
Unstable modes of the Q1-P0 element

Griffiths, David and Silvester, David

2011

MIMS EPrint: 2011.44

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


UNSTABLE MODES OF THE Q1–P0 ELEMENT

DAVID F. GRIFFITHS∗ AND DAVID J. SILVESTER †

Abstract. In this paper the unstable eigenmodes of Q1–P0 velocity/pressure finite element approximation for in-

compressible flow problems are characterised. It is shown that the inf-sup stability constant is O(h) in two dimensions

and O(h2) in three dimensions. The basic tool in the analysis is the method of modified equations which is applied to

finite difference representations of the underlying finite element equations. The asymptotic estimates are confirmed and

supplemented by numerical experiments.

1. Introduction. It is universally recognised that discretisation schemes for Stokes and Navier-

Stokes equations are subject to an inf-sup or div-stability condition, see [2]. The stability requirement is

manifested in practical computations by the predominance of staggered grid finite volume discretisations,

and the existence of unnatural velocity–pressure finite element combinations. These typically involve

velocity bubble functions, or else have a macro-element definition of the velocity field.

The “natural” (primitive variable) discretisations; non-staggered finite difference methods, low order

conforming finite element methods like Q1–P0 (trilinear/bilinear velocity with constant pressure), and

unstructured triangular finite volume discretisations (cell centered pressures with cell vertex velocities)

all tend to be unstable. The ramifications of this are considerable, in particular, the need to be an “expert

user” seems to have limited the acceptance of numerical simulation as an alternative to experimental

testing. In contrast, the use of numerical techniques in solid mechanics is universal. The Q1–P0 finite

element method is particularly controversial. Despite being damned by theoreticians after the discovery of

“weakly singular” modes [1], Q1–P0 is widely used in practice. In writing this paper, we hope to reconcile

these extreme views. For the first time a clean analysis of the instability mechanism is presented. This

builds on and clarifies previous discussions, [2] pp.240ff, [10], [1], [9], [6] and yet, paradoxically, leads to

an explanation as to why Q1–P0 invariably works well in practice.

The aim is to keep the paper as short as possible. Our results are divided into three sections. In

Section 2 we give a precise analytic description of the weakly singular modes in the two dimensional case.

Our analysis is confirmed and augmented by some numerical experiments presented in Section 3. We

extend our analysis to cover three dimensional elements in Section 4. We also consider the important issue

of the instability of L2–projection methods based on Q1–P0 approximation. Such methods are commonly

used in the solution of transient flow problems [4]. The important issue of optimal “stabilisation” of

Q1–P0 is not addressed herein, (although our results clearly have implications in this regard). For further

discussion on this aspect, see [11] and [5].

2. Approximation and Analysis. In this section we introduce the finite element approximation

of the Stokes equations in two dimensions, and we proceed to describe a means of estimating the relevant

constant in the inf-sup condition.

We consider the Stokes equations in the form

−∇2u + ∇p = f in Ω

∇ · u = 0 in Ω

u = g on Γ

(1)

where Ω = (0, 1)2 denotes the unit square with boundary Γ. An alternative formulation is discussed at

the end of this section. Assuming a grid of n × n square elements K, so that h = 1/n, approximation
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based on the Q1–P0 element uses function spaces

Vh =
{
u ∈ [H1(Ω)]2

∣
∣u|K ∈ Q1(K) ∀K ∈ Ω

}
,

Ph =
{
p ∈ L2(Ω)

∣
∣p|K ∈ P0(K) ∀K ∈ Ω

}
,

(2)

for velocity and pressure, respectively, where Q1(K) is the space of bilinear functions and P0(K) is

the space of constant functions on K. Denoting the velocity space satisfying homogeneous boundary

conditions by Vh,0 = Vh ∩ H1
0 (Ω), the finite element formulation is: find uh ∈ Vh which interpolate the

data uh = g at boundary nodes and ph ∈ Ph such that

(∇uh,∇v) + (∇ph,v) = (f ,v), ∀v ∈ Vh,0

−(q,∇ · uh) = 0, ∀q ∈ Ph.
(3)

With standard interpolating bases for the spaces Vh and Ph, this leads to the matrix system





A 0 Bt
x

0 A Bt
y

Bx By 0









U

V

P



 =





Fx

Fy

G



 , (4)

where U,V ∈ IRnu contain the nodal values of the x and y components of the approximation to uh at

the internal vertices, and P ∈ IRnp contains the element centroid values of the pressure approximation.

