q − 1)(3q5 − 6q4 + 32q3 − 10q2 − 27q − 8); and

|∆3(t)| = 1

16
(q − 1)(5q5 + 22q4 − 8q3 + 34q2 + 51q + 24).

It is interesting to note that the proof of Theorem 1.4 is highly complex and a

different viewpoint was needed to take on this task. The reason for this is that for

C(G,Xi), (i = 1, 2, 3) and C(G, Y1) the graph can be studied effectively by working in
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H = Sp4(q) and looking at certain configurations in the natural symplectic module

V , involving CV (x) for various x ∈ X (X = Xi, i = 1, 2, 3 or XZ(H)/Z(H) = Y1).

The key point being that, in these four cases for x ∈ X, CV (x) is a non-trivial

subspace of V whereas, for x of order 4 and squaring into Z(H), CV (x) is trivial.

If we change tack and look at G acting on the projective symplectic space things

are not much better. When q ≡ 3 (mod 4) elements of Y2 fix no projective points,

while in the case q ≡ 1 (mod 4) they fix 2q + 2 projective points. However, even in

the latter case, the fixed projective points didn’t appear to be of much assistance.

It is the isomorphism PSp4(q) ∼= O5(q) that comes to our rescue. If now V is

the 5-dimensional orthogonal module and x ∈ Y2, then dim CV (x) = 3. Even so,

probing C(G, Y2) turns out to be a lengthy process. Fix t ∈ Y2. Then by Lemma 4.7,

Y2 ⊆
⋃

U∈U1

CG(U) where U1 is the set of all 1-subspaces of CV (t) and as a result, by

Lemma 4.8, C(G, Y2) may be viewed as the union of commuting involution graphs

for various subgroups of G. Up to isomorphism there are three of these commuting

involution graphs (called C(G−, Y −), C(G+, Y +) and C(G0, Y 0) in Chapter 4). After

studying these three commuting involution graphs in Theorems 4.10, 4.12 and 4.18 it

follows immediately (Theorem 4.19) that C(G, Y2) is connected and has diameter at

most 3. Using the sizes of the discs in C(G−, Y −), C(G+, Y +) and C(G0, Y 0) we then

complete the proof of Theorem 1.4. This “patching together” of the discs is quite

complicated – for example we must confront such issues as t and x in Y2 being of

distance 3 in each of the commuting involution subgraphs which contain both t and

x, yet they have distance 2 in C(G, Y2) (see Lemmas 4.33 to 4.38).

Chapter 5 investigates a different family of classical groups, namely the 3-dimensional

unitary groups. We set H = SU3(q) and G = H/Z(H) ∼= U3(q). We begin with a

short review of the commuting involution graphs for q even, before the much greater

task where q is odd is tackled. It should be noted that the commuting involution

graphs for SU3(q) and U3(q) are isomorphic, due to Z(H) being either trivial or of

order 3. For ease, we work explicitly in H. There is only one conjugacy class of

involutions in H, which is denoted by Z0. Theorem 1.5 is the central focus of this

chapter.



CHAPTER 1. INTRODUCTION 18

Theorem 1.5. (i) Let q be even. The commuting involution graph C(G, tG) for an

involution t ∈ G is disconnected, and consists of q3 + 1 cliques on q − 1 vertices.

(ii) Let q be odd. The commuting involution graph C(H, Z0) is connected of diameter

3, with disc sizes

|∆1(t)| = q(q − 1);

|∆2(t)| = q(q − 2)(q2 − 1); and

|∆3(t)| = (q + 1)(q2 − 1).

The general collapsed adjacency diagrams for arbitrary odd q are constructed at

the end of the chapter, with the third disc differing in orbit structure depending on

whether q ≡ 5 (mod 6) or not. These can be found in Figures 5.1 and 5.2 respectively.

Chapter 6 raises the dimension and we look at the 4-dimensional unitary groups over

fields of characteristic 2. We set H = SU4(q) ∼= U4(q) = G and its two conjugacy

classes by Z1 and Z2, where

Z1 =
{
x ∈ G

∣∣x2 = 1, dim CV (x) = 3
}

; and

Z2 =
{
x ∈ G

∣∣x2 = 1, dim CV (x) = 2
}

.

This chapter concentrates on the proofs of Theorems 1.6 and 1.7.

Theorem 1.6. The commuting involution graph C(G,Z1) is connected of diameter

2, with disc sizes

|∆1(t)| = q4 − q2 + q − 2; and

|∆2(t)| = q5(q − 1).

Theorem 1.7. The commuting involution graph C(G,Z2) is connected of diameter

3, with disc sizes

|∆1(t)| = q(q − 1)(2q2 + q + 1)− 1;

|∆2(t)| = q3(q − 1)(q3 + 2q2 + q − 1); and

|∆3(t)| = q4(q − 1)(q3 − q + 1).
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Chapter 7, in a change of scenery, looks at the non-simple groups PGL2(q) and

AO±
4 (q). In Chapter 4, Theorem 4.18 determines the diameter of the commuting

involution graph of AO3(q). However, an alternative proof using the machinery de-

veloped to tackle the 4-dimensional case is presented here. It will be shown that in

both the 3- and 4-dimensional cases, the diameter of the commuting involution graph

does not differ from the non-affine cases. However, as in Theorem 4.18, what will

be highlighted is that distance is not preserved as we move between the two. This

chapter is devoted to the proofs of the following theorems.

Theorem 1.8. Let G = PGL2(q) and suppose q ≡ δ (mod 4), δ = ±1, q /∈ {3, 7, 11}.
Let X be the conjugacy class of involutions of G such that X∩G′ = ∅. Then C(G,X)

is connected of diameter 3 with disc sizes

|∆1(t)| = 1

2
(q + δ);

|∆2(t)| = 1

4
(q − 1)(q − 1 + 2δ); and

|∆3(t)| = 1

4
(q − 5δ)(q + δ).

Theorem 1.9. Let L ∈ {
O3(q), O+

4 (q), O−
4 (q)

}
for q odd, and G = V L = Aff(L).

Let X be a conjugacy class of involutions of G such that XL = V X/V is a non-trivial

conjugacy class of involutions in L. Then Diam C(L,XL) = Diam C(G,X) = 3.

Finally, Chapter 8 outlines some future avenues stemming from the work under-

taken in this thesis, proving some initial results that will sow the seeds of upcoming

research. In particular, motivating results about arbitrary dimensional symplectic

groups over fields of characteristic 2, 4-dimensional projective unitary groups over

fields of odd characteristic, and twisted exceptional groups of Lie rank 2 will be

presented.



Chapter 2

Background

To begin, we give a background “crash course” in classical groups and provide a

literary review of the recent research into commuting involution graphs. We use

standard group theoretical notation as in, for example, [27]. Group nomenclature is

lifted from the Atlas [22]. Conventions and non-standard notation will be defined

in situ and will carry through the thesis. Any entry omitted from a matrix should be

interpreted as zero. The Galois field of q = pa elements for p prime will be denoted

GF (q). For any matrix g, the (i, j)th entry will be denoted gij.

2.1 Classical Groups

We present some background information on the finite simple classical groups. A

detailed description of these groups alongside in-depth background reading can be

found in [38]. The orders of the finite simple classical groups can be deduced from

the orders of the full isometry group, as given in [22].

Let V be an n-dimensional vector space over a field K, with basis {e1, . . . , en}. Let

σ be a linear transformation of V onto itself. Supposing eσ
i =

∑n
j=1 aijej for aij ∈ K,

σ can be represented as a matrix (aij).

20
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Consider a map (·, ·) : V × V → K. If the map satisfies

(λu + µv, w) = λ(u,w) + µ(v, w)

and (u, λv + µw) = λ(u, v) + µ(u,w)

for any λ, µ ∈ K and any u, v ∈ V then the map is called a bilinear form. Let τ

be an automorphism of K. If the map is linear in the first argument and satisfies

(u, v) = (v, u)τ then the map is called a sesquilinear form. Assume from now on the

map is either a bilinear or sesquilinear form. If, for a fixed u ∈ V , (u, v) = 0 for all

v ∈ V implies u = 0, then the form is non-degenerate. The Gram matrix of a form

on V (denoted in this thesis by J) is the matrix J = (aij) where aij = (ei, ej). A non-

degenerate form implies J is non-singular. Suppose σ is a linear transformation that

preserves the form, so (u, v) = (uσ, vσ) for all u, v ∈ V . Then the matrix representing

σ, say A = (aij), satisfies AT JA = J .

Let U ≤ V and define U⊥ = {v ∈ V | (u, v) = 0, for all u ∈ U}. Then

dim U + dim U⊥ = dim V (2.1)

and if the form is non-degenerate on restriction to U , then the form is non-degenerate

on restriction to U⊥ also. Any vector v ∈ V such that (v, v) = 0 is called an isotropic

(or singular) vector. Any subspace U of V is called isotropic if it contains an isotropic

vector. If (u, v) = 0 for all u, v ∈ U , then we say U is totally isotropic (that is, the

Gram matrix of the form is the zero matrix).

Linear Groups

Let V be as before and denote the set of all invertible linear transformations from V

onto itself by GL(V ). For any σ ∈ GL(V ), σ can be represented as an invertible ma-

trix. This gives an isomorphism from GL(V ) onto GLn(K), the general linear group.

The subgroup of GLn(K) consisting of matrices of determinant 1 is denoted SLn(K),

the special linear group. The centre, Z, of GLn(K) is precisely the set of all scalar

matrices λIn. The centre, ZS, of SLn(K) comprises of all the scalar matrices λIn

such that λn = 1. Clearly, Z (respectively ZS) is the kernel of the induced action of
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GLn(K) (respectively SLn(K)) on the projective space P(V ) =
{〈u〉|u ∈ V #

}
. The

group that acts faithfully on P(V ) is the quotient group PGLn(K) ∼= GLn(K)/Z,

called the projective general linear group. One may also form the quotient group

PSLn(K) ∼= SLn(K)/ZS, called the projective special linear group, which is a sub-

group of PGLn(K) of index at most 2. When K is a finite field of q = pa elements,

we write GLn(K) = GLn(q) (respectively SL, PGL and PSL). The order of GLn(q)

is

|GLn(q)| = q
1
2
n(n−1)

n∏
i=1

(qi − 1).

With the exceptions of PSL2(2) ∼= Sym(3) and PSL2(3) ∼= Alt(4), PSLn(K) is

simple. We write Ln(q) for PSLn(q), following Atlas [22] notation. We prepare an

elementary result regarding SL2(q).

Proposition 2.1. Let q = pa. Any two distinct Sylow p-subgroups of G = SL2(q)

intersect trivially, and
∣∣Sylp(G)

∣∣ = q + 1.

Proof. One may prove this directly, but instead we follow the proof as given by Satz

8.1 of Huppert [28].

All Sylow p-subgroups of G are elementary abelian of order q = pa, and are all

conjugate. Let

P =






1 0

k 1




∣∣∣∣∣∣
k ∈ GF (q)∗





and any element g ∈ P only fixes vectors of the form (m, 0) and thus fixes a single

point p = 〈(1, 0)〉 of the projective line. Any element normalizing P must also fix p

and so NG(P ) ≤ CG(p). Since P = CG((1, 0)) E CG(p), we have NG(P ) = CG(p).

Since G acts transitively on the projective line, we must have [G : NG(P )] = q + 1,

which is precisely the number of Sylow p-subgroups of G. For g ∈ G, the elements

of P g fix a single point pg. Let h ∈ P ∩ P g, so h fixes both p and pg. Since h is an

element of order p and thus only fixes one point of the projective line, p = pg. Hence

g ∈ CG(p) = NG(P ) and so P = P g.

The following theorem relating to L2(q) for odd q will assist our calculations in

Chapter 4.
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Theorem 2.2. Let 〈ε〉 = GF (q)∗, 〈√ε〉 = GF (q2)∗ and s ∈ GF (q2)∗ be a primitive

(q + 1)th root of unity. Set r, t ∈ C to be primitive 1
2
(q − 1) and 1

2
(q + 1) roots of

unity, respectively. When q ≡ 1 (mod 4), let i be the unique element of GF (q) which

squares to −1. The general character table of L2(q) is given in Table 2.1 for q ≡ 3

(mod 4), and in Table 2.2 for q ≡ 1 (mod 4), where x, y, z ∈ GF (q), x /∈ {±1, 0},
y 6= 0 and εa = x; sb = y +

√
εz; εc = i; and sd =

√
εz. If q ≡ 1 (mod 4) then we

place the additional restriction x 6= i.

Rep.

(
1 0
0 1

) (
1 ε
0 1

) (
1 ε2

0 1

) (
x 0
0 x−1

) (
y εz
z y

) (
0 εz
z 0

)

Size 1 (q2−1)
2

(q2−1)
2

q(q + 1) q(q − 1) q(q−1)
2

No. of Cols 1 1 1 (q−3)
4

(q−3)
4

1

χ1 1 1 1 1 1 1
χ2 q 0 0 1 −1 −1

χ3,4
(q−1)

2
(−1±√−q)

2
(−1∓√−q)

2
0 (−1)b+1 (−1)d+1

χ
5,...,5+

(q−3)
4

q + 1 1 1 ra + r−a 0 0

χ
6+

(q−3)
4

,...,
(q+5)

2

q − 1 −1 −1 0 −tb − t−b −td − t−d

Table 2.1: The general character table for L2(q) when q ≡ 3 (mod 4)

Rep.

(
1 0
0 1

) (
1 ε
0 1

) (
1 ε2

0 1

) (
x 0
0 x−1

) (
i 0
0 −i

) (
y εz
z y

)

Size 1 (q2−1)
2

(q2−1)
2

q(q + 1) q(q+1)
2

q(q − 1)

No. of Cols 1 1 1 (q−5)
4

1 (q−1)
4

χ1 1 1 1 1 1 1
χ2 q 0 0 1 1 −1

χ3,4
(q+1)

2

(1∓√q)

2

(1±√q)

2
(−1)a (−1)c 0

χ
5,...,5+

(q−3)
4

q + 1 1 1 ra + r−a rc + r−c 0

χ
6+

(q−3)
4

,...,
(q+5)

2

q − 1 −1 −1 0 0 −tb − t−b

Table 2.2: The general character table for L2(q) when q ≡ 1 (mod 4)

Proof. See [30].

The remaining classical groups arise from subgroups of GLn(K) that preserve

certain forms on V , or equivalently the matrices A that satisfy the relation AT JA = J

where J is the Gram matrix corresponding to the form.
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Symplectic Groups

Let V be as before and let (·, ·) be a non-degenerate bilinear form on V that also

satisfies (u, v) = −(v, u) for all u, v ∈ V (such a property is called alternating).

The form (·, ·) is called a symplectic form and the Gram matrix is skew-symmetric.

Moreover, every vector in V is isotropic. For e1 ∈ V , there exists e′1 ∈ V such that

(e1, e
′
1) 6= 0 since the symplectic form is non-degenerate. Setting f1 = (e1, e

′
1)
−1e′1,

we have (e1, f1) = 1. Hence 〈e1, f1〉 ∩ 〈e1, f1〉⊥ = ∅ and it follows from (2.1)

that V = 〈e1, f1〉 ⊕ 〈e1, f1〉⊥. Continuing inductively, we see that V must have

even dimension so, for clarity, we will write the dimension of V as 2n. We write

Sp2n(K) =
{

A ∈ GL2n(K)|AT JA = J
}

where J is the Gram matrix correspond-

ing to the symplectic form. Clearly, Sp2n(K) contains all invertible linear trans-

formations on V preserving the symplectic form, represented as matrices. We say

{e1, f1, e2, f2, . . . , en, fn} is a hyperbolic basis for V if the Gram matrix of the sym-

plectic form is

J =




J0

. . .

J0




where J0 =


 0 1

−1 0


. We say

{
e1, e2, . . . , en

∣∣f1, f2, . . . , fn

}
is a symplectic basis for

V if the Gram matrix of the symplectic form is

J =


 In

−In


 .

In general, any invertible skew-symmetric matrix J defines a symplectic form on V .

The determinant of all matrices in Sp2n(K) is 1, and the centre is 〈−I2n〉. The

quotient of Sp2n(K) by its centre is denoted by PSp2n(K). When K is a finite field

of q elements, we write Sp2n(K) = Sp2n(q) (respectively PSp). The order of Sp2n(q)

is

|Sp2n(q)| = qn2
n∏

i=1

(q2i − 1).
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For n ≤ 4, with the exception of PSp4(2) ∼= Sym(6), PSpn(K) is simple.

We present a result concerning the 4-dimensional symplectic groups over a field of

characteristic 2.

Proposition 2.3. Let G ∼= Sp4(K) for K a field of characteristic 2. Then there exists

an outer automorphism of G that interchanges two conjugacy classes of involutions.

Proof. The group G arises from the Dynkin diagram of type B2 = C2, of which

a graph automorphism exists when char(K) = 2 (see, for example, pages 224-225

of [20]). This automorphism is an outer automorphism of G. Each node of the

Dynkin diagram corresponds to a subgroup isomorphic to SL2(K) and since this

automorphism is outer, these SL2(K)-subgroups must be non-conjugate. Consider

the following subgroups

S1 =








1

A

1




∣∣∣∣∣∣∣∣∣∣

A ∈ SL2(q)





and S2 =






A

A




∣∣∣∣∣∣
A ∈ SL2(q)





of G. All involutions in SL2(K) are conjugate and so using Lemma 7.7 of [10] we

see that S1 and S2 are non-conjugate SL2(K)-subgroups. The conjugacy classes of

involutions containing those from S1 and S2 respectively are interchanged by the

outer automorphism of G.

Unitary Groups

Let L be a quadratic extension of K and τ be an automorphism of L. Let V be an

n-dimensional vector space over L and define (·, ·) to be a non-degenerate sesquilinear

form on V with respect to τ . When τ is of order 2, the form (·, ·) is called a unitary

(or Hermitian) form. For a matrix A = (aij) representing a linear transformation on

V , define A =
(
aτ

ij

)
. Let J be the Gram matrix with respect to the unitary form,

and we write

GUn(K) =
{

A ∈ GLn(L)|AT
JA = J

}
(2.2)
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comprising of all the invertible matrices preserving the unitary form, called the general

unitary group. Let SUn(K) denote the subgroup of GUn(K) of matrices of deter-

minant 1, called the special unitary group. As with the general linear group, the

quotient of GUn(K) (respectively SUn(K)) by its centre yields the group PGUn(K)

(respectively PSUn(K)). When K is a finite field of q elements (and thus L a finite

field of q2 elements), we write GUn(K) = GUn(q) (respectively SU , PGU , PSU).

The order of GUn(q) is

|GUn(q)| = q
1
2
n(n−1)

n∏
i=1

(qi − (−1)i).

A word of caution, however, that notation differs within existing literature. For

example, some authors use GUn(L) to denote the group of matrices with entries over

L. In the spirit of the Atlas [22], we follow the “smallest field” convention and use

the definition as given in (2.2). Moreover, we often write PSUn(q) = Un(q). With

the exception of U3(2) ∼= 32.Q8, Un(K) is simple for n ≥ 3.

We note the following lemma regarding involutions in SUn(q).

Lemma 2.4. Suppose q is odd, and let J = In be the Gram matrix defining a unitary

form on V , an n-dimensional vector space. Let G = SUn(q). Then conjugacy classes

of involutions in G are represented by the diagonal matrices

ti =




−Ii

In−2i

−Ii




,

for i = 1, . . . ,
[

n
2

]
.

Proof. A result of Wall (Page 34, Case(A)(ii) of [40]) reveals that any two involu-

tions in GUn(q) are conjugate if and only if they are conjugate in GLn(q). This

naturally restricts to an analogous result concerning conjugate involutions in SUn(q)

and SLn(q).
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Orthogonal Groups

Let V be an n-dimensional vector space over K and let Q : V → K be a map such

that Q(av) = a2Q(v) for a ∈ K and v ∈ V . We call Q a quadratic form, and define

a bilinear form (·, ·) by (u, v) = Q(u + v) − Q(u) − Q(v) for u, v ∈ V . If char(K) is

odd, then (·, ·) is uniquely determined by Q (and vice versa). When char(K) = 2,

(·, ·) is an alternating form. We say Q is non-degenerate if Q(v) 6= 0, for all v ∈ V ⊥.

When char(K) is odd, this is equivalent to the bilinear form being non-degenerate

– such a bilinear form is called orthogonal. We define GO(V, Q) to be the set of

invertible linear transformations that preserve the non-degenerate quadratic form Q,

called the general orthogonal group. The theory of quadratic forms is vastly different

when char(K) = 2 as opposed to when char(K) is odd. This thesis only deals with

orthogonal groups over fields of odd characteristic, and so until further notice we

assume char(K) to be odd.

We now assume Q to be non-degenerate and utilise the orthogonal form, (·, ·),
uniquely determined by Q. Hence, GO(V,Q) can also be described as the set of

invertible linear transformations which preserve the orthogonal form. A hyperbolic

plane is the unique (up to isometry) 2-dimensional vector space equipped with an

orthogonal form with Gram matrix J0 =


1 0

0 −1


, and contains an isotropic vector.

The vector space V can be decomposed as an orthogonal sum,

V = H1 ⊥ H2 ⊥ . . . ⊥ Hn ⊥ W

where each of the Hi are hyperbolic planes, W is not a hyperbolic plane and dim(W ) ≤
2. If n is odd, then dim(W ) = 1 but if n is even then dim(W ) = 0 or 2. We say V

is an orthogonal space of +-type if dim(W ) = 0 and −-type if dim(W ) = 2. If n is

odd, then all general orthogonal groups that preserve an orthogonal form are isomor-

phic, and are denoted by GO0(V ), or just GO(V ). When n is even, there are two

isomorphism classes of general orthogonal group that preserve an orthogonal form.

These stem from whether V is an orthogonal space of +- or −-type. The general

orthogonal groups that preserve these forms are either denoted GO+(V ) or GO−(V ),
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with superscripts referring to the type of V .

Let U = 〈u, v〉 be a 2-dimensional orthogonal space over K with respect to an orthog-

onal form defined by the Gram matrix J0 =


1 0

0 a


, for some a ∈ K∗. If there exists

a vector w = (α, β) ∈ U such that (w, w) = 0 then α2 + aβ2 = 0 and so α2 = −aβ2.

This occurs if and only if −a is a square in K.

Let J be the Gram matrix with respect to an orthogonal form (·, ·) on V . Since the

orthogonal form is symmetric, J is a symmetric matrix. There always exists a basis

of V such that J is a diagonal matrix (such a basis is called an orthogonal basis).

For brevity, we assume J to be diagonal. For any 2-dimensional vector space with

Gram matrix


a 0

0 a


 for some a ∈ K∗, an alternative basis can be found such that

the Gram matrix is


1 0

0 b


 for some b ∈ K∗. Hence, up to a reordering of basis, we

may assume

J =


In−k

J1




where J1 is either the 1× 1 matrix (1) if n is odd and k = 1, or


1 0

0 −µ


 for some

µ ∈ K∗ when n is even and k = 2. If n is odd, then J = J0 = I2n+1. If n is even,

then

J =


In−1

−µ




for µ ∈ K∗. If µ is square in K∗, then define J = J+. If µ is non-square in K∗, then

define J = J−. Note that Jε determines the type of V to be of ε-type and define

GOε
n(K) =

{
A ∈ GLn(K)|AT JεA = Jε

}
for ε ∈ {+,−, 0}.

Any matrix in GOε
n(K) has determinant either 1 or −1. The subgroup of GOε

n(K)

consisting of matrices of determinant 1 is denoted by SOε
n(K), called the special

orthogonal group. Unlike the other families of classical groups, in general SOε
n(K)

may not be perfect. In fact, the derived subgroup of SOε
n(K), denoted Ωε

n(K), has

index at most 2. An alternative description for Ωε
n(K) is via the notion of reflections.
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For r, v ∈ V such that (r, r) 6= 0, define Rr : V → V by Rr : v 7→ v − 2(v, r)(r, r)−1v.

Clearly, rRr = −r and any s ∈ V such that (r, s) = 0 is fixed by Rr. We say Rr

is a reflection in the vector r and such a reflection preserves the orthogonal form,

and therefore lies in GOε(V ). Suppose g is decomposed as a product of reflections

Rr1Rr2 . . . Rrt in the vectors r1, r2, . . . , rt. Since char(K) is odd, g ∈ Ωε
n(K) if and

only if the product (r1, r1)(r2, r2) . . . (rt, rt) is square in K. This product is often

referred to as the spinor norm of g.

The quotient of GOε
n(K) by its centre is denoted PGOε

n(K) (respectively SO and Ω).

When K is a finite field of q elements, we replace K with q as before. The order of

GOn(q) for n odd is twice that of Sp2n(q) (note that q is odd). The order of GOε
2n(q),

for ε = ±1 is

|GOε
2n(q)| = 2qn(n−1)(q2n − ε)

n−1∏
i=1

(q2i − 1).

For n ≥ 7, PΩε
n(K) is simple.

We give a second cautionary word to the reader regarding the extensive, and almost

contradictory, notation within existing literature. Dickson’s notation is becoming

obsolete (see page xiii of [22] for a brief dictionary), being replaced with the Ω no-

tation introduced by Dieudonné. Moreover, some authors regard Oε
n(K) as the full

orthogonal group. In the interest of consistency, we follow the Atlas [22] nota-

tion, in particular Artin’s convention of “single letter for a simple group”. Thus,

Oε
n(K) = PΩε

n(K) will denote the simple orthogonal group. If K = GF (q) then the

simple orthogonal group will be denoted by Oε
n(q). We present an important lemma.

Lemma 2.5. Let G be an orthogonal group acting on the orthogonal G-module V

over GF (q). Then G acts on the 1-subspaces of V in 3 orbits.

Proof. Let u0, u1, u2 ∈ V be such that (u0, u0) = 0, (u1, u1) is non-square in GF (q)∗

and (u2, u2) is square in GF (q)∗. By definition of G, (v, v) = (vg, vg) for all g ∈ G

and all v ∈ V . Hence, the set of all isotropic 1-subspaces of V forms a G-orbit. For

any λ ∈ GF (q), (λu1, λu1) = λ2(u1, u1) will also be non-square in GF (q)∗. Similarly,

(λu2, λu2) will be square in GF (q)∗. Hence, {〈v〉| (v, v) is square in GF (q)∗} forms a

G-orbit, as does {〈v〉| (v, v) is non-square in GF (q)∗}.
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We end this section on a general note that any form on V that is either symplectic,

unitary or orthogonal, will be referred to as a classical form.

Affine Linear Groups

Let K be a finite field of arbitrary characteristic. Let H = GLn(q) and G ≤ H. We

call G a linear group and G acts on the natural module V , an n-dimensional vector

space over GF (q). We form the semidirect product V oG = Aff(G), the affine group

of G. If G is a classical group defined in the earlier sections, we denote the affine

analogue with the prefix A. For example if G = Sp2n(q) then Aff(G) = ASp2n(q).

Isomorphisms Between Classical Groups

We present a list of exceptional isomorphisms between classical groups that will be

of use.

Proposition 2.6. (i) SL2(q) ∼= Sp2(q) ∼= SU2(q).

(ii) L2(q) ∼= O3(q).

(iii) C q∓1
2

∼= O±
2 (q).

(iv) SL2(q) ◦ SL2(q) ∼= O+
4 (q).

(v) L2(q
2) ∼= O−

4 (q).

(vi) PSp4(q) ∼= O5(q)

(vii) U4(q) ∼= O−
6 (q).

Proof. These isomorphisms are well-known and can be proved in different ways. For

a proof geometrical in nature, see [38]. The results here are scattered throughout the

book, since more theory is developed as the book progresses. For a more algebraic

proof (or for a more collated result) the reader is referred to Proposition 2.9.1 of

[32].
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2.2 Commuting Involution Graphs

We give a review of the recent study into commuting involution graphs, starting with

a background in graph theory to cement our conventions.

A graph Γ with vertex set Ω is undirected without loops if (x, y) is an edge of Γ

exactly when (y, x) is an edge of Γ for all x, y ∈ Ω, but (x, x) is never an edge of Γ

for any x ∈ Ω. The standard distance metric d on Γ is defined by d(x, y) = i if and

only if the shortest path between vertices x and y has length i. If no such path exists

between x and y, then the distance is infinite. For x ∈ Ω, define the ith disc from x

to be

∆i(x) = {y ∈ Ω| d(x, y) = i} .

If |∆1(x)| = |∆1(y)| for all x, y ∈ Ω, then the graph is regular. We call |∆1(x)| the

valency of a regular graph. If Γ0 is a connected regular graph, then the diameter of

Γ0, Diam Γ0, is the greatest such i such that ∆i(x) 6= ∅ and ∆i+1(x) = ∅ for any

x ∈ Ω.

For the entirety of this thesis, we consider only regular, undirected graphs without

loops. Let G be a group and X a subset of G. We form a graph with vertex set X,

denoted C(G,X), such that any two distinct vertices of X are joined if and only if

they commute. In particular, ∆1(x) = {y ∈ X|xy = yx}. Such a graph is called a

commuting graph of G on X. When X is specifically a G-conjugacy class of involu-

tions, we call C(G,X) a commuting involution graph. Due to the transitive action

of G on X by conjugation, it is clear that C(G,X) is a regular, undirected graph

without loops.

The detailed study of commuting involution graphs came to the fore in the early

2000’s, when Peter Rowley and three of his then PhD Students and post-doctoral

researchers – Chris Bates, David Bundy and Sarah Hart (nèe Perkins) – published a

number of results describing the diameter and disc sizes of these graphs for various

groups (see [14], [13], [34], [15] and [11]). Exact conditions when certain graphs had

certain properties were determined. In 2006, a paper detailing the structure of the
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commuting involution graphs for most sporadic simple groups was published. The

remaining cases were then tackled in the late 2000s by two more of Rowley’s PhD stu-

dents, Paul Taylor and Benjamin Wright (see [39] and [43] respectively). We present

a condensed overview of the results, the details and proofs of which can be found in

the cited works.

Theorem 2.7 (Bates, Bundy, Perkins, Rowley). Let G = Sym(n) and X a G-

conjugacy class of involutions. Then C(G,X) is either disconnected or connected of

diameter at most 4, with equality in precisely three cases.

Proof. The proof and exact conditions for this result can be found in [14].

Theorem 2.8 (Bates, Bundy, Perkins, Rowley). Let G be a finite Coxeter group and

X a conjugacy class of involutions in G.

(i) If G is of type Bn or Dn, then C(G,X) is either disconnected or connected of

diameter at most 5, with equality in exactly one case.

(ii) If G is of type E6, then C(G,X) is connected of diameter at most 5.

(iii) If G is of type E7 or E8, then C(G,X) is connected of diameter at most 4.

(iv) If G is of type F4, H3 or H4, then either C(G,X) is disconnected or connected

of diameter 2.

(v) If G is of type In, then C(G,X) is disconnected.

Proof. This is a highly condensed version of the result – the full details and proofs

can be found in [13].

A sequel to these results, a result on the commuting involution graphs of a class

of infinite groups, followed soon after.

Theorem 2.9 (Perkins). Let G be an affine Coxeter group of type Ãn, and X a

conjugacy class of involutions of G. Then C(G,X) is disconnected or is connected of

diameter at most 6.

Proof. As with Theorems 2.7 and 2.8, this is a compact description of the full result.

The reader is referred to [34] for full details and proofs.
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The next collection of results relating to commuting involution graphs provides,

what can only be described as, the keystone to the research undertaken in this thesis.

Bates, Bundy, Hart and Rowley explore the structure of the commuting involution

graphs of the special linear and projective special linear groups over various fields.

Due to the high relevance of this paper to this thesis, we present all three results as

given in [15].

Theorem 2.10 (Bates, Bundy, Perkins, Rowley). Suppose G ∼= L2(q), the 2-dimensional

projective special linear group over the finite field of q elements, and X the G-

conjugacy class of involutions.

(i) If q is even, then C(G,X) consists of q + 1 cliques each with q − 1 vertices.

(ii) If q ≡ 3 (mod 4), with q > 3, then C(G,X) is connected and Diam C(G,X) = 3.

Furthermore,

|∆1(t)| = 1

2
(q + 1);

|∆2(t)| = 1

4
(q + 1)(q − 3); and

|∆3(t)| = 1

4
(q + 1)(q − 3).

(iii) If q ≡ 1 (mod 4), with q > 13, then C(G,X) is connected and Diam C(G,X) = 3.

Furthermore

|∆1(t)| = 1

2
(q − 1);

|∆2(t)| = 1

4
(q − 1)(q − 5); and

|∆3(t)| = 1

4
(q − 1)(q + 7).

Theorem 2.11 (Bates, Bundy, Perkins, Rowley). Suppose that G ∼= SL3(q) and X

the G-conjugacy class of involutions. Then C(G,X) is connected with Diam C(G,X) =

3 and the following hold.
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(i) If q is even, then

|∆1(t)| = 2q2 − q − 2;

|∆2(t)| = 2q2(q − 1); and

|∆3(t)| = q3(q − 1).

(ii) If q is odd, then

|∆1(t)| = q(q + 1);

|∆2(t)| = (q2 − 1)(q2 + 2); and

|∆3(t)| = (q + 1)(q − 1)2.

Theorem 2.12 (Bates, Bundy, Perkins, Rowley). Let K be a (possibly infinite) field

of characteristic 2, and suppose that G ∼= SLn(K) and X a G-conjugacy class of

involutions containing t. Also let V denote the natural n-dimensional KG-module,

and set k = dimK [V, t].

(i) If n ≥ 4k, then Diam C(G,X) = 2.

(ii) If 3k ≤ n < 4k, then Diam C(G,X) ≤ 3.

(iii) If 2k < n < 3k, or k is even and n = 2k, then Diam C(G,X) ≤ 5.

(iv) If n = 2k and k is odd, then Diam C(G,X) ≤ 6.

