
A More Accurate Briggs Method for the
Logarithm

Al-Mohy, Awad H.

2011

MIMS EPrint: 2011.43

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

A More Accurate Briggs Method for the Logarithm

Awad H. Al-Mohy

Abstract A new approach for computing an expression of the form a1/2k − 1
is presented that avoids the danger of subtractive cancellation in floating point
arithmetic, where a is a complex number not belonging to the closed negative
real axis and k is a nonnegative integer. We also derive a condition number
for the problem. The algorithm therefore allows highly accurate numerical
calculation of log(a) using Briggs’ method.

Keywords logarithm function, Briggs’ method, Briggs’ tables, inverse scaling
and squaring method

Mathematics Subject Classification (2000) 15A60, 65F30

1 Introduction

In the 17th century, Henry Briggs published his table of logarithms in Arith-
metica Logarithmica. He used an elegant method to calculate logarithms of pos-
itive real numbers and build up tables of logarithms. To approximate log(a),
where a > 0, Briggs exploited the relation log(a) = 2 log(a1/2) repeatedly and
obtained log(a) = 2k log(a1/2k

), where k ∈ N. Then he used the first order
approximation of the logarithm function log(1 + x) ≈ x, which yields a good
approximation for small x. Taking x = a1/2k−1 for sufficiently large k (Briggs’
choice was 54), he calculated logarithms to base 10 via the relation [3]

log10(a) ≈ 2k log10(e)(a
1/2k − 1). (1.1)

Version of May 25, 2011.

A. H. Al-Mohy
Department of Mathematics, King Khalid University, Abha, Saudi Arabia
E-mail: aalmohy@hotmail.com
http://www.maths.manchester.ac.uk/˜almohy

2

The method of Briggs has been generalized to the matrix logarithm as pro-
posed by Kenney and Laub [4] in a method known in the literature as the
inverse scaling and squaring method. The weakness of the method for both
the scalar and the matrix case is that the computation of the key quantity
a1/2k − 1 in floating point arithmetic (by calculating k successive square roots
then subtracting 1) is prone to loss of accuracy because of massive subtractive
cancellation that can occur when a1/2k

approaches 1 for a large k. Cancella-
tion happening when two nearly equal numbers are subtracted often leads to
numerical instability. For more insight into the effect of cancellation and how
it can sometimes be avoided by using different mathematical formulations, see
[2, sec. 1.7]. To illustrate, take a = e and k = 24 and consider IEEE double
precision arithmetic, for which the unit roundoff is u := 2−53 ≈ 1.1 × 10−16.
As 1/2k is small, we have a1/2k − 1 ≈ loge(a)/2k ≈ 10−8. Thus almost half of
the significant digits in a1/2k

are lost, and hence log10(a) inherits the loss of
significant digits if approximated using (1.1).

Kenney and Laub [5] presented an overview of Briggs’ method and gave
a relative error analysis on how the number k can be selected. They pointed
out the danger of cancellation in the calculation of a1/2k − 1. In the same
context, Dieci and Papini [1] discussed this weakness and illustrated it by a
similar example. They stated that “It is important to stress that the observed
loss of digits is unavoidable given the finite precision representation of x, and
no algorithm to approximate the logarithm can avoid it, whether or not 1 is
subtracted”.

In this paper we present a new algorithm for computing the quantity
a1/2k − 1 that avoids subtractive cancellation, and illustrate its advantages
in numerical experiments. For a ∈ C \ R−, where R− is the closed negative
real axis, we denote by a1/2 the principal square root of a, which is the solution
of the equation z2 − a = 0 whose real part is positive. In addition, we denote
by log(a) the unique principal logarithm of a, which is the solution of the
equation ez = a whose imaginary part lies in the strip { z : −π < Im(z) < π }
[3, Thm. 1.31].

2 Avoiding subtractive cancellation

In this section we present a formulation of the quantity a1/2k − 1 and show
its advantage in avoiding subtractive cancellation. We begin by the following
lemma.

Lemma 2.1 For a ∈ C \ R−, we have

a1/2k − 1 =
a− 1∏k

i=1(1 + a1/2i)
. (2.1)

3

Proof Applying the relation a1/2k − 1 = (a1/2k+1 − 1)(a1/2k+1
+ 1) repeatedly,

we have

a− 1 = (a1/2 + 1)(a1/2 − 1)
= (a1/2 + 1)(a1/4 + 1)(a1/4 − 1)
...
= (a1/2 + 1)(a1/4 + 1)(a1/8 + 1) . . . (a1/2k

+ 1)(a1/2k − 1)

= (a1/2k − 1)
k∏

i=1

(1 + a1/2i

).