The matrix A is of order nu × nu, while both Bt
x and Bt

y are of order nu × np, with nu = (n − 1)2 and

np = n2.

The satisfaction of the inf-sup condition is dependent on the eigenvalues σ of

BK−1BtP = σMP (5)

(see [8]) where M = h2I is the np × np mass matrix corresponding to the pressure space, B = [Bx By]

represents the discrete divergence operator and K is the vector Laplacian

K =

(
A 0

0 A

)

.

Since the discrete velocity field is specified everywhere on the boundary, the discrete Stokes operator

has a two-dimensional nullspace spanned by the hydrostatic and chequerboard pressure modes [10].

Consequently, (5) has only n2 − 2 non–zero eigenvalues and we can order the eigenvalues so that

0 = σ1 = σ2 < σ3 ≤ σ4 ≤ · · · ≤ σn2 .

It may also be shown [8], that the nonzero eigenvalues of the “dual” problem

BtM−1B

(
U

V

)

= σK

(
U

V

)

(6)

coincide with those of (5). We shall find it more convenient to work with the related eigenproblem





A 0 Bt
x

0 A Bt
y

Bx By 0









U

V

P



 = λ





A 0 0

0 A 0

0 0 M









U

V

P



 (7)

which reduces to (5) on elimination of U and V and to (6) on elimination of P. This system has

an eigenvalue λ = 1 of multiplicity equal to the dimension of the nullspace of the discrete divergence

operator, that is (n−2)2, and the remaining 2(n2−2) eigenvalues are generated by the quadratic equation

λ(λ − 1) = σj for j = 3, . . . , n2:

λ−
j =

1 −
√

1 + 4σj

2
≤ 0 and λ+

j =
1 +

√
1 + 4σj

2
≥ 1. (8)
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Applying the analysis of Brezzi and Fortin ([2], sec II.3.2) or Malkus[8] the inf-sup stability of the

system (3) (or, equivalently, (4)) is determined by the square root of the smallest nonzero eigenvalue of

(5) that is

√
σ3 =

√

λ−
3 (λ−

3 − 1) (9)

and we shall, accordingly, refer to λ−
3 as the critical eigenvalue of (7) and denote it by λ∗. Experimental

evidence reported in [2] (Section VI.5.4) suggests that σ3 → 0 as h → 0 indicating that Q1–P0 is not

div-stable in general. To investigate this issue further we write the constituent equations of (7) in finite

difference form and then appeal to the method of modified equations. This will allow us to establish the

precise behaviour of σ3 for small values of h.

The x and y components of velocity at the grid point (ℓh, mh), ℓ, m = 1, 2, . . . , n − 1 are labelled

Uℓ,m, Vℓ,m, respectively. The pressure is defined at element centroids (ℓ + 1/2)h, (m + 1/2)h), ℓ, m =

0, 1, . . . , n − 1 and is consequently labelled Pℓ+1/2,m+1/2. The system of equations (7) (each divided by

h2) may then be expressed as

−(1 − λ)∇2
hUℓ,m + h−1δxµyPℓ,m = 0,

−(1 − λ)∇2
hVℓ,m + h−1µxδyPℓ,m = 0,

−h−1δxµyUℓ+1/2,m+1/2 − h−1µxδyVℓ+1/2,m+1/2 = λPℓ+1/2,m+1/2,

(10)

where

δxPℓ,m = Pℓ+1/2,m − Pℓ−1/2,m, µxPℓ,m = 1

2

[
Pℓ+1/2,m + Pℓ−1/2,m

]

are the usual central difference and averaging operators, respectively, and ∇2
h denotes the discrete Lapla-

cian generated by bilinear elements

∇2
hUℓ,m = h−2

[
δ2
x + δ2

y + 1

3
δ2
xδ2

y

]
Uℓ,m. (11)

Associated with (10) we have the boundary conditions Uℓ,m = Vℓ,m = 0 at nodes lying on the boundary

Γ. The system (10) is consistent to O(h2) with the continuous eigenvalue problem

−∇2u + ∇p = −λ∇2u in Ω,

−∇ · u = λp in Ω,

u = 0 on Γ,

(12)

which has one eigenvalue λ = 0 corresponding to the hydrostatic mode u = 0, p = constant, an eigenvalue

λ = 1 of infinite multiplicity with corresponding eigenfunctions satisfying ∇ · u = 0, p = 0, and a pair

of eigenvalues λ = (1 ±
√

5)/2 of infinite multiplicity corresponding to σ = 1 and having irrotational

eigenvectors (∇× u = 0).