This thesis follows in the footsteps of [15], but for G a 4-dimensional projective

symplectic group, a 3-dimensional unitary group or a 4-dimensional unitary group

over a field of characteristic 2.

The most recent family of groups whose commuting involution graphs were stud-

ied were the sporadic simple groups. Here, the notation for the conjugacy classes of

involutions follows the Atlas convention.

Theorem 2.13 (Bates, Bundy, Hart, Rowley; Rowley, Taylor; Rowley). Let K be

a sporadic simple group and K ≤ G ≤ Aut (K). Let X be a conjugacy class of

involutions in G.
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(i) For (K, X) not equal to (J4, 2B), (Fi′24, 2B), (Fi′24, 2D), (B, 2C), (B, 2D) or

(M, 2B), the diameter of C(G,X) is at most 4, with equality in precisely four cases.

(ii) For (K,X) equal to (J4, 2B), (Fi′24, 2B) or (Fi′24, 2D), the diameter of C(G,X)

is 3.

(iii) For (K, X) equal to (M, 2B) the diameter of C(G, X) is 3.

Proof. Part (i) is given in the paper of Bates, Bundy, Hart and Rowley [11]. Part

(ii) is proved in Taylor [39]. Part (iii) is determined in an unpublished manuscript of

Rowley [36].

Conjecture: For (K, X) equal to (B, 2C), the diameter of C(G, X) is 3.

Due to the complexity of this particular case, a considerable portion of Wright [43]

is devoted to studying the CG(t)-orbits of C(G,X) with a view to proving this con-

jecture. It should be noted that the case when (K, X) equal to (B, 2D) has, at time

of writing, not been attempted.

Collapsed Adjacency Diagrams

Now we present an overview of collapsed adjacency diagrams. As is customary we use

a circle to denote a CG(t)-orbit, and within the circle we note the name of this orbit

and its size. An arrowed line from orbit ∆j
i (t) to ∆l

k(t), labelled by λ says that a ver-

tex in ∆j
i (t) is joined to λ vertices in ∆l

k(t). The absence of arrowed lines from ∆j
i (t)

to ∆l
k(t) indicates that there are no edges between vertices in ∆j

i (t) and ∆l
k(t). The

graphs we are about to describe have collections of CG(t)-orbits which display similar

properties. In order to describe this and also make our collapsed adjacency graph

easier to read we introduce some further notation. A square as described in Figure

2.1 is telling us that there are µ = k + 1 CG(t)-orbits, ∆j
i (t), ∆

j+1
i (t), . . . , ∆j+k

i (t)

each of size m. For each of these orbits ∆l
i(t), a vertex in ∆l

i(t) is joined β vertices

in ∆l
i(t) and to γ vertices in ∆l′

i (t) for each l′ 6= l, for j ≤ l′ ≤ j + k. Now Figure

2.2 indicates that a vertex in any of the CG(t)-orbits ∆j
i (t), ∆

j+1
i (t), . . . , ∆j+k

i (t),

is joined to b vertices in ∆s
r(t) and a vertex in ∆s

r(t) is joined to a vertices in
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Figure 2.1: A collection of orbits in a collapsed adjacency diagram

Figure 2.2: The interactions between orbit collections in a collapsed adjacency dia-
gram
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each of ∆j
i (t), ∆

j+1
i (t), . . . , ∆j+k

i (t). Directed arrows between square boxes as above

mean that a vertex in each of the orbits ∆j
i (t), ∆

j+1
i (t), . . . , ∆j+k

i (t) joins to c ver-

tices in each of the orbits ∆j′
i′ (t), ∆

j′+1
i′ (t), . . . , ∆j′+k′

i′ (t), and a vertex in each of

the orbits ∆j′
i′ (t), ∆

j′+1
i′ (t), . . . , ∆j′+k′

i′ (t) is joined to d vertices in each of the orbits

∆j
i (t), ∆

j+1
i (t), . . . , ∆j+k

i (t).

2.3 Useful Results

There are some basic results which, whilst elementary, are fundamental in our study

of commuting involution graphs. These are presented below.

Proposition 2.14. Let G be a finite group acting on a graph Γ with vertex set Ω,

with valency k. Let α, β ∈ Ω such that β ∈ ∆1(α) (equivalently, α ∈ ∆1(β)). Denote

αG and βG the G-orbits containing α and β respectively. Then

∣∣αG
∣∣ ∣∣∆1(α) ∩ βG

∣∣ =
∣∣βG

∣∣ ∣∣∆1(β) ∩ αG
∣∣ .

Proof. By definition,
∣∣∆1(α) ∩ βG

∣∣ is the number of edges between α and βG. Hence

by the action of G, there exists
∣∣αG

∣∣ ∣∣∆1(α) ∩ βG
∣∣ edges between the orbits αG

and βG. By interchanging α and β, we see this number must also be equal to
∣∣βG

∣∣ ∣∣∆1(β) ∩ αG
∣∣, proving the lemma.

Proposition 2.15. Let G be a group, and V a module for G. For g ∈ G, we have

CG(g) ≤ StabGCV (g).

Proof. Let h ∈ CG(g) and v ∈ CV (g). Then vh = vgh = vhg and so vh ∈ CV (g).

Hence, h ∈ StabGCV (g), so proving the result.

Proposition 2.16 (Witt’s Lemma). Let (V1, ϕ1) and (V2, ϕ2) be vector spaces equipped

with classical forms ϕi on Vi, i = 1, 2. Let Wi ≤ Vi and assume there exists an isom-

etry ψ from (W1, ϕ1) to (W2, ϕ2). Then ψ extends to an isometry from (V1, ϕ1) to

(V2, ϕ2).

Proof. See Section 20 of [6].
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We present a corollary to Witt’s Lemma of vital importance to later results.

Corollary 2.17. Let G be a classical group acting on the natural G-module V . Then

G acts transitively on the set of totally isotropic subspaces of V of fixed dimension.

Proof. Let W1 and W2 be totally isotropic subspaces of V with respect to the classical

form ϕ of the same dimension k. Clearly, G induces isometries from W1 to W2

preserving ϕ. The result follows by Witt’s Lemma.

2.4 Final Remarks

Each chapter from Chapter 3 to Chapter 6 deals with a different family of simple clas-

sical groups. We denote by H the subgroup of GLn(q) of matrices with determinant

1 that preserve the given classical form, and G will denote the image of H obtained

by factoring by its centre. In general G′ will be a simple group, with G = G′ if G is a

symplectic or a unitary group. We usually denote by V the natural GF (q)H-module.



Chapter 3

4-Dimensional Symplectic Groups

over Fields of Characteristic 2

We start by considering the symplectic groups H = Sp4(q) and G = PSp4(q) ∼=
H/Z(H). In this chapter, we let p = 2 and so H = Sp4(q) ∼= PSp4(q) = G. We set

about proving Theorems 1.1 and 1.2, and determining the general collapsed adjacency

diagram of C(G,Xi) for i = 1, 3. We denote by V the symplectic GF (q)G-module

with an associated symplectic form (·, ·) defined by the Gram matrix

J =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0




,

with respect to a suitable basis of V . We further define

S =








1 a b c

0 1 d ad + b

0 0 1 a

0 0 0 1




∣∣∣∣∣∣∣∣∣∣∣∣∣

a, b, c, d ∈ GF (q)





,

39
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Q1 =








1 a b c

0 1 0 b

0 0 1 a

0 0 0 1




∣∣∣∣∣∣∣∣∣∣∣∣∣

a, b, c ∈ GF (q)





and Q2 =








1 0 b c

0 1 d b

0 0 1 0

0 0 0 1




∣∣∣∣∣∣∣∣∣∣∣∣∣

b, c, d ∈ GF (q)





.

Lemma 3.1. (i) S ∈ Syl2G.

(ii) S = Q1Q2 with Q#
1 ∪Q#

2 consisting of all the involutions of S.

Proof. It is straightforward to check that S is a subgroup of G. Since |G| = q4(q2 −
1)(q4 − 1) and |S| = q4, we have part (i). If

x =




1 a b c

0 1 d ad + b

0 0 1 a

0 0 0 1



∈ S

then x2 = I4 if and only if a = 0 or d = 0, thus x ∈ Q1 ∪ Q2. Each Qi forms an

elementary abelian group of order q3, and an easy check shows that Q1Q2 = S, and

Z(S) = Q1 ∩Q2, giving part (ii).

For any involution x ∈ G, note that [V, x]⊥ = CV (x) and dim V = dim[V, x] +

dim CV (x). For an involution x ∈ G we define V (x) = {v ∈ V | (v, vx) = 0}. As in

Lemma 7.7 of [10], G has three classes of involutions which may be described as

X1 =
{
x ∈ G

∣∣x2 = 1, dim CV (x) = 3
}

;

X2 =
{
x ∈ G

∣∣x2 = 1, dim CV (x) = 2, dim V (x) = 3
}

; and

X3 =
{
x ∈ G

∣∣x2 = 1, dim CV (x) = 2, V (x) = V
}

.

The following three involutions are elements of G.

t1 =




1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1




, t2 =




1 0 1 1

0 1 0 1

0 0 1 0

0 0 0 1




, t3 =




1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1




.
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Lemma 3.2. (i) For i = 1, 2, 3, ti ∈ Xi.

(ii) CG(t1) ∼= q3SL2(q) with O2(CG(t1)) = Q1 of order q3.

(iii) CG(t2) = S.

(iv) |X1| = q4 − 1.

(v) |X2| = (q2 − 1)(q4 − 1).

Proof. Let v = (α, β, γ, δ) ∈ V . Then vt1 = (α, β, γ, α+δ), vt2 = (α, β, α+γ, α+β+δ)

and vt3 = (α, α + β, γ, γ + δ). Hence [v, t1] = (0, 0, 0, α), [v, t2] = (0, 0, α, α + β) and

[v, t3] = (0, α, 0, γ). Consequently dim [V, t1] = 1 and dim [V, t2] = 2 = dim [V, t3].

Thus t1 ∈ X1. Now

(v, vt2) = α(α + β + δ) + β(α + γ) + γβ + δα = α2 = 0

implies that α = 0 and so dim V (t3) = 3. Therefore t2 ∈ X2. Turning to t3 we have

that

(v, vt3) = α(γ + δ) + βγ + γ(α + β) + δα = 0

implies that V (t2) = V , as v is an arbitrary vector of V . Hence t3 ∈ X3, and we have

(i).

By direct calculation we see that

CG(t1) =








1 a1 a2 a3

a4 a5 a6

a7 a8 a9

1




∣∣∣∣∣∣∣∣∣∣∣∣∣

ai ∈ GF (q), i = 1, . . . , 9

a5a7 + a4a8 = 1

a1 + a6a7 + a4a9 = 0

a2 + a8a6 + a5a9 = 0





. (3.1)

Moreover

SL2(q) ∼= L =








1

a b

c d

1




∣∣∣∣∣∣∣∣∣∣∣∣∣

a, b, c, d ∈ GF (q)

ad + bc = 1





≤ CG(t1) (3.2)

with Q1 a normal elementary abelian subgroup of CG(t1) and |Q1| = q3. So CG(t1) =

LQ1. Thus (ii) holds.
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It is a routine calculation to show that S ≤ CG(t2). The involution t2 satisfies the

hypothesis of Lemma 7.11(ii) of [10], the result of which shows that CG(t2) is a 2-

group. Since S ∈ Syl2G by Lemma 3.1(i), we have (iii).

From parts (ii) and (iii), |CG(t1)| = q4(q2 − 1) and |CG(t2)| = q4. Combining this

with |G| = q4(q2 − 1)(q4 − 1) yields (iv) and (v).

3.1 The Structure of C(G,Xi), i = 1, 3

As shown in Proposition 2.3, G has an outer automorphism arising from the Dynkin

diagram of type C2 = B2. This outer automorphism interchanges the two involu-

tion conjugacy classes X1 and X3 and as a consequence C(G,X1) and C(G,X3) are

isomorphic graphs. Thus we need only consider C(G,X1).

Lemma 3.3. (i) Let x ∈ StabGCV (t1) be an involution. Then x ∈ CG(t1).

(ii) C(G,X1) is connected of diameter 2.

Proof. Combined, Proposition 4.1.19 of [32] and Lemma 3.2(ii) gives StabGCV (t1) ∼=
CG(t1) o C(q−1) and so CG(t1) E StabGCV (t1). Therefore any Sylow 2-subgroup of

StabGCV (t1) is a Sylow 2-subgroup of CG(t1) and, in particular, any involution sta-

bilising CV (t1) must lie in CG(t1), proving (i).

Let x ∈ X1 such that x /∈ CG(t1) (which exists since 〈X1〉 is not abelian). If

CV (x) = CV (t1) then x ∈ StabGCV (t1) and by (i), x ∈ CG(t1), contradicting our

choice of x. So CV (x) 6= CV (t1) and hence CV (〈t1, x〉) � CV (t1). Since dim CV (t1) =

dim CV (x) = 3, we necessarily have dim(CV (〈t1, x〉)) = 2. Any 1-subspace of V is

isotropic by virtue of the symplectic form. Let U be a 1-dimensional subspace of

CV (〈t1, x〉) ≤ V . For any y0 ∈ X1, dim [V, y0] = 1 and hence isotropic. Therefore,

there exists y ∈ X1 such that U = [V, y], since G is transitive on the set of isotropic

1-subspaces of V , by Witt’s Lemma. Let u ∈ U and so u = v + vy for some v ∈ V .

Clearly

uy = (v + vy)y = vy + vy2

= vy + v = u
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so Uy = U . Consider now v + U ∈ V/U . We then have

(v + U)y = vy + Uy = vy + (vy + v) + U = v + U,

thus y fixes V/U pointwise. Hence, y stabilises any subspace U ≤ W ≤ V . In

particular, y stabilises CV (t1) and CV (x), since U ≤ CV (〈t1, x〉). Moreover, y is an

involution and so by (i), y ∈ CG(t1) ∩ CG(x). Since t1 6= y 6= x we have d(t1, x) = 2.

Moreover, x is arbitrary and so C(G,X1) is connected of diameter 2, so proving

(ii).

Lemma 3.4. |CG(t1) ∩X1| = |∆1(t1)| = q3 − 1.

Proof. Let s be an involution in S. Then, by Lemma 3.1(ii), s ∈ Q#
1 ∪ Q#

2 . Let

v = (α, β, γ, δ) be a vector in V . Assume for the moment that s ∈ Q1. Then

s =




1 a b c

0 1 0 b

0 0 1 a

0 0 0 1




where a, b, c ∈ GF (q). So vs = (α, aα+β, bβ+γ, cα+bβ+aγ+δ). Suppose that at least

one of a and b is non-zero. If v ∈ CV (s), then we have aα = bβ = cα+bβ+aγ = 0. If,

say, a 6= 0 then this gives α = 0 and bβ +aγ = 0. Hence γ = λβ for some λ ∈ GF (q).

Thus dim CV (s) = 2, with the same conclusion if b 6= 0.

When a = b = 0 we see that dim CV (s) = 3. Therefore we conclude that

|Q1 ∩X1| = q − 1. (3.3)

Now we suppose s ∈ Q2 \Q1. Then

s =




1 0 a b

0 1 c a

0 0 1 0

0 0 0 1




where a, b, c ∈ GF (q) and c 6= 0. Here vs = (α, β, aα + cβ + γ, bα + aβ + δ) and so, if

v ∈ CV (s), aα+ cβ = bα+aβ = 0. Suppose that a = 0 and b 6= 0. Then cβ = bα = 0
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which yields α = 0 = β. Hence dim CV (s) = 2. Likewise, when a 6= 0 and b = 0 we

get dim CV (s) = 2. On the other hand, a = 0 = b gives dim CV (s) = 3.

Now consider the case when a 6= 0 6= b and a2 + bc = 0. From aα + cβ = 0 we obtain

β = aαc−1 and so 0 = bα + aβ = bα + a2c−1α = (b + a2c−1)α. Since a2 + bc = 0,

this equation holds for all α ∈ GF (q) and consequently dim CV (s) = 3. Similar

considerations show that dim CV (s) = 2 when a 6= 0 6= b and a2 + bc 6= 0. So, to

summarise, for s ∈ Q2 \ Q1, s ∈ X1 when either a = 0 = b or a 6= 0 6= b and

a2 +bc = 0. For the former, there are q−1 such involutions (as c 6= 0). For the latter,

there are q − 1 choices for each of b and c and in each case a is uniquely determined

(as GF (q)∗ is cyclic of odd order), so giving (q − 1)2 involutions. Therefore

|(X1 ∩ S) \Q1| = |X1 ∩ (Q2 \Q1)| = q(q − 1). (3.4)

Since any two distinct Sylow 2-subgroups of SL2(q) have trivial intersection and

SL2(q) possesses q + 1 Sylow 2-subgroups, Lemma 3.2(ii) together with (3.3) and

(3.4) yields that

|CG(t1) ∩X1| = (q − 1) + q(q − 1)(q + 1)

= (q − 1)(1 + q2 + q) = q3 − 1.

This proves Lemma 3.4.

As C(G,X1) has diameter 2, it is clear that |∆2(t1)| = |X1| − |{t} ∪∆1(t1)| and

so

|∆2(t1)| = (q4 − 1)− (q3 − 1)

= q3(q − 1).

This, together with Lemmas 3.3(ii) and 3.4, completes the proof of Theorem 1.1. We

now set to constructing the collapsed adjacency diagram for C(G,X1). Let L be as
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in (3.2) and so CG(t1) = LQ1. If g ∈ CG(t) = LQ1, then by (3.1)

g =




1

a b

c d

1







1 β γ δ

0 1 0 γ

0 0 1 β

0 0 0 1




=




1 β γ δ

a b aγ + bβ

c d γc + dβ

1




for a, b, c, d, β, γ, δ ∈ GF (q) and ad + bc = 1. As is customary, we denote the CG(t1)-

orbits by ∆j
i (t1) where i denotes which disc the CG(t1)-orbit lies in, and j indexes

the orbits in ascending size.

Lemma 3.5. (i) ∆1(t1) is a union of q − 1 CG(t1)-orbits, where |∆i
1(t1)| = 1 for

i = 1, . . . , q − 2 and
∣∣∆q−1

1 (t1)
∣∣ = q(q2 − 1).

(ii) ∆i
1(t1) ⊆ Z(CG(t1)) for i = 1, . . . , q − 2.

(iii) Let x ∈ ∆q−1
1 (t1). Then

∣∣∆q−1
1 (t1) ∩ CG(x)

∣∣ = q(q − 1).

Proof. Recall that Z(CG(t1)) ≤ Z(S) = Q1 ∩ Q2 and by Lemma 3.4, X1 ∩ Q1 =

X1∩Q1∩Q2 = X∩Z(CG(t1)) with order q−1 and so |(X ∩ Z(CG(t1))) \ {t1}| = q−2.

This proves (ii). Let x ∈ ∆1(t1) \Z(CG(t1)), so lies in a Sylow 2-subgroup of CG(t1).

From Lemma 3.4, (∆1(t1) ∩ S) \ Z(CG(t1)) = ∆1(t1) ∩Q2. Hence x must be CG(t1)-

conjugate to an element in X ∩Q2, by Sylow’s Theorems. Let

x1 =




1 0 0 0

0 1 a1 0

0 0 1 0

0 0 0 1




and x2 =




1 0 b1 b2

0 1 b3 b1

0 0 1 0

0 0 0 1




(3.5)

where a1, bi ∈ GF (q)∗ and b2
1 + b2b3 = 0, be such that x is CG(t1)-conjugate to either

x1 or x2. Hence CG(〈t1, x〉)g = CG(〈t1, xi〉) for some i = 1, 2 and some g ∈ CG(t1), so

without loss of generality we may pick x = xi for i = 1 or 2. Since x ∈ Q2 and Q2 is

abelian, Q2 ≤ CG(〈t1, x〉). If g ∈ CG(t1), then xg = x if and only if g ∈ Q2. Hence

Q2 = CG(〈t1, x〉) and so,

∣∣xCG(t1)
∣∣ =

|CG(t1)|
|CG(〈t1, x〉)| =

q4(q2 − 1)

q3
= q(q2 − 1).
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However, |∆1(t1) \ Z(CG(t1))| = (q3 − 2) − (q − 2) = q(q2 − 1) and hence xCG(t1) =

∆1(t1) \ Z(CG(t1)), proving (i). Therefore, ∆q−1
1 (t1) = xCG(t1).

Clearly for all z ∈ X ∩ Z(CG(t1)), [x, z] = 1 and for all y ∈ CG(t1), [z, y] = 1. Recall

that d(x, xg) = 1 if and only if xg ∈ CG(〈t1, x〉) = Q2 E CG(t1). Since Z(CG(t1)) ∩
∆q−1

1 (t1) = ∅, and Lemma 3.4 shows |X ∩ (Q2 \Q1)| = q(q − 1), the result follows.

Lemma 3.6. ∆2(t1) is a union of q − 1 CG(t1)-orbits and |∆i
2(t1)| = q3 for i =

1, . . . , q − 1.

Proof. Let g ∈ CG(t1) be as in (3.3), with a, b, c, d, β, γ, δ ∈ GF (q) and ad + bc = 1.

Define

yα =




1 0 0 0

0 1 0 0

0 0 1 0

α 0 0 1




for α ∈ GF (q)∗. An easy check shows that y2
α = I4 and dim [V, yα] = 1, so yα ∈ X1.

Moreover, yα /∈ CG(t1) and by Lemma 3.3(ii), yα ∈ ∆2(t1). Direct calculation reveals,

yg
α =




1 + αδ αβδ αγδ αδ2

αγ αβγ + 1 αγ2 αγδ

αβ αβ2 αβγ + 1 αβδ

α αβ αγ 1 + αδ




and observe that (yg
α)41 = α. Let α′ ∈ GF (q)∗, so yg

α = yα′ if and only if α = α′.

Hence, y
CG(t1)
α = y

CG(t1)
α′ if and only if α = α′. Therefore, there are at least (q − 1)

distinct CG(t1)-orbits in ∆2(t1). If yg
α = yα, then β = γ = δ = 0 (since α 6= 0), so

CG(〈t1, yα〉) = L. Therefore

∣∣yCG(t1)
α

∣∣ =
|CG(t1)|

|CG(〈t1, yα〉)| =
q4(q2 − 1)

q(q2 − 1)
= q3.

Hence for all α ∈ GF (q)∗,
∣∣∣yCG(t1)

α

∣∣∣ = q3. However, |∆2(t1)| = q3(q − 1) by Theorem

1.1, so ∆2(t1) is a union of exactly (q − 1) orbits of length q3.

Lemma 3.7. Let x ∈ ∆q−1
1 (t1). Then |CG(x) ∩∆i

2(t1)| = q2 for i = 1, . . . , q − 1.
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Proof. Without loss of generality we may pick x = x1 as in (3.5), and observe yα ∈
CG(x) ∩ ∆j

2(t1), where α = εj and 〈ε〉 = GF (q)∗. Clearly d(x, yα) = d(x, yg
α) = 1

for some g ∈ CG(〈t1, x〉) = Q2 and since CG(〈t1, yα〉) = L, we have CG(〈t1, x, yα〉) =

Q2∩L which has order q. Therefore there are q3

q
= q2 CG(t1)-conjugates, y, of yα such

that [x, y] = 1. Since α is arbitrary, this holds for all ∆j
2(t1) and so |CG(x) ∩∆2(t1)| ≥

q2(q − 1). However, by Lemma 3.5(ii) and (iii), |CG(xi) ∩ (∆1(t1) ∪ {t1})| = q(q −
1) + (q − 1) and we have

|CG(xi) ∩X1| ≥ |CG(x) ∩∆2(t1)|+ |CG(xi) ∩ (∆1(t1) ∪ {t1})|

≥ q2(q − 1) + q(q − 1) + (q − 1)

= q3 − 1

= |CG(xi) ∩X1| .

Hence we have equality and so |CG(x) ∩∆2(t1)| = q2(q − 1). This proves Lemma

3.7.

Lemma 3.8. Let y ∈ ∆i
2(t1) for some i = 1, . . . , q − 1. Then

∣∣CG(y) ∩∆j
2(t1)

∣∣ =





q2 − 1 if i = j

q2 if i 6= j.

Proof. Without loss of generality, we may choose y = yα, for some α ∈ GF (q)∗. If

α = εj where 〈ε〉 = GF (q)∗ then we set y
CG(t1)
α = ∆j

2(t1). Let

h =




1 β 0 0

0 1 0 0

0 0 1 β

0 0 0 1



∈ CG(t1) \ CG(yα),

and a routine calculation yields

yh
α =




1 0 0 0

0 1 0 0

αβ αβ2 1 0

α αβ 0 1




,
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and [yα, yh
α] = 1. Since [yα, yhg

α ] = 1 if and only if g ∈ CG(〈t1, yα〉) = L, we have

g =




1

a b

c d

1




,

for ad + bc = 1, and so

yhg
α =




1

bαβ 1 + abαβ2 b2αβ2

aαβ a2αβ2 1 + baαβ2

α aαβ bαβ 1




.

Now since [yα, h] 6= 1, we must have αβ 6= 0. However, bαβ = 0 then implies

that b = 0, and aαβ = αβ forces a = 1. Also, since ad + bc = 1, we get

d = 1. Hence, CG

(〈
t, yα, yh

α

〉)
is isomorphic to a Sylow 2-subgroup of L and hence

∣∣CG

(〈
t, yα, yh

α

〉)∣∣ = q. Therefore, there exists q(q2−1)
q

= q2 − 1 CG(t1)-conjugates, y′,

of yh
α such that [yα, y′] = 1.

Letting α′ = εk ∈ GF (q)∗\{α} reveals [yα, yα′ ] = 1 and by Lemma 3.6, CG(〈t1, yα〉) =

CG(〈t, yα′〉) = L. By a completely analogous argument, we have that for an arbitrary

h′ ∈ CG(t1) \CG(yα′), we have
∣∣CG

(〈
t1, yα′ , y

h′
α′

〉)∣∣ = q and there exists q2− 1 CG(t1)-

conjugates, y′′, of yh′
α′ such that [yα, y′′] = 1. Hence

∣∣CG(yα) ∩∆k
2(t1)

∣∣ = q2−1+1 = q2.

Since α′ was arbitrary, this occurs for every CG(t1)-orbit of ∆2(t1) not containing yα.

So |CG(yα) ∩∆2(t1)| ≥ q2(q − 1). Moreover, since [x1, yα] = 1 for x1 as in (3.5), we

have

q(q2 − 1)q2 = nq3

for some integer n, so clearly n = q2 − 1. That is to say, there exists q2 − 1 CG(t1)-

conjugates, x, of x1 such that [yα, x] = 1. Hence

|CG(yα) ∩X1| ≥ |CG(yα) ∩∆2(t1)|+
∣∣CG(yα) ∩∆q−1

1 (t1)
∣∣

≥ q2(q − 1) + q2 − 1

= q3 − 1

= |CG(yα) ∩X1| .
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Figure 3.1: The collapsed adjacency diagram for C(G,Xi), for i = 1, 3.

hence we have equality and so |CG(yα) ∩∆2(t1)| = q2(q − 1). Since C(G,X1) is

without loops, Lemma 3.8 holds.

Lemmas 3.5–3.8 determine the CG(t1)-orbit structure of C(G,X1) and are sum-

marized in a collapsed adjacency diagram as in Figure 3.1.

3.2 The Structure of C(G,X2)

Before moving on to prove Theorem 1.2 we need additional preparatory material. If

W is a subspace of V , we recall that dim W + dim W⊥ = dim V = 4. By Lemma

3.2(i),(iii) we see that CV (CG(t2)) = {(0, 0, 0, α)|α ∈ GF (q)} is 1-dimensional. For

x ∈ X2 set U1(x) = CV (CG(x)) and U2(x) = CV (x). So dim U1(x) = 1 and

dim U2(x) = 2 (with the subscripts acting as a reminder). We denote the stabilizer

in G of U1(t2), respectively U2(t2), by P1, respectively P2. Then Pi
∼= q3SL2(q)(q−1)

for i = 1, 2. Also Qi = O2(Pi) with CPi
(Qi) = Qi for i = 1, 2.

We start analyzing C(G,X2) by determining ∆1(t2). For x ∈ X2 we let ZCG(x) denote

Z(CG(x)) ∩X2.

Lemma 3.9. (i) X is a disjoint union of all ZR for all R ∈ Syl2G.

(ii) Let R, T ∈ Syl2G be such that there exists r0 ∈ ZR, s0 ∈ ZT such that r0s0 = s0r0.
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Then [ZR, ZS] = 1.

Proof. Clearly X2 =
⋃

R∈Syl2G

ZR by Lemma 3.2(iii). If ZR ∩ZT 6= ∅ for R, T ∈ Syl2G,

then we have some x ∈ Z(R)∩Z(T )∩X2 whence, using Lemma 3.2(iii), R = CG(x) =

T . So (i) holds.

Since xy = yx, y ∈ CG(x) = R. Hence Z(R) ≤ CG(y) = T and so [ZR, ZT ] = 1,

giving (ii).

Let ∆ be the building for G. Since p = 2, every Borel subgroup is the normaliser

of a Sylow 2-subgroup. Moreover, since dim V = 4 (thus a maximal flag of isotropic

subspaces has length 2), there is only one conjugacy class of parabolic subgroups

that properly contain a Borel subgroup. Clearly, NG(S) is a chamber of ∆, and

NG(S) ≤ Pi for both i = 1, 2. Let R ∈ Syl2G, so NG(R) is adjacent to NG(S) if

and only if NG(R) ≤ Pi for some i = 1, 2. Let C(∆) denote the chamber graph, with

the set of chambers V (C(∆)) = {NG(R)|R ∈ Syl2G} as its vertex set with an edge

between two chambers if and only if they are adjacent. Equivalently, if B = NG(R)

then the vertices of the chamber graph can be represented as cosets of B, such that

two chambers Bg1 and Bg2 are adjacent if and only if there exists g ∈ G such that

Bg1 ⊂ Pig and Bg2 ⊂ Pig for gi ∈ G. We use dC to denote the standard distance

metric in C(∆) and for a chamber B put ∆C
j (B) =

{
D ∈ C(∆)| dC(B,D) = j

}
.

Lemma 3.10. C(∆) has diameter 4 with disc sizes

∣∣∆C
1(B)

∣∣ = 2q;

∣∣∆C
2(B)

∣∣ = 2q2;

∣∣∆C
3(B)

∣∣ = 2q3; and

∣∣∆C
4(B)

∣∣ = q4,

for a chamber B of ∆.

Proof. Without loss of generality, set B = NG(S). Recall G arises from the Dynkin

diagram of type C2 = B2 and so the Weyl group, W = 〈w1, w2〉, is dihedral of order

8, and hence the girth of the apartment is 8. That is to say, the longest convex
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Figure 3.2: An apartment of C(∆).

Figure 3.3: An impossible quadrangle within C(∆).

circuit in C(∆) has length 8. Without loss of generality, we can set the wi to be

the reflections in the walls contained in B, or equivalently automorphisms of NG(Qi)

that interchange B with a NG(Qi)-conjugate of B. Since G is a disjoint union of the

double cosets of (B, B) with each element of the Weyl group representing a different

double coset, an apartment of C(∆) can be represented by Figure 3.2. Since the

building is of rank 2, there cannot be any convex circuits of length less than 8, unless

all chambers in the circuit all intersect in the same wall. Indeed if, for example,

the quadrangle described in Figure 3.3 exists then w2 = w1w2w1, contradicting the

structure of W . All other cases are similarly shown. Suppose a quadrangle such

as one described in Figure 3.4 exists for some b, b′ ∈ B, i, j = 1, 2, i 6= j. So B,

Bwi and Bwib all intersect in a common wall, or equivalently B, Bwi and Bwib lie

in the same parabolic subgroup, Pk, k = 1, 2. Similarly, Bwi, Bwib and Bwjwib
′

all lie in another distinct parabolic subgroup Pl, l = 1, 2, l 6= k. However, both Pk
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Figure 3.4: Another impossible quadrangle within C(∆).

and Pl are minimal parabolic subgroups and both contain Bwi and Bwib. Hence

Pk ∩ Pl = Pk = Pl or Pk ∩ Pl = Bwi = Bwib, both of which cannot occur. Hence, no

quadrangles containing non-adjacent chambers exist in the chamber graph.

Recall that Pk
∼= q3SL2(q)(q − 1) and so |Syl2Pk| = |Syl2SL2(q)| since q is even.

Also, since any two Sylow 2-subgroups of SL2(q) intersect trivially, any two Sylow

2-subgroups of Pk intersect in Qk. There are q + 1 Sylow 2-subgroups in SL2(q), one

being S = Q1Q2. Hence, Syl2P1 ∩ Syl2P2 = {S} and so in each parabolic subgroup

containing B, there exist q (non-trivial) conjugates of B, thus the first disc of the

chamber graph has order 2q.

If a circuit contains vertices that don’t all intersect in a common wall, then the

circuit must necessarily be of length 8. This means that for B1, B2 ∈ ∆C
1(B), we have

∆C
2(B)∩∆C

1(B1)∩∆C
1(B2) = ∅. Hence for each Bi ∈ ∆C

1(B), there exist q chambers in

∆C
2(B)∩∆C

1(Bi) which are not contained in any other ∆C
2(B)∩∆C

1(Bj), i 6= j. Thus,
∣∣∆C

2(B)
∣∣ = q

∣∣∆C
1(B)

∣∣ = 2q2. An analogous argument shows that
∣∣∆C

3(B)
∣∣ = 2q3.

Observe that S acts simply-transitively on the set of chambers opposite a given

chamber. That is to say, for C1, C2 opposite chambers of B = NG(S), there exists a

unique s ∈ S such that Cs
1 = C2. Hence there are |S| = q4 opposite chambers of B

and thus
∣∣∆C

4(B)
∣∣ = q4. This proves Lemma 3.10.