The formula (2.1) follows immediately.

If a in Lemma 2.1 is a real number, then a > 0 and it is clear that the denom-
inator in the right hand side of (2.1) is a product of positive real numbers,
so subtractive cancellation cannot occur in floating point arithmetic. If a is
nonreal, the product

∏k
j=1(1 + a1/2j

) can be evaluated in either polar form or
conventional form. We now show that subtractive cancellation cannot occur in
the product when using the polar form of a whereas it can occur when using
conventional product formula for the complex numbers, and we show how that
can be completely avoided. First, we use the polar representation a := ρeiθ,
where ρ = |a| > 0 and θ = arg(a) with 0 < |θ| < π. Thus the principal square
root of a can by written as a1/2 = ρ1/2

(
cos(θ/2) + i sin(θ/2)

)
and therefore

a1/2j

= ρ1/2j (
cos(θ/2j) + i sin(θ/2j)

)
. Let 1 + a1/2j

= ρj eiθj , where j = 1: k.
Thus we have

ρ2
j = 1 + ρ1/2j−1

+ 2ρ1/2j

cos(θ/2j), θj = tan−1

(
ρ1/2j

sin(θ/2j)
1 + ρ1/2j cos(θ/2j)

)
,

(2.2)
and

k∏

j=1

(1 + a1/2j

) =




k∏

j=1

ρj


 ei

∑k
j=1 θj . (2.3)

We show now that the polar representation of the product in (2.3) is not prone
to subtractive cancellation. There are two cases for θ. If 0 < θ < π, then the
θj are positive for all j since sin(θ/2j) is positive. Similarly, if −π < θ < 0,
then the θj are negative. In either cases,

∑k
j=1 θj is a sum of one-signed real

numbers, θj , so subtractive cancellation cannot happen.
Second, consider now the conventional product formula for the complex

numbers

(x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1), (2.4)

where (x1, y1), (x2, y2) ∈ R× R. We investigate the possibility of cancellation
when evaluating the denominator of (2.1) using the formula (2.4). Let αj +

4

iβj = 1+a1/2j

and xs + iys =
∏s

j=1(1+a1/2j

). We have x1 = α1 and y1 = β1,
so we can compute xk + iyk using (2.4) via the recurrence

xs = xs−1αs − ys−1βs (2.5)
ys = ys−1αs + xs−1βs, s = 2: k.

For two floating point numbers λ1 and λ2 resulting from several other calcu-
lations, the necessary condition for subtractive cancellation is to have |λ1 −
λ2|/|λ1| ¿ 1. Hence if this relative difference is of order 1, it is a sign that
no cancellation can occur. We use this test below to verify whether subtrac-
tive cancellation can happen at any step in real or imaginary parts of the
recurrence (2.5).

As the tangent function is one-to-one in the interval (−π/2, π/2) and its
inverse is strictly increasing, we have from (2.2) that 1

0 < |θj | = tan−1

(
ρ1/2j

sin(|θ|/2j)
1 + ρ1/2j cos(|θ|/2j)

)
< tan−1

(
tan(|θ|/2j)

)
= |θ|/2j

(2.6)
for all j ≥ 1 and therefore

∣∣∣∣∣∣

k∑

j=1

θj

∣∣∣∣∣∣
=

k∑

j=1

|θj | <
k∑

j=1

|θ|/2j < |θ|
∞∑

j=1

2−j = |θ|. (2.7)

From (2.3) we have

xs =




s∏

j=1

ρj


 cos




s∑

j=1

θj


 , ys =




s∏

j=1

ρj


 sin




s∑

j=1

θj


 . (2.8)

We observe that a massive subtractive cancellation can occur in the real
parts if |∑s

j=1 θj | ≈ π/2. To illustrate, take a = ρeiθ, where ρ = 2 and
θ = 2.780027365256823. When computing xk + iyk using the recurrence (2.5)
for k > 10, we obtain at s = 9

xs−1αs = 1.4343726728602473, ys−1βs = 1.4343726728603925,

and xs = −1.45×10−13. Using (2.2), we calculate |π/2−∑s
j=1 θj | ≈ 4.4×10−16.