In order to study the behaviour of the critical eigenvalue λ∗, we assume that the corresponding

eigenfunctions are highly oscillatory and have (smooth) envelopes (Ū , V̄ , P̄ ) defined by

Uℓ,m = h2(−1)ℓ+mŪℓ,m, Vℓ,m = h2(−1)ℓ+mV̄ℓ,m,

Pℓ+1/2,m+1/2 = (−1)ℓ+m+1P̄ℓ+1/2,m+1/2.
(13)

It then follows that

δ2
xUℓ,m = h2(−1)ℓ+m+1(4 + δ2

x)Ūℓ,m (14)

so that

∇2
hUℓ,m = 1

3
(−1)ℓ+m+1

[
8 − δ2

x − δ2
y − δ2

xδ2
y

]
Ūℓ,m. (15)
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Moreover,

δxµyPℓ,m = (−1)ℓ+m+1µxδyP̄ℓ,m,

µxδyPℓ,m = (−1)ℓ+m+1δxµyP̄ℓ,m,

δxµyUℓ+1/2,m+1/2 = h2(−1)ℓ+mµxδyŪℓ+1/2,m+1/2,

µxδyVℓ+1/2,m+1/2 = h2(−1)ℓ+mδxµyV̄ℓ+1/2,m+1/2.

When these relations are used to change dependent variables in (10) from (U, V, P ) to (Ū , V̄ , P̄ ) we find

that

1

3
(1 − h2µ)

[
8 − δ2

x − δ2
y − δ2

xδ2
y

]
Ūℓ,m − h−1δyµxP̄ℓ,m = 0,

1

3
(1 − h2µ)

[
8 − δ2

x − δ2
y − δ2

xδ2
y

]
V̄ℓ,m − h−1µyδxP̄ℓ,m = 0,

h−1δyµxŪℓ+1/2,m+1/2 + h−1µyδxV̄ℓ+1/2,m+1/2 = µP̄ℓ+1/2,m+1/2,

(16)

where µ = λ/h2, together with homogeneous Dirichlet boundary conditions on Ū and V̄ .

Denoting the Q1 basis function at node (ℓh, mh) by φℓ,m, and supposing that uh = [uh, vh] ∈ Vh

has nodal values [Uℓ,m, Vℓ,m], then, since (∇φℓ,m,∇uh) = h2∇2
hUℓ,m and (φℓ,m, uh) = h2(1 + 1

6
δ2
x)(1 +

1

6
δ2
y)Uℓ,m, it is easy to see that (16) is the Q1–P0 discretisation of the modified system

1

3
(1 − h2µ)

[
8ū − 7

3
h2∇2ū − 4

9
h2ūxxyy

]
− p̄y = 0 in Ω

1

3
(1 − h2µ)

[
8v̄ − 7

3
h2∇2v̄ − 4

9
h2v̄xxyy

]
− p̄x = 0 in Ω

ūy + v̄x = µp̄ in Ω

ū = v̄ = 0 on Γ.

(17)

In the limit h → 0 we obtain the reduced problem

8

3
ū − p̄y = 0 in Ω,

8

3
v̄ − p̄x = 0 in Ω,

ūy + v̄x = µp̄ in Ω,

ū = v̄ = 0 on Γ

(18)

which implies that

∇2φ − 8

3
µφ = 0 in Ω (19)

for each of the dependent variables φ = ū, v̄, p̄. This, being a second order elliptic eigenvalue problem,

requires only one boundary condition whereas the system (18) contains two. The equations (17) therefore

represent a singularly perturbed system (see, for example, [7]) whose solutions will, in general, contain

boundary layers. Bearing this in mind, we may identify the smallest nonzero eigenvalue of (17) as

µ = − 3

8
π2 + O(h)

associated with which there are two eigenfunctions, having outer expansions





ū1

v̄1

p̄1



 =





µ sin πy

0

π cosπy



 ,





ū2

v̄2

p̄2



 =





0

µ sinπx

π cosπx



 . (20)

It is important to note that since ū1 = 0 on Γ, it exhibits boundary layers of width O(h) along the vertical

boundaries x = 0, 1. Similarly, v̄2 has boundary layers of width O(h) along the horizontal boundaries
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y = 0, 1. We also note that, for this modified system, a “pressure gradient” in the y–direction induces a

“flow” in the x–direction and vice–versa. We summarise in the form of a theorem.