The collapsed adjacency diagram for C(∆) is as described in Figure 3.5.

We now introduce a graph Z whose vertex set is V (Z) = {ZR|R ∈ Syl2G} with
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Figure 3.5: The collapsed adjacency diagram for C(∆).

ZR, ZT ∈ V (Z) joined if ZR 6= ZT and [ZR, ZT ] = 1.

Lemma 3.11. The graphs Z and C(∆) are isomorphic.

Proof. Define ϕ : V (Z) → V (C(∆)) by ϕ : ZR 7→ NG(R) (R ∈ Syl2G). If ϕ(ZR) =

ϕ(ZT ) for R, T ∈ Syl2G, then NG(R) = NG(T ). Therefore R = T , and so ZR = ZT .

Thus ϕ is a bijection between V (Z) and V (C(∆)). Suppose NG(R) and NG(T ) are

distinct, adjacent chambers in C(∆). Without loss of generality we may assume

T = S. Then NG(R), NG(S) ≤ Pi for i ∈ {1, 2}. The structure of Pi then forces

Z(R), Z(S) ≤ Qi. Since Qi is abelian, we deduce that [ZR, ZS] = 1. So ZR and

ZS are adjacent in Z. Conversely, suppose ZR and ZS are adjacent in Z. Then

[ZR, ZS] = 1 with, by Lemma 3.9(i), ZR ∩ZS = ∅. Hence ZR ⊆ S and so by Lemma

3.1(ii), ZR ⊆ Q1 ∪ Q2. Now Q1 ∩ Q2 ∩ X2 = ZS and so we must have ZR ⊆ Qi

for i ∈ {1, 2}. The structure of Pi now gives NG(R) ≤ Pi and therefore NG(R) and

NG(S) are adjacent in C(∆), which proves the lemma.

Proof of Theorem 1.2

Since for all x1, x2 ∈ X, [x1, x2] = 1 if and only if [ZCG(x1), ZCG(x2)] = 1 by Lemma

3.9(i), then for i > 1, dC(x1, x2) = i if and only if dZ(ZCG(x1), ZCG(x2)) = i (where dZ

denotes the distance in Z). Note that if dC(x1, x2) = 1, then either ZCG(x1) = ZCG(x2)

or dZ(ZCG(x1), ZCG(x2)) = 1. Since X2 is a disjoint union of the elements of Z, then
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C(G,X2) is connected of diameter 4. Now

∆1(t) =
⋃

R∈Syl2G
[ZS ,ZR]=1

ZR and ∆i(t) =
⋃

R∈Syl2G

dZ(ZS ,ZR)=i

ZR, i > 1

and so |∆1(t)| = |ZS| + 2q |ZS| − 1. From |ZS| = (q − 1)2 we get |∆1(t)| = (q −
1)2 + 2q(q − 1)2 − 1 = q2(2q − 3). The remaining disc sizes are immediate from the

structure of the chamber graph C(∆).

¤

This completes the proof of Theorem 1.2.



Chapter 4

4-Dimensional Symplectic Groups

over Fields of Odd Characteristic

We now consider p > 2 so GF (q) is a field of odd characteristic. Let H = Sp4(q)

and G = H/Z(H) ∼= PSp4(q). Let V be the symplectic GF (q)H-module equipped

with a symplectic form (·, ·). Let {v1, v2, v3, v4} be a hyperbolic basis for V with

(v2, v1) = (v4, v3) = 1. Thus if J is the Gram matrix of this form then

J =




0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0




,

and J has two diagonal blocks J0 where J0 =


0 −1

1 0


. We remark that H has

exactly 2 conjugacy classes of involutions, one of which is contained in the centre of

H. Let s =


−I2

I2


 which is clearly a non-central involution in H. Letting

g =


A B

C D


 where A,B, C and D are 2× 2 matrices over GF (q), direct

calculation reveals that [g, s] = 1 if and only if B = C = 0. Moreover, since


a b

c d




T 
0 −1

1 0





a b

c d


 =


 0 bc− ad

ad− bc 0




55
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and gT Jg = J , we must have AT J0A = DT J0D = J0 and so det A = det D = 1.

Hence,

CH(s) =






A

B




∣∣∣∣∣∣
A, B ∈ SL2(q)




∼= SL2(q)× SL2(q).

Let x =


A

B


 ∈ CH(s) for some A,B ∈ SL2(q). Then x is an involution if and

only if A and B are involutions in SL2(q). Since ±I2 are the only elements in

SL2(q) that square to I2, the only involutions in CH(s) are −I4, s and −s. As −I4

is central in H (and hence non-conjugate to s), we have sH ∩ CH(s) = {±s}.
Clearly [H : CH(s)] =

∣∣sH
∣∣ = q2(q2 + 1), and so C(H, sH) is disconnected and

consists of 1
2
q2(q2 + 1) cliques on 2 vertices.

We now turn our attention to the simple group G which has two conjugacy classes

of involutions (see, for example, Lemma 2.4 of [42]). We shall let Y1 denote the

G-conjugacy class whose elements are the images of an involution in H, and Y2 to

denote the G-conjugacy class whose elements are the image of an element of H of

order 4 which squares to the non-trivial element of Z(H). The main focus of this

chapter is to prove Theorems 1.3 and 1.4.

4.1 The Structure of C(G, Y1)

This section is devoted to the proof of Theorem 1.3. In order to investigate the disc

structure of C(G, Y1) it is advantageous for us to work in H = Sp4(q) (and so

H = H/Z(H) ∼= G). As before, we assume that {v1, v2, v3, v4} is a hyperbolic basis

for V with (v2, v1) = (v4, v3) = 1, with J and J0 defined as above. We have s ∈ Y1

where s =


−I2

I2


. Put X = sH . Then Y1 = {x|x ∈ X}. For x ∈ X, set

Nx = NH(〈x, Z(H)〉). Evidently, for x1, x2 ∈ Y1 (where x1, x2 ∈ X) x1 and x2

commute if and only if x1 ∈ Nx2 (or equivalently x2 ∈ Nx1). Now Ns consists of

g ∈ H for which sg = s or sg = −s. Letting g =


A B

C D


 where A,B,C and D are

2× 2 matrices over GF (q), direct calculation reveals that either B = C = 0 or
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A = D = 0. Also, as g ∈ H, we must have AT J0A = DT J0D = J0 and therefore

Ns =






A

B


 ,


 A

B




∣∣∣∣∣∣
A,B ∈ SL2(q)





∼= (SL2(q)× SL2(q)) : 2.

Lemma 4.1. |∆1(s)| = 1
2
q(q2 − 1).

Proof. Let g =


A

B


 ∈ X ∩Ns. Then A and B must be involutions in SL2(q),

hence either I2 or −I2. Thus the elements of X of this form are precisely {s,−s}.

On the other hand, if h =


 A

B


 ∈ X ∩Ns then AB = BA = I2 and so B = A−1.

Since X = sH consists of all the involutions in H \ Z(H), we have

X ∩Ns =






 A

A−1




∣∣∣∣∣∣
A ∈ SL2(q)



 ∪ {

s, s−1
}

.

Under the natural homomorphism to G, x = −x for x ∈ X, and so

|∆1(s)| = 1
2
|SL2(q)| = 1

2
q(q2 − 1).

Recall that a 2-space {ν1, ν2} is called hyperbolic if (νi, νi) = 0 and (ν2, ν1) = 1. Put

E = 〈v3, v4〉. Then E⊥ = 〈v1, v2〉 and we note that CV (s) = E. Furthermore we

have that StabH(
{
E, E⊥}

) = Ns. Put

Σ =
{{

F, F⊥}∣∣F is a hyperbolic 2-subspace of V
}

.

Now let β ∈ GF (q) and set Uβ = 〈(1, 0, 1, 0), (0, β, 0,−β − 1)〉. Then Uβ is a

hyperbolic 2-subspace of V and so
{
Uβ, U⊥

β

} ∈ Σ. The Ns-orbit of
{
Uβ, U⊥

β

}
will be

denoted by Σβ.

Lemma 4.2. Let F be a hyperbolic 2-subspace of V with F 6= E or E⊥. Then
{
F, F⊥} ∈ Σβ for some β ∈ GF (q). Moreover, for β ∈ GF (q), Σβ = Σ−β−1.

Proof. Since F 6= E or E⊥, we may find w1 ∈ F with w1 = (α1, β1, γ1, δ1) and

{α1, β1} 6= {0} 6= {γ1, δ1}. Now Ns contains two SL2(q)-subgroups for which 〈v1, v2〉
and 〈v3, v4〉 are natural GF (q)SL2(q)-modules. Because SL2(q) acts transitively on
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the non-zero vectors of such modules, we may suppose w1 = (1, 0, 1, 0). Now choose

w2 ∈ F such that (w1, w2) = 1 (and so 〈w1, w2〉 = F ). Then if w2 = (α, β, γ, δ) we

must have β + δ = −1 and so w2 = (α, β, γ,−β − 1). The matrices in Ns fixing w1

are

CNs(w1) =








1 0

a1 1

1 0

a2 1




,




1 0

a1 1

1 0

a2 1




∣∣∣∣∣∣∣∣∣∣∣∣∣

a1, a2 ∈ GF (q)





.

Let g =




1 0

a1 1

1 0

a2 1




where a1, a2 ∈ GF (q). Then wg
1 = w1.

We single out the cases β = 0 and β = −1 for special attention. If, say, β = 0, then

w2 = (α, 0, γ,−1). Hence w2 − αw1 = (0, 0, γ − α,−1) and F = 〈w1, w2 − αw1〉.
Since (0, 0, γ − α,−1)g = (0, 0, (γ − α)− a2,−1) and choosing a2 = −γ + α, we

obtain Fg = U0. For β = −1 a similar argument works (using w2 − γw1 instead of

w2 − αw1). So we may assume that β 6= 0,−1. From

w2g = (α, β, γ,−β − 1) = (α + βa1, β, γ + (−β − 1)a2,−β − 1)

by a suitable choice of a1 and a2, as β 6= 0,−1, we get w2g = (0, β, 0,−β − 1),

whence Fg = Uβ. Thus we have shown
{
F, F⊥} ∈ Σβ for some β ∈ GF (q). Finally,

for β ∈ GF (q), Σβ = Σ−β−1 follows from

(0, β, 0,−β − 1)


 I2

I2


 = (0,−β − 1, 0, β).

Let φ : GF (q) \ {−1} → GF (q) be defined by

φ(λ) = −(1 + (λ + 1)−2(1− λ2))−1 (λ ∈ GF (q)).

There is a possibility that this is not well-defined should 1 + (λ + 1)−2(1− λ2) = 0.

This would then give (λ + 1)2 + (1− λ2) = 0 from which we infer that λ = −1. So

we conclude that φ is well-defined.
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Lemma 4.3. φ is injective.

Proof. Suppose φ(λ) = φ(µ) for λ, µ ∈ GF (q) \ {−1} with λ 6= µ. Hence

(1 + (λ + 1)−2(1− λ2))−1 = (1 + (µ + 1)−2(1− µ2))−1.

Simplifying and using the fact that q is odd gives

µ2 + µ− µλ2 − λ2 − λ + λµ2 = 0,

and then

(µ + λ)(µ− λ) + (µ− λ) + λµ(µ− λ) = 0.

Hence (µ− λ)(µ + λ + 1 + λµ) = 0. Since µ 6= λ, we get µ + λ + 1 + λµ = 0 from

which we deduce that either λ = −1 or µ = −1, a contradiction. So the lemma

holds.

Lemma 4.4. The diameter of C(G, Y1) is 2.

Proof. Let x ∈ X be such that x /∈ {s} ∪∆1(s). Now
{
CV (x), CV (x)⊥

} ∈ Σ and

CV (x) 6= E or E⊥ (otherwise x ∈ {s,−s} and then x = s). Hence
{
CV (x), CV (x)⊥

} ∈ Σµ for some µ ∈ GF (q) by Lemma 4.2. Let

y =


 I2

I2


 ∈ X ∩Ns. Then y ∈ ∆1(s). Our aim is to choose an xλ ∈ Ny ∩X (so

xλ ∈ ∆1(y)) for which
{
CV (xλ), CV (xλ)

⊥} ∈ Σµ. Since Σµ is an Ns-orbit, there

exists h ∈ Ns such that
{
CV (xλ), CV (xλ)

⊥}h
=

{
CV (x), CV (x)⊥

}
. As a consequence

either x = xh
λ or −xh

λ and therefore x = xλ
h, whence d(s, x) ≤ 2.

We first look at the case when µ = −2−1. Then µ = −µ− 1 and hence

U−2−1 = 〈(1, 0, 1, 0), (0, 1, 0, 1)〉 .

Observing that U−2−1 = CV (y), we see that for µ = −2−1, x ∈ ∆1(y), which we are

not concerned with here. So we may assume µ 6= −2−1.

Let xλ =


λI2 −B

B −λI2


 where λ ∈ GF (q)∗ be such that B has zero trace and

determinant 1− λ2. So xλ ∈ X ∩Ny. We now move onto the case when µ = 0 (or
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equivalently µ = −1). Here we take λ = 1 and B =


2 −2

2 −2


, noting that B

satisfies the conditions to ensure that x1 ∈ ∆1(y). Let v = (α, β, γ, δ) ∈ V . Then

v ∈ CV (x1) precisely when

2γ + 2δ = 0; − 2γ − 2δ = 0;

−2α− 2β − γ = γ; 2α + 2β − δ = δ;

thus the only conditions we get are γ = −β − α and α + β = δ. Thus

CV (x1) = {(α, β,−α− β, α + β)}

= 〈(1, 0,−1, 1), (0, 1,−1, 1)〉 .

It is straightforward to check that
{
CV (x1), CV (x1)

⊥} ∈ Σ0. Therefore we may also

assume that µ 6= 0,−1. Choosing B =


 λ λ−1

−λ −λ


 we see that the requisite

conditions are satisfied. Take v = (α, β, γ, δ) ∈ V and calculating vxλ gives the

relations

(λ− 1)α + γλ− δλ = 0; (λ− 1)β + γλ−1 − δλ = 0;

−λα + λβ − (λ + 1)γ = 0; − λ−1α + λβ − (λ + 1)δ = 0;

which, after rearranging gives

α = λ(λ− 1)−1(δ − γ); β = λ(λ− 1)−1δ − λ−1(λ− 1)−1γ;

γ = λ(λ + 1)−1(β − α); δ = λ(λ + 1)−1α− λ−1(λ + 1)−1α;

and note that the relations for γ and δ are satisfied after substitution for α and β.

Hence

CV (xλ) =
{(

α, β, λ(λ + 1)−1(β − α), λ(λ + 1)−1β − λ−1(λ + 1)−1α
)}

=
〈(

1, 0,−λ(λ + 1)−1,−λ−1(λ + 1)−1
)
,
(
0, 1, λ(λ + 1)−1, λ(λ + 1)−1

)〉
.

(4.1)

We want to determine which Ns-orbit, Σβ, that CV (xλ) lies in. Our representative,

Uβ, for Σβ has w1 = (1, 0, 1, 0) as one component of the hyperbolic pair, so we need
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an element of Ns to send the first generator in (4.1) to w1. We need to find

conditions on C, D ∈ SL2(q) such that

(
1, 0,−λ(λ + 1)−1,−λ−1(λ + 1)−1

)

C

D


 = (1, 0, 1, 0)

and so without loss of generality we can take C = I2. This reduces to solving

(−λ(λ + 1)−1,−λ−1(λ + 1)−1
)

d1 d2

d3 d4


 = (1, 0)

and after multiplying out, we get that d3 = −(d1 + 1)λ2 − λ and d4 = −d2λ
2. Since

D has determinant 1, we find that d2 = λ−1(λ + 1)−1 and so d4 = −λ(λ + 1)−1.

Without loss of generality, by taking d1 = 1 we have that

D =


 1 λ−1(λ + 1)−1

−2λ2 − λ −λ(λ + 1)−1




and a quick check shows that the first generator in (4.1) is mapped to w1. Using the

same matrix, by multiplying on the right of the second generator in (4.1), we get

(
0, 1, λ(λ + 1)−1, λ(λ + 1)−1

)

I2

D


 =

(∗, 1, ∗, (λ + 1)−2(1− λ2)
)

= u′

and 〈w1, u
′〉 is a hyperbolic 2-subspace conjugate to some Uβ. Recall that for a fixed

β ∈ GF (q), Ns is transitive on {(α, β, γ,−β − 1)|α, γ ∈ GF (q)}. Hence, we need

only find the hyperbolic pair representing such a conjugate of Uβ, to determine β.

This is found by requiring that for some β ∈ GF (q)∗, (βu′, w1) = 1, that is

β · 1 = −1− β
(
(λ + 1)−2(1− λ2)

)
.

By expanding, we get that β = − (1 + (λ + 1)−2(1− λ2))
−1

and so CV (xλ) ∈ Σβ.

By Lemma 4.3, φ : λ 7→ −(1 + (λ + 1)−2(1− λ2))−1 is an injective map from

GF (q) \ {−1} into GF (q). Since µ 6= −2−1, µ 6= −µ− 1 and therefore there exists

λ ∈ GF (q) \ {−1} such that φ(λ) = µ or −µ− 1. Bearing in mind that Uµ = U−µ−1

by Lemma 4.2, we conclude that
{
CV (xλ), CV (xλ)

⊥} ∈ Σµ. Consequently we have

proved that the diameter of C(G, Y1) is 2.
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From |G| = q4

2
(q2 − 1)(q4 − 1) and |CG(s)| = q2(q2 − 1)2 we see that

|Y1| = q2

2
(q2 + 1). Using Lemmas 4.1 and 4.4 then gives

|∆2(s)| = 1

2
(q4 − q3 + q2 + q − 2),

which, combined, complete the proof of Theorem 1.3.

4.2 The Structure of C(G, Y2)

In this section we present a proof of Theorem 1.4. The uncovering of the disc

structures of C(G, Y2) will be a long haul. As discussed in Chapter 1, it will be

advantageous for us to use the well known isomorphism that PSp4(q) ∼= O5(q) (see

Corollary 12.32 of [38]). So we take G = O5(q) and from now on V will denote the

5-dimensional orthogonal GF (q)-module for G. Thus the elements of G are 5× 5

orthogonal matrices with respect to the orthogonal form (·, ·) which have spinor

norm a square in GF (q). This section utilises an explicit representation of G and its

subgroups, in particular a subgroup isomorphic to O3(q). For ease of calculation, we

assume that the Gram matrix with respect to (·, ·) is

J =




0 1

1 0

0 0 1

0 −2 0

1 0 0




.

Let

t =




I2

0 0 1

0 −1 0

1 0 0




.

Then t ∈ G and Y2 = tG. Let δ = ±1 where q ≡ δ (mod 4).

Lemma 4.5. (i) dim(CV (t)) = 3.
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(ii) CV (t)⊥ = [V, t] is a 2-subspace of V of δ-type.

(iii) V = CV (t) ⊥ CV (t)⊥.

Proof. (i) is a consequence of direct calculation. Now

CV (t)⊥ = {u ∈ V | (u, v) = 0, for all v ∈ CV (t)} .

Then for any v ∈ CV (t), we have

(v,−u + ut) = −(v, u) + (v, ut) = −(v, u) + (vt, u) = −(v, u) + (v, u) = 0

and so [V, t] ⊆ CV (t)⊥. However, by dimensions, we must have [V, t] = CV (t)⊥. The

restriction of the orthogonal form to [V, t] has Gram matrix


−2 0

0 −2


 .

Hence [V, t] contains an isotropic vector (and hence of +-type) if and only if −4 is a

square in GF (q). This occurs precisely when q ≡ 1 (mod 4). While [V, t] is of

−-type if and only if q ≡ −1 (mod 4), proving (ii).

Since dim CV (t) = 3 and CV (t) ∩ [V, t] = 0, dim[V, t] = 2 and V = CV (t)⊕ [V, t]. By

(ii), [V, t] = CV (t)⊥ and so (iii) follows.

Put Lt = CG(t) ∩ CG([V, t]).

Lemma 4.6. (i) Let x ∈ Y2. Then t = x if and only if CV (t) = CV (x).

(ii) CG(t) = StabG(CV (t)) ∼= (L2(q)× C q−δ
2

).22.

(iii) Lt acts faithfully on CV (t) and Lt
∼= L2(q).

Proof. Suppose CV (x) = CV (t). Then, using Lemma 4.5 (ii),

[V, x] = CV (x)⊥ = CV (t)⊥ = [V, t]. Hence by Lemma 4.5(iii), tx acts trivially on V

and thus tx = 1. Therefore t = x and (i) holds.

Plainly CG(t) ≤ StabG(CV (t)), and if g ∈ StabG(CV (t)), then

CV (t) = CV (t)g = CV (tg). Since tg ∈ Y2, t = tg by part (i). So g ∈ CG(t) and thus

CG(t) = StabG(CV (t)). That StabG(CV (t)) ∼= (L2(q)×C q−δ
2

).22 can be read off from

Proposition 4.1.6 of [32], giving (ii).
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For any g ∈ CG(t), we have [V, t]g = CV (t)⊥g = CV (tg)⊥ = CV (t)⊥ = [V, t] and so

CG(t) ≤ StabG[V, t]. If any element in Lt acts trivially on CV (t), then it would act

trivially on V and thus be the identity. Hence Lt acts faithfully on CV (t). Let

v ∈ CV (t) and by Lemma 4.5(iii), we have [V, t] ≤ 〈v〉⊥. Hence 〈v〉⊥ = [V, t]⊕W

where W ≤ CV (t). But since dim(〈v〉⊥) = 4, we have dim(W ) = 2 and so

CV (t) � 〈v〉⊥. Therefore for all u ∈ CV (t), (v, u) = 0 if and only if v = 0 and thus

(·, ·) is non-degenerate on restriction to CV (t). Hence we have an embedding of Lt

into GO(CV (t)) ∼= GO3(q) since, by definition, Lt fixes [V, t] pointwise. Since

Lt ≤ G and acts with determinant 1 on [V, t], then it must act with determinant 1

on CV (t). In addition, as Lt fixes [V, t] pointwise, when the elements of Lt are

decomposed as products of refections, the vectors reflected will lie in CV (t). Since

the spinor norm of the elements of Lt are a square in GF (q) and the vectors

reflected lie in CV (t), then the spinor norm doesn’t change on restriction to CV (t).

Hence, Lt
∼= O3(q) ∼= L2(q) proving (iii).

Let Ui denote the set of i-dimensional subspaces of CV (t), i = 1, 2. In proving

Theorem 1.4, our divide and conquer strategy is based on the following observation.

Lemma 4.7. Y2 ⊆
⋃

U∈U1∪U2

CG(U).

Proof. Let x ∈ Y2 \ {t} and set U = CV (t) ∩ CV (x). By Lemmas 4.5(i) and 4.6(i),

U ∈ U1 ∪ U2. Since t, x ∈ CG(U), we have Lemma 4.7.

The three cases we must chase down are presaged by our next result.

Lemma 4.8. (i) Let U0 be an isotropic 1-subspace of CV (t). Then

CG(U0) ∼= q3 : L2(q).

(ii) Let Uε be a 1-subspace of CV (t), such that U⊥
ε ∩ CV (t) is a 2-space of ε-type

(ε = ±1). Then

CG(Uε) ∼=




SL2(q) ◦ SL2(q) δ = ε

L2(q
2) δ = −ε.

Proof. Let U0 be an isotropic 1-subspace of CV (t). From Proposition 4.1.20 of [32],

we know that StabG(U0) ∼= A0 : (A1 × A2) 〈r〉 where A1 acts as scalars on U0, r a
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reflection of U0 and A0
∼= q3, A2

∼= L2(q) fixing U0 pointwise. Hence

CG(U0) ∼= q3 : L2(q), so proving (i).

If δ = 1, then [V, t] is a 2-subspace of V of +-type, and hence

U⊥
+ = (U⊥

+ ∩ CV (t)) ⊥ [V, t] is a 4-subspace of +-type. Similarly,

U⊥
− = (U⊥

− ∩ CV (t)) ⊥ [V, t] is a 4-space of −-type. If δ = −1, then [V, t] is a

2-subspace of V of −-type, and the results when δ = 1 interchange. Let W+ and

W− be 4-subspaces of V of +- and −-type respectively, such that W⊥
+ and W⊥

− are

1-subspaces of CV (t), observing that StabG(W±) = StabG(W⊥
± ). From Proposition

4.1.6 of [32], we have

StabG(W+) ∼= A+ 〈s+〉 and StabG(W−) ∼= A− 〈s−〉

where A+
∼= SL2(q) ◦ SL2(q) fixes W⊥

+ pointwise, A− ∼= L2(q
2) fixes W⊥

− pointwise

and s+, s− are reflections of W⊥
+ and W⊥

− respectively. This proves (ii) and hence

the lemma.

Lemma 4.9. (i) Let U0 be a 2-subspace of CV (t) such that U⊥
0 ∩ CV (t) is an

isotropic 1-space. Then CG(U0) ∼= q2 : C q−δ
2

.

(ii) Let Uε be a 2-subspace of CV (t) of ε-type (ε = ±1). Then CG(Uε) ∼= L2(q).

Proof. (ii) is proved in a similar vein to Lemma 4.8. We can write

CV (t) = V0 ⊥ (V1 ⊕ V2) where V0 is a non-isotropic 1-space and V1 and V2 are

isotropic 1-spaces such that V1 ⊕ V2 is a hyperbolic plane. Without loss of

generality, we set U0 = V0 ⊥ V1. So CG(U0) = CG(V0 ⊥ V1) = CG(V0) ∩ CG(V1).

From Proposition 4.1.20 of [32], CG(V0) = Ω((V1 ⊕ V2) ⊥ [V, t]) and

CG(V1) = R1 : Ω(V0 ⊥ [V, t]) where R1 is a p-group centralising the spaces V1,

V ⊥
1 /V1 and V/V ⊥

1 . Using Proposition 4.1.6 of [32], we now have

CG(V1) ∩ CG(V0) ∼= R2 : O±
2 (q) where R2 is an elementary abelian group of order q2.

This proves (i) and hence Lemma 4.9.
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Define the following subsets of Ui, i = 1, 2.

U+
1 = {U ∈ U1|CG(U) ∼= SL2(q) ◦ SL2(q)}

U−1 =
{

U ∈ U1|CG(U) ∼= L2(q
2)

}

U0
1 =

{
U ∈ U1|CG(U) ∼= q3 : L2(q)

}

U+
2 = {U ∈ U2|U is of +-type}

U−2 = {U ∈ U2|U is of −-type}

U0
2 =

{
U ∈ U2

∣∣∣CG(U) ∼= q2 : C q−δ
2

}
.

In the notation of Lemma 4.8, U+
1 is the case δ = ε while U−1 is when δ = −ε. Note

by Lemmas 4.8 and 4.9 that Ui = U0
i ∪ U+

i ∪ U−i , i = 1, 2. We now study CG(U)∩ Y2

for U ∈ U1. By Lemma 4.8 there are three possibilities for the structure of CG(U).

First we look at the case U ∈ U−1 , and set G− = CG(U). Then G− ∼= L2(q
2) by

definition of U−1 . Define ∆−
i (t) = {x ∈ G− ∩ Y2| d−(t, x) = i} where i ∈ N and d− is

the distance metric on the commuting graph C(G−, G− ∩ Y2).

Theorem 4.10. If q 6= 3 then C(G−, G− ∩ Y2) is connected of diameter 3 with

∣∣∆−
1 (t)

∣∣ =
1

2
(q2 − 1);

∣∣∆−
2 (t)

∣∣ =
1

4
(q2 − 1)(q2 − 5); and

∣∣∆−
3 (t)

∣∣ =
1

4
(q2 − 1)(q2 + 7).

Proof. Since q2 ≡ 1 (mod 4) and q 6= 3 implies q2 > 13, this follows from Theorem

2.10.

We move on to analyze G+ = CG(U) where U ∈ U+
1 . Hence, by definition of U+

1 ,

G+ ∼= L1 ◦ L2 where L1
∼= SL2(q) ∼= L2 (with the central product identifying Z(L1)

and Z(L2)). Set Y + = G+ ∩ Y2. We begin by describing Y +.

Lemma 4.11. Y + = {x1x2|xi ∈ Li and xi has order 4, i = 1, 2}.

Proof. Apart from the central involution z of G+, all other involutions of G+ are of

the form g1g2 where gi ∈ Li (i = 1, 2) has order 4. Since all involutions in Li/Z(G+)
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are conjugate, it quickly follows that {g1g2| gi ∈ Li and gi has order 4, i = 1, 2} is a

G+-conjugacy class. Now z acts as −1 on U⊥ and thus dim CV (z) = 1. Therefore

t 6= z whence, as t ∈ G+, the lemma holds.

Let d+ denote the distance metric on the commuting graph C(G+, Y +) and, for

i ∈ N, ∆+
i (t) = {x ∈ Y +| d+(t, x) = i}.

Theorem 4.12. Assume that q /∈ {3, 5, 9, 13}. Then C(G+, Y +) is connected of

diameter 3 with

∣∣∆+
1 (t)

∣∣ =
1

2
(q − δ)2 + 1;

∣∣∆+
2 (t)

∣∣ =
1

8
(q − δ)3(q − 4− δ) + (q − δ)(q − 2− δ); and

∣∣∆+
3 (t)

∣∣ =
3

8
q4 +

1

2
(1 + 3δ)q3 − 1

4
(7 + 6δ)q2 +

7

2
(1 + δ)q − 1

8
(29 + 20δ).

Proof. Let G+ = G+/Z(G+) (= L1 × L2). Note that for x1x2 ∈ Y +, x−1
1 x2 = x1x

−1
2

and x1x2 = x−1
1 x−1

2 and so the inverse image of x1x2 contains two elements of Y +.

Let d(i) denote the distance metric on the commuting involution graph of Li and

∆
(i)
j (xi) the jth disc of xi in the commuting involution graph of Li. By Lemma 4.11,

t = t1t2 where, for i = 1, 2, ti ∈ Li has order 4. Let x = x1x2 ∈ Y + with x 6= t.

Then tx = xt if and only if tx has order 2. So, bearing in mind that Y + ∪ {z}
(where 〈z〉 = Z(G+)) are all the involutions of G+, we have that tx = xt if and only

if one of the following holds:- x1 = t1, x2 = t−1
2 ; x1 = t−1

1 , x2 = t2; x1 ∈ ∆
(1)
1 (t1) and

x2 ∈ ∆
(2)
1 (t2). Thus

∆+
1 (t) =

{
x1x2

∣∣∣xi ∈ ∆
(i)
1 (ti), i = 1, 2

}
∪ {

t1t
−1
2

}
. (4.2)

Hence, using Theorem 2.10,

∣∣∆+
1 (t)

∣∣ = 2

(
1

2
(q − δ)

)2

+ 1 =
1

2
(q − δ)2 + 1. (4.3)

Next we examine ∆+
2 (t). Let x ∈ Y +. Assume that x = x1t2 or x1t

−1
2 where

x1 ∈ ∆
(1)
1 (t1). Then x ∈ ∆+

1 (t1t
−1
2 ) (recall t1t

−1
2 = t−1

1 t2) which implies, by (4.2),

that x ∈ ∆+
2 (t). If x = t1x2 or t−1

1 x2 where x2 ∈ ∆
(2)
1 (t2), we similarly get

x ∈ ∆+
2 (t). Therefore

{
x1x2

∣∣∣x1 ∈ ∆
(1)
1 (t1), x2 = t2

}
∪

{
x1x2

∣∣∣x2 ∈ ∆
(2)
1 (t2), x1 = t1

}
⊆ ∆+

2 (t). (4.4)
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Now suppose x = x1x2 where x1 ∈ ∆
(1)
2 (t1) and x2 ∈ ∆

(2)
1 (t2). So there exists

y1 ∈ L1 such that (t1, y1, x1) is a path of length 2 in the commuting involution

graph for L1. Then (t = t1t2, y1x
−1
2 , x1x2 = x) is a path of length 2 in C(G+, Y +).

Thus, by (4.2), x ∈ ∆+
2 (t). If, on the other hand, x1 ∈ ∆

(1)
1 (t1) and x2 ∈ ∆

(2)
2 (t2) we

obtain the same conclusion. Should we have x1 ∈ ∆
(1)
2 (t1) and x2 ∈ ∆

(2)
2 (t2), similar

arguments also give x ∈ ∆+
2 (t). So

{
x1x2

∣∣∣x1 ∈ ∆
(1)
2 (t1), x2 ∈ ∆

(2)
1 (t2)

}
∪

{
x1x2

∣∣∣x1 ∈ ∆
(1)
1 (t1), x2 ∈ ∆

(2)
2 (t2)

}

∪
{

x1x2

∣∣∣x1 ∈ ∆
(1)
2 (t1), x2 ∈ ∆

(2)
2 (t2)

}
⊆ ∆+

2 (t). (4.5)

Since x = x1x2 ∈ ∆+
2 (t) implies d(i)(ti, xi) ≤ 2 for i = 1, 2, ∆+

2 (t) is the union of the

two sets in (4.4) and (4.5). Thus, employing Theorem 2.10,

∣∣∆+
2 (t)

∣∣ =
1

8
(q − δ)3(q − 4− δ) + (q − δ)(q − 2− δ). (4.6)

Now, as q /∈ {3, 5, 9, 13}, by Theorem 2.10 the commuting involution graph for Li is

connected of diameter 3. Arguing as above we deduce that C(G+, Y +) is also

connected with diameter 3. Because |Y +| = 2
∣∣∣t1L1

∣∣∣
∣∣∣t2L2

∣∣∣ = 1
2
q2(q + δ)2, combining

(4.3) and (4.6) we may determine
∣∣∆+

3 (t)
∣∣ to be as stated, so completing the proof

of Theorem 4.12.

Finally we look at CG(U) where U ∈ U0
1 . This will prove to be trickier than the

other two cases. Put G0 = CG(U). So G0 ∼= q3 : L2(q). We require an explicit

description of G0 which we now give. Let Q = {(α, β, γ)|α, β, γ ∈ GF (q)} and

L =








a2 2ab b2

ac ad + bc bd

c2 2cd d2




∣∣∣∣∣∣∣∣∣

a, b, c, d ∈ GF (q)

ad− bc = 1





.

with L acting on Q by right multiplication. Then Q ∼= q3 and L ∼= L2(q), with the

latter isomorphism induced by the homomorphism SL2(q) → L given by


a b

c d


 7→




a2 2ab b2

ac ad + bc bd

c2 2cd d2


 .
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Since Q is the 3-dimensional GF (q)L-module (see the description on page 15 of [5]),

G0 ∼= Qo L ∼= AO3(q). We will identify this semidirect product with G0, writing

G0 = QL. Any g ∈ G0 has a unique expression g = gQgL where gQ ∈ Q and gL ∈ L

– in what follows we use such subscripts to describe this expression. Set

Y 0 = G0 ∩ Y2, let d0 denote the distance metric and ∆0
i (t) the ith disc of the

commuting graph C(G0, Y 0). In determining the discs of C(G0, Y 0) we make use of

the commuting involution graph of L ∼= L2(q) (as given in Theorem 2.10). So we

shall use dL to denote the distance metric on C(L,L ∩ Y 0) and for x ∈ L ∩ Y 0 and

i ∈ N, ∆L
i (x) =

{
y ∈ L ∩ Y 0| dL(x, y) = i

}
. The preimage in SL2(q) of an

involution in L2(q) is an element of order 4 which squares to −I2. These are all of

the form


a b

c −a


 and so the image in L of such an element is given by


a b

c −a


 7→




a2 2ab b2

ac bc− a2 −ab

c2 −2ac a2


 .

Hence,

L ∩ Y 0 =








a2 2ab b2

ac bc− a2 −ab

c2 −2ac a2




∣∣∣∣∣∣∣∣∣

a, b, c ∈ GF (q)

a2 + b2 = −1





and, as G0 has one conjugacy class of involutions,

Y 0 =
{

xQxL|xL ∈ L ∩ Y 0 and xL inverts xQ

}
.

Without loss of generality, we take

t = tL =




0 0 1

0 −1 0

1 0 0




and, up until Theorem 4.18, we will assume that q /∈ {3, 5, 9, 13}. Thus the

diameter of C(L,L ∩ Y 0) is 3.

Lemma 4.13. (i) Qt ∩ Y 0 = {(α, β,−α)t|α, β ∈ GF (q)} and |Qt ∩ Y 0| = q2.
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(ii) Qt ∩∆0
1(t) = ∅.

Proof. Any xQt ∈ Qt ∩ Y 0 has the property that xt
Q = x−1

Q . It is now a

straightforward calculation to show both (i) and (ii).

Lemma 4.14. We have

∆0
1(t) =





x

∣∣∣∣∣∣∣∣∣
xQ = (α, 0, α), xL =




a2 2ab b2

ab b2 − a2 −ab

b2 −2ab a2


 , a2 + b2 = −1





,

and |∆0
1(t)| = 1

2
q(q − δ).

Proof. Let x, y ∈ Y 0. If [x, y] = 1 then clearly [xL, yL] = 1. From [15] we have

∆L
1 (t) =








a2 2ab b2

ab b2 − a2 −ab

b2 −2ab a2




∣∣∣∣∣∣∣∣∣
a2 + b2 = −1





.

If xQ = (α, β, γ) and xL ∈ ∆L
1 (t) then [t, x] = 1 implies α = γ and β = 0. Moreover,

every x = (α, 0, α)xL, where xL ∈ ∆L
1 (t), is in Y 0. Hence, ∆0

1(t) is as described

above. By Theorem 2.10, for any involution xL ∈ L we have
∣∣∆L

1 (xL)
∣∣ = 1

2
(q − δ)

and there are q possible values that α can take for a fixed such xL, proving the

lemma.

Lemma 4.15. Let x ∈ Y 0 with xL ∈ ∆L
1 (t). If x /∈ ∆0

1(t), then x ∈ ∆0
2(t).

Proof. Suppose x ∈ Y 0 where xQ = (α, β, γ) and

xL =




a2 2ab b2

ab b2 − a2 −ab

b2 −2ab a2


 .

Then xL inverts xQ if and only if

a2α + 2abβ + b2γ = −α;

abα + (b2 − a2)β − abγ = −β; and (4.7)

b2α− 2abβ + a2γ = −γ.
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Suppose first that δ = −1. Then, since −1 is not square in GF (q), we must have

a, b 6= 0. Rearranging the first equation gives α = 2ab−1β + γ and (4.7) remains

consistent. Note that when β = 0, we have α = γ and so x ∈ ∆0
1(t). So assume

β 6= 0. Let y ∈ ∆0
1(t) where yQ = (ab−1β + γ, 0, ab−1β + γ) and

yL =




b2 −2ab a2

−ab a2 − b2 ab

a2 2ab b2


 .

It is a routine calculation to show that [x, y] = 1, proving the lemma for δ = −1.

Now assume δ = 1. If a, b 6= 0 then the argument from the previous case still holds,

so assume first that a = 0, and hence b is the unique element in GF (q) that squares

to −1. Then (4.7) simplifies to α = γ, and so xQ = (α, β, α). Let z ∈ ∆0
1(t) where

zQ = (α, 0, α) and

zL =




−1 0 0

0 1 0

0 0 −1


 .

An easy calculation shows that [x, z] = 1. Similarly, assuming b = 0 then a is the

unique element of GF (q) squaring to −1 and (4.7) simplifies to β = 0. Then

xQ = (α, 0, γ) and if w ∈ ∆0
1(t) where wQ = (2−1(α + γ), 0, 2−1(α + γ)) and

wL =




0 0 −1

0 −1 0

−1 0 0




then an easy check shows that [x,w] = 1, proving the lemma for δ = 1.

Lemma 4.16. We have Qt ∩ Y 0 ⊆ {t} ∪∆0
2(t) ∪∆0

3(t). Moreover,

∣∣Qt ∩∆0
2(t)

∣∣ =
1

2
(q2 − (1 + δ)q + δ); and

∣∣Qt ∩∆0
3(t)

∣∣ =
1

2
(q2 + (1 + δ)q − (2 + δ)).

Proof. If x ∈ Qt ∩ Y 0 and x 6= t then xQ = (α, β,−α) and x /∈ ∆0
1(t) by Lemma
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4.13. Let y ∈ ∆0
1(t) where yQ = (γ, 0, γ) and

yL =




a2 2ab b2

ab b2 − a2 −ab

b2 −2ab a2




with a2 + b2 = −1. Then [x, y] = 1 if and only if −a2α = abβ and −b2β = abα.

Assume first that δ = −1. Since −1 is not square in GF (q), we have a, b 6= 0 and so

α = −a−1bβ. Hence if y ∈ Qt is such that yQ = (−a−1bβ, β, a−1bβ), then y ∈ ∆0
2(t).

By looking at ∆L
1 (t), we see there are q + 1 ordered pairs (a, b) that satisfy

a2 + b2 = −1. However, if (a, b) 6= (c, d) where a2 + b2 = c2 + d2 = −1 and

a−1b = c−1d, then an easy calculation shows that (c, d) = (−a,−b). Hence there are

1
2
(q + 1) distinct values of a−1b satisfying the requisite conditions. If β = 0, then

x = t and if β 6= 0, then there are 1
2
(q2 − 1) elements in Qt ∩∆0

2(t).

Assume now that δ = 1. If a, b 6= 0 then the arguments of the previous case still

hold, with the exception that there are now q − 1 ordered pairs (a, b) that satisfy

a2 + b2 = −1. However, as a, b 6= 0 we exclude the pairs (±i, 0) and (0,±i) where i

is the unique element of GF (q) squaring to −1. Hence there are q − 5 ordered pairs

(a, b) satisfying a2 + b2 = −1, where a, b 6= 0 and thus 1
2
(q − 5) distinct values of

a−1b. Hence there are 1
2
(q − 5)(q − 1) elements z ∈ Qt ∩∆0

2(t) such that

zQ = (−a−1bβ, β, a−1bβ) where β 6= 0 (note that if β = 0, then z = t). Suppose

a = 0, then b 6= 0 and so β = 0. Hence xQ = (α, 0,−α) and all such x lie in ∆0
2(t) if

α 6= 0. Similarly, if b = 0 then a 6= 0 and xQ = (0, β, 0) where β 6= 0 and all such x

lie in ∆0
2(t). Therefore, |Qt ∩∆0

2(t)| = 1
2
(q − 5)(q − 1) + 2(q − 1) = 1

2
(q − 1)2 as

required.

Hence it suffices to show that these remaining involutions all lie in ∆0
3(t). Let

w ∈ Qt be such that wQ = (γ, ε,−γ). Choose s ∈ Y 0 such that

sQ = (abε− b2γ, abγ − a2ε, b2γ − abε) with abγ 6= a2ε and

sL =




b2 −2ab a2

−ab a2 − b2 ab

a2 2ab b2


 ,
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with a2 + b2 = −1. It is an easy check to show that s ∈ ∆0
2(t), and moreover

[w, s] = 1. This accounts for the remaining involutions in Qt, thus proving the

lemma.

Lemma 4.17. Suppose x ∈ Y 0 with xL ∈ ∆L
2 (t). Then x ∈ ∆0

2(t).

Proof. It can be shown (see Remark 2.3 of [15], noting the result holds for any odd

q) that for fixed a, b ∈ GF (q) such that a2 + b2 = −1,

CL







a2 2ab b2

ab b2 − a2 −ab

b2 −2ab a2





 =








c2 2cd d2

ce de− c2 −cd

e2 −2ce c2




∣∣∣∣∣∣∣∣∣

c2 + de = −1

b(e + d) = −2ac





.

Let y ∈ Y 0 be such that yQ = (α, β, γ) and

yL =




c2 2cd d2

ce de− c2 −cd

e2 −2ce c2


 ∈ ∆L

2 (t).

So there exists a, b ∈ GF (q) such that a2 + b2 = −1 and b(e + d) = −2ac with d 6= e.

Since yL inverts yQ, we have

c2α + 2cdβ + d2γ = −α;

ceα + (de− c2)β − cdγ = −β; and (4.8)

e2α− 2ceβ + c2γ = −γ.

Assume first that δ = −1. Since −1 is not square in GF (q), then d, e 6= 0 and any

a, b ∈ GF (q) such that b(d + e) = −2ac and a2 + b2 = −1 must also be non-zero.

Moreover if c = 0, then d = −e−1 and b(d− d−1) = 0 implying that d = −1. But

then yL = t /∈ ∆L
2 (t), so c 6= 0. The system (4.8) now simplifies to

α = 2ce−1β + de−1γ. Let x ∈ ∆0
1(t) be such that xQ = (ε, 0, ε) and

xL =




a2 2ab b2

ab b2 − a2 −ab

b2 −2ab a2



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where ε = −abc−1e−1(γ + (d− e)−1(2c + a−1be− ab−1e− (ab)−1e)β). Using the

PolynomialAlgebra command in Magma [19] we verify that [x, y] = 1 and so

y ∈ ∆0
2(t).

Assume now that δ = 1. Let a, b ∈ GF (q) be such that a2 + b2 = −1 and

b(d + e) = −2ac. Suppose c, d, e 6= 0 and d 6= −e. Then b(d + e) = −2ac 6= 0 and so

a, b 6= 0. The argument for the case when δ = −1 then holds. Suppose then

c, d, e 6= 0 and d = −e. Then b(d + e) = −2ac = 0 and since c 6= 0 we must have

a = 0 and b2 = −1. The system (4.8) then becomes α = 2ce−1β − γ. If x ∈ ∆0
1(t) is

such that xQ = (−c−1e−1β, 0,−c−1e−1β) and

xL =




0 0 −1

0 −1 0

−1 0 0




then a routine check shows that [x, y] = 1.

Now assume c 6= 0 and d = 0. Since yL ∈ ∆L
2 (t), we must have e 6= 0 and so

c2 = −1. The system (4.8) becomes α = 2ce−1β and using Magma [19] we deduce

that if x ∈ ∆0
1(t) where xQ = (ε, 0, ε),

xL =




a2 2ab b2

ab b2 − a2 −ab

b2 −2ab a2




and ε = (ce−1(1− a2)− ab)β − 2−1b2γ, then [x, y] = 1. Similarly, if c 6= 0 and e = 0,

then d 6= 0 and c2 = −1. The system (4.8) becomes β = 2−1cdγ and [19] will verify

that if x ∈ ∆0
1(t) where xQ = (ε, 0, ε),

xL =




a2 2ab b2

ab b2 − a2 −ab

b2 −2ab a2




and ε = 2−1(γ − b2α + abcdγ − a2γ), then [x, y] = 1.

Finally, if c = 0 then d = −e−1 and so a2 = −1 and b = 0 satisfies the required

conditions. Note that if d = ±1 then yL = t, so we may assume d 6= ±1. The system
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(4.8) becomes α = d2γ, so if x ∈ ∆0
1(t) where

xQ = (2d2γ(1− d2)−1, 0, 2d2γ(1− d2)−1) and

xL =




−1 0 0

0 1 0

0 0 −1




then a routine check again shows that [x, y] = 1. Therefore, for all y ∈ Y 0 such that

yL ∈ ∆L
2 (t), there exists x ∈ ∆L

1 (t) such that [x, y] = 1, so proving the lemma.

Theorem 4.18. If q /∈ {3, 5, 9, 13}, then C(G0, Y 0) is connected of diameter 3, with

disc sizes

∣∣∆0
1(t)

∣∣ =
1

2
q(q − δ);

∣∣∆0
2(t)

∣∣ =
1

4
(q4 − (2δ + 2)q3 + (1 + 2δ)q2 − 2q + 2δ); and

∣∣∆0
3(t)

∣∣ =
1

4
(q4 + 2(1 + 2δ)q3 − (3 + 2δ)q2 + 2(1 + δ)q − 2(2 + δ)).

Proof. It is known that C(L, L ∩ Y 0) has diameter 3. Hence, for any hi ∈ ∆L
i (t),

there exists hi±1 ∈ ∆L
i±1(t) that commutes with hi, i = 1, 2. Therefore for any

x ∈ Y 0 where xL ∈ ∆L
i (t), there exists y ∈ Y 0 with yL ∈ ∆L

i±1(t) such that

[x, y] = 1. Since any z ∈ Y 0 where zL ∈ ∆L
3 (t) must commute with some w ∈ Y 0

with wL ∈ ∆L
2 (t) (which is contained in ∆0

2(t) by Lemma 4.17), z ∈ ∆0
3(t). This

finally covers all possible involutions in Y 0 and so the diameter of C(G0, Y 0) is 3.

Now for each xL ∈ L ∩ Y 0, |QxL ∩ Y 0| = q2 by Lemma 4.13, and therefore there are

1
2
q2(q − δ) involutions y ∈ Y 0 such that yL ∈ ∆L

1 (t). From Lemma 4.14,

|∆0
1(t)| = 1

2
q(q − δ). Therefore

∣∣∣∣∣∣
⋃

xL∈∆L
1 (t)

QxL ∩∆0
2(t)

∣∣∣∣∣∣
=

1

2
q2(q − δ)− 1

2
q(q − δ) =

1

2
q(q − 1)(q − δ).

There are q2
∣∣∆L

2 (t)
∣∣ involutions z ∈ Y 0 such that zL ∈ ∆L

2 (t), which is known to be

1
4
q2(q − δ)(q − 4− δ) (see Theorem 2.10). Also, by Lemma 4.16,
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|Qt ∩∆0
2(t)| = 1

2
(q2 − (1 + δ)q − δ). Hence

∣∣∆0
2(t)

∣∣ =
∣∣Qt ∩∆0

2(t)
∣∣ +

∣∣∣∣∣∣
⋃

xL∈∆L
1 (t)

QxL ∩∆0
2(t)

∣∣∣∣∣∣
+ q2

∣∣∆L
2 (t)

∣∣

=
1

4
(q4 − (2δ + 2)q3 + (1 + 2δ)q2 − 2q + 2δ).

Finally, there are |Y 0| = q2 |L ∩ Y 0| = 1
2
q3(q + δ) involutions in G0 and therefore

∣∣∆0
3(t)

∣∣ =
∣∣Y 0

∣∣−
∣∣∆0

2(t)
∣∣−

∣∣∆0
1(t)

∣∣− 1

=
1

4
(q4 + 2(1 + 2δ)q3 − (3 + 2δ)q2 + 2(1 + δ)q − 2(2 + δ))

which proves Theorem 4.18.

Theorem 4.19. C(G, Y2) is connected of diameter at most 3.

Proof. For q ≤ 13, this is easily checked using Magma [19], so assume q > 13.

Combining Lemma 4.7 with Theorems 4.10, 4.12 and 4.18 yields the theorem.

We now focus on finding the disc sizes of C(G, Y2). First, we need the following four

lemmas.

Lemma 4.20. The sets U+
1 , U−1 and U0

1 are single CG(t)-orbits. Moreover,

∣∣U0
1

∣∣ = q + 1;

∣∣U+
1

∣∣ =
1

2
q(q + δ); and

∣∣U−1
∣∣ =

1

2
q(q − δ).

Proof. Since CG(t) acts orthogonally on CV (t), the first statement is immediate.

Recall the Gram matrix J for V with respect to (·, ·) and the basis {vi}. Observe

that CV (t) = {(α, β, γ, 0, γ)|α, β, γ ∈ GF (q)} and so a basis for CV (t) is

{v1, v2, v3 + v5}. Let v = (α, β, γ, 0, γ) be a non-zero vector in CV (t) and so

(v, v) = 2αβ + 2γ2.

Suppose v is isotropic, so CG(〈v〉) ∼= q3 : L2(q) and (v, v) = 2αβ + 2γ2 = 0. If γ = 0,

then αβ = 0 and so either α = 0 or β = 0 (but not both since v 6= 0). Hence there

are 2(q − 1) such vectors with γ = 0. If γ 6= 0, then α = −β−1γ2 and there are
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(q − 1)2 such vectors satisfying this. Hence there are

2(q − 1) + (q − 1)2 = (q − 1)(q + 1) non-zero isotropic vectors contained in CV (t)

and thus q + 1 isotropic 1-subspaces of CV (t).

Suppose now v is CG(t)-conjugate to v3 + v5, which is non-isotropic. Note that

〈v3 + v5〉⊥ ∩ CV (t) is a 2-subspace of V of +-type. If δ = 1, then by Lemma 4.5(ii),

〈v3 + v5〉⊥ is a 4-subspace of V of +-type and so CG(〈v3 + v5〉) ∼= SL2(q) ◦ SL2(q).

While δ = −1 gives that 〈v3 + v5〉⊥ is a 4-subspace of V of −-type and so

CG(〈v3 + v5〉) ∼= L2(q
2). A quick check shows that (v3 + v5, v3 + v5) = 2 and so

(v, v) = 2αβ + 2γ2 = 2λ2 for some λ ∈ GF (q)∗. Thus, αβ + γ2 = λ2 for some

λ ∈ GF (q)∗. If γ = 0, then α = β−1λ2 and so there are q − 1 such vectors that

satisfy this. If γ = ±λ, then αβ = 0 and so for both values of γ, there are

2(q − 1) + 1 vectors that satisfy this. Finally, if γ ∈ GF (q) \ {0, λ,−λ}, then

αβ = 1− γ2 6= 0 and so α = β−1(1− γ2). There are (q − 1)(q − 3) such vectors that

satisfy this. Hence for any given λ, there exist

(q − 1) + 4(q − 1) + 2 + (q − 1)(q − 3) = q(q + 1) vectors that satisfy αβ + γ2 = λ2.

Since there are 1
2
(q − 1) squares in GF (q), there are q(q + 1)(q − 1) vectors that are

CG(t)-conjugate to v3 + v5 and hence 1
2
q(q + 1) 1-subspaces of CV (t) that are

CG(t)-conjugate to 〈v3 + v5〉.
This leaves the remaining orbit. Recall there are q2 + q + 1 subspaces of CV (t) of

dimension 1, and hence the size of the remaining orbit is

q2 + q + 1− (q + 1)− 1
2
q(q + 1) = 1

2
q(q − 1), so proving the lemma.

Corollary 4.21. The sets U+
2 , U−2 and U0

2 are single CG(t)-orbits. Moreover,

∣∣U0
2

∣∣ = q + 1;

∣∣U+
2

∣∣ =
1

2
q(q + 1); and

∣∣U−2
∣∣ =

1

2
q(q − 1).

Proof. Since CV (t) is 3-dimensional, U⊥ ∩ CV (t) ∈ U1 for any U ∈ U2, and so the

result is immediate by Lemma 4.20.

Lemma 4.22. Let U,U ′ ∈ U2 be such that U 6= U ′. Then

CG(U) ∩ CG(U ′) ∩ Y2 = {t}.
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Proof. Suppose x ∈ CG(U)∩CG(U ′)∩ Y2. Since U 6= U ′ and x fixes each 2-subspace

pointwise, U + U ′ = CV (t) and so x fixes CV (t) pointwise. That is to say,

CV (x) = CV (t) and so t = x by Lemma 4.6(i).

Lemma 4.23. Let U0 ∈ U0
2 , and suppose G0 = QL and Y 0 are as defined in the

discussion prior to Lemma 4.13. Let ρ : CG(U⊥
0 ∩ CV (t)) → G0 be an isomorphism

such that

tρ =




0 0 1

0 −1 0

1 0 0


 .

Then CG(U0) is totally disconnected and (CG(U0) ∩ Y2)
ρ = Qt ∩ Y 0.

Proof. Since U⊥
0 ∩ CV (t) is isotropic, it must lie inside of U0 and so

CG(U0) ≤ CG(U⊥
0 ∩ CV (t)). As t fixes U0 pointwise, tρ ∈ (CG(U0))

ρ ∼= q2 : C q−δ
2

by

Lemma 4.9(i). The subgroup of L with shape C q−δ
2

contains one single involution

which must necessarily be tρ. For all x ∈ Y 0, we have x2
L = 1 and xL inverts xQ, so

(CG(U0) ∩ Y2)
ρ ⊆ Qt ∩ Y 0. By comparing the orders of both sides, we get equality.

By Lemma 4.13(ii) CG(U0) ∩ CG(t) ∩ Y2 = {t}, hence CG(U0) is totally

disconnected.

Lemma 4.24. |∆1(t)| = 1
2
q(q2 + (1− δ)q + δ).

Proof. Clearly, x ∈ ∆1(t) if and only if x ∈ ∆1(t)∩CG(U) for U = CV (t)∩CV (x), so

∆1(t) =
⋃

U∈U1∪U2

(∆1(t) ∩ CG(U)).

If W,W ′ ∈ U1 with W 6= W ′, then W ⊕W ′ ∈ U2 and if y ∈ CG(W ) ∩ CG(W ′) then

y ∈ CG(W ⊕W ′) and hence y ∈ CG(W ′′) for any 1-subspace W ′′ of W ⊕W ′. Since

there are q + 1 subspaces of W ′′ of dimension 1, any such y will lie in exactly q + 1

such CG(U) for U ∈ U1. Together with CG(W ′′) and Lemma 4.22,

|∆1(t)| =
∑
U∈U1

|∆1(t) ∩ CG(U)| − q
∑
U∈U2

|∆1(t1) ∩ CG(U)| .
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Combining Lemmas 4.20, 4.23 and Corollary 4.21 with Theorems 4.10, 4.12, 4.18

and 2.10, we have

|∆1(t)| = 1

2
q(q + 1)(q − δ) +

1

2
q(q + δ)

[
1

2
(q − δ)2 + 1

]
+

1

4
q(q − δ)(q2 − 1)

− 1

2
q(q − δ)

[
1

2
q(q + 1) +

1

2
q(q − 1)

]

=
1

2
q(q2 + (1− δ)q + δ)

as required.

We now consider the second disc ∆2(t). Here, we must be careful as elements that

are distance 2 from t in some subgroup CG(U) may not be distance 2 from t in

another subgroup CG(U ′). Moreover, there may be elements that are distance 3

from t in every such subgroup centralizing an element of U1, but actually are

distance 2 from t in G. We introduce the following notation. Let ∆K
2 (t) be the

second disc in the commuting involution graph C(K,K ∩ Y2) and

Γi(K) =
{

x ∈ ∆K
2 (t)

∣∣ dim CV (〈t, x〉) = i
}

for K = CG(U), U ∈ U1 ∪ U2. Clearly, ∆2(t) = Γ1(G)∪̇Γ2(G). A full list of cases

with corresponding notation is found in Table 4.1. Also we use the following

notation: for any U ≤ CV (t), define Ui(U) to be the totality of i-dimensional

subspaces of U and Wi(U) to be the totality of i-dimensional subspaces of CV (t)

containing U . Note that Ui = Ui(CV (t)).

Lemma 4.25. (i) If W ∈ U0
2 , then |U0

1 ∩ U1(W )| = 1 and
∣∣U+

1 ∩ U1(W )
∣∣ = q.

(ii) If W ∈ U+
2 , then |U0

1 ∩ U1(W )| = 2 and
∣∣U+

1 ∩ U1(W )
∣∣ =

∣∣U−1 ∩ U1(W )
∣∣ = q−1

2
.

(iii) If W ∈ U−2 , then
∣∣U+

1 ∩ U1(W )
∣∣ =

∣∣U−1 ∩ U1(W )
∣∣ = q+1

2
.

Proof. Recall the Gram matrix J , with respect to the ordered basis {vi},
i = 1, . . . , 5. Suppose W⊥ ∩ CV (t) = U0 ∈ U0

1 . Without loss of generality, choose

W = 〈v1, v3 + v5〉. Clearly 〈v1〉 ∈ U0
1 , and 〈v3 + v5〉⊥ ∩ CV (t) ∈ U+

2 . Since

(v1 + λ(v3 + v5), v1 + λ(v3 + v5)) = λ2(v3 + v5),
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Case Configuration Properties Description as Set

1 x ∈ ∆
CG(U1)
2 (t)

U1 = CV (〈t, x〉) ∈ U1

⋃̇
U∈U1

Γ1(CG(U))

2
x ∈ ∆

CG(U1⊕U2)
2 (t)

U1 ⊕ U2 = CV (〈t, x〉)
Ui ∈ U1

⋃̇
W∈U2

Γ2(CG(W ))

3

x ∈ ∆
CG(U2)
2 (t)

for some U2 ≤ CV (〈t, x〉)
x /∈ ∆

CG(U1⊕U2)
2 (t)

U1 ⊕ U2 = CV (〈t, x〉)
Ui ∈ U1

⋃
U∈U1

Γ2(CG(U)) \
⋃̇

W∈U2

Γ2(CG(W ))

4

x ∈ ∆G
2 (t)

x /∈ ∆
CG(U1)
2 (t)

U1 = CV (〈t, x〉) ∈ U1

Γ1(G) \
⋃̇

U∈U1

Γ1(CG(U))

5

x ∈ ∆G
2 (t)

x /∈ ∆
CG(Ui)
2 (t)

for any Ui ≤ CV (〈t, x〉)
U1 ⊕ U2 = CV (〈t, x〉)

Ui ∈ U1

Γ2(G) \
⋃

U∈U1

Γ2(CG(U))

Table 4.1: List of cases in ∆2(t).
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v1 + λ(v3 + v5) lies in the same CG(t)-orbit as v3 + v5 and so

〈v1 + λ(v3 + v5)〉⊥ ∩ CV (t) ∈ U+
2 , proving (i).

Suppose now W ∈ U+
2 . Without loss of generality, choose W = 〈v1, v2〉. Clearly

〈v1〉 , 〈v2〉 ∈ U0
1 . Let Uλ = v1 + λv2 for λ 6= 0 and note that

(v1 + λv2, v1 + λv2) = 2λ = µ 6= 0. Since the type of U⊥
λ is determined by whether µ

is a square or a non-square in GF (q), and there are q−1
2

of each, it is clear that there

exist q−1
2

such Uλ for which U⊥
λ is of +-type, and similarly for −-type, proving (ii).

Finally suppose W ∈ U−2 , so for all v ∈ W , (v, v) 6= 0. The simple orthogonal group

on W is cyclic of order q+1
2

and acts on the 1-subspaces of W in exactly two orbits

with representatives 〈u1〉 and 〈u2〉 where (u1, u1) is a square and (u2, u2) is a

non-square in GF (q). Since |U1(W )| = q + 1, both orbits must be of size q+1
2

. This

proves (iii) and hence the lemma follows.

Corollary 4.26. Let U ∈ U1. Then,

(i) |W2(U)| = q + 1.

(ii) If U ∈ U0
1 , then |U0

2 ∩W2(U)| = 1 and
∣∣U+

2 ∩W2(U)
∣∣ = q.

(iii) If U ∈ U δ
1 , then |U0

2 ∩W2(U)| = 2 and
∣∣U+

2 ∩W2(U)
∣∣ =

∣∣U−2 ∩W2(U)
∣∣ = q−1

2
.

(iv) If U ∈ U−δ
2 , then

∣∣U+
2 ∩W2(U)

∣∣ =
∣∣U−2 ∩W2(U)

∣∣ = q+1
2

.

Proof. Let U ≤ W ≤ CV (t). Then W⊥ ∩ CV (t) ≤ U⊥ ∩ CV (t) ≤ CV (t). The result

follows from Lemma 4.25.

Lemma 4.27. Let U ∈ U0
1 and W ∈ U+

2 ∩W2(U). If x ∈ Y2 ∩ CG(W ) is such that

dCG(W )(t, x) = 3, then dCG(U)(t, x) = 3. Moreover,

|Γ1(CG(U))| =




1
4
q(q − 3)(q − 1)2 q ≡ 1 (mod 4)

1
4
q(q − 1)2(q + 1) q ≡ −1 (mod 4).

Proof. Recall that CG(U) = QL ∼= G0 where G0 is defined as in the discussion prior

to Lemma 4.13. By conjugacy, we may assume L = CG(W ). Now

CG(U) ∩ CG(t) = Q0CL(t) ∼= q : Dih(q − δ) where Q0 ≤ Q is elementary abelian of

order q. Let x ∈ Q0CL(t) ∩ Y2, so x2
L = 1 and xL inverts xQ. Clearly,
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x
xQ

L = xLx2
Q /∈ L since Q0 is of odd order. Hence, CL(t) is self-normalizing in

Q0CL(t) and thus there are q distinct conjugates of CL(t) in Q0CL(t). Let

g ∈ Q0CL(t) \ CL(t), so CL(t)g 6= CL(t). Now [CL(t), t] = [CL(t)g, t] = 1 and so

〈CL(t), CL(t)g〉 centralizes t. If CL(t), CL(t)g ≤ Lh for some h ∈ QL, then

〈CL(t), CL(t)g〉 ≤ Lh. However, CL(t) � 〈CL(t), CL(t)g〉 ≤ CL(t), a contradiction.

Hence every conjugate of CL(t) lies in a different conjugate of L and so there are q

distinct Q0CL(t)-conjugates of L. Therefore, U+
2 ∩W2(U) is contained in the same

CG(U) ∩ CG(t)-orbit, and
∣∣U+

2 ∩W2(U)
∣∣ = q by Corollary 4.26. There are exactly q

+-type 2-subspaces of CV (t) containing U , all of which lie in the same

CG(U) ∩ CG(t)-orbit.

Let x ∈ CG(W ) ∩ Y2 be such that dCG(W )(t, x) = 3. Suppose W g ∈ U+
2 ∩W2(U) for

some g ∈ CG(U) ∩ CG(t), W 6= W g. If dCG(U)(t, x) = 2 then

dCG(U)(tg, xg) = dCG(U)(t, xg) = 2, and dCG(W )(t, x) = dCG(W ′)(t, xg) = 3. Hence it

suffices to prove the lemma for CG(W ). By Theorem 4.18, any involution distance 3

away from t in L is necessarily distance 3 away from t in CG(U), proving the first

statement.

Let W0 ∈ U0
2 ∩W2(U), so CG(W0) ∼= q2 : C q−δ

2
. By Lemma 4.23,

∆
CG(U)
2 (t) ∩ CG(W0) = Qt ∩∆

CG(U)
2 (t). Let Wi, i = 1, . . . , q be the subspaces in

U+
2 ∩W2(U). From Lemma 4.22, CG(Wi) ∩ CG(Wj) ∩ Y2 = {t} if and only if i = j.

Using Corollary 4.26(i) with Theorem 2.10, we have
∣∣∣∣∣

q⋃
i=1

∆
CG(Wi)
2 (t)

∣∣∣∣∣ =
1

4
q(q − δ)(q − 4− δ). (4.9)

Combining Lemma 4.16 with (4.9),

|Γ2(CG(U))| =
∣∣∣∣∣

q⋃
i=1

∆
CG(Wi)
2 (t)

∣∣∣∣∣ +
∣∣∣∆CG(U)

2 (t) ∩ CG(W0)
∣∣∣

=
1

4
(q3 − 2(1 + δ)q2 + (2δ − 1)q + 2δ). (4.10)

Together, (4.10) and Theorem 4.18 give

|Γ1(CG(U))| =
∣∣∣∆CG(U)

2 (t)
∣∣∣− |Γ2(CG(U))|

=
1

4
q(q3 − (2δ + 3)q2 + (4δ + 3)q − 2δ − 1),
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as required.

Lemma 4.28. Let t, x ∈ L2(q). Then dL2(q)(t, x) ≤ 2 if and only if the order of tx

divides 1
2
(q − δ).

Proof. See Lemma 2.11 of [15].

Lemma 4.29. Let U ∈ U+
1 , and W ∈ (U+

2 ∪ U−2 ) ∩W2(U).