Theorem 1. The critical eigenvalue of (7) is given by λ∗ = − 3

8
π2h2 + O(h3) and the inf-sup

constant for Q1–P0 elements is given by

√
σ3 =

√
3

8
πh + O(h2).

The eigenspace corresponding to λ∗ has dimension two and is spanned by mutually orthogonal eigenvectors

given, approximately, by





Uℓ,m

Vℓ,m

Pℓ+1/2,m+1/2



 = (−1)ℓ+m+1





3

8
π2h2 sin πmh

0

π cosπ(m + 1/2)h



 (21)

and





Uℓ,m

Vℓ,m

Pℓ+1/2,m+1/2



 = (−1)ℓ+m+1





0
3

8
π2h2 sinπℓh

π cosπ(ℓ + 1/2)h



 (22)

at internal nodes of the domain and Uℓ,m = Vℓ,m = 0 at boundary nodes.

The amplitudes of the velocity and pressure contributions to these critical eigenvectors differ by a

factor O(h2), which explains why, in computations, the instabilities manifest themselves most strongly

in the pressure field. This will be explored further in the next section in connection with the model lid

driven cavity problem.

An alternative Stokes formulation to (1) is the stress divergence form (see [2] pp.13):

−∇2u−∇(∇ · u) + ∇p = f in Ω

∇ · u = 0 in Ω

u = g on Γ

(23)

which after discretisation gives a matrix system which is slightly different to (4) above. If we discretise

(23) using Q1–P0 and follow the procedure described by (13) for changing variables, then it easily shown

that the resulting reduced problem is also of the form (18) except that the factor 8/3 is replaced by 4.

In this case we have the result stated below.

Theorem 2. The inf-sup constant for Q1–P0 approximation of (23) is given by

√
σ3 = 1

2
πh + O(h2).

The corresponding eigenspace has dimension two and is spanned by mutually orthogonal eigenvectors

given, approximately, by (21) and (22).

3. Numerical Experiments. In this section, we present some computational results indicating

that the asymptotic analysis of Section 2 correctly predicts the behaviour of the critical eigenvalues of

(7), for representative values of h. All computations presented here were performed using MATLAB 4.1

on a SUN Sparcstation–10.

We first consider the critical eigenvalue of Theorem 1. To this end, we solve the stability eigenproblem

(5) analysed above, that is, using a Q1–P0 finite element subdivision of n × n square elements. The

numerically computed eigenvalues σj are presented in Table 1. The smallest eigenvalues are clearly

tending to zero like O(h2). The largest eigenvalue is converging to a asymptotic limit of unity. To

confirm the eigenvalue estimate given in Theorem 1, the quantity −(8

3
)λ∗/(πh)2 is plotted as a function
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of h in Figure 1. As h tends to zero the asymptotic limit is clearly achieved. Note also that for “unstable”

eigenvalues: σj = O(h2) implies that

λ−
j = −σj + O(h3) and λ+

j = 1 + σj + O(h3) (24)

suggesting that λ∗ → −σ3 as h → 0.

Grid σ3 = σ4 σ5 σn2

8 × 8 4.66E-2 7.34E-2 0.9764

16 × 16 1.32E-2 2.39E-2 0.9941

32 × 32 3.46E-3 6.63E-3 0.9984

64 × 64 8.86E-4 1.74E-3 0.9996

Table 1. Behaviour of the eigenvalues σj satisfying (5).
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Fig. 1. Behaviour of the scaled maximum negative eigenvalue − 8

3
λ∗/(π2h2).

Further confirmation of the analysis in section 2 is given by the contour plots of raw and “demodu-

lated” eigenvectors in figures 2–5. Even with a relatively large value of h, the smoothed pressures in fig-

ures 2–4 can be seen to closely approximate the harmonic eigenfunctions: p̄ij = cos iπx cos jπy; i, j = 0, 1.

The “raw” velocity corresponding to the third (nonzero) unstable eigenvalue σ5 is plotted in figure 6.

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

raw pressure:  16X16 grid

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

smoothed pressure:  16X16 grid

Fig. 2. Contours of pressure component of the first

unstable eigenvector corresponding to λ∗.
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Fig. 3. Contours of pressure component of the second

unstable eigenvector corresponding to λ∗.
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Fig. 4. Contours of pressure component of the unstable

eigenvector corresponding to σ5.
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Fig. 5. Contours of pressure component of the eigenvector

corresponding to the maximum eigenvalue σn2 .
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raw velocity

Fig. 6. Velocity component of the unstable eigenvector corresponding to σ5.

perturbed grid 8x8 perturbed grid 16x16

Fig. 7. First two randomly perturbed grids.

It must be emphasised that the “unstable behaviour” in Table 1 is only observed in the case of

uniformly refined grids. In fact, cartesian grids of square elements are really the “worst case” possible.

It is ironic that the “best” mathematical analysis of Q1–P0 [9] is restricted to grids of uniformly refined

macroelements. See [5] for further discussion of this issue. It is also worth noting that the instability

of Q1–P0 can be “removed” by appropriately perturbing an ostensibly uniform grid. To see this, a

set of results is given in Table 2, using the nested grid sequence illustrated in figure 7, where at every

refinement level the newly introduced nodes (mid-sides and centroid) are randomly perturbed. There is

no “spurious” zero eigenmode in this case, furthermore, the non-zero eigenvalues appear to stay bounded

away from zero as the mesh is successively refined.

Grid σ2 σ3 σ4 σn2

8 × 8 5.60E-3 4.49E-2 5.17E-2 0.9755

16 × 16 1.12E-2 2.04E-2 2.19E-2 0.9935

32 × 32 1.29E-2 1.44E-2 1.48E-2 0.9984

64 × 64 1.39E-2 1.49E-2 1.51E-2 0.9996

Table 2. Behaviour of the eigenvalues σj

using sequence of randomly perturbed grids.

The instability of section 2 is still apparent, on the other hand, if uniform grids of rectangular
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elements are used. In this case the instability is more subtle in that if the aspect ratio is large, λ∗

appears to be bounded away from zero on coarse grids. It is only when h is sufficiently small that the

O(h2) asymptotic behaviour of λ∗ is observed.

Having established the structure of the underlying instability, the ramifications for practical com-

putations need to be addressed. The critical issue is the effect of the instability on solution accuracy,

and the real possibility of discrete solutions blowing up as h → 0, as suggested in [1]. To fix ideas we

concentrate on a model test problem: driven cavity flow with zero velocity imposed on three sides of the

unit square, with a unit horizontal velocity and zero vertical velocity on the lid. Specifying the horizontal

velocity to be unity at the top corners gives a leaky cavity, whereas a value of zero at the corner models

the “tough” watertight cavity [10]. In either case, mixed finite element discretisation gives the matrix

system





A 0 Bt
x

0 A Bt
y

Bx By 0









u

v

p



 =





f

0

g



 , (25)

where g is identically zero in the leaky cavity case and is non-zero otherwise.

The solution of (25) may be conveniently expressed in terms of the eigenvectors of (7)





u

v

p



 =

3∑

j=np

αj





Uj

Vj

Pj





︸ ︷︷ ︸

λ<0

+

nu−np+4
∑

k=1

γk





Uk

Vk

Pk





︸ ︷︷ ︸

λ=0 or λ=1

+

np∑

j=3

βj





cjUj

cjVj

Pj





︸ ︷︷ ︸

λ>1

. (26)

where the eigenvalues defined by (8) are ordered so that

λ−
np

≤ . . . ≤ λ−
3 < λ−

2 = λ−
1 = 0,

1 = λ+
1 = λ+

2 < λ+
3 ≤ . . . ≤ λ+

np

and all the other eigenvalues are unity. The constants in (26) satisfy

cj =
λ−

j − 1

λ+
j − 1

=
λ+

j

λ−
j

,

and the amplitude coefficients αj , βj are given by

αjλ
−
j =

Ut
jf + Pt

jg

Ut
jAUj + Vt

jAVj + Pt
jMPj

, (27)

βjλ
+
j =

cjU
t
jf + Pt

jg

cj
2Ut

jAUj + cj
2Vt

jAVj + Pt
jMPj

, (28)

where M = h2I as in Section 2.

Our goal is then to use the results of Theorem 1 to estimate the projection of the discrete solution

onto the locally alternating eigenvectors. For the leaky cavity problem, the right hand side of (27) is

zero for the two singular pressure modes (since Uj = 0, j = 1, 2 and g = 0), thus the singular system

(25) is consistent. In addition, the components of f have the value unity at all interior nodes below the

lid ( that is for y = 1−h) and are zero otherwise. After rescaling the eigenvector (21) (by multiplying by√
2/π) so that the underlying pressure function p̄1 in (20) has unit L2–norm, we see that the numerator

of (27) corresponding to the leading term in the expansion (26) is given by

Ut
3f =

{
(3
√

2πh2/8) sinπh if n is even,

0 if n is odd.
(29)
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From (20) we see that Ut
3AU3 is O(h2) smaller than 1 = Pt

3MP3 = h‖P3‖2
, so the dominant coefficient

in the expansion (26) is of the form

α3 =
1

λ∗
Ut

3f + O(h2). (30)

Combining (30) with (29) and (24) shows that in the worst case (n even, assumed for the remainder of

this section)

α3 =
√

2h + O(h2). (31)

Similarly it may be shown that the coefficients α4 and α5 are both identically zero in this case.