(i) If δ = 1 and W0 ∈ U0
2 ∩W2(U), then Y2 ∩ CG(W0) \ {t} ⊆ ∆

CG(U)
3 (t).

(ii) If x ∈ Y2 ∩ CG(W ) is such that dCG(W )(t, x) = 3, then dCG(U)(t, x) = 3 and

|Γ1(CG(U))| =




1
8
(q − 1)(q − 3)(q2 − 6q + 13) q ≡ 1 (mod 4)

1
8
(q2 − 1)(q2 − 2q + 5) q ≡ −1 (mod 4).

Proof. Recall that CG(U) ∼= G+ ∼= L1 ◦ L2 for L1
∼= SL2(q) ∼= L2. Suppose

y ∈ CG(W ) is such that dCG(W )(t, y) = 3. Since CG(W ) ∼= L2(q) is simple, then

y = ggϕ for some g ∈ L1 and ϕ an isomorphism from L1 onto L2. Since t ∈ CG(W ),

write t = ssϕ for some s ∈ L1. Then dL1(s, g) = 3, so dCG(U)(t, y) = 3 by Theorem

4.12, and thus

∆
CG(W )
3 (t) ⊆ ∆

CG(U)
3 (t) for all W ∈ (U+

2 ∪ U−2 ) ∩W2(U). (4.11)

If δ = −1, then U0
2 ∩W2(U) = ∅ by Corollary 4.26. If δ = 1, there exists

W0 ∈ U0
2 ∩W2(U). Recall that W⊥

0 ∩ CV (t) ∈ U0
1 so

CG(W0) ≤ CG(W⊥
0 ∩ CV (t)) ∼= G0 = QL. By Lemma 4.23, if x ∈ CG(W0) ∩ Y2 then

x = xQt and xQ is inverted by t and has order p. Since xQ also lies in CG(U), we

can write xQ = hhϕ for some h ∈ L1. Now x−1
Q = h−1h−1ϕ and so

xt
Q = xssϕ

Q = hs(hϕ)sϕ
= h−1h−1ϕ. Therefore, hs = h−1 and hϕsϕ

= h−1ϕ. Moreover,

x = xQt = (hs)(hs)ϕ where hs ∈ L1 is an element of order 4 squaring to the

non-trivial element of Z(L1), and h = (hs)s has order p. By Lemma 4.28 and [15],

dL1(hs, s) = 3 and so dCG(U)(t, xQt) = 3 by Theorem 4.12. Therefore,

CG(W0) ∩∆
CG(U)
2 (t) = ∅ for all W0 ∈ U0

2 ∩W2(U). (4.12)
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Hence combining (4.11) with Lemma 4.25, Theorem 2.10 and, if δ = 1, (4.12) we get

∣∣∣∣∣
⋃

U≤W

∆
CG(W )
2 (t)

∣∣∣∣∣ = |Γ2(CG(U))| = 1

4
(q − δ)2(q − 4− δ).

This, together with Theorem 4.12 yields

|Γ1(CG(U))| =
∣∣∣∆CG(U)

2 (t)
∣∣∣− |Γ2(CG(U))|

=
1

8
(q − 1)(q − 1− 2δ)(q2 − (4 + 2δ)q + 9 + 4δ),

which proves the lemma.

Lemma 4.30. Let U ∈ U−1 , and W ∈ (U+
2 ∪ U−2 ) ∩W2(U).

(i) If δ = −1 and W0 ∈ U0
2 ∩W2(U), then Y2 ∩ CG(W0) \ {t} ⊆ ∆

CG(U)
3 (t).

(ii) We have

∣∣∣∣∣∣
Γ2(CG(U)) \

⋃̇

W∈W2(U)

Γ2(CG(W ))

∣∣∣∣∣∣
=

1

4
(q − 2 + δ)(q2 − 1)

and |Γ1(CG(U))| = 1
4
(q − 1)3(q + 1).

Proof. First assume δ = −1, and consider CG(W0). By Lemma 4.23, every

involution in CG(W0) can be written as xt where x has order p. But (xt)t = x has

order p, which does not divide 1
2
(q2 − 1), and hence dCG(U)(xt, t) = 3. In other

words, Y2 ∩ CG(W0) \ {t} ⊆ ∆
CG(U)
3 (t), so proving (i).

Consider then CG(W ) ∼= L2(q). We utilize the character table of L2(q) as given in

Theorem 2.2. Recall that L2(q) contains one conjugacy class of involutions, and two

conjugacy classes of elements of order p. The remaining conjugacy classes partition

into two cases: those whose order divides 1
2
(q − 1) and those whose order divides

1
2
(q + 1). Let C be a conjugacy class of elements in CG(W ) and define

XC = {x ∈ Y2 ∩ CG(W )| tx ∈ C}. It is a well-known character theoretic result (see,

for example, Theorem 4.2.12 of [27]) that

|XC | = |C|∣∣CCG(W )(t)
∣∣

∑

χ∈Irr(CG(W ))

χ(tx) |χ(t)|2
χ(1)

(4.13)
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where Irr(CG(W )) is the set of all irreducible characters of CG(W ), and all XC are

pairwise disjoint. Let x ∈ Y2 ∩ CG(W ). If the order of tx divides 1
2
(q2 − 1) but not

1
2
(q − δ) then it must necessarily divide 1

2
(q + δ). Hence, if C is a conjugacy class of

elements of order dividing q+δ
2

, then any y ∈ XC has the property that

dCG(W )(t, y) = 3 but dCG(U)(t, y) = 2, by Lemma 4.28. Recall that

Γ2(CG(U)) \
⋃̇

W∈W2(U)

Γ2(CG(W )) is the set consisting of all such involutions.

Therefore, it suffices to calculate the sizes of all such relevant XC . We use F to

denote the set of all conjugacy classes of elements with order dividing q+δ
2

.

By Theorem 2.2, we see that for any C ∈ F , |C| = q(q − δ) and
∣∣CCG(W )(t)

∣∣ = (q − δ). Hence (4.13) and Theorem 2.2 gives |XC | = q − δ. Now if

δ = 1, then |F| = q−1
4

by Theorem 2.2. If δ = −1, then |F| = q−3
4

. Since∣∣∣∆CG(W )
3 (t) ∩∆

CG(U)
2

∣∣∣ = |XC | |F|, and by Corollary 4.26,
∣∣W2(U) ∩ (U+

2 ∪ U−2 )
∣∣ = q + δ, we obtain

∣∣∣∣∣∣
Γ2(CG(U)) \

⋃̇

W∈W2(U)

Γ2(CG(W ))

∣∣∣∣∣∣
=

∣∣W2(U) ∩ (U+
2 ∪ U−2 )

∣∣ |XC | |F|

=





1
4
(q − 1)(q2 − 1) q ≡ 1 (mod 4)

1
4
(q − 3)(q2 − 1) q ≡ −1 (mod 4)

(4.14)

which proves the first part of (ii). We now prove the last part of (ii). Recall that

∣∣∣∣∣∣
⋃̇

W∈W2(U)

Γ2(CG(W ))

∣∣∣∣∣∣
= (q + δ)

∣∣∣∆CG(W )
2 (t)

∣∣∣ =
1

4
(q2 − 1)(q − 4− δ)

by Theorem 2.10 and Corollary 4.26. Together with (4.14), we have

|Γ2(CG(U))| =
∣∣∣∣∣∣

⋃̇

W∈W2(U)

Γ2(CG(W ))

∣∣∣∣∣∣
+

∣∣∣∣∣∣
Γ2(CG(U)) \

⋃̇

W∈W2(U)

Γ2(CG(W ))

∣∣∣∣∣∣

=
1

4
(q2 − 1)(q − 4− δ) +

1

4
(q2 − 1)(q − 2 + δ)

=
1

2
(q2 − 1)(q − 3).
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Hence

|Γ1(CG(U))| =
∣∣∣∆CG(U)

2 (t)
∣∣∣− |Γ2(CG(U))|

=
1

4
(q − 1)3(q + 1),

and Lemma 4.30 holds.

Lemma 4.31.
∣∣∣∣∣

⋃̇
U∈U1

Γ1(CG(U))

∣∣∣∣∣ =





1
16

q(q2 − 1)(3q3 − 11q2 + 21q − 29) q ≡ 1 (mod 4)

1
16

q(q2 − 1)(q − 1)(3q2 + 2q + 7) q ≡ −1 (mod 4).

Proof. Since U1 = U0
1 ∪̇U+

1 ∪̇U−1 , with each orbit size given in Lemma 4.20, the result

follows immediately from Lemmas 4.27, 4.29 and 4.30.

Recall the list of cases in Table 4.1. The next lemma concerns Cases 2 and 3, in

other words,
⋃

U∈U1

Γ2(CG(U)).

Lemma 4.32.

∣∣∣∣∣
⋃

U∈U1

Γ2(CG(U))

∣∣∣∣∣ = 1
2
(q − δ)(q3 − 2q2 − 1).

Proof. By Lemmas 4.16 and 4.23, for any W0 ∈ U0
2 we have∣∣∣∆CG(U)

2 (t) ∩ CG(W0)
∣∣∣ = 1

2
(q − 1)(q − δ) for some U ∈ U1(W0). Additionally, for any

W ∈ (U+
2 ∪̇U−2 ) we have

∣∣∣∆CG(U)
2 (t) ∩ CG(W )

∣∣∣ =
∣∣∣∆CG(W )

2

∣∣∣ +
∣∣∣∆CG(W )

3 (t) ∩∆
CG(U)
2 (t)

∣∣∣

=
1

2
(q − δ)(q − 3),

for some U ∈ U1(W ), by Theorem 2.10 and Lemma 4.30. Since U2 = U0
2 ∪̇U+

2 ∪̇U−2 ,

with the orbit sizes given in Corollary 4.21, this covers every involution in
⋃

U∈U1

Γ2(CG(U)), and the lemma follows.

We now concern ourselves with the final two cases. These concern involutions that

are distance 3 from t in every CG(U) that they appear in, but actually are distance

2 from t in G. Recall that for any involution y ∈ Y2, CG(y) = StabGCV (y) = LyKy

where Ly = CG(y) ∩ CG([V, y]) ∼= L2(q) and |Ky| = 2(q − δ). Also note that

Ly E CG(y) acts faithfully on CV (y), and SylpCG(y) = SylpLy. The following three

lemmas concern Case 5.
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Lemma 4.33. Let W ∈ U0
2 ∪ U−δ

2 and x ∈ CG(W ) be such that dCG(U)(t, x) = 3 for

all U ∈ U1(W ). Then d(t, x) = 3.

Proof. If W ∈ U0
2 , then any involution in CG(W ) can be written as x = xQt where

xQ = xt has order p. If W ∈ U−δ
2 , then, from Lemma 4.30, any involution

x ∈ CG(W ) such that tx has order dividing 1
2
(q2 − 1) must be distance 2 from t in

CG(U) for some U ∈ U1(W ). Hence, any x satisfying the hypothesis must have the

property that the order of tx is p.

Let W ∈ U0
2 ∪ U−δ

2 and suppose d(t, x) = 2. Then there exists y ∈ Y2 such that

t, x ∈ CG(y) = LyKy. Since tx has order p, tx ∈ Ly and so tx ∈ CG([V, y]). As Ly

acts faithfully on CV (y), any element of order p must fix a 1-subspace of CV (y), say

Uy. Therefore, tx ∈ CG(Uy ⊕ [V, y]). But tx ∈ CG(W + [V, y]) and since [V, y] ∈ U δ
2 ,

we have W 6= [V, y]. Set W + [V, y] = Uy ⊕ [V, y].

Suppose Uy ≤ W . Then t, x, y ∈ CG(Uy) and so dCG(Uy)(t, x) = 2, contradicting our

assumption. Hence Uy � W and so Uy = 〈u1 + u2〉 for u1 ∈ W \ [V, y] and

u2 ∈ [V, y]. Since y ∈ CG(y), (u1 + u2)
y = u1 + u2. However,

(u1 + u2)
y = uy

1 + uy
2 = uy

1 − u2 and so u2 = −2−1u1 + 2−1uy
1. Thus

u1 + u2 = 2−1(u1 + uy
1) and so Uy = 〈u1 + uy

1〉. Recall that t, x ∈ CG(y) and

u1 ∈ W \ [V, y], so ut
1 = ux

1 = u1. Hence u1 + uy
1 is centralised by both t and x and

so Uy ≤ W = CV (〈t, x〉), a contradiction. Therefore, d(t, x) 6= 2 and the lemma

holds.

Lemma 4.34. Let W ∈ U δ
2 . Then ∆

CG(W )
3 (t) ⊆ ∆2(t). In particular,

∣∣∣∣∣Γ2(G) \
⋃

U∈U1

Γ2(CG(U))

∣∣∣∣∣ =





q(q2 − 1) q ≡ 1 (mod 4)

0 q ≡ −1 (mod 4).

Proof. We deal first with the case when δ = −1. From Lemma 4.30, the number of

involutions distance 3 from t in CG(W ) that are actually distance 2 from t in some

U ∈ U1(W ) is 1
4
(q + 1)(q − 3) =

∣∣∣∆CG(W )
3 (t)

∣∣∣. That is to say all elements in

∆
CG(W )
3 (t) are distance 2 from t in CG(U) for some U ∈ U2(W ). This occurs for

every such W ∈ U δ
2 and so Γ2(G) =

⋃
U∈U1

Γ2(CG(U)).
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Assume now that δ = 1. As before, any element x in Γ2(G) \
⋃

U∈U1

Γ2(CG(U)) must

have the property that the order of tx is p. Suppose d(t, x) = 2, and so there exists

y ∈ Y2 such that t, x ∈ CG(y). If W 6= [V, y] then the argument from Lemma 4.33

holds and results in a contradiction. So we must have W = [V, y]. Since

StabGCV (y) = StabG[V, y] = CG(y), CG([V, y]) ≤ CG(y) and so any element in

CG([V, y]) = CG(W ) centralizes y. In particular, ∆
CG(W )
3 (t) ⊆ ∆2(t), establishing

the first statement. By Lemma 4.30, the number of involutions distance 3 from t in

CG(W ) that are actually distance 2 from t in some U ∈ U1(W ) is 1
4
(q − 1)2. By

Theorem 2.10,
∣∣∣∆CG(W )

3 (t)
∣∣∣ = 1

4
(q − 1)(q + 7) and so by subtracting the two, there

are 2(q − 1) involutions in ∆
CG(W )
3 (t) that are distance 3 from t in CG(U) for all

U ∈ U1(W ), but are actually distance 2 from t in C(G, Y2). Since
∣∣U δ

2

∣∣ = 1
2
q(q + δ)

by Corollary 4.21, the lemma follows.

Finally we turn to Case 4, Γ1(G) \
⋃̇

U∈U1

Γ1(CG(U)).

Lemma 4.35. Let U ∈ U−1 ∪ U0
1 and x ∈ CG(U) be such that CV (〈t, x〉) = U and

dCG(U)(t, x) = 3. Then d(t, x) = 3.

Proof. Assume first that U ∈ U−1 . By Lemma 4.28, tx has order p or divides

1
2
(q2 + 1). Suppose d(t, x) = 2, then there exists y ∈ Y2 such that t, x ∈ CG(y). Since

1
2
(q2 + 1) is coprime to |CG(y)| = q(q2 − 1)(q − δ), tx must have order p. Indeed,

clearly 1
2
(q2 + 1) is coprime to both q and q2 − 1, and any factor dividing q − δ must

divide q2 − 1 and so 1
2
(q2 + 1) is coprime to q − δ. Since tx has order p, tx ∈ Ly.

Assume now that U ∈ U0
1 . Let x be an involution in CG(U) = QL ∼= G0 as defined

in the discussion prior to Lemma 4.13. Then tx ∈ QtxL which has order n dividing

1
2
(q + δ) in QL/L. Therefore, (QtxL)n ∈ Q and so (tx)n has order p. Therefore, tx

has order dividing 1
2
q(q + δ). Suppose d(t, x) = 2. Then there exists y ∈ Y2 such

that t, x ∈ CG(y). By the structure of CG(y) ∼= (L2(q)× C q−δ
2

) : 22, the order of tx

forces tx ∈ Ly.

We may now assume U ∈ U−1 ∪ U0
1 , so tx ∈ Ly = CG([V, y]) and hence

tx ∈ CG(U + [V, y]). Suppose U � [V, y], then tx ∈ CG(U ⊕ [V, y]) Also,

tx ∈ CG(Uy ⊕ [V, y]) for some Uy ≤ CV (y). However, if U = Uy then t, x, y ∈ CG(U)
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and dCG(U)(t, x) = 2. While Uy 6= U results in a contradiction using an analogous

argument from Lemma 4.33. Hence U ≤ [V, y].

As t, x ∈ CG(y) = StabG([V, y]), tx ∈ Ly = CG([V, y]) and [V, y] = U ⊥ U ′ where

U ′ = U⊥ ∩ [V, y]. Then for u ∈ [V, y] we have utx = u and so ut = ux. In particular,

if u ∈ U ′ then ut = ux = −u. Hence [V, y] = U ⊥ ([V, t] ∩ [V, x]). If CV (〈t, y〉) is

1-dimensional, then CV (y) = CV (〈t, y〉) ⊥ [V, t] since t stabilizes CV (y). However,

then [V, t]⊕ ([V, t] ∩ [V, x]) is 3-dimensional, a contradiction. A similar argument

holds for CV (〈x, y〉). Therefore both CV (〈t, y〉) and CV (〈x, y〉) are 2-dimensional.

But since dim CV (y) = 3, this means CV (〈t, y〉) and CV (〈x, y〉) intersect

non-trivially, that is CV (〈t, x, y〉) 6= 0, contradicting our assumption. Therefore,

d(t, x) 6= 2, and consequently d(t, x) = 3.

The final case when U ∈ U+
1 is slightly trickier. Recall the definition of Y1. For any

z ∈ Y1, we have CG(z) ∼= (SL2(q) ◦ SL2(q)) : 2 and CV (z) is 1-dimensional. We

choose z such that t ∈ CG(z) and CV (z) = U , and return to work in the setting of

Sp4(q)/ 〈−I4〉 = Gτ ∼= G. We denote the image of any subgroup K ≤ G by Kτ .

Choose

z =


−I2

I2


 ∈ Gτ (4.15)

and note that CGτ (z) ∼= CG(U) : 2. Hence,

CG(U) ∼=





A

B




∣∣∣∣∣∣
A, B ∈ SL2(q)



 / 〈−I4〉 = CG(U)τ .

Let tτ be the image of t in Gτ and set L ∼= L2(q) and L̂ ∼= PGL2(q). We start with

a preliminary lemma concerning the commuting involution graph C(L,X) where X

is the sole conjugacy class of involutions in L.

Lemma 4.36. Let x be an involution in L. Then ∆L
3 (x) splits into 1

4
(q + 2 + 5δ)

CL(x)-orbits of length q − δ. Moreover, every CL(x)-orbit in ∆L
3 (x) is

CbL(x)-invariant.
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Proof. Assume first that δ = −1. Choose x =


0 −1

1 0


 and let xλ =


 0 λ

−λ−1 0




for some λ ∈ GF (q) \ {±1}. There are two possibilities for an element of CL(x):

g1 =


 a1 a2

−a2 a1


 and g2 =


b1 b2

b2 −b1


 .

By direct calculation, if g−1
1 xλg1 = xµ for some λ, µ ∈ GF (q) \ {±1} then

(−λ−1 + λ)a1a2 = 0. Note that since λ 6= ±1, we have λ 6= λ−1. If a1 = 0 then

a2
2 = 1, and so µ = λ−1. On the other hand, if a2 = 0 then a2

1 = 1 and so µ = λ.

Observe that in the case of g2, neither b1 or b2 can be 0 and so g−1
2 xλg2 = xµ

requires xy(λ− λ−1) = 0, a contradiction. Hence for λ, µ ∈ GF (q) \ {±1}, xλ and

xµ lie in different CL(x) orbits if and only if µ /∈ {λ, λ−1}. Working modulo 〈−I4〉,
there are at least 1

4
(q − 3) CL(x)-orbits in ∆L

3 (x). However for any λ 6= ±1,

CL(x, xλ) = 1 and so each CL(x)-orbit containing an xλ is of length q + 1. But
∣∣∆L

3 (x)
∣∣ = 1

4
(q − 3)(q + 1) and so all involutions in ∆L

3 (x) are accounted for. Hence

the first statement holds for δ = −1, and each CL(x)-orbit has representative xλ for

some λ 6= ±1. Let

e =


1 0

0 −1


 ∈ L̂ \ L

and note that CbL(x) = 〈e〉CL(x). An easy check shows [e, xλ] = 1 for all λ 6= ±1.

Let y ∈ ∆L
3 (x), then y = xs

λ for some s ∈ CL(x). Let g = er ∈ CbL(x) for some

r ∈ CL(x). Then yg = xser
λ and since CL(x) E CbL(x), ser ∈ CL(x). That is, every

CL(x)-orbit in ∆L
3 (x) is CbL(x)-invariant.

Assume now that δ = 1. Choose x =


i 0

0 −i


 where i2 = −1 and let

y =


σ µτ

τ σ


 for some σ, µ, τ ∈ GF (q), σ 6= 0 and µ either zero or a non-square in

GF (q). By [15], y ∈ ∆L
3 (x). There are two possibilities for an element of CL(x):

g1 =


a−1 0

0 a


 and g2 =


 0 b

−b−1 0


 .
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By direct calculation, if g−1
1 xg1 = y then a = 1. Note that g−1

2 xg2 6= y since ±b2 6= µ

for any non-square µ. Hence CL(〈x, y〉) = 1. Since y is arbitrary, each CL(x)-orbit

has length q− 1. Now
∣∣∆L

3 (x)
∣∣ = 1

4
(q + 7)(q− 1) and so the first statement holds for

δ = 1. Let

eν =


0 ν

1 0


 ∈ L̂ \ L

and observe that CbL(x) = 〈eν〉CL(x) for any non-square ν. It is easy to check that

yeµ = y. Let g = eµr ∈ CbL(x) for some r ∈ CL(x). Then yg = yeµr = yr and since y

is arbitrary and r ∈ CL(x), every CL(x)-orbit in ∆L
3 (x) is CbL(x)-invariant.

Lemma 4.37.
∣∣∣∆CG(U)

3 (t) ∩ Γ1(G)
∣∣∣ = 1

4
(q − δ)2(q + 2 + 5δ).

Proof. We first work in the setting of Gτ . Choose

tτ =




0 −1

1 0

0 −1

1 0




=


J0

J0


 .

By direct calculation, it is easily seen that

CGτ (tτ ) ⊆





A1 A2

A3 A4




∣∣∣∣∣∣
A−1

i J0Ai = J0 (mod 〈−I4〉)




and any involution y ∈ CGτ (tτ ) has the additional properties that

det A1 + det A3 = det A2 + det A4 = 1

and A2
1 + A2A3 = A3A2 + A2

4 = −I2.
(4.16)

Recall that if x ∈ CG(U)τ then x =


A

B


 for some A,B ∈ SL2(q) and by

Theorem 4.12, x ∈ ∆
CG(U)τ

3 (tτ ) if and only if A, B are involutions in L and either

dL(A, J0) = 3 or dL(B, J0) = 3. So without loss of generality, set A = Bi where

dL(Bi, J0) = i and choose B ∈ ∆L
3 (J0).

If x ∈ ∆Gτ

2 (tτ ) then there exists y =


A1 A2

A3 A4


 ∈ CGτ (tτ ) such that y2 = 1 and

[x, y] = 1. Suppose det A2 = 0. Then det A4 = 1 by (4.16), and so A4 ∈ CL(J0). As
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[x, y] = 1, [A4, B] = 1. However CL(〈J0, B〉) = 1, by Lemma 4.36 and so A4 = ±I2.

But then A3A2 = −2I2 by (4.16), which is impossible since det A2 = 0. An

analogous argument holds for det A3. Hence det A2, det A3 6= 0. Since [x, y] = 1,

BiA2B = ±A2 and so Bi and B must be CbL(J0)-conjugate. In other words, if Bi

and B are not CbL(J0)-conjugate, then [x, y] 6= 1. By Lemma 4.36, every

CL(J0)-orbit is an CbL(J0)-orbit and so if [x, y] = 1 then Bi and B must be

CL(J0)-conjugate. Assume then Bi and B are CL(J0)-conjugate and let A ∈ CL(J0)

be such that BA
i = B. Hence if yA =


 A

−A−1


 ∈ CGτ (tτ ), then [yA, x] = 1 and

so dGτ
(tτ , x) = 2. By Lemma 4.36, each CL(J0)-orbit of ∆L

3 (J0) is of length q − δ,

and there are 1
4
(q + 2 + 5δ) such orbits. Moreover, for any involution x0 ∈ CG(U)τ

conjugate to tτ and z as in (4.15), zx0 is also an involution in CG(U)τ conjugate to

tτ which has not been accounted for. Therefore, the number of involutions in

∆
CG(U)τ

3 (tτ ) that are actually distance 2 from tτ in Gτ is 1
2
(q − δ)2(q + 2 + 5δ).

We now return to the setting of G, and first assume that δ = −1 and so by

Corollary 4.26(i), |W2(U)| = q + 1, and for every W ∈ W2(U), CG(W ) ∼= L2(q). For

each W , there exists UW ∈ U+
1 such that CG(W ) ≤ CG(UW ) ∼= L2(q

2) by Lemma

4.25, and ∆
CG(W )
3 (t) ⊆ ∆

CG(UW )
2 (t) by Lemma 4.34. Hence, there are

1
4
(q + 1)2(q − 3) involutions already counted (from Case 3) and the remaining

involutions do not fix a 2-subspace of CV (t). Therefore

∣∣∣∆CG(U)
3 (t) ∩ Γ1(G)

∣∣∣ =
1

2
(q + 1)2(q − 3)− 1

2
(q + 1)2(q − 3)

=
1

4
(q + 1)2(q − 3),

as required. Now assume that δ = 1 and so by Corollary 4.26. For each W , there

exists UW ∈ U−1 such that CG(W ) ≤ CG(UW ) ∼= L2(q
2) by Lemma 4.25 and∣∣∣∆CG(W )

3 (t) ∩∆
CG(UW )
2 (t)

∣∣∣ = 1
4
(q − 1)2 by Lemma 4.30. Since

∣∣W2(U) ∩ (U+
1 ∪ U−1 )

∣∣ = q − 1 by Corollary 4.26(iii), this accounts for 1
4
(q − 1)3

involutions. Suppose now W0 ∈ W2(U) ∩ U0
2 . By Lemma 4.25, there exists U0 ∈ U0

1

such that CG(W0) ≤ CG(U0). From Lemmas 4.16 and 4.23,∣∣∣CG(W ) ∩∆
CG(U0)
2 (t)

∣∣∣ = 1
2
(q − 1)2. Since |W2(U) ∩ U0

2 | = 2 by Corollary 4.26(iii),



CHAPTER 4. 4-DIM. SYMPLECTIC GROUPS OVER GF (q), q ODD 93

this yields a further (q − 1)2 involutions. Finally, if W ∈ U+
2 , then by Lemma 4.34,

∆
CG(W )
3 (t) ⊆ ∆2(t) and there are 2(q − 1) involutions in ∆

CG(W )
3 (t) not already

enumerated. Now
∣∣U+

2 ∩W2(U)
∣∣ = 1

2
(q − 1) by Corollary 4.26(iii), and this yields

another (q− 1)2 involutions. Hence, there are 1
4
(q− 3)2 +2(q− 1)2 = 1

4
(q− 1)2(q +7)

involutions already counted (from Cases 3 and 5) and the remaining involutions do

not fix a 2-subspace of CV (t). Consequently

∣∣∣∆CG(U)
3 (t) ∩ Γ1(G)

∣∣∣ =
1

2
(q − 1)2(q + 7)− 1

2
(q − 1)2(q + 7)

=
1

4
(q − 1)2(q + 7),

as required.

Corollary 4.38.

∣∣∣∣∣Γ1(G) \
⋃̇

U∈U1

Γ1(CG(U))

∣∣∣∣∣ = 1
8
q(q − δ)(q2 − 1)(q + 2 + 5δ).

Proof. Since
∣∣U+

1

∣∣ = 1
2
q(q + δ), the result holds by Lemmas 4.36 and 4.37.

Lemma 4.39. If q ≡ 3 (mod 4), then

|∆2(t)| = 1

16
(q + 1)(3q5 − 2q4 + 8q3 − 30q2 + 13q − 8); and

|∆3(t)| = 1

16
(q − 1)(5q5 − 4q4 − 2q3 + 4q2 + 5q + 5).

If q ≡ 1 (mod 4), then

|∆2(t)| = 1

16
(q − 1)(3q5 − 6q4 + 32q3 − 10q2 − 27q − 8); and

|∆3(t)| = 1

16
(q − 1)(5q5 + 22q4 − 8q3 + 34q2 + 51q + 24).

Proof. The cases listed in Table 4.1 are disjoint. Hence |∆2(t)| is determined by

summing the values calculated in Lemmas 4.31, 4.32, 4.34 and 4.38. By Theorem

4.19, C(G, Y2) has diameter 3 and so |∆3(t)| = |Y2| − |∆1(t)| − |∆2(t)|. Since

|G| = 1
2
q4(q2 − 1)(q4 − 1) and |CG(t)| = q(q2 − 1)(q − δ), |Y2| = 1

2
q3(q + δ)(q2 + 1).

Together with Lemma 4.24, this proves the lemma.

Together, Theorem 4.19 and Lemmas 4.24 and 4.39 complete the proof of Theorem

1.4.



Chapter 5

3-Dimensional Unitary Groups

We now change our focus and consider a family of twisted groups of Lie type. We

let H = SU3(q) and G = H/Z(H) ∼= U3(q). For any a ∈ GF (q2), we write a = aq

and (aij) = (aij). First assume p = 2. We have G ∼= H and there is one single class

of involutions (see, for example, Lemma 6.1 of [10]). Let t be an involution in G,

and define the unitary form preserved by the elements of G by the Gram matrix

J =




0 0 1

0 1 0

1 0 0


 .

Since |G| = q3(q3 + 1)(q2 − 1) and
∣∣tG

∣∣ = (q − 1)(q3 + 1) (see Theorem 4 of [24]),

|CG(t)| = q3(q + 1). By Proposition 4.1.18 of [32] (see also Lemma 6.2 of [10]),

O2(CG(t)) ∼= q3 and CG(t) ∼= q3 : C(q+1). A Sylow 2-subgroup T of CG(t) has order

q3 and so T ∈ Syl2(G).

Let

Ŝ =








1 a b

0 1 c

0 0 1




∣∣∣∣∣∣∣∣∣
a, b, c ∈ GF (q2)




∈ Syl2(GL3(q

2)).

By a direct calculation, the set of all s ∈ Ŝ such that sT Js = J forms a group

S =








1 a b

0 1 a

0 0 1




∣∣∣∣∣∣∣∣∣
aa = b + b




∈ Syl2(G).

94
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The set of involutions in S form an elementary abelian group of order q. Indeed, a

direct calculation reveals that the involutions in S require a = 0 and b ∈ GF (q).

Since S ∈ Syl2(G) is normal in CG(t), all involutions of CG(t) lie in S and thus must

all commute with each other. There are q − 1 involutions in CG(t) and for any

x ∈ CG(t) ∩ tG \ {t} we have CG(x) ∩ tG = CG(t) ∩ tG. That is to say, the

involutions in CG(t) form a clique in C(G, tG). For any involution y /∈ CG(t),

CG(y) ∩ CG(t) ∩ tG = ∅ and so the commuting involution graph is disconnected.

This proves Theorem 1.5(i).

Remark: The above is an example of when the group contains a strongly

embedded subgroup. In such cases, the commuting involution graph of such a group

with respect to a conjugacy class of involutions will always be disconnected and

consist of cliques. Finite simple groups with strongly embedded subgroups have

already been established by Bender [16]. Other examples include L2(q) for q even

(see Theorem 2.10), and the simple Suzuki groups Sz(22m+1) mentioned later, in

Theorem 8.3.

We now assume p > 2 and set H = SU3(q) and G = H/Z(H) ∼= U3(q). Since

|Z(H)| ∈ {1, 3}, without loss of generality we work in the setting of H. We devote

the remainder of this chapter to the proof of Theorem 1.5(ii). Define the unitary

form preserved by the elements of G by the Gram matrix J = I3. We first prepare a

lemma:

Lemma 5.1. The polynomials f1 = xq+1− λ and f2 = xq + x− λ split over GF (q2),

for all λ ∈ GF (q).

Proof. Let N1 : GF (q2)∗ → GF (q)∗ and N2 : GF (q2) → GF (q) be given by

N1(x) = xq+1 for all x ∈ GF (q2)∗ and N2(y) = yq + y for all y ∈ GF (q2). It is easy

to see that both N1 and N2 are group homomorphisms. Since GF (q2)∗ is cyclic of

order q2 − 1, there exists a cyclic subgroup of order q + 1 consisting of elements that

are (q + 1)th roots of unity. Hence this subgroup is precisely ker N1 and which has

order q + 1. Therefore |Im N1| = q − 1 = |GF (q)∗| and N1 is surjective. Let
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λ ∈ GF (q), so there exists y ∈ GF (q2) such that N1(y) = λ. Moreover if µ ∈ ker N1,

N1(µy) = N1(y) and so there are q + 1 values in GF (q2) satisfying f1. Consider now

N2 and let x ∈ GF (q). Then 2−1x ∈ GF (q) and N2(2
−1x) = x. So N2 is surjective

and so |Im N2| = q. Hence |ker N2| = q and by a similar argument as above, there

are q values of GF (q2) satisfying f2, so proving the lemma.