In contrast, the discrete watertight cavity problem is inconsistent, since the right hand side of (27)

is not zero in the case of the singular chequerboard mode. The crucial difference is that g has two non–

zero components ± 1

2
h corresponding to the corner elements adjacent to the driven lid. Furthermore,

the unstable pressure vector P3 has values ±
√

2 cos 1

2
πh in the corresponding components, so that

Pt
3g =

√
2h cos 1

2
πh. This suggests that the leading coefficient is of the form

α3 =
8
√

2

3π2
h−1 + O(1). (32)

Numerically computed values of α3 (ignoring the “lower order” velocity contributions to the denominator

in (27)) are presented in Table 3, and can be seen to confirm the coefficient estimates (31) and (32).

Our conclusions are thus consistent with prior expectations; in the ill-posed watertight case, the discrete

solution blows up like h−1 as h is decreased to zero, in contrast, even though the inf-sup constant is still

O(h) the Q1–P0 solution does not blow up as h → 0 in the leaky case.

Leaky cavity Tight cavity

Grid α3 α3/h α3 α3h

12 × 12 1.365E-1 1.638 5.906E0 0.4922

16 × 16 9.791E-2 1.567 7.327E0 0.4579

24 × 24 6.268E-2 1.504 1.027E1 0.4281

32 × 32 4.615E-2 1.477 1.327E1 0.4148

Table 3. Numerically computed amplitude coefficients

corresponding to the critical eigenvalue λ∗.

Many codes that use the Q1–P0 element post–process the pressures using some form of “area–

weighted” smoothing [10]. This corresponds in the present context to computing µxµyP at all velocity

nodes. Such smoothing would, by the structure of the eigenvectors given in Theorem 1, annihilate the

principal component α3P3. If pressure smoothing is applied then the first nontrivial contribution in the

expansion (26) is for the eigenfunction p̄ = 2 cos 2πx cosπy of (18), corresponding to σ8 = 15π2h2/8.

Although the coefficient α8 for the tight cavity is still O(h−1) in this case, the smoothed eigenvector has

norm O(h2) so the net contribution of the unstable mode is reduced to O(h).

4. Extensions and Generalisations. In this section we extend the analysis of Section 2 to other

related problems. To keep the discussion brief, we focus on the results obtainable, and only describe the

technicalities which differ from those in Section 2.
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4.1 Q1–P0 Brick elements. Taking Ω to be the unit cube in three dimensions, the Q1–P0 approx-

imation of the eigenvalue problem (12) leads to the system

−(1 − λ)∇2
hUℓ,m,n + h−1δxµyµzPℓ,m,n = 0,

−(1 − λ)∇2
hVℓ,m,n + h−1µxδyµzPℓ,m,n = 0,

−(1 − λ)∇2
hWℓ,m,n + h−1µxµyδzPℓ,m,n = 0,

−h−1δxµyµzU − h−1µxδyµzV − h−1µxµyδzW = λP,

(33)

where the variables in the final equation are indexed in the obvious way (Uℓ+1/2,m+1/2,n+1/2, etc.), and

∇2
h represents the finite difference Laplacian

∇2
hUℓ,m,n = h−2

[
δ2
x + δ2

y + δ2
z + 1

3

(
δ2
xδ2

y + δ2
yδ2

z + δ2
zδ2

x

)
+ 1

12
δ2
xδ2

yδ2
x

]
Uℓ,m,n. (34)

The analogue of the change of variables (13) is

Uℓ,m,n = h3(−1)ℓ+m+nŪℓ,m,n

with similar definitions for V and W , and

Pℓ+1/2,m+1/2,n+1/2 = (−1)ℓ+m+n+1P̄ℓ+1/2,m+1/2,n+1/2.

Substituting these into (33) and using the identities

µxPℓ,m,n = 1

2
(−1)ℓ+m+nδxP̄ℓ,m,n,

δxPℓ,m,n = 2(−1)ℓ+m+nµxP̄ℓ,m,n,

µxUℓ+1/2,m+1/2,n+1/2 = 1

2
(−1)ℓ+m+nh3δxŪℓ+1/2,m+1/2,n+1/2,

δxUℓ+1/2,m+1/2,n+1/2 = 2(−1)ℓ+m+nh3µxŪℓ+1/2,m+1/2,n+1/2,

we find that the resulting equations correspond to a discrete approximation of a modified system which,

in the limit h → 0, gives rise to the reduced system

4

3
ū + 1

2
p̄yz = 0, 4

3
v̄ + 1

2
p̄xz = 0 4

3
w̄ + 1

2
p̄xy = 0,

ūyz + v̄xz + w̄xy = µp̄,
(35)

in Ω, with µ = λ/h4. The system must also accommodate the boundary conditions ū = v̄ = w̄ = 0 on

Γ. The equations (35) imply that each of the variables ū, v̄, w̄, p̄ has to satisfy the eigenvalue problem

φyyzz + φzzxx + φxxyy = − 4

3
µφ in Ω (36)

for which there is an excess of boundary conditions. Arguing as in Section 2, we need to identify the

smallest nonzero eigenvalue, namely

µ = − 3

4
π4 + O(h)

which is associated with three eigenfunctions in this case. The first of these has an outer expansion

(normalised so that ‖p̄‖2 = 1)

ū1 =
µ

π2
sin πy sin πz

p̄1 = 2 cosπy cosπz

(37)

with v̄1 = w̄1 = 0, and will exhibit boundary layers of width O(h) along the planes x = 0, 1. The other

two eigenfunctions are obtained by simultaneous cyclic permutations of both (ū, v̄, w̄) and (x, y, z). We

summarise in the form of a theorem.

11



Theorem 3. The inf-sup constant for Q1–P0 approximation of (1) in three dimensions is given by

√
σ = 1

2

√
3π2h2 + O(h3).

The corresponding eigenspace has dimension three and is spanned by mutually orthogonal eigenvectors

which may be deduced from (37).

It would appear from the above that the Q1–P0 brick element is more unstable than it’s two dimen-

sional analogue, by an order of h. This is not necessarily so however, solving the consistent leaky three

dimensional driven cavity (u = 1, v = w = 0 on the plane z = 1), the coefficient of the critical eigenmode

analogous to (30) is of the form

α∗ = 2h + O(h2)

which is the same order of h as (31). On the other hand, for the tight cavity, where u = v = w = 0 along

the leading and trailing edges of the lid, we find that

α∗ =
8

3π4
h−2 + O(h−1)

in which case the instability is indeed more severe than in two dimensions.

4.2 Inf–Sup Stability of L2 Projection Methods. A number of (semi-)explicit integration meth-

ods for the time–dependent Navier-Stokes equations force incompressibility by projecting the discrete

velocity field onto the associated divergence-free subspace. Working with the standard L2 projection,

the associated pressure may be computed from a “pressure Poisson equation”, of the form (5) except

that the matrix K is either the mass matrix of the velocity space [3] (section 9), or else is a “lumped”

approximation thereof [4].

To study the inf-sup stability of the L2 projection in the Q1–P0 case, we express the associated

eigenproblem (cf. (10)) in finite difference form

(1 − λ)(1 + 1

6
δ2
x)(1 + 1

6
δ2
y)Uℓ,m + h−1δxµyPℓ,m = 0,

(1 − λ)(1 + 1

6
δ2
x)(1 + 1

6
δ2
y)Vℓ,m + h−1µxδyPℓ,m = 0,

−h−1δxµyUℓ+1/2,m+1/2 − h−1µxδyVℓ+1/2,m+1/2 = λPℓ+1/2,m+1/2,

(38)

and view it as a consistent approximation of

u + ∇p = λu,

−∇ · u = λp,
(39)

in Ω, with u = 0 on Γ. Like (12), the system (39) has one eigenvalue λ = 0 corresponding to the

hydrostatic mode u = 0, p = constant, and an eigenvalue λ = 1 of infinite multiplicity with corresponding

eigenfunctions satisfying ∇ · u = 0, p = 0. It is different from (12), however, in that it has no nontrivial

irrotational eigenvectors. The system (38) may also be viewed as a consistent approximation to order

O(h2) of the singularly perturbed system

(1 − λ)
[
u + 1

6
h2∇2u

]
+ ∇p = 0 in Ω,

−∇ · u = λp in Ω,

u = 0 on Γ

(40)

where only second derivative terms are retained, since the retention of higher derivatives would require

additional boundary conditions. The system (39) clearly provides a reduced system for (40), furthermore,

the boundary conditions may be relaxed by the introduction of suitable boundary layers, to involve only