It will also be useful to note the conditions for a 2× 2 matrix A to be unitary. Let

A =


a b

c d


 ∈ GU2(q) be such that A

T
A = I2. Hence A

T
A =


aa + cc ab + cd

ba + dc bb + dd




and so

aa + cc = bb + dd = 1; and

ab + cd = ba + dc = 0.
(5.1)

Clearly (ba + dc) = ba + dc = ab + cd = 0. It is also easy to see that the

determinant of a matrix in GU2(q) is always a (q + 1)th root of unity. Indeed,

(ad− bc)q+1 = (ad− bc)(ad− bc)

= (ad)ad + (bc)bc− abcd− abcd

= (ad)ad + (bc)bc + (ab)ab + (cd)cd

= (aa + cc)(bb + dd) = 1

as claimed. Let

t =




1 0 0

0 −1 0

0 0 −1




which is an involution in H. Using Lemma 2.4, there is only one class of involutions

in H, which we denote by Z0.

Lemma 5.2. (i) CH(t) ∼= GU2(q)

(ii) |Z0| = q2(q2 − q + 1)

(iii) |∆1(t)| = q(q − 1).

(iv) If x0 ∈ ∆1(t), then |∆1(t) ∩∆1(x0)| = 1.
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Proof. Clearly 






D−1

a b

c d




∣∣∣∣∣∣∣∣∣∣

a, b, c, d ∈ GF (q2)

D = ad− bc 6= 0





consists of all matrices in SL3(q
2) that centralise t. An easy calculation shows that

any unitary matrix from the above set necessarily requires a, b, c, d to satisfy (5.1).

Hence

CH(t) =








D−1

a b

c d




∣∣∣∣∣∣∣∣∣


a b

c d


 ∈ GU2(q)

D = ad− bc 6= 0





∼= GU2(q), (5.2)

proving (i).

Recall that |GU2(q)| = q(q + 1)(q2 − 1) and |H| = q3(q3 + 1)(q2 − 1). Hence

|Z0| = q3(q3 + 1)(q2 − 1)

q(q + 1)(q2 − 1)
= q2(q2 − q + 1),

which proves (ii).

Let x =


det A−1

A


 ∈ CH(t) ∩ Z0. Using a result of Wall [40], there are two

classes of involutions in GU2(q), represented by −I2 and


−1 0

0 1


. If A = −I2,

then x = t. Assume then that A is the latter choice, so

x =




−1 0 0

0 −1 0

0 0 1


 ∈ ∆1(t) and ∆1(t) = xCH(t).

By a routine calculation as in part (i), it is easy to see that

CH(x) =






A

det A−1




∣∣∣∣∣∣
A ∈ GU2(q)



 ,

and so

CH(〈t, x〉) =








a 0 0

0 b 0

0 0 (ab)−1




∣∣∣∣∣∣∣∣∣
a, b ∈ GF (q2), aa = bb = 1




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with |CH(〈t, x〉)| = (q + 1)2. Hence |∆1(t)| = |CH(t)|
|CH(〈t,x〉)| = q(q − 1), proving (iii),

while (iv) follows immediately from the structure of CH(〈t, x〉).

Henceforth, we set x =




−1 0 0

0 −1 0

0 0 1


 ∈ ∆1(t).

Lemma 5.3. (i) Let g, h ∈ ∆2(t). If g11 6= h11, then g and h are not

CH(t)-conjugate.

(ii) ∆2(t) ∩∆1(x) =








a b

b −a

−1




∣∣∣∣∣∣∣∣∣∣

bb = 1− a2, a ∈ GF (q) \ {±1}





.

(iii) For each a ∈ GF (q) \ {±1}, there are q + 1 elements g of ∆2(t) ∩∆1(x) such

that g11 = a.

Proof. By an analogous method to that in Lemma 5.2(i), it is clear that

∆1(x) =








a b

c −a

−1




∣∣∣∣∣∣∣∣∣∣

a, b, c ∈ GF (q2), a2 + bc = 1





.

Let

g =




a b

c −a

−1



∈ ∆1(x),

for a, b, c ∈ GF (q2), and h ∈ CH(t). Now (h−1gh)11 = h−1
11 ah11 = a and so any two

CH(t)-conjugate elements have the same top-left entry, so proving (i).

If b = 0 then a2 + bc = a2 = 1 and so a = ±1. But then aa = 1 and thus cc = 0

implying c = 0. Similarly, if c = 0 then b = 0. If a = ±1, then 1 + bc = 1 and so

bc = 0. Hence, either b = 0 or c = 0 and therefore both are zero. However, a = 1

implies g = t, and a = −1 implies g ∈ ∆1(t). Therefore if a = ±1, then g /∈ ∆2(t).

In particular, if a 6= ±1 then g ∈ ∆2(t), since d(t, x) = 1 and [g, x] = 1. Suppose

now a 6= ±1, so b, c 6= 0. Then by (5.1), we have aa + cc = aa + bb = 1 and ab = ac.

Therefore aa + cc = a2cb−1 + cc = 1 and so a2b−1 + c = c−1. It follows that
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bc−1 = a2 + bc = 1 and hence b = c. However, this yields a = a, implying

a ∈ GF (q) \ {±1}, proving (ii).

By combining parts (i) and (ii), ∆1(x) ∩∆2(t) is partitioned into CH(〈t, x〉)-orbits,

with the action of CH(〈t, x〉) leaving the diagonal entries unchanged. Since a 6= ±1,

bb 6= 0 and bb− (1 + a2) = 0. By Lemma 5.1, there are q + 1 solutions in GF (q2) to

the equation xq+1 = λ for any fixed λ ∈ GF (q), so there are q + 1 values of b that

satisfy this equation. Therefore x is centralised by q + 1 involutions sharing a

common top-left entry, proving (iii).

Lemma 5.4. There are exactly (q − 2) CH(t)-orbits in ∆2(t).

Proof. By Lemma 5.3(i), there are at least (q − 2) CH(t)-orbits in ∆2(t). It suffices

to prove that any two matrices commuting with x that share a common top-left

entry are CH(〈t, x〉)-conjugate. Let g ∈ ∆2(t) ∩∆1(x), and a ∈ GF (q) \ {±1} be

fixed such that g11 = a and set g12 = b. By direct calculation, the diagonal entries of

g remain unchanged under conjugation by CH(〈t, x〉). Let

h =




1 0 0

0 β 0

0 0 β−1


 ∈ CH(〈t, x〉)

where ββ = 1. Then

h−1gh =




a bβ

β−1b −a

−1




.

Clearly bβ takes q + 1 different values for the q + 1 different values of β. However,

since there are only q + 1 possible values for b, all such values are covered. That is

to say, all matrices of the form




a b

b −a

−1



∈ ∆2(t) ∩∆1(x), a 6= ±1, bb = 1− a2
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lie in the same CH(〈t, x〉) orbit, and thus are all CH(t)-conjugate. Therefore, all

involutions that centralise x and share a common top-left entry are CH(t)-conjugate

and so the lemma follows.

Lemma 5.5. |∆2(t)| = q(q2 − 1)(q − 2).

Proof. Let

g =




−1

a b

b −a



∈ ∆1(t) and h =




α β

β −α

−1



∈ ∆2(t) ∩∆1(x)

for α 6= ±1 and ββ = 1− α2 fixed. Then

gh =




−α aβ bβ

−β −aα −bα

0 −b a


 and hg =




−α −β 0

aβ −aα −b

0 −bα a


 .

If [g, h] = 1 then aβ = −β and bβ = 0 imply a = −1 and b = 0, since β 6= 0.

Therefore, g = x and thus h commutes with a single element of ∆1(t). Since ∆1(t)

is a single CH(t)-orbit, and combining Lemmas 5.2(iii) and 5.3(iii), all CH(t)-orbits

in ∆2(t) have length q(q − 1)(q + 1) = q(q2 − 1). Hence |∆2(t)| = q(q2 − 1)(q − 2),

since ∆2(t) is a partition of CH(t)-orbits.

For each α ∈ GF (q) \ {±1}, define ∆α
2 (t) to be the CH(t)-orbit in ∆2(t) consisting

of matrices with top-left entry α ∈ GF (q) \ {±1}. By (5.2) and Lemma 5.3(iii),

∆α
2 (t) can be written explicitly as

∆α
2 (t) =








α aDβ bDβ

dβD−2 (−adα + bc)D−1 bdD−1(1− α)

−cβD−2 acD−1(α− 1) (bcα− ad)D−1




∣∣∣∣∣∣∣∣∣∣∣∣∣


a b

c d


 ∈ GU2(q)

D = ad− bc

ββ = 1− α2





.

(5.3)

Clearly, ∆2(t) =
⋃̇

α∈GF (q)\{±1}
∆α

2 (t).



CHAPTER 5. 3-DIMENSIONAL UNITARY GROUPS 101

Lemma 5.6. Suppose

g =




α β

β −α

−1



∈ ∆α

2 (t) ∩∆1(x)

and

h =




γ aDδ bDδ

dδD−2 (−adγ + bc)D−1 bdD−1(1− γ)

−cδD−2 acD−1(γ − 1) (bcγ − ad)D−1


 ∈ ∆γ

2(t)

satisfy the conditions of (5.3). If [g, h] = 1 then

(i) d = aββ−1δ−1δD3;

(ii) if b, c 6= 0, then a = −(1 + α)(1− γ)−1β−1δD−1 and

b = 2Dβ−1(1− γ)−1(βγ − aαδD)c−1; and

(iii) if b = c = 0, then βγ = aαδD.

Proof. Recall that since α, γ 6= ±1, we have β, δ 6= 0. Direct calculation shows that

gh =




αγ + βdδD−2 αaDδ + βD−1(bc− adγ) αbDδ + βbdD−1(1− γ)

βγ − αdδD−2 βaDδ − αD−1(bc− adγ) βbDδ − αbdD−1(1− γ)

cδD−2 (1− γ)acD−1 −D−1(bcγ − ad)




and

hg =




αγ + βaDδ βγ − aαDδ −bDδ

αdδD−2 + βD−1(bc− adγ) βdδD−2 − α(bc− adγ)D−1 −bdD−1(1− γ)

−αcδD−2 + β(γ − 1)acD−1 −cβδD−2 − acD−1α(γ − 1) −D−1(bcγ − ad)


 .

Now if [g, h] = 1 then we have the following relations from the (1,1), (1,2), (1,3) and

(3,1) entries respectively:

αγ + dβδD−2 = αγ + aβδD;

aαδD + βD−1(bc− adγ) = βγ − aαδD;

bαδD + bdβD−1(1− γ) = −bδD; and

−cαδD−2 + acβD−1(γ − 1) = cδD−2.
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The relations from the other entries are all equivalent to the four shown above.

Looking at the relation from the (1,1) entry, we determine that d = aββ−1δ−1δD3,

giving (i). By considering the relation from the (1,2) entry we get

2aαδD = βγ − βD−1(bc− adγ)

and substituting ad = bc + D, we get

2aαδD = 2βγ − βD−1bc(1− γ).

Rearranging again, we get bc = 2Dβ−1(1− γ)−1(βγ − aαδD). From the relation

deduced from the (1,3) entry we get

bdβD−1(1− γ) = −bδD(1 + α).

Using the relation for d determined in (i), we get

b(aββ−1δ−1δD3)βD−1(1− γ) = −bδD(1 + α)

and so

ab = −b(1 + α)(1− γ)−1β−1δD−1.

Hence either b = 0 or a = −(1 + α)(1− γ)−1β−1δD−1. Similarly from the relation

deduced from the (3,1) entry, either a is as shown above or c = 0. This gives both

(ii) and (iii).

Lemma 5.7. Let yα ∈ ∆α
2 (t) for some α ∈ GF (q) \ {±1}. Then

∣∣∆1(yα) ∩∆−α
2 (t)

∣∣ = 1.

Proof. Without loss of generality, choose yα such that [yα, x] = 1, so (yα)11 = α and

set (yα)12 = β. Let y−α ∈ ∆−α
2 (t) be as in (5.3) for suitable a, b, c, d ∈ GF (q2). We

remark that if α = 0, we denote this element y′0 to distinguish it from y0. Assuming

[y−α, yα] = 1, we apply Lemma 5.6 by setting α = −γ, and note that ββ = δδ.

Suppose that b, c 6= 0, then a and b are as in Lemma 5.6(ii). Since α = −γ, we have

a = −D−1β−1δ, giving b = 2Dβ−1(1− γ)−1(βγ − β−1δδγ)c−1. However,

βγ − β−1δδγ = β(γ − β−1β−1δδγ) = 0 since β−1β−1δδ = 1. This yields b = 0,
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contradicting our original assumption. Hence b = c = 0, giving a as in Lemma

5.6(iii) and thus aδαD = −βα. Hence either α = 0 or a = −βδ−1D−1.

If α 6= 0, then aD = −βδ−1 and dD−2 = −βδ−1 showing that

y−α =




−α −β2δ−1

−β2δ−1 α

−1




.

If α = γ = 0, then both y0 and y′0 commute with x, where (y0)12 = β and (y′0)12 = δ.

If y0 and y′0 commute, then an easy calculation shows that δ = ±β. Since y0 6= y′0,

we must have δ = −β.

Hence in both cases, yα commutes with a single element of ∆−α
2 (t).

Lemma 5.8. Let yα ∈ ∆α
2 (t). Then |∆1(yα) ∩∆γ

2(t)| = q + 1 for α 6= −γ.

Proof. As in Lemma 5.7, choose yα such that [yα, x] = 1 with (yα)11 = α and set

(yα)12 = β. Let yγ ∈ ∆γ
2(t) be as in (5.3) for suitable a, b, c, d ∈ GF (q2). For brevity

we remark that if α = γ, then yα and yγ will denote different elements. Assume

[yα, yγ] = 1, so the relevant relations from Lemma 5.6 hold for fixed α, β, γ, δ

satisfying α, γ ∈ GF (q) \ {±1}, ββ = 1− α2 and δδ = 1− γ2.

Suppose b = c = 0, so Lemma 5.6(iii) holds. Since β 6= 0 and if α = 0, then γ = 0,

contradicting the assumption that α 6= −γ. Hence a = βγα−1δ−1D−1. Using

Lemma 5.6(i), we get d = βδ−1D2γα−1 and so ad = ββδ−1δ−1γ2α−2D. Combining

the expressions for ββ, δδ and D, we get

(γ2 − α2γ2)(α2 − α2γ2)−1 = 1,

giving γ2 = α2 resulting in γ = ±α. Since α 6= −γ, we must have α = γ. But then

aDδ = β and so yγ = yα. Therefore, we may assume b, c 6= 0.

By a long but routine check, substitutions of ββ, γγ and the relations in Lemma 5.6

show that ad− bc = D holds. These relations also clearly show that a, b, c and d are

all non-zero. Hence by (5.1), we have ab = −cd and so cc = −abcd−1, and there are

q + 1 values of c that satisfy this equation.
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It now suffices to check that the remaining conditions of (5.1) hold. Since

α, γ ∈ GF (q), we have (1− α)(1− α)−1 = (1− γ)(1− γ)−1 = 1. Together with the

relations already determined, we have aa + cc = aa− ad−1bc = D−1D−1. However

DD = 1, so the conditions of (5.1) hold. By considering aa + cc, we get a similar

result for bb + dd. Hence there is only one possible value of each of a and d, there

are (q + 1) different values of c with b depending on c, proving the lemma.

We may summarise Lemmas 5.7–5.8 by the following.

Proposition 5.9. Let yα ∈ ∆α
2 (t), and fα,γ be the number of elements in ∆γ

2(t) that

commute with yα. Then

fα,γ =





1 if γ = −α

q + 1 if γ 6= −α.

As a consequence, we have the following.

Corollary 5.10. Let y ∈ ∆2(t). Then |∆1(y) ∩∆3(t)| = q + 1.

Proof. Since the valency of the graph is q(q − 1), Proposition 5.9 gives Corollary

5.10.

For the remainder of this chapter, denote

y =




0 1 0

1 0 0

0 0 −1


 ∈ ∆0

2(t)

and define zγ =




1 −2 γ

−2 1 −γ

γ −γ −3


, for γγ = −4. An easy check shows that

[zγ, y] = 1, zγ
T = zγ and zγ is an involution, hence zγ ∈ Z0 and d(t, zγ) ≤ 3.

However, since t is the sole element with top-left entry 1 that is at most distance 2

from t, we have d(t, zγ) ≥ 3 and thus equality.

Lemma 5.11. ∆1(y) ∩∆3(t) = {zγ| γ ∈ GF (q2), γγ + 4 = 0}.
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Proof. By Lemma 5.1, there are q + 1 values of γ and zγ centralises y for all such γ.

By Corollary 5.10, |∆1(y) ∩∆3(t)| = q + 1, and so the lemma follows.

Fix γ and let g ∈ CH(t) be of the form as described in (5.2) for suitable

a, b, c, d ∈ GF (q2). Then

zγg =




D−1 −2a + cγ −2b + dγ

−2D−1 a− γc b− dγ

γD−1 −γa− 3c −bγ − 3d




and

gzγ =




D−1 −2D−1 D−1γ

−2a + bγ a− bγ −aγ − 3b

−2c + dγ c− dγ −cγ − 3d


 .

If [zγ, g] = 1, then we equate the entries to get conditional relations. From the (2,2)

entries, we see that b = cγγ−1. This, combined with the (2,3) entry, gives

d = a + 4cγ−1. The (3,1) entry shows that c = −2−1(D−1 − d)γ, and so

d = 2D−1 − a. Hence

b = −2−1(a−D−1)γ;

c = −2−1(a−D−1)γ; and

d = 2D−1 − a

for a ∈ GF (q2). A routine check shows these relations are sufficient for [zγ, g] = 1.

These relations, together with the conditions of (5.1) and DD = 1, give

aD−1 + aD−1 = 2. (5.4)

Clearly, the number of possible such a is |CH(〈t, zγ〉)|. Since D = ad− bc, we get

D3 = 1. Therefore DD = D3 = 1 which has a non-trivial solution if and only if

q ≡ 5 (mod 6).

Lemma 5.12. If q 6≡ 5 (mod 6), then |CH(〈t, zγ〉)| = q. Moreover, C(H, Z0) is

connected of diameter 3 and |∆3(t)| = (q + 1)(q2 − 1).
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Figure 5.1: The collapsed adjacency graph for C(H,Z0) when q 6≡ 5 (mod 6).

Proof. Since q 6≡ 5 (mod 6), from (5.4) we have D = 1 and a + a− 2 = 0. There are

q distinct values of a satisfying this, so |CH(〈t, zγ〉)| = q. Denote the CH(t)-orbit

containing zγ by ∆γ
3(t). Hence,

|∆γ
3(t)| =

|CH(t)|
|CH(〈t, zγ〉)| = (q + 1)(q2 − 1).

Combining Lemmas 5.2(ii)-(iii) and 5.5, we have

|Z0 \ ({t} ∪∆1(t) ∪∆2(t))| = |∆γ
3(t)| .

Hence C(H, Z0) is connected of diameter 3, and ∆γ
3(t) = ∆3(t) as required.

Remark: Since ∆3(t) is a single CH(t)-orbit and the valency of the graph is

q(q − 1), for w ∈ ∆3(t) we have |∆1(w) ∩∆3(t)| = q. This proves Theorem 1.5 when

q 6≡ 5 (mod 6) and moreover, the collapsed adjacency diagram for C(H, Z0) is as in

Figure 5.1.

We now turn our attention to the remaining case, when q ≡ 5 (mod 6).

Lemma 5.13. Suppose q ≡ 5 (mod 6).

(i) |CH(〈t, zγ〉)| = 3q.

(ii) There are exactly three CH(t)-orbits in ∆3(t), each of length 1
3
(q + 1)(q2 − 1).

(iii) C(H, Z0) is connected of diameter 3 and |∆3(t)| = (q + 1)(q2 − 1).
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Proof. From (5.4), we have DD = D3 = 1 and since q ≡ 5 (mod 6), there are three

possible values for D. Since aD−1 + aD−1 − 2 = (aD−1) + aD−1 − 2 = 0 then for

each value of D, there are q such values of aD−1. Hence there are 3q values of aD−1

in total, proving (i).

Fix γ, and let ∆γ
3(t) be the CH(t)-orbit containing zγ. We have

|∆γ
3(t)| =

|CH(t)|
|CH(〈t, zγ〉)| =

1

3
(q + 1)(q2 − 1). (5.5)

Let h =




E

λ µ

σ τ



∈ CH(t) where E = λτ − µσ. Then

h−1zγh =




1 E(γσ − 2λ) E(−2µ + τγ)

−E−2(2τ + µγ) (λµγ − σγτ + 4µσ)E−1 + 1 (−γτ 2 + µ2γ + 4µτ)E−1

E−2(2σ + λγ) (−λ2γ + σ2γ − 4λσ)E−1 (λµγ − σγτ + 4µσ)E−1 − 3


 .

Suppose h−1zγh = zδ ∈ ∆3(t) ∩∆1(y) for some δ 6= γ. Hence

(h−1zγh)21 = −2 = (h−1zγh)12 gives τ = E2 − 2−1µγ and λ = 2−1γσ + E−1. Since

E = λτ − µσ, we have 2−1γσE2 − 2−1µγE−1 = 0 and so µ = γγ−1σE3. Rewriting τ ,

we get τ = E2 − 2−1γσE3. To summarise,

λ = 2−1γσ + E−1;

µ = γγ−1σE3; and

τ = E2 − 2−1γσE3.

Using these relations and γγ = −4, a simple check shows that (h−1zγh)22 = 1 and

(h−1zγh)33 = −3 hold, and (h−1zγh)31 = E−3γ = δ. Easy substitutions and checks

show that (h−1zγh)32 = −(h−1zγh)31 and (h−1zγh)13 = (h−1zγh)31. Since δδ = −4,

we have E3E3 = 1. In particular, E3 is a (q + 1)th root of unity. There are q + 1

such roots and only a third of them are cubes in GF (q2)∗. Hence there are only

1
3
(q + 1) such values of δ = E−3γ. Therefore, we can pick γ1, γ2 and γ3 such that

γiγi = −4 where the zγi
are not pairwise CH(t)-conjugate. Hence there are at least

3 orbits in ∆3(t), and by (5.5) they all have length 1
3
(q + 1)(q2 − 1). But (as in the
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proof of Lemma 5.12), |Z0 \ ({t} ∪∆1(t) ∪∆2(t))| = (q + 1)(q2 − 1) and so this

proves (ii), and (iii) follows immediately.

This now completes the proof of Theorem 1.5 for all q. We conclude this chapter by

determining the collapsed adjacency diagram for C(H, Z0) when q ≡ 5 (mod 6).

Lemma 5.14. Suppose q ≡ 5 (mod 6) and let yα ∈ ∆α
2 (t). Then for any w ∈ ∆3(t),

∣∣∆1(yα) ∩ wCH(t)
∣∣ = 1

3
(q + 1), .

Proof. If yα commutes with µ1 elements of ∆γ
3(t) for some γ ∈ GF (q2), then

z ∈ ∆γ
3(t) commutes with µ2 elements of ∆α

2 (t), where

|∆α
2 (t)|µ1 = µ2 |∆γ

3(t)| .

Hence by Lemmas 5.5 and 5.13, we have qµ1 = 1
3
(q + 1)µ2. Since q and 1

3
(q + 1) are

coprime, q divides µ2 and so µ2 = nq for some positive integer n. Hence

µ1 = 1
3
n(q + 1) and since µ1 ≤ q + 1 by Lemma 5.10, n ∈ {1, 2, 3}. It suffices to

prove that there exists an element from each CH(t)-orbit in ∆3(t) that commutes

with yα, since this then forces n = 1.

Recall zγ ∈ ∆γ
3(t) for some γγ = −4, and let xα,β =




α β

β −α

−1



∈ ∆2(t) ∩∆1(x)

where ββ = 1− α2 and α 6= 0 (the case when α = 0 has been dealt with in Lemma

5.11). Consider

g =




1

β−1 2−1αγβ−1

−2−1αγβ−1 β−1



∈ CH(t)

and set yα = xg
α,β ∈ ∆α

2 (t). A direct calculation shows that [yα, zγ] = 1 for all γ such

that γγ = −4 and hence yα commutes with at least one element in each CH(t)-orbit

of ∆3(t), proving the lemma.

Lemma 5.15. Suppose q ≡ 5 (mod 6) and let z ∈ ∆3(t). Then for all

w ∈ ∆3(t) ∩∆1(z), z and w are CH(t)-conjugate and |∆3(t) ∩∆1(z)| = q.
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Proof. Any z ∈ ∆3(t) commutes with q elements in each of the (q − 2) CH(t)-orbits

of ∆2(t). Since the valency of the graph is q(q − 1), we have

|∆3(t) ∩∆1(z)| = q(q − 1)− q(q − 2) = q. Recall zγ ∈ ∆γ
3(t) and without loss of

generality, set z = zγ. Let

y−3 =




−3 1 −3(2−1)γ

1 −3(2−1) 3γ−1

−3(2−1)γ 3γ−1 7(2−1)




which, by Lemma 5.14, is an element of ∆−3
2 (t) commuting with z. Set

w = y−3z =




1 1 2−1γ

1 −2−1 γ−1

2−1γ γ−1 −3(2−1)




which is an involution in ∆3(t), since (w)11 = 1 and [z, y−3] = 1.

First observe that z and w are CH(t)-conjugate, via the element

g =




−1

2−1(1 + cγ) γ−1(3− cγ)

c −2 + 2−1cγ



∈ CH(t)

where c = 3γ(γ2 − 4)−1. After some manipulation, one can also show c = c. Let

h =




D−1

a −2−1(a−D−1)γ

−2−1(a−D−1)γ 2D−1 − a




where aD−1 + aD−1 = 2 and D3 = 1. From the discussion prior to Lemma 5.12,

h ∈ CH(〈g, zγ〉). By a direct calculation, if such an element were to commute with

w, this will force a = D−1 and so CH(〈t, z, w〉) = Z(H), which has order 3. Hence,
∣∣wCH(〈t,z〉)∣∣ = q accounting for all involutions in ∆3(t) ∩∆1(z). Thus, all elements in

∆3(t) ∩∆1(z) are CH(〈t, z〉)-conjugate, and hence CH(t)-conjugate to z.

With the addition of Lemmas 5.14 and 5.15, we can now determine the collapsed

adjacency diagram for C(H, Z0) where q ≡ 5 (mod 6) to be as in Figure 5.2. One
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Figure 5.2: The collapsed adjacency graph for C(H,Z0) when q ≡ 5 (mod 6).

may note that the permutation action of H on Z0 is the same as the action of G on

the non-isotropic points {〈v〉| (v, v) = 1}. This is because for any z ∈ Z0, CV (z) is a

non-isotropic 1-space and by Lemma 10.14 of [38], G is transitive on the set of

non-isotropic 1-spaces.



Chapter 6

4-Dimensional Unitary Groups

over Even Characteristic Fields

In a manner similar to Chapter 3, we now focus on the 4-dimensional unitary

groups and, in particular, Theorems 1.6 and 1.7. Let q be an even prime power and

let H = SU4(q) ∼= U4(q) = G. Let V be the unitary GF (q2)G-module and (·, ·) be

the corresponding unitary form on V , defined by the Gram matrix

J =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0




=


 J0

J0




with respect to some basis of V . As in Chapter 5, for any a ∈ GF (q2) we write

a = aq and (aij) = (aij). Let

t1 =




1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1




and t2 =




1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1




.
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Since ti
T

= tTi and G has two conjugacy classes of involutions (see, for example,

Lemma 6.1 of [10]), a straightforward calculation shows that ti ∈ G, and

Z1 =
{

x ∈ G|x2 = 1, dim CV (x) = 3
}

,

Z2 =
{

x ∈ G|x2 = 1, dim CV (x) = 2
}

being the two conjugacy classes of involutions in G, with ti ∈ Zi. We set

S =








1 a b c

0 1 d ad + b

0 0 1 a

0 0 0 1




∣∣∣∣∣∣∣∣∣∣∣∣∣

a, b, c ∈ GF (q2)

d ∈ GF (q)

c + c = ab + ab





(6.1)

and a routine check shows S ∈ Syl2(G).

6.1 The Structure of C(G,Z1)

We begin by proving Theorem 1.6. Clearly, dim CV (t1) = 3, dim[V, t1] = 1 and

[V, t1] is an isotropic 1-subspace of V stabilized by t1. We set Q = O2(CG(t1)), and

let S be as in (6.1).

Lemma 6.1. (i) Let R ∈ Syl2 (StabG[V, t1]). Then R ∈ Syl2 (CG(t1)) and, in

particular, if x ∈ StabG[V, t1] is an involution, then x ∈ CG(t1).

(ii) C(G,Z1) is connected of diameter 2.

Proof. Showing CG(t1) ≤ StabG[V, t1] is a routine check (see Proposition 2.15). By

Lemma 6.2 of [10], CG(t1) contains a subgroup M ∼= SL2(q) such that Q ∩M = 1.

Moreover, Proposition 4.1.18 of [32] gives the structure of StabG[V, t1] to be

StabG[V, t1] ∼= [q5] : [a].SL2(q).[b] where [a] and [b] are odd order subgroups that

normalise the group isomorphic to SL2(q). Hence |Q| = q5, and the subgroups with

shape [a] and [b] normalise QM . Therefore, |Syl2(StabG[V, t1])| = |Syl2(QM)|. In

particular, any involution x ∈ StabG[V, t1] must then centralise t1, so proving (i).

Let U be a 2-subspace of V . If the unitary form on restriction to U is degenerate,

then it contains an isotropic vector. Suppose then the unitary form is
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non-degenerate on restriction to U . Up to conjugacy, the unitary form is unique

and so U contains an isotropic vector (see Satz 8.8 of [28]). Let x ∈ X such that

x /∈ CG(t1), and W be an isotropic 1-subspace of CV (〈t1, x〉). By Witt’s Lemma, G

is transitive on the set of isotropic 1-subspaces of V . Since [V, y0] is an isotropic

1-space for all y0 ∈ X, there exists y ∈ X such that W = [V, y]. By an identical

argument as that in Lemma 3.3(ii), y stabilises any subspace of V containing W . In

particular, y stabilises both CV (t) and CV (x). Moreover, y is an involution and so

by (i), y ∈ CG(t1) ∩ CG(x). Since t1 6= y 6= x we have d(t1, x) = 2. Moreover, x is

arbitrary and so C(G,Z1) is connected of diameter 2, so proving (ii).

We now describe explicitly the structure of Q = O2(CG(t1)). Clearly

CS([V, t1]) = S, and Lemma 4.1.12 of [32] reveals that Q centralizes the spaces

[V, t1], [V, t1]
⊥/[V, t1] and V/[V, t1]

⊥, so with respect to a suitable basis we have

Q =








1 a b c

0 1 0 b

0 0 1 a

0 0 0 1




∣∣∣∣∣∣∣∣∣∣∣∣∣

a, b, c ∈ GF (q2)

c + c = ab + ba





. (6.2)

A simple calculation shows

Q ∩ (Z1 ∪ Z2) =








1 a b c

0 1 0 b

0 0 1 a

0 0 0 1




∣∣∣∣∣∣∣∣∣∣∣∣∣

a, b ∈ GF (q2)

c, ab ∈ GF (q)





.

We define the following subsets of S:

Q0 =








1 0 0 c

0 1 0 0

0 0 1 0

0 0 0 1




∣∣∣∣∣∣∣∣∣∣∣∣∣

c ∈ GF (q)∗





, Q1 =








1 0 0 0

0 1 d 0

0 0 1 0

0 0 0 1




∣∣∣∣∣∣∣∣∣∣∣∣∣

d ∈ GF (q)∗




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and

Q2 =








1 0 b c

0 1 d b

0 0 1 0

0 0 0 1




∣∣∣∣∣∣∣∣∣∣∣∣∣

bb− cd = 0

b ∈ GF (q2)∗, c, d ∈ GF (q)∗





.

Lemma 6.2. (i) Q0 = Q ∩ Z1.

(ii) Q0∪̇Q1∪̇Q2 = S ∩ Z1.

(iii) |∆1(t1)| = q4 − q2 + q − 2.

(iv) |∆2(t1)| = q5(q − 1).

Proof. Let v = (α, β, γ, δ) ∈ V and let

x =




1 a b c

0 1 0 b

0 0 1 a

0 0 0 1



∈ Q ∩ (Z1 ∪ Z2)

with a, b ∈ GF (q2) such that ab ∈ GF (q), and c ∈ GF (q). It is easily seen that

vx = (α, aα + β, bα + γ, cα + bβ + aγ + δ). If vx ∈ CV (x), then α = 0 and

bβ + aγ = 0. Routine calculations show that dim CV (x) = 3 if and only if a = b = 0

and c 6= 0. This proves (i) and |Q0| = q − 1.

Let y ∈ (S \Q) ∩ (Z1 ∪ Z2) and so y is of the form

y =




1 0 b c

0 1 d b

0 0 1 0

0 0 0 1




where b ∈ GF (q2) and c, d ∈ GF (q) with d 6= 0. Moreover,

vy = (α, β, bα + dβ + γ, cα + bβ + δ). If vy ∈ CV (y) then bα + dβ = 0 and

cα + bβ = 0. Routine analysis of the cases reveal that dim CV (y) = 3 if and only if

b = c = 0 and d 6= 0; or b, c, d 6= 0 and bb = cd. The former case gives rise to Q1,
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while the latter case yields Q2. This accounts for all involutions in S. Since the

union is clearly disjoint, (ii) follows.

Clearly |Q1| = q − 1 so it remains to determine |Q2|. By Lemma 5.1, xq+1 − λ splits

over GF (q2) for any λ ∈ GF (q) and so there are q + 1 such b ∈ GF (q2) satisfying

bb− cd = 0 for any given c, d ∈ GF (q)∗. Hence, |Q2| = (q − 1)2(q + 1) and so

|(S \Q) ∩ Z1| = |Q1 ∪Q2| = (q2 − 1)(q − 1) + (q − 1) = q2(q − 1).