12



the normal component of velocity. In this case the pressure eigenfunctions of the reduced system are

those of the Neumann problem, and the eigenvalues then satisfy λ(λ − 1) = σ, where

σ = (j2 + k2)π2, j, k = 0, 1, 2, . . . (41)

has multiplicity two for j 6= k. Clearly one of the eigenfunctions is given by





u

v

p



 =





jπ sin jπx cos kπy

kπ cos jπx sin kπy

(1 − λ) cos jπx cos kπy



 (42)

and the other is obtained by interchanging j and k.

A second set of eigenvalues may be deduced by substituting

Uℓ,m = (−1)ℓ+mŪℓ,m, Vℓ,m = (−1)ℓ+mV̄ℓ,m,

Pℓ+1/2,m+1/2 = (−1)ℓ+m+1P̄ℓ+1/2,m+1/2,
(43)

into (38). These substitutions differ from (13) in that the velocities are no longer scaled by h2. Following

the procedure described in Section 2 we obtain the reduced equations

1

9
(1 − λ)ū + ∇p̄ = 0,

−∇ · ū = λp̄,

whose eigenvalues now satisfy λ(λ−1) = 9σ, with σ given by (41), and the corresponding eigenfunctions

(ū, v̄, p̄) again are of the form (42). This gives our final theorem.

Theorem 4. Using Q1–P0 approximation on a square n×n grid, the discrete L2 projection problem

BK−1BtP = σMP, (44)

with K the velocity mass matrix, has eigenvalues given by

σ ≈ (j2 + k2)π2, and σ ≈ 9(j2 + k2)π2, j, k = 0, 1, 2, . . . (45)

(for values of j and k that are small compared with n), and corresponding eigenvectors with pressure

components

Pℓ,m ≈ cosπjℓh cosπkmh and Pℓ,m ≈ (−1)ℓ+m+1 cosπjℓh cosπkmh,

and velocity components which may be deduced from (42) and (43).
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Fig. 8. Comparison of analytic vs. computed eigenvalues of

the L2 pressure projection equation.

Some numerical results which confirm our analytic estimates are presented in figure 8, where we plot

the first 25 scaled eigenvalues σ/π2 for a range of values of h. The vertical lines depict the predicted

eigenvalues from Theorem 4, and the symbol ! above particular eigenvalues indicate those in the set (45)

which have locally alternating eigenvectors.

When the velocity mass matrix is “lumped”, the operator (1+ 1

6
δ2
x)(1+ 1

6
δ2
y) in (38) may be replaced by

the identity. The velocities can then be eliminated from the resulting system giving a discrete eigenvalue

problem for the pressure, which is the usual 5–point finite difference replacement of the Laplacian rotated

through 45◦. It follows that the pressures on “red” and “black” elements are unconnected. However,

the equation for the pressure cannot be treated in isolation since the boundary conditions are imposed

through the velocites. When these effects are taken into account, the only change in the statement of

Theorem 4 is that the factor 9 in (45) is absent. Thus, in contrast to the “consistent mass” projection,

oscillatory and smooth eigenvectors are present in pairs in the lumped mass case. That is each eigenvalue

has multiplicity two for j = k and multiplicity four otherwise, with associated eigenvectors as given in

Theorem 4.

5. Conclusions. In this work we have analysed two fundamental properties of Q1–P0 approxima-

tion on uniform grids. Firstly, in two and three dimensions, the inf–sup constant for the Stokes (H1–)

projection tends to zero with h, when it needs to be bounded away from zero in order to be stable in the

standard sense. The projection of the unstable eigenmodes onto the boundary data is sufficiently small

however, that convergence to the true solution as h → 0 is still possible in cases of physical interest. Sec-

ondly, the inf-sup constant associated with the L2–projection is bounded away from zero, although the

eigenspace of the projection operator is still contaminated by unstable eigenmodes which are identical

to those arising in the Stokes projection.
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[6] C. Johnson and J. Pikäranta. Analysis of some mixed finite element methods related to reduced integration. Math.

Comp., 38:375–400, 1982.

[7] J. Kevorkian and J. Cole. Perturbation Methods in Applied Mathematics. Springer-Verlag, New York, 1981.

[8] D. Malkus. Eigenproblems associated with the discrete LBB condition for incompressible finite elements. Int. J. Eng.

Sci., 19:1299–1310, 1981.
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