For any R1, R2 ∈ Syl2(QM), we have R1 ∩R2 = Q and |Syl2M | = q + 1. Hence

|∆1(t1)| = |Syl2M | |(S \Q) ∩ Z1|+ |Q ∩ Z1| − 1

= |Syl2M | |Q1 ∪Q2|+ |Q0| − 1

= q2(q − 1)(q + 1) + (q − 1)− 1

= q4 − q2 + q − 2,

so proving (iii).

As determined in Theorem 4 of [24], |Z1| = (q2 − q + 1)(q4 − 1) and since the

diameter of C(G,Z1) is 2 by Lemma 6.1(ii), we have

|∆2(t1)| = |Z1| − |∆1(t1)| − 1

= (q2 − q + 1)(q4 − 1)− (q4 − q2 + q − 2)− 1

= q5(q − 1),

and (iv) follows.

Lemmas 6.1 and 6.2 combined prove Theorem 1.6.

6.2 The Structure of C(G,Z2)

We now concentrate on proving Theorem 1.7. Set t = t2 and it is easily seen that

[V, t] = CV (t) is a 2-dimensional totally isotropic subspace of V . Proposition 4.1.18

of [32] reveals that StabGCV (t) ∼= [q4] : [a].L2(q
2).[b] for odd order subgroups [a] and

[b]. Moreover, Lemma 6.2 of [10] shows that P = O2(CG(t)) has order q4 and CG(t)
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contains a subgroup L ∼= L2(q) such that P ∩ L = 1. Theorem 4 of [24] determines

that |Z2| = q(q3 + 1)(q4 − 1) and so by comparing orders, CG(t) ∼= [q4] : L2(q). We

write CG(t) = PL and let S ∈ Syl2(G) be as in (6.1). Let

s =




1 a b c

0 1 d ad + b

0 0 1 a

0 0 0 1



∈ S

where a, b, c ∈ GF (q2), d ∈ GF (q) and c + c = ab + ba. By Lemma 4.1.12 of [32], P

centralises the spaces CV (t) and V/CV (t) (since CV (t) = [V, t] is totally isotropic).

Hence, if s ∈ P then a = 0 and thus a = 0. Therefore,

P =








1 0 b c

0 1 d b

0 0 1 0

0 0 0 1




∣∣∣∣∣∣∣∣∣∣∣∣∣

c, d ∈ GF (q), b ∈ GF (q2)





and is elementary abelian of order q4. Define

St =








1 a b c

0 1 d ad + b

0 0 1 a

0 0 0 1




∣∣∣∣∣∣∣∣∣∣∣∣∣

a, d ∈ GF (q)

b, c ∈ GF (q2)

c + c = a(b + b)





⊆ S.

A direct calculation shows that St = CS(t) and clearly P E St. Moreover, let

P1 =








1 a b c

0 1 0 b

0 0 1 a

0 0 0 1




∣∣∣∣∣∣∣∣∣∣∣∣∣

a, b, c ∈ GF (q)





which is elementary abelian of order q3 and routine calculations reveal that

St = PP1 and Z(St) = P ∩ P1.

Lemma 6.3. (i) P = CG(CV (t)).
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(ii) L =






A

A




∣∣∣∣∣∣
A ∈ SL2(q)




∼= SL2(q).

(iii) StabGCV (t) = NG(P ).

Proof. By Lemma 4.1.12 of [32], P ≤ CG(CV (t)). Let v = (0, 0, α, β) ∈ CV (t) and let

g =


A B

C D


 ∈ G,

where each block is a 2× 2 matrix. Thus vg = ((α, β)C, (α, β)D) and so if

g ∈ CG(CV (t)) then C = 0 and D = I2. Moreover, det g = 1 = det A and gT Jg = J

reveals J0A = J0. Since det A and det J0 are both non-zero, this forces A = I2. This

now forces g ∈ P , so proving the reverse inclusion and thus (i).

It is clear that the description of L given in the statement of the lemma is

isomorphic to SL2(q) and a quick check shows that L ≤ CG(t) and L ∩ P = 1, so

proving (ii).

By Theorem 1 of [31], StabGCV (t) is maximal in G. Since

P E StabGCV (t) ≤ NG(P ) and G is simple, (iii) follows.

Lemma 6.4. (i) |P ∩ Z2| = q(q − 1)(q2 + 1).

(ii) |∆1(t)| = q(q − 1)(2q2 + q + 1)− 1.

Proof. Recall Q from (6.2). Comparing (S \Q) ∩ (Z1 ∪ Z2) with P#, it is easy to

see we have equality. As shown in Lemma 6.2,

|(S \Q) ∩ Z1| = |P ∩ Z1| = (q − 1)(q2 + 1). Since P is elementary abelian of order

q4, there are q4 − 1 possible involutions in P and so

|P ∩ Z2| = (q4 − 1)− 2(q − 1)− (q2 − 1)(q − 1) = q(q − 1)(q2 + 1), proving (i).

Let

y =




1 a b c

0 1 d ad + b

0 0 1 a

0 0 0 1



∈ St \ P

and so a 6= 0, a, d ∈ GF (q), b, c ∈ GF (q2) and c + c = a(b + b). Let

v = (α, β, γ, δ) ∈ V . Then vy = (α, aα + β, bα + dβ + γ, cα + (ad + b)β + aγ + δ)
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and so v ∈ CV (y) if and only if α = 0 (since a 6= 0) and dβ = (ad + b)β + aγ = 0.

Therefore CV (y) is 3-dimensional if and only if d = 0, hence (as can be seen in

Lemma 6.2(i)) a, b = 0 and c 6= 0. However, since a 6= 0, any involution in St \ P lies

in Z2. By direct calculation y2 = I4 if and only if d = 0 and ab = ab. Hence,

b ∈ GF (q) and so

(St \ P ) ∩ Z2 =








1 a b c

0 1 0 b

0 0 1 a

0 0 0 1




∣∣∣∣∣∣∣∣∣∣∣∣∣

a, b, c ∈ GF (q), a 6= 0





of order q2(q − 1). Let S0 ∈ Syl2L such that PS0 = St. All q + 1 conjugates of S0

pairwise-intersect trivially, |Z2 ∩ P | = q(q − 1)(q2 + 1) and

|Z2 ∩ (St \ P )| = q2(q − 1), so combining these facts we get

|∆1(t)| = q(q − 1)(q2 + 1) + (q + 1)(q − 1)q2 − 1

= q(q − 1)(2q2 + q + 1)− 1,

proving the lemma.

We introduce the following notation. For any x ∈ Z2, define Px = CG(CV (x)),

Cx = CG(x) and Nx = StabG(CV (x)) and observe that P = Pt.

Lemma 6.5. Let x, y ∈ Z2.

(i) If CV (x) = CV (y) then [x, y] = 1.

(ii) Px = Py if and only if Px ∩ Py ∩ Z2 6= ∅.

(iii) If y ∈ Nt then d(t, y) ≤ 2.

Proof. Part (i) follows immediately by definition of Px and Py and that they are

both abelian. Suppose Px ∩ Py ∩ Z2 6= ∅ and let z be an element in this

intersection. Then z centralises both CV (x) and CV (y) and so must centralise their

sum. However, since z ∈ Z2, dim CV (z) = 2 and contains CV (x) + CV (y). This can

only happen if CV (x) = CV (y) and so Px = Py. The reverse implication is trivial, so

proving (ii).
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Recall S ∈ Syl2Nt as in (6.1). Let




1 a b c

0 1 d ad + b

0 0 1 a

0 0 0 1



∈ S ∩ Z2 and




1 0 a e

0 1 f a

0 0 1 0

0 0 0 1



∈ Pt ∩ Z2

for a, b, c ∈ GF (q2), d, e, f ∈ GF (q) and c + c = ab = ba. An easy check shows that

these matrices commute, and so for any x ∈ S ∩ Z2, there exists z ∈ Pt ∩ Z2 such

that [x, z] = 1. Since y ∈ Nt ∩Z2, y must lie in some Sylow 2-subgroup of Nt, say T .

By Sylow’s Theorems, there exists g ∈ Nt such that T g = S. Hence, there exists

x ∈ Pt ∩ Z2 such that [yg, x] = 1 and so [y, xg−1
] = 1. However, since

g ∈ Nt = NG(Pt) we have xg−1 ∈ Pt. Since Pt is abelian, (iii) follows.

Let U be the totality of 2-subspaces of V . For any matrix A, define RREF(A) to be

the row reduced echelon form of A and let

M =



U ∈ M2,4(q

2)

∣∣∣∣∣∣
U = RREF(U)

U has no zero rows



 .

Define the following map ρ : U →M by ρ(〈v1, v2〉) = RREF





v1

v2





.

Lemma 6.6. ρ is a well-defined bijective map.

Proof. Let 〈v1, v2〉 ∈ U . Since v1 and v2 are linearly independent, elementary linear

algebra shows that RREF





v1

v2





 ∈M, hence ρ is well-defined. The map

RREF : M2,4(q
2) →M is clearly surjective and every element of M2,4(q

2) can be

constructed by using linearly independent vectors of V as rows, proving surjectivity.

Injectivity is immediate by the definition of the elementary row operations, and so

Lemma 6.6 follows.

Let Uiso be the subset of U consisting of all totally isotropic 2-subspaces of V . We
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also define the following elements of M:

U =


0 0 1 0

0 0 0 1


 ; Uβ =


0 1 β 0

0 0 0 1


 ;

Uα,β =


1 α 0 β

0 0 1 α


 ; Uα,β,γ =


1 0 α β

0 1 γ α


 ;

for α, β, γ ∈ GF (q2). Moreover, we set

M1 = {U} ;

M2 = {Uβ, Uα,β|α, β ∈ GF (q)} ;

M3 =
{

Uα,β|α ∈ GF (q2) \GF (q), β ∈ GF (q)
}

; and

M4 =
{

Uα,β,γ|α ∈ GF (q2), β, γ ∈ GF (q)
}

.

and define M0 =
4⋃

i=1

Mi.

Lemma 6.7. ρ(Uiso) = M0.

Proof. Using elementary calculations, one can show that every element W in each

of the Mi satisfies W
T
JW = 0, and any element W ′ in M\M0 satisfies

W ′T JW ′ 6= 0.

Remark: The action of G on M is given by W g = RREF(Wg) for all W ∈M and

g ∈ G. If W = ρ(〈v1, v2〉) and g ∈ StabG 〈v1, v2〉 then W g = AW for some

A ∈ GL2(q
2). If A = I2, then g ∈ CG(〈v1, v2〉).

Since G is transitive on Uiso (by Witt’s Lemma), Uiso = {CV (x)|x ∈ Z2}. In light of

Lemma 6.6, for all x ∈ Z2 we have ρ(CV (x)) ∈M0 and in particular, ρ(CV (t)) = U .

Moreover, G acts transitively on M0.

Lemma 6.8. (i) ρ(CV (x)) = U ∈M1 if and only if x ∈ P ∩ Z2.

(ii) Let Uβ ∈M2 for some β ∈ GF (q) and let y ∈ Z2 be such that ρ(CV (y)) = Uβ.

Then d(t, y) ≤ 2.
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Proof. Part (i) follows as an immediate consequence of Lemma 6.3(i). Let

x =




1 1 β 0

0 1 0 β

0 0 1 1

0 0 0 1



∈ St ∩ Z2.

Clearly Ux
β = Uβ and so Uβ = ρ(CV (x)). Hence x, y ∈ Px = Py and so [x, y] = 1 by

Lemma 6.5(i). Since St ≤ Ct, we have [x, t] = 1 and hence d(t, y) ≤ 2.

Using Lemma 6.3(ii), we see that if g ∈ Ct then

g =


A BA

A


 , A ∈ SL2(q), B =


b c

d b


 (6.3)

for b ∈ GF (q2) and c, d ∈ GF (q). Moreover,

g2 =


A2 ABA + B

A2


 = I4 if and only if A2 = I2 and BA = B. (6.4)

Lemma 6.9. Let Uα,β ∈M2 ∪M3, for some α ∈ GF (q2) and β ∈ GF (q). Then

there exists x ∈ CG(t) ∩ Z2 such that ρ(CV (x)) = Uα,β if and only if Uα,β ∈M2.

Proof. Let g ∈ CG(t) ∩ Z2, and so

g =


A BA

A


 =


A AB

A




where A and J1 are as in (6.3). It is easy to see that


1 α 0 β

0 0 1 α





A AB

A


 =





1 α

0 0


 A


1 α

0 0


 AB +


0 β

1 α


 A


 .

Suppose 
1 α

0 0





a1 a2

a3 a4


 =


a1 + αa3 a2 + αa4

0 0


 =


1 α

0 0


 ,

then a1 = 1 + αa3 and a2 = (a4 + 1)α. Since det A = 1, we also have

a1a4 + a2a3 = a4 + a3α = 1. Hence a4 = 1 + a3α and thus a2 = a3α
2. Therefore,
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A =


1 + aα aα2

a 1 + aα


 for some a ∈ GF (q2), and an easy check shows that

A2 = I2. Moreover,


1 α

0 0





b c

d b


 =


b + αd c + αb

0 0




and


0 β

1 α





1 + aα aα2

a 1 + aα


 =


 aβ β(1 + aα)

1 + aα + aα aα2 + α + aαα


 ,

so summing the two yields


aβ + b + dα β + aβα + c + bα

1 + aα + aα aα2 + α + aαα


 =


0 β

1 α


 .

Equating the (2,1) entries, we get a(α + α) = 0. If a = 0 then g ∈ P and thus

ρ(CV (g)) 6= Uα,β, by Lemma 6.8(i). Hence a 6= 0 and so α ∈ GF (q).

Let

x =




1 + aα aα2 aβ + αd α2d

a 1 + aα d aβ + αd

0 0 1 + aα aα2

0 0 a 1 + aα




where a, d, α, β ∈ GF (q). A routine check reveals x ∈ CG(t) ∩ Z2 and Ux
α,β = Uα,β

and hence Uα,β = ρ(CV (x)) as required.

Corollary 6.10. Let x ∈ Z2 be such that ρ(CV (x)) = Uα,β ∈M2. Then d(t, x) ≤ 2.

Proof. By Lemma 6.8, there exists y ∈ Ct ∩ Z2 such that ρ(CV (y)) = Uα,β ∈M1

and [t, y] = 1. Hence [x, y] = 1 by Lemma 6.3 and so d(t, x) ≤ 2.

Lemma 6.11. Let x ∈ Z2 ∩ Ct. Then ρ(CV (x)) ∈M1 ∪M2.

Proof. By Lemmas 6.8 and 6.9, there exists y ∈ Ct ∩ Z2 such that

ρ(CV (y)) ∈M1 ∪M2. Moreover, Lemma 6.9 reveals that for any x ∈ Ct ∩ Z2,
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ρ(CV (x)) /∈M3. It suffices to show that ρ(CV (x)) /∈M4 for any x ∈ Ct ∩ Z2. Let

Uα,β,γ ∈M4 and z ∈ Ct ∩ Z2, so

z =


A BA

A




where A and B are as in (6.3) subject to the conditions (6.4). Suppose

ρ(CV (z)) = Uα,β,γ, then U z
α,β,γ = Uα,β,γ. However, this forces z ∈ P and so

ρ(CV (z)) ∈M1 by Lemma 6.8(i). This provides our contradiction and so Lemma

6.11 holds.

Lemma 6.12. Let Uα,β ∈M3.

(i) There exists y ∈ Nt ∩ Z2 such that ρ(CV (y)) = Uα,β.

(ii) If x ∈ Z2 is such that ρ(CV (x)) = Uα,β, then d(t, x) ≤ 3.

Proof. First observe that if y =


A

D


 is such that A

T
J0D = J0, A2 = D2 = I2,

then y ∈ Nt ∩ Z2, since Uy = DU . Let

z =




α α + α2

α−1 + 1 α

α α + α2

α−1 α




for α ∈ GF (q2) \GF (q). An easy calculation shows that z ∈ Nt ∩ Z2 and

ρ(CV (z)) = Uα,0. Let g ∈ Pt and since Pt ≤ Nt, N g
t = Nt, hence zg ∈ Nt. Moreover,

d(t, z) = d(tg, zg) = d(t, zg) since Pt is abelian, and CV (zg) = CV (z)g. Let

g =




1 0 b c

0 1 d b

0 0 1 0

0 0 0 1




for b ∈ GF (q2) and c, d ∈ GF (q). Observe that ρ(CV (zg)) = ρ(CV (z)g) = U g
α,0.

Hence

Uα,0g =


1 α b + dα c + bα

0 0 1 α






CHAPTER 6. 4-DIM. UNITARY GROUPS OVER GF (q), q EVEN 124

and so

U g
α,0 =


1 α 0 c + bα + (b + dα)α

0 0 1 α


 .

By choosing suitably different g by varying c, we obtain all possible Uα,β ∈M3,

proving (i).

For any x ∈ Z2 such that ρ(CV (x)) = Uα,β ∈M3, [x, zg] = 1 by Lemma 6.8(i). Since

d(t, zg) ≤ 2 by Lemma 6.5, (ii) follows immediately.

Lemma 6.13. Let z ∈ Z2 be such that ρ(CV (z)) ∈M4. Then z /∈ Nt.

Proof. Let ρ(CV (z)) = Uα,β,γ for some α ∈ GF (q2) and β, γ ∈ GF (q), and let

g =


A B

C D


 ,

where each block is a 2× 2 matrix. Recall Nt = StabGCV (t) and hence g ∈ Nt if

and only if U g = EU for some E ∈ GL2(q
2). This occurs precisely when C = 0 and

D = E. In addition, U g
α,β,γ = Uα,β,γ and gT Jg = J forces A = D = I2. However, this

results in z ∈ P and so ρ(CV (z)) = U 6= Uα,β,γ by Lemma 6.8(i), contradicting our

assumption. Therefore, Lemma 6.13 holds.

Lemma 6.14. Let

xb,c =




1 1 b c

0 1 0 b

0 0 1 1

0 0 0 1



∈ P1 ≤ Ct.

(i) For any Uα,β,γ ∈M4, there exists y ∈ Cxb,c
∩ Z2 such that ρ(CV (y)) = Uα,β,γ.

(ii) Let x ∈ Z2 be such that ρ(CV (x)) ∈M4. Then d(t, x) ≤ 3.

Proof. Let

hb,f =




1 0 f + 1 0

1 0 f 0

0 1 b c + f + 1

0 1 b c + f



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for b, c ∈ GF (q), c = f + f and f ∈ GF (q2). Consider the group homomorphism N2

defined in Lemma 5.1. Since q is even, ker N2 = GF (q) and so N2 is surjective with

|ker N2| = q. Hence, there are q possible hb,f for a fixed b and c. An easy check

shows that hb,f
T
Jhb,f = J and det hb,f = 1 and so hb,f ∈ G. Moreover, thb,f = xb,c. If

x ∈ Ct, then xg ∈ Ctg = Cxb,c
. Let Uβ ∈M2 and so by Lemma 6.8(ii),

Uβ = ρ(CV (y)) for some y ∈ Ct. We have

Uβhb,f =


1 β f + bβ (c + f + 1)β

0 1 b c + f




and

U
hb,f

β =


1 0 c + f α

0 1 b c + f




as c = f + f . Each of the q distinct elements hb,f give rise to distinct

U
hb,f

β = ρ(CV (xhb,f )). Moreover, since b, β, c ∈ GF (q), for all Uα,β,γ ∈M4 there

exists b ∈ GF (q), f ∈ GF (q2) such that U
hb,f

β = Uα,β,γ, proving (i). Part (ii) is

immediate by repeated applications of Lemma 6.8(i), yielding [t, xb,c] = 1,

[xb,c, y] = 1 and [x, y] = 1.

Lemma 6.15. C(G,Z2) is connected of diameter 3.

Proof. For every x ∈ Z2, there exists W ∈M0 such that ρ(CV (x)) = W . Together,

Lemmas 6.8–6.14 show that for all x ∈ Z2, d(t, x) ≤ 3.

We now turn to calculating the disc sizes.

Lemma 6.16. Let x ∈ PtT . Then x ∈ Z1 if and only if

x =


I2

B I2




where B ∈





0 a

0 0


 ,


0 0

a 0


 ,


b c

d b




∣∣∣∣∣∣
a, c, d ∈ GF (q), b ∈ GF (q2)

bb− cd = 0



.

Proof. This is shown via analogous case analysis as performed in Lemma 6.2.
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Lemma 6.17. Each Mi is a Ct-orbit, for i = 1, . . . , 4.

Proof. That M1 is a Ct-orbit is obvious since Ct ≤ Nt = StabGCV (t). For any

y ∈ Ct, there exists W ∈M1 ∪M2 such that ρ(CV (y)) = W . Since M1 is

Ct-invariant, so must M2 be. Let

g1 =




1 0 0 0

0 1 d 0

0 0 1 0

0 0 0 1




and g2 =




1 + ab ab2 0 0

a 1 + ab c(1 + ab) cab2

1 + ab ab2

a 1 + ab




be elements of Ct, for a, b, c, d ∈ GF (q), a, d 6= 0. Then a simple calculation shows

that U g1

0 = Ud and

U0g2 =


a 1 + ab c(1 + ab) cab2

0 0 a 1 + ab


 ,

so U g2

0 = Ua−1+b, ca−2 . Since a, b, c, d ∈ GF (q), clearly Ct is transitive on M2.

As Ct ≤ Nt and for all W ∈M3 there exists y ∈ Nt such that ρ(CV (y)) = W by

Lemma 6.12, M3 is Ct-invariant. Let

g3 =




0 b

b−1 d

0 b

b−1 d




and g4 =




1 0 0 c

0 1 0 0

0 0 1 0

0 0 0 1




be elements of Ct for b, c, d ∈ GF (q) and b, c 6= 0. Then for α ∈ GF (q2) \GF (q),

Uα,0g3 =


b−1α b + dα 0 0

0 0 b−1αq b + dαq




and U g3

α,0 = Ub2α−1+db,0. Every element in GF (q2) can be written as λα−1 + µ for

some λ, µ ∈ GF (q). Indeed, an easy check shows the map

GF (q)×GF (q) → GF (q2) such that (λ, µ) 7→ λα−1 + µ is injective. Since q is even,

every element in GF (q) is a square and hence b2 can take all possible values in

GF (q). Thus b2α−1 + db takes all possible values in GF (q2) \GF (q). Moreover,

U g4

α,0 = Uα,c and c ∈ GF (q). Hence Ct is transitive on M3.
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Finally, let

g5 =




1 0 b c

0 1 d b

0 0 1 0

0 0 0 1



∈ Ct

for b ∈ GF (q2) and c, d ∈ GF (q), observing that U g5

0,0,0 = Ub,c,d. Hence Ct is

transitive on M4, so proving the lemma.

Let w1, w2 ∈ Z2 and Wi = ρ(CV (wi)). Let x ∈ Pw1 and suppose d(t, x) = i. If

CV (w1) and CV (w2) are Ct-conjugate by some element g, say, then

d(t, x) = d(t, xg) = i. Hence, |Pw1 ∩∆i(t)| = |Pw2 ∩∆i(t)|.

Lemma 6.18. Let x ∈ Z2 be such that ρ(CV (x)) = U0 ∈M2. Then

|Px ∩∆1(t)| = q(q − 1) and |Px ∩∆2(t)| = q3(q − 1).

Proof. By (6.3) and (6.4), if y ∈ Ct ∩ Z2 then

y =


A BA

A




where A2 = [A,B] = I2 and B =


b c

d b


 for b ∈ GF (q2), and c, d ∈ GF (q).

Suppose y ∈ Px ∩ Ct ∩ Z2, then Uy
0 = U0y = U0. Clearly

Uy
0 =





0 1

0 0


 A


0 1

0 0


 AB +


0 0

0 1


 A


 .

Letting A =


a1 a2

a3 a4


, we must have a3 = 0 and a4 = a1 = 1. So A =


1 a

0 1


 for

some a ∈ GF (q). Also, calculation of the second component gives


d b

0 1


 =


0 0

0 1



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and thus d, b = 0. Moreover, y ∈ Z2 and by the case analysis performed in Lemma

6.4(ii), we must have a 6= 0 and hence

Px ∩ Ct ∩ Z2 =








1 a 0 c

0 1 0 0

0 0 1 a

0 0 0 1




∣∣∣∣∣∣∣∣∣∣∣∣∣

a, c ∈ GF (q), a 6= 0





.

Therefore |Px ∩ Ct ∩ Z2| = |Px ∩∆1(t)| = q(q − 1). By conjugacy and Lemma

6.4(i), |Px ∩ Z2| = q(q − 1)(q2 + 1) and by Lemma 6.8(ii), if z ∈ Px ∩ Z2 then

d(t, z) ≤ 2. Hence

|Px ∩∆2(t)| = |Px ∩ Z2| − |Px ∩∆1(t)|

= q3(q − 1),

proving the lemma.

From Lemma 6.16, recall that

PtT =






I2

B I2




∣∣∣∣∣∣
B =


b c

d b


 , b ∈ GF (q2), c, d ∈ GF (q)



 (6.5)

and ρ(CV (tT )) = U0,0,0.

Lemma 6.19. |PtT ∩∆2(t)| = q2(q − 1).

Proof. By Lemma 6.13, if y ∈ PtT then 2 ≤ d(t, y) ≤ 3. If d(t, y) = 2 then there

exists x ∈ Ct ∩ Z2 such that [x, y] = 1. Let

x =


A CA

A


 ∈ Ct ∩ Z2 and y =


I2

B I2


 ∈ PtT ∩ Z2,

where x satisfies the conditions of (6.3) and (6.4), and y satisfies the conditions of

(6.5). Now [x, y] = 1 if and only if CAB = BCA = 0 and BA + AB = BCAB = 0,

which occurs if and only if AB = BA and BC = CB = 0. From Lemmas 6.9 and

6.18 we must have

A =


1 + ab ab2

a 1 + ab


 or A =


1 a

0 1


 .
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Observe that a 6= 0, otherwise x ∈ Pt = Px and by Lemma 6.12, PtT ∩Nx ∩ Z2 = ∅,

contradicting the assumption that [x, y] = 1. If B =


c d

e c


 for c ∈ GF (q2),

d, e ∈ GF (q) then for the latter choice of A we have

BA =


c ac + d

e ae + c


 =


c + ae d + ac

e c


 = AB

if and only if e = 0 and c ∈ GF (q). For the former choice of A we get

BA =


c(1 + ab) + ad ab2c + d(1 + ab)

e(1 + ab) + ac ab2e + c(1 + ab)




=


c(1 + ab) + ab2e d(1 + ab) + cab2

ac + e(1 + ab) ad + c(1 + ab)


 = AB

if and only if d = b2e and c ∈ GF (q). In both cases, for any such y satisfying the

respective conditions, [x, y] = 1 where C = 0. Therefore, if

F =








1 0 0 0

0 1 0 0

c d 1 0

0 c 0 1




,




1 0 0 0

0 1 0 0

c b2e 1 0

e c 0 1




∣∣∣∣∣∣∣∣∣∣∣∣∣

b, c, d, e ∈ GF (q), e 6= 0





then |F| = q2 + (q − 1)q2 = q3 and PtT ∩∆2(t) ⊆ F . Using Lemma 6.16, we can

determine how many elements of F lie in Z1 by a similar tack as in the proof of

Lemma 6.2. Therefore, |F ∩ Z1| = (q − 1)2 + (q − 1) + q = q2 and so

∣∣P T
t ∩∆2(t)

∣∣ = |F| − |F ∩ Z1| = q2(q − 1),

proving Lemma 6.19.

Lemma 6.20. Let y ∈ Z2 be such that ρ(CV (y)) = Uα,0 ∈M3.

(i) Py ∩∆2(t) ⊆ Nt.

(ii) |Py ∩∆2(t)| = q(q2 − 1).
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Proof. Let

g =




0 1 0 0

0 0 0 1

1 α 0 0

0 0 1 α




for some α ∈ GF (q2) \GF (q), while an easy calculation shows g ∈ G. Since

U g = Uα,0 we have Py = P g
t = CG(CV (tg)). By Lemma 6.5(iii), if x ∈ Pt and z ∈ Cx

then ρ(CV (z)) ∈M1 ∪M2 ∪M3. Hence, if xg ∈ Py and zg ∈ Cxg then

ρ(CV (zg)) ∈Mg
1 ∪Mg

2 ∪Mg
3. Note that if d(t, xg) = 2 then there exists w ∈ ∆1(t)

such that [xg, w] = 1 and so xg ∈ Nw, and ρ(CV (w)) ∈M1 ∪M2 by Lemma 6.11.

However, by easy calculations, U g = Uα,0 /∈M1 ∪M2 and U g
β = Uα,β /∈M1 ∪M2

since α ∈ GF (q2) \GF (q). Moreover,

U g
β,γ =


1 0 β + αγ αβ + αβ + ααγ

0 1 γ β + αγ


 /∈M1 ∪M2

for β ∈ GF (q2), γ ∈ GF (q). Finally, U g
0 = U ∈M1 and so for any xg ∈ Py and

zg ∈ Cxg ∩ Ct ∩ Z2, we must have CV (zg) = CV (t). Hence xg ∈ Nt, so proving (i).

Recall

Pt = P =








1 0 b c

0 1 d b

0 0 1 0

0 0 0 1




∣∣∣∣∣∣∣∣∣∣∣∣∣

b ∈ GF (q2), c, d ∈ GF (q)





.

Clearly Py = P g
t and so direct calculation yields

Py =








αb + 1 α2b αc ααc

b αb + 1 c αc

αd ααd αb + 1 α2b

d αd b αb + 1




∣∣∣∣∣∣∣∣∣∣∣∣∣

α ∈ GF (q2) \GF (q)

b ∈ GF (q2)

c, d ∈ GF (q)





(6.6)

and by (i), any z ∈ Py such that d(t, z) = 2 must lie in Nt. By inspection, any such

z must have d = 0 in (6.6). Clearly, z ∈ Z2 if and only if zg−1 ∈ Z2 and by Lemma

6.2, this occurs if and only if b 6= 0. Hence

|Py ∩Nt ∩ Z2| = |Py ∩∆2(t)| = q(q2 − 1),
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and (ii) holds.

Lemma 6.21. (i) |∆2(t)| = q3(q − 1)(q3 + 2q2 + q − 1).

(ii) |∆3(t)| = q4(q − 1)(q3 − q + 1).

Proof. Let x, y, z ∈ Z2 be such that ρ(CV (x)) = U0 ∈M2, ρ(CV (y)) = Uα,0 ∈M3

and ρ(CV (z)) = U0,0,0 ∈M4. Then Lemmas 6.18, 6.19 and 6.20(ii) yield

|∆2(t)| = |M2| |Px ∩∆2(t)|+ |M3| |Py ∩∆2(t)|+ |M4| |Pz ∩∆2(t)|

= (q + q2)q3(q − 1) + (q2 − q)q(q2 − 1)q + q4q2(q − 1)

= q3(q − 1)(q3 + 2q2 + q − 1),

proving (i). Since C(G,Z2) has diameter 3 by Lemma 6.15, we have

|∆3(t)| = |Z2| − |∆0(t)| − |∆1(t)| − |∆2(t)|

= q4(q − 1)(q3 − q + 1),

proving (ii).

Combined, Lemmas 6.4(ii), 6.15 and 6.21 complete the proof of Theorem 1.7.



Chapter 7

Classical Group Extensions and

Affine Linear Groups

Breaking away from the scene of finite simple groups, this chapter is devoted to the

study of commuting involution graphs of some non-simple groups.

7.1 2-dimensional Projective General Linear

Groups

We open this study by investigating the structure of the commuting involution

graphs of G = PGL2(q) for q odd, in particular proving Theorem 1.8. Let

H = GL2(q) and G = H/Z(H) ∼= PGL2(q). For any element g ∈ H we denote its

image in G by g. There are two classes of involutions in G, one of which is

contained in G′ ∼= L2(q). Let I be the set of elements in H \ Z(H) that square to a

non-trivial element of Z(H). Clearly, for any g ∈ I, g is an involution in G and so

denote by I the set of involutions in G. Suppose det(g) is a square in GF (q). Then

there exists an element z ∈ Z(H) such that det(zg) = 1, and hence g ∈ G′. Let X

be the image in G of the subset of I whose elements have a non-square determinant.

Clearly, X is the conjugacy class of involutions of G such that X ∩G′ = ∅. The

proof of Theorem 1.8, which we present for clarity, is analogous to the proof of

132
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Theorem 2.10, which can be found in [15]. For the rest of this section, all matrices

are to be read modulo Z(H). Set δ = ±1 where q ≡ δ (mod 4).

Lemma 7.1. We have

X =






a b

c −a




∣∣∣∣∣∣
− a2 − bc a non-square in GF (q)



 .

and |X| = 1
2
q(q − δ).

Proof. Let g =


a b

c d


 and a routine calculation shows that g2 ∈ Z(H) if and only

if a2 = d2 and b(a + d) = c(a + d) = 0. If a = d 6= 0 then b = c = 0 and so

g ∈ Z(H). Therefore we must have a = −d. Hence,

I =






a b

c −a




∣∣∣∣∣∣
a2 + bc 6= 0



 ,

and thus X can be described as in the statement of the lemma.

Using Lemma 2.1 of [15], we see that
∣∣I

∣∣− |X| = 1
2
q(q + δ). It suffices to show |I|,

which is precisely the number of triples (a, b, c), where a, b, c ∈ GF (q), that satisfy

a2 + bc 6= 0. Suppose a2 + bc = 0. When a = 0, either b or c must be zero (or both),

giving rise to 2q − 1 solutions. When a 6= 0 we have a2 = −bc and b, c 6= 0. This

gives rise to (q − 1)2 solutions. Therefore the number of triples (a, b, c) that satisfy

a2 + bc = 0 is 2q − 1 + (q − 1)2 = q2. Hence, the number of triples (a, b, c) that

satisfy a2 + bc 6= 0 is q3 − q2 = q2(q − 1), and so
∣∣I

∣∣ = q2(q−1)
(q−1)

= q2. Thus,
∣∣I

∣∣− 1
2
q(q + δ) = 1

2
q(q − δ) = |X| and the result follows.

We first deal with the case when δ = 1. Without loss of generality, let

t =


0 µ

1 0


 ∈ X

for µ a non-square in GF (q).
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Proposition 7.2. Suppose δ = 1. Then C(G,X) has diameter 3 with disc sizes

|∆1(t)| = 1

2
(q + 1);

|∆2(t)| = 1

4
(q2 − 1); and

|∆3(t)| = 1

4
(q − 5)(q + 1).

Proof. It is well-known (see, for example, Lemma 3.1 of [41]) that the centraliser of

any involution in G is dihedral. By Lemma 7.1, CG(t) ∼= Dih(2(q + 1)). Let

r =


1 0

0 −1


 and s =


0 ν

1 0




where ν is a non-square in GF (q) \ {µ}. It is an easy check to see that r ∈ G′, s ∈ X

and both commute with t. Since q + 1 is even, there exist 2 non-trivial conjugacy

classes of involutions in CG(t). Hence exactly one of these classes lie in X and so

|∆1(t)| = 1

2
(q + 1). (7.1)

Since any dihedral subgroup of G lies in a unique maximal dihedral subgroup of G,

for any x, y ∈ X such that [x, y] 6= 1, we have |CG(x) ∩ CG(y) ∩X| = 1. Moreover,

any fours-group in a dihedral group is self-centralising, and for commuting

involutions y, z ∈ X, we have yz /∈ X. Hence, ∆1(y) ∩∆1(z) = ∅. Therefore an

easy count gives

|∆2(t)| = 1

4
(q2 − 1). (7.2)

Suppose there exists z ∈ X such that d(t, z) ≥ 4, and let x ∈ ∆1(t) ∪ {t}. If zx has

order dividing q + 1 then there exists y ∈ X such that 〈z, x〉 ≤ CG(y), contradicting

our choice of z. Hence zx must have order dividing q − 1, and so 〈z, x〉 is contained

in a unique dihedral group, Dx, of order 2(q− 1). Any involution in Dx not equal to

x is at least distance 3 from x and thus does not lie in ∆1(t) ∪ {t}. Hence, distinct

elements x must lie in distinct such Dx, and each Dx contains 1
2
(q − 3) involutions

other than z, all of which are at least distance 3 from z. This accounts for
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1
4
(q − 3)(q + 3) involutions. However,

|X| − |∆2(t)| − |∆1(t)| − 1 =
1

4
(q + 1)(q − 5)

<
1

4
(q + 3)(q − 3)

by Lemma 7.1, (7.1) and (7.2). This provides our contradiction and so there is no

involution z ∈ X such that d(t, z) ≥ 4. Proposition 7.2 then follows.

We now deal with the case when δ = −1. Let t =


1 0

0 −1


 and since −1 is

non-square in GF (q), t ∈ X. Set tα =


1 0

α −1


 and observe that tα ∈ X and

t0 = t.

Lemma 7.3. Let x ∈ X. Then there exists a unique tα such that [x, tα] = 1.

Moreover,

∆1(t) =






0 λ2

1 0




∣∣∣∣∣∣
λ ∈ GF (q)∗



 .

Proof. Let x =


a b

c −a


 and suppose [x, tα] = 1. Then tαx = λxtα in H for some

λ ∈ GF (q)∗, that is


 a b

αa− c αb + a


 =


λ(a + bα) −λb

λ(c− aα) λa


 .

If λ = 1 then b = 0 and c = aα, resulting in x = tα. So assume λ 6= 1, thus

a = λ(a + bα) and hence (1− λ)a = λbα. Clearly, if b = 0 then a = 0 which is

impossible so b 6= 0. But then b = −λb which implies λ = −1 and so α = −2ab−1.

Therefore, α is determined by the entries of x and thus there is a unique tα that

commutes with x in G. If α = 0 then a = 0 and so x =


0 b

c 0


 ≡


0 bc−1

1 0




modulo Z(H). Since x ∈ X, −bc−1 must be non-square and therefore bc−1 must be

square in GF (q), since q ≡ 3 (mod 4). This proves Lemma 7.3.

Lemma 7.4. (i) |∆1(t)| = 1
2
(q − 1).
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(ii) ∆2(t) =






1 −λ2τ

τ −1




∣∣∣∣∣∣
−1 + λ2τ 2 a non-square in GF (q)

λ 6= 0



 and

|∆2(t)| = 1
4
(q − 1)(q − 3).

Proof. The first part is an immediate consequence of Lemma 7.3. Let

y =


a σ

µ −a


 ∈ X. If a = 0 then y ∈ ∆1(t) so we may assume a 6= 0 and thus,

modulo Z(H), y =


1 b

c −1


. If y ∈ ∆2(t) then there exists x =


0 λ2

1 0


 ∈ ∆1(t)

such that [x, y] = 1. That is, xy = µyx in H, for some µ ∈ GF (q)∗. A routine check

reveals we must have b = −λ2c.

Just as in Proposition 7.2, for any non-commuting involutions x and y we have

|CG(x) ∩ CG(y) ∩X| = 1 and if x ∈ CG(t) then ∆1(x) ∩∆1(t) = ∅. Hence, an easy

calculation gives |∆2(t)| = 1
4
(q − 1)(q − 3).

Lemma 7.5. Let x, y ∈ X such that x 6= y. Then d(x, y) ≤ 2 if and only if the

order of xy divides q − 1. Moreover, d(x, y) = 2 if and only if xy fixes two points of

the projective line.

Proof. The order of xy divides q − 1 if and only if 〈x, y〉 lies in a dihedral group of

order 2(q − 1), which contains a central involution z ∈ X. Hence, d(x, y) ≤ 2. Since

G acts 3-transitively on the projective line, a point-stabiliser has order q(q − 1) and

the pointwise stabiliser of 2 points has order q − 1. Hence, if xy fixes two points of

the projective line, then the order of xy divides q − 1. If d(x, y) = 2, then the order

of xy divides 1
2
(q − 1) and so xy fixes two points of the projective line by Satz 8.3 of

[28]. If the order of xy is 2, then det(xy) = det(x) det(y) is a square in GF (q) and

hence xy /∈ X. So xy is conjugate to


 0 1

−1 0


 which fixes no points of the

projective line. Therefore, if d(x, y) = 1, xy fixes no points of the projective line.

Proposition 7.6. Suppose δ = −1 and q ≥ 19. Then C(G,X) has diameter 3 with
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disc sizes

|∆1(t)| = 1

2
(q − 1);

|∆2(t)| = 1

4
(q − 1)(q − 3); and

|∆3(t)| = 1

4
(q − 1)(q + 5).

Proof. The first two disc sizes are given in Lemma 7.4(i) and (ii). Using Lemmas

7.3 and 7.4(ii), it is easy to see that

X \ (∆1(t) ∪∆2(t) ∪ {t}) =






1 −µτ

τ −1




∣∣∣∣∣∣∣∣∣

µ either 0 or a non-square in GF (q)

−1 + µτ 2 a non-square in GF (q)∗

τ 6= 0





.

Let x =


1 −µτ

τ −1


 ∈ X \ (∆1(t) ∪∆2(t) ∪ {t}) and xλ =


0 λ2

1 0


 ∈ ∆1(t). Then

xλx =


λ2τ −λ2

1 −µτ


 .

Using Lemma 7.5, x is at most distance 3 from t if there exists λ ∈ GF (q)∗ for

which xλx fixes two points on the projective line. That is, if there exists two

linearly independent vectors (α, β) such that (α, β)xλx = (kα, kβ). We then have

kα = λ2τα + β, (7.3)

kβ = −λ2α− µτβ. (7.4)

Since λ and τ are both non-zero, (7.3) shows that if α = 0 then β = 0, and similarly

(7.4) show the converse, both of which are invalid. Upon rearrangement of (7.3)

and (7.4), we get

αβ−1 = (k − λ2τ)−1 = −(k − µτ)λ−2

observing that we must have k 6= λ2τ and k 6= µτ . We then have

k2 − (µτ + λ2τ)k + (µτ 2 + 1)λ2 = 0.

Provided the discriminant of this quadratic equation, say Φ(λ), is non-zero, there

are two distinct values of k and hence of αβ−1. There are q− 1 values of λ and Φ(λ)
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Figure 7.1: The Diameter 4 Commuting Involution Graph of PGL2(7).

Figure 7.2: The Diameter 4 Commuting Involution Graph of PGL2(11).

is a quartic in λ, hence at worst 1
4
(q − 1) values of Φ(λ). However, we must insist

Φ(λ) 6= 0 and the earlier restrictions that k 6= λ2τ and k 6= µτ . This removes at

most three possible values of Φ(λ), and so there are at least

1
4
(q − 1)− 3 = 1

4
(q − 13) suitable values of Φ(λ). Hence, for q > 13, the diameter of

C(G,X) is 3. The size of the third disc follows immediately. Since q = 19 is the

least such q > 13 when δ = −1, Proposition 7.6 holds.

Propositions 7.2–7.6 combined complete the proof of Theorem 1.8. One may also

note that this is just the action on
(

q+1
2

)
unordered pairs of points of the projective

line.

We finish this section by giving the collapsed adjacency diagrams of the diameter 4

commuting involution graphs of PGL(2, 7) and PGL(2, 11) as calculated in

Magma [19] (Figures 7.1 and 7.2).
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7.2 Affine Orthogonal Groups

Our final detailed study concerns the affine orthogonal groups, in particular

Theorem 1.9.

Theorem 4.18 deals with the commuting involution graph of the affine orthogonal

group AO3(q), and is instrumental in the proof of Theorem 1.4. In the next chapter,

the commuting involution graph of AO−
4 (q) is utilised in a similar way. This section

also highlights the fact that a quotient of a group does not necessarily preserve

distance in group itself. Indeed, Theorem 4.18 showed that for AO3(q) ∼= Qo L

where L ∼= O3(q) and t, x conjugate involutions in L, [t, x] = 1 did not necessarily

imply that [t, ux] = 1 for some u ∈ Q, (ux)2 = 1. Thus, careful examination of these

groups is needed. We begin with a preliminary result about groups with more than

one class of involutions.

Lemma 7.7. Let H be a finite group with more than one class of involutions. Let

x, y ∈ H be non-conjugate involutions in H. Then there exists an involution z ∈ H

such that [x, z] = [y, z] = 1.

Proof. Any two involutions generate a dihedral group, D, of order 2n for some n. If

n is odd, then all involutions in such a dihedral group are D-conjugate. Since

〈x, y〉 ≤ H and the generators are not H-conjugate, 〈x, y〉 must be a dihedral group

of order 2n, for n even. Hence 〈x, y〉 contains a central involution, and the lemma

follows.

Let G be an affine orthogonal group. So G = V o L where L is an n-dimensional

simple orthogonal group, and V is the orthogonal n-dimensional L-module. In a

spirit similar to that of Theorem 4.18, we identify G with V L and any element

g ∈ G can be expressed as a product g = gV gL where gV ∈ V and gL ∈ L. For the

remainder of this section, any such subscripts will describe such an expression. If X

is a conjugacy class of involutions in G, we denote XL = XV/V . Clearly, XL is a

conjugacy class of involutions in L. We set dL to be the standard distance metric on

C(L,XL) and ∆L
i (t) =

{
xL ∈ XL| dL(t, xL) = i

}
. As usual, we let d be the distance
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metric on C(G,X) and ∆i(t) to be the ith disc of t. The following lemma is a direct

consequence of the action of L on V .

Lemma 7.8. (i) x2 = 1 if and only if xV ∈ [V, xL].

Let x, y ∈ X be such that [xL, yL] = 1.

(ii) [xL, y] = 1 if and only if yV ∈ CV (xL) ∩ [V, yL].

(iii) [x, y] = 1 if and only if xyL

V − xV = yxL
V − yV .

Let (·, ·) be the orthogonal form on V .

Lemma 7.9. Let xL, yL ∈ XL.

(i) CV (xL) = [V, xL]⊥.

(ii) CV (xL) = CV (yL) if and only if xL = yL.

(iii) For any subspace U ≤ V , V = U ⊕ U⊥.

Proof. See Lemmas 4.5(ii)–(iii) and 4.6(i) for analogous proofs.

We introduce the following map: for any x ∈ XL, define ϕx : V → [V, x] by

v 7→ vx − v. This is a well-defined, surjective map and ker ϕx = CV (x). For U ≤ V ,

we denote the restriction of ϕx to U by ϕx

∣∣
U
.

Lemma 7.10. Let xL, yL ∈ XL be such that [xL, yL] = 1.

(i) Im ϕyL

∣∣
[V,xL]

= [V, xL] ∩ [V, yL].

(ii) For any xV ∈ [V, xL], there exists yV ∈ [V, yL] such that [x, y] = 1.

Proof. Since [xL, yL] = 1, we certainly have Im ϕyL

∣∣
[V,xL]

⊆ [V, xL] ∩ [V, yL]. By

Lemma 7.9,

[V, xL] = ([V, xL] ∩ CV (yL))⊕ ([V, xL] ∩ [V, yL])

and since ker ϕyL

∣∣
[V,xL]

= [V, xL] ∩ CV (yL), the appropriate isomorphism theorem

shows equality, proving (i). For any xV ∈ [V, xL], we have

xyL

V − xV ∈ [V, xL] ∩ [V, yL]. By (i) using ϕxL

∣∣
[V,yL]

, there exists yV ∈ [V, yL] such

that yxL
V − yV = xyL

V − xV . Hence [x, y] = 1 by Lemma 7.8(iii).
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3-Dimensional Affine Orthogonal Groups

Let G be the 3-dimensional affine orthogonal group, AO3(q) ∼= q3 : L2(q). The

structure of the commuting involution graph was determined earlier in Theorem

4.18 via a direct method. To illustrate the generality of the theory developed in this

chapter, we provide an alternative proof for the diameter. Let X be the conjugacy

class of involutions of G and let t = tL ∈ X. For any x ∈ X, dim(CV (x)) = 1 and

dim([V, x]) = 2.

Lemma 7.11. dim(CV (tL) ∩ [V, xL]) = 1 for all xL ∈ ∆L
1 (tL).

Proof. Suppose CV (tL) ∩ [V, xL] = ∅. Since CV (tL)xL = CV (txL
L ) = CV (tL), for any

v ∈ CV (tL) either vxL = v or vxL = v−1. However, CV (tL) ∩ [V, xL] = ∅, so for all

v ∈ CV (tL), vxL = xL. Thus CV (tL) = CV (xL) and so tL = xL, a contradiction. As

dim(CV (tL)) = 1, the result follows.

Lemma 7.12. Let xL ∈ XL be such that [t, xL] = 1. Then d(t, x) ≤ 2.

Proof. If xV ∈ [V, xL] ∩ CV (t) then [t, x] = 1 by Lemma 7.8(ii). Assume

xV ∈ [V, xL] \ CV (t), and let yL = txL. Now ϕxL

∣∣
CV (t)∩[V,yL]

⊆ [V, xL] ∩ [V, yL] by

Lemma 7.10(i). If CV (t) ∩ [V, yL] ⊆ ker ϕxL
then dim(CV (t) ∩ [V, yL] ∩ CV (xL)) = 1.

Hence, CV (t) = CV (xL) by dimensions and by Lemma 7.9(ii), t = xL, providing us

with a contradiction. Therefore,

Im ϕx

∣∣
CV (t)∩[V,yL]

= [V, xL] ∩ [V, yL]. (7.5)

Now xV ∈ [V, xL] \ CV (t) and xyL

V − xV ∈ [V, xL] ∩ [V, yL]. However by (7.5), there

exists yV ∈ CV (t) ∩ [V, yL] such that yxL
V − yV = xyL

V − xV . Hence by Lemma 7.8(iii),

[y, x] = 1 and Lemma 7.8(ii) gives [t, y] = 1, so d(t, x) ≤ 2.

Lemma 7.13. Let yL ∈ ∆L
2 (t). Then for any yV ∈ [V, yL], d(t, y) = 2.

Proof. Since dim(CV (t)) = 1 and by Lemma 7.9(ii), CV (t) ∩ CV (yL) = ∅. Hence

CV (t) ∩ [V, xL] ∩ CV (yL) = ∅, and

Im ϕyL

∣∣
CV (t)∩[V,xL]

= [V, xL] ∩ [V, yL]. (7.6)
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Let yV ∈ [V, yL]. Then yxL
V − yV ∈ [V, yL] ∩ [V, xL] and hence there exists

xV ∈ CV (t) ∩ [V, xL] such that xyL

V − xV = yxL
V − yV by (7.6). Therefore

d(t, y) = 2.

Proposition 7.14. C(G,X) is connected of diameter 3.

Proof. Since C(L,XL) has diameter 3 (see Theorem 2.10), the result follows

immediately from Lemmas 7.10(ii) and Lemma 7.13.

4-Dimensional Affine Orthogonal Groups

Let G = V L be one of the following 4-dimensional affine orthogonal groups of

ε-type, for ε = ±1:

G ∼=




AO+
4 (q) ∼= q4 : (SL2(q) ◦ SL2(q))

AO−
4 (q) ∼= q4 : L2(q

2).

We first deal with a trivial case.

Proposition 7.15. Let G ∼= AO+
4 (q) and YL be the conjugacy class of L consisting

of one involution. Then C(G, Y ) is totally disconnected.

Proof. Let YL = {s} and observe that [V, s] = V . All elements of x ∈ Y are of the

form x = xV s. An easy calculation shows that [us, vs] = 1 if and only if u = v and

the result follows.

For the rest of the section we assume the following. If G is of +-type, let X be the

non-trivial conjugacy class of involutions in G. If G is of −-type, let X be the sole

conjugacy class of involutions in G. Let t = tL ∈ X, and observe that for any

x ∈ X, dim(CV (x)) = dim([V, x]) = 2.

Lemma 7.16. Let xL ∈ ∆L
1 (t).

(i) If G is of −-type, or G is of +-type and xL 6= −t, then dim(CV (t) ∩ [V, xL]) = 1.

(ii) If G is of +-type and xL = −t, then CV (t) = [V, xL].
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Proof. We subdivide (i) into two cases. The possibility where CV (t) ∩ [V, xL] = ∅ is

proved analogously as in Lemma 7.11. It remains to disprove the case when

CV (t) = [V, xL]. For all v ∈ CV (t), vt = v and vtxL = vxL = v−1, so [V, xL] ⊆ [V, txL].

If G is of −-type, or G is of +-type and xL 6= −t, then txL ∈ X and we have

equality and thus x = txL by Lemma 7.9(ii), providing a contradiction, so (i) holds.

Assume now G is of +-type and xL = −t. For u ∈ CV (t), we have

u = ut = u−x = (−u)x and so ux = −u, proving (ii).

Lemma 7.17. Let xL ∈ X ∩ L be such that [t, xL] = 1. Then d(t, x) ≤ 2.

Proof. Suppose Lemma 7.16(i) holds. If xV ∈ [V, xL] ∩ CV (t) then [t, x] = 1 by

Lemma 7.8(ii). Assume xV ∈ [V, xL] \ CV (t), and let yL = txL ∈ X. Now

ϕxL

∣∣
CV (t)∩[V,yL]

⊆ [V, xL]∩ [V, yL] by Lemma 7.10(i). If CV (t)∩ [V, yL] ⊂ ker ϕxL
then

dim(CV (t) ∩ [V, yL] ∩CV (xL)) = 1. Since yL = txL, and for any u ∈ CV (t) ∩CV (xL),

we have u = ut = ux = utx, this is impossible. Therefore,

Im ϕx

∣∣
CV (t)∩[V,yL]

= [V, xL] ∩ [V, yL]. (7.7)

Now xV ∈ [V, xL] \ CV (t) and xyL

V − xV ∈ [V, xL] ∩ [V, yL]. However by (7.7), there

exists yV ∈ CV (t) ∩ [V, yL] such that yxL
V − yV = xyL

V − xV . Hence by Lemma 7.8(iii),

[y, x] = 1 and Lemma 7.8(ii) gives [t, y] = 1, so d(t, x) ≤ 2. Suppose instead Lemma

7.16(ii) holds. Then CV (t) = [V, xL] and so by Lemma 7.8(ii), [t, x] = 1 for all

xV ∈ [V, xL], so proving the lemma.

Lemma 7.18. Let yL ∈ ∆L
2 (t) and xL ∈ ∆L

1 (t) be such that [xL, yL] = 1. Then

CV (t) ∩ [V, xL] ∩ CV (yL) = ∅ if and only if d(t, yV yL) = 2 for all yV ∈ [V, yL].

Proof. Assume CV (t) ∩ [V, xL] ∩ CV (yL) = ∅. Then

Im ϕyL

∣∣
CV (t)∩[V,xL]

= [V, xL] ∩ [V, yL]. (7.8)

Let yV ∈ [V, yL]. Then yxL
V − yV ∈ [V, yL] ∩ [V, xL] and hence there exists

xV ∈ CV (t)∩ [V, xL] such that xyL

V − xV = yxL
V − yV by (7.8), so d(t, y) = 2. To show

the converse, suppose dim (CV (t) ∩ [V, xL] ∩ CV (yL)) = 1. Let u ∈ [V, yL] \ CV (xL).

Then any v ∈ CV (t) ∩ [V, xL] also lies in CV (yL) by dimensions. So vyL − v = 0.

However, ux − u 6= 0 and so d(t, y) > 2.
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Lemma 7.19. For any xL ∈ XL, let BxL
∈ {CV (xL), [V, xL]}. Let xL, yL, zL ∈ XL

be distinct such that [xL, yL] = [yL, zL] = 1. Then dim (BxL
∩ByL

∩BzL
) = 1 if and

only if dim
(
B⊥

xL
∩ByL

∩B⊥
zL

)
= 1.

Proof. Suppose BxL
∩ByL

∩BzL
6= ∅. By Lemma 7.16,

dim(ByL
∩BxL

) = dim(ByL
∩BzL

) = 1, and so ByL
∩BxL

= ByL
∩BzL

. Since

[xL, yL] = [yL, zL] = 1, we must also have dim(ByL
∩B⊥

xL
) = dim(ByL

∩B⊥
zL

) = 1.

Let u ∈ ByL
∩BzL

. For any v ∈ ByL
∩B⊥

zL
, we have (u, v) = 0. Since

ByL
∩BzL

= ByL
∩BxL

, we have v ∈ B⊥
xL

and the result follows.

Proposition 7.20. C(G,X) is connected of diameter 3.

Proof. Let zL ∈ ∆L
3 (t) and let x ∈ ∆L

1 (t) and y ∈ ∆L
2 (t) be such that

[xL, yL] = [yL, zL] = 1. If CV (xL) ∩ [V, yL] ∩ CV (zL) = ∅ then for all zV ∈ [V, zL],

d(x, z) = 2 and thus d(t, z) = 3 by Lemma 7.10. We first suppose G is of −-type. If

CV (xL) ∩ [V, yL] ∩ CV (zL) 6= ∅, then by Lemma 7.19,

[V, xL] ∩ [V, yL] ∩ [V, zL] 6= ∅. (7.9)

If CV (t) ∩ [V, xL] ∩ CV (yL) = ∅ then by Lemma 7.18, d(t, y) = 2 and so by Lemma

7.10(ii), d(t, z) = 3.

It remains to consider the case CV (t) ∩ [V, xL] ∩ CV (yL) 6= ∅. By Lemma 7.19,

[V, t] ∩ [V, xL] ∩ [V, yL] 6= ∅. (7.10)

Since dim([V, xL] ∩ [V, yL]) = 1, together with (7.9) and (7.10),

dim([V, t] ∩ [V, xL] ∩ [V, yL] ∩ [V, zL]) = 1.

Set U = [V, t] ∩ [V, xL] ∩ [V, yL] ∩ [V, zL].

Since CG(U) E StabG(U) and tx ∈ CG(U), tx and z are not conjugate in StabG(U).

Hence by Lemma 7.7, there exists rL ∈ XL ∩ StabG(U) such that

[txL, rL] = [rL, zL] = 1. Since G has only one class of involutions, rL ∈ X. Suppose

U ≤ CV (rL). Then dim([V, zL] ∩ CV (rL) ∩ CV (txL)) = 1. Hence
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dim(CV (zL) ∩ CV (rL) ∩ [V, txL]) = 1 by Lemma 7.19. If

CV (zL) ∩ [V, rL] ∩ CV (txL) 6= ∅ then

CV (zL) = (CV (rL) ∩ [V, txL])⊕ ([V, rL] ∩ CV (txL)) .

Hence, txL ∈ StabG(CV (zL)) and by Lemma 7.9(ii), txL ∈ CG(zL), contradicting our

choice of zL. Therefore U ≤ [V, rL]. Then dim([V, zL]∩ [V, rL]∩CV (txL)) = 1 and so

dim(CV (zL)∩ [V, rL]∩ [V, txL]) = 1 by Lemma 7.19. Since dim([V, rL]∩CV (txL)) = 1

and CV (zL) ∩ [V, zL] = ∅, CV (zL) ∩ [V, rL] ∩ CV (txL) = ∅. Therefore, for all

zV ∈ [V, zL], d(txL, z) = 2 and hence d(t, z) = 3.

Suppose now G is of +-type. We have −x ∈ X and [−x, y] = [y, z] = 1. Suppose

CV (xL) ∩ [V, yL] ∩ CV (zL) 6= ∅. Then by Lemma 7.16(ii), CV (−xL) = [V, xL] and so

CV (−xL) ∩ CV (xL) = ∅. By dimensions, we must then have

CV (−xL) ∩ [V, yL] ∩ CV (zL) = ∅, so Lemma 7.18 gives d(xL, z) ≤ 2 and so

d(t, z) ≤ 3.

This proves Lemma 7.20.

Together Propositions 7.14 and 7.20 complete the proof of Theorem 1.9.



Chapter 8

Prelude to Future Work

We close this thesis by laying the groundwork for three avenues of continued

research in this area of study relating to commuting involution graphs.

8.1 Projective Symplectic Groups of Arbitrary

Dimension

We dealt with 4-dimensional projective symplectic groups in Chapters 3 and 4. In

the footsteps of Section 4 of [15], we look at G = Sp2n(q) where n > 2, q = pa and

p = 2. Let V denote the GF (q)G-symplectic module of dimension 2n and let t be

an involution in G for which dim CV (t) = 2n− 1. Put X = tG, the G-conjugacy

class containing t.

Theorem 8.1. C(G,X) is connected of diameter 2.

Proof. For x ∈ X, CG(x) ≤ StabG(CV (x)) with

StabG(CV (x)) ∼= q2n−1SL2n−2(q)(q − 1).

Set Kx = O2′(StabG(CV (x))). Then Kx
∼= q2n−1SL2n−2(q) and CG(x) = Kx. Let

x ∈ X \ {t}. If CV (t) = CV (x), then x ∈ Kt and so x ∈ ∆1(t). Now suppose that

CV (t) 6= CV (x). Then dim(CV (t) ∩ CV (x)) = 2n− 2. Let U be a 1-dimensional

subspace of CV (t) ∩ CV (x). Since [V, t] is a 1-space and G acts transitively on the

146
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1-subspaces of V , there exists y ∈ X such that [V, y] = U . So [V, y] ≤ CV (t) ∩CV (x)

and hence y leaves both CV (t) and CV (x) invariant. Thus

y ∈ Kt ∩Kx = CG(t) ∩ CG(x) and so d(t, x) ≤ 2 and we see that C(G, X) is

connected. Since C(G,X) cannot have diameter 1 (as then 〈X〉 would be abelian),

the theorem follows.

For a symplectic group of dimension 2n over a field of characteristic 2, there are
[

n
2

]
+ n conjugacy classes of involutions (see Lemma 7.7 of [10]). Theorem 2.12

shows that the diameters of the commuting involution graphs of arbitrary

dimensional special linear groups over a field of characteristic 2 have diameter at

most 6. Theorem 8.1 shows the simplest case for arbitrary dimensional symplectic

groups over fields of characteristic 2, when the involutions centralise a proper

submodule of maximal dimension. It remains to show whether the remaining

commuting involution graphs for arbitrary dimensional symplectic groups behave in

a similar way to those of the arbitrary dimensional special linear groups.

8.2 4-Dimensional Projective Special Unitary

Groups over Fields of Odd Characteristic

Chapters 5 and 6 dealt with U3(q) for all q, and U4(q) for q even. Naturally, the

next case to consider is U4(q) for q odd. As with the symplectic groups previously,

this case is a much tougher nut to crack. Moreover, there is a greater issue with

congruence than that of Theorem 1.4. For example, U4(q) has a centre of order 2

when q ≡ 1 (mod 4) and a centre of order 4 when q ≡ 3 (mod 4) so involutions in

U4(q) may actually be elements of order 8 in SU4(q). For Theorem 1.4, we utilised

the exceptional isomorphism PSp4(q) ∼= O5(q) and all involutions in O5(q) were

involutions in SO5(q). One then may consider the exceptional isomorphism

U4(q) ∼= O−
6 (q), but this endeavour is met with only limited success. For example,

Ω−
6 (q) = O−

6 (q) has a trivial centre only when q ≡ 1 (mod 4). When q ≡ 3 (mod 4),

Ω−
6 (q) 6= O−

6 (q) has a centre of order 2, so we still end up dealing with elements of
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order 4 that square to the non-trivial element in the centre. We at least begin the

examination of this problem by tackling the case most similar to that of Theorem

1.4.

Theorem 8.2. Let G ∼= U4(q) where q ≡ 1 (mod 4) and t an involution in G such

that |CG(t)| = q2(q − 1)(q4 − 1). Then C(G,X) is connected of diameter 3.

Proof. We use the well-known exceptional isomorphism U4(q) ∼= O−
6 (q). Let V be a

6-dimensional vector space equipped with an orthogonal form defined by the Gram

matrix

J =


I5

λ




for λ non-square in GF (q). Set H = SO−
6 (q) =

{
A|AT JA = J, det(A) = 1

}
. Since

q ≡ 1 (mod 4), −I6 /∈ H ′ and so Z(H ′) = 1. Thus we set G = H ′ = O−
6 (q) ∼= U4(q).

Let

t =


−I2

I4




and so dim(CV (t)) = 4. Proposition 4.1.6 of [32] shows that

StabGCV (t) ∼=
(
C q−1

2
× L2(q

2)
)

.R

where R is a group of order 4. Since CG(t) = StabGCV (t), it is easy to see t satisfies

the hypotheses of the theorem. We continue in a similar vein to that of Theorem

1.4. Let X = tG and for any x ∈ X \ {t}, dim(CV (x) ∩ CV (x)) ≥ 1. Hence,

X ⊆
⋃

U≤CV (t)
dim(U)=1

CG(U),

and for each U , t ∈ CG(U). CG(t) acts orthogonally on CV (t) and so acts on the set

of 1-subspaces of CV (t) in three orbits. The centralisers of a representative of each

orbit can be determined using Propositions 4.1.6 and 4.1.20 of [32]. Hence, for any

1-subspace U of CV (t), either CG(U) ∼= O5(q) or CG(U) ∼= AO−
4 (q). Theorem 1.4

bounds the diameters of the commuting involution graphs of O5(q) ∼= PSp4(q) by 3.

Moreover, if X covers the two conjugacy classes of O5(q), then for any x ∈ X not
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q Class |∆1(t)| |∆2(t)| |∆3(t)|
3 2A 66 1,232 1,536
5 2A 560 90,864 79,200

2B 585 114,816 120,848
7 2A 2,107 100,792

2B 2,227 1,514,400 1,064,447
9 2A 6,192 12,171,680 7,459,200

2B 6,273 12,380,032 11,561,344

Table 8.1: Disc sizes of the commuting involution graphs of PSU4(q), q ≤ 9.

CG(U)-conjugate to t, there exists y ∈ CG(U) ∩X such that [t, y] = [y, x] = 1 by

Lemma 7.7. Theorem 1.9 also shows that the diameter of the commuting involution

graphs of AO−
4 (q) is at most 3. Hence for any x ∈ X, d(t, x) ≤ 3.

To finish this section, we present the disc sizes of the commuting involution graphs

of U4(q) for q ≤ 9, as calculated in Magma [19] (Table 8.1). The notation for the

conjugacy classes follows Atlas [22] convention.

8.3 Rank 2 Twisted Exceptional Groups of Lie

Type

Projective unitary groups are twisted Chevalley groups of type 2An. The

4-dimensional projective symplectic groups studied in Chapters 3 and 4 are

Chevalley groups of type C2 = B2. The simple groups of Suzuki arise from a twisted

Dynkin diagram of type 2B2 = 2C2. These simple groups arise when the

characteristic of the field is 2, and has an automorphism σ such that xσ2
= x2 for all

x ∈ GF (2a). This only occurs when a is odd, and the simple groups are denoted

2B2(2
2m+1) = Sz(22m+1). The Suzuki groups are one of the easiest of the twisted

exceptional groups of Lie-type to understand, and so study in this area naturally

starts here.

Theorem 8.3. Let G ∼= Sz(22m+1). Then C(G,X) is disconnected with each

connected component a clique.
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Proof. By a result of Bender [16], G contains a strongly embedded subgroup, K.

Then by definition, K ∩Kx has odd order for any x ∈ G \K, and for any involution

t in G, CG(t) ≤ K (see, for example, Lemma 4.3 of [37]). The result follows

immediately.

One may wish to study the commuting involution graphs of other twisted

exceptional groups of Lie-type. The simple groups of at most Lie rank 2 not yet

studied are the triality twisted exceptional groups 3D4(q), the Ree groups R(q2m+1)

for q = 2, 3, and the untwisted Chevalley groups of type G2. To describe the

commuting involution graphs of such groups will complete the study for all the

simple groups of Lie rank at most 2.
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