This situation can completely be avoided if |θ| < π/2. Then from (2.6) and
(2.7), we have

0 < |θj | < π

2j+1
, 0 <

s∑

j=1

|θj | < π

2
. (2.9)

Thus from (2.5), (2.8), (2.7), and (2.9) we obtain

|ys|
|ys−1αs| =

sin
(∑s

j=1 |θj |
)

sin
(∑s−1

j=1 |θj |
)

cos (|θs|)
>

1
cos (|θs|) > 1

1 Note that |f(θ)| = f(|θ|), where f ∈ { sin, cos, tan }, for θ ∈ (−π/2, π/2). Also,
| tan−1(x)| = tan−1(|x|) for all x ∈ R.

5

for all s > 1 since the sine function is increasing over the interval (0, π/2),
so subtractive cancellation cannot occur in the imaginary parts. For the real
parts, it seems not straightforward to have such a lower bound by inspection
since the cosine function is decreasing over the interval (0, π/2), but we find
that

|xs|
|xs−1αs| =

cos
(∑s

j=1 |θj |
)

cos
(∑s−1

j=1 |θj |
)

cos (|θs|)
>

1
2
,

using the optimization function fmincon of MATLAB, where we minimized
xs/(xs−1αs) subject to the constraints in (2.9) for s = 2 : 100. Accordingly,
the real parts cannot suffer from subtractive cancellation.

In summary, if a belongs strictly to the right half of the complex plane, the
evaluation of the denominator of (2.1) by the conventional product formula in
the recurrence (2.5) is immune to subtractive cancellation. The trick to extend
this conclusion to an arbitrary complex number a with | arg(a)| < π is to first
perform one square root of a, which lies strictly in the right half of the complex
plane. Then we use (2.1) for a1/2, that is, replace a and k by a1/2 and k − 1
in (2.1), respectively. We are now in a position to write our algorithm.

3 Algorithms and conditioning

We present in this section two algorithms for computing gk(a) := a1/2k − 1
and derive a condition number for this function. The next algorithm is the
standard approach to compute the expression a1/2k − 1.

Algorithm 3.1 (standard version) This algorithm computes the quantity
r := a1/2k − 1 directly from this formula.

1 for i = 1: k
2 a ← a1/2

3 end
4 r = a− 1

Based on the analysis in the previous section we have the following algo-
rithm.

Algorithm 3.2 (improved version) This algorithm computes the quantity
r := a1/2k − 1 from the formula (2.1).

1 k̂ = k
2 if arg(a) ≥ π/2
3 a ← a1/2, k̂ = k − 1
4 end
5 z0 = a− 1
6 a ← a1/2

7 r = 1 + a

6

8 for j = 1: k̂ − 1
9 a ← a1/2

10 r ← r(1 + a)
11 end
12 r = z0/r

Algorithm 3.2 involves more arithmetic operations than Algorithm 3.1 if
they are executed using the same precision and the same algorithm for com-
puting a1/2. Thus, Algorithm 3.2 has 2k and 7k + 3 extra flops for a real and
complex a, respectively. However, these extra arithmetic operations are worth
paying provided that we gain better accuracy. The operation counts for the
complex case are based on the fact that one invocation in line 10 costs 7 flops
when using the recurrence (2.5) after adding 1 to the real part. The division
in the last step costs 9 flops assuming we use the division formula [6, sec. 5.4]

x + iy

c + id
=





[x + y(d/c)] + i[y − x(d/c)]
c + d(d/c)

, |c| ≥ |d|,
[x(c/d) + y] + i[y(c/d)− x]

c(c/d) + d
, |c| < |d|.

To have insight into the conditioning of the quantity
∏k

j=1(1 + a1/2j

),

consider the principal branch of the complex function fk(z) =
∏k

j=1(1+z1/2j

),
with −π < arg(z) < π, so f is single-valued. The condition number of fk at z
is given by [3, sec. 3.1]

cond(fk, z) =
|zf ′k(z)|
|fk(z)| =

k∑

j=1

1
2j

|z1/2j |
|1 + z1/2j | . (3.1)

Since Re(a1/2j

) > 0 for all j ≥ 1, we have |a1/2j |/(|1+a1/2j |) ≤ 1 and conclude
that

cond(fk, a) ≤
k∑

j=1

1
2j

<

∞∑

j=1

1
2j

= 1. (3.2)

Thus fk(z) is a very well-conditioned function of z. Now we analyze the condi-
tioning of the original problem, a1/2k −1. The principal branch of the complex
function gk(z) = z1/2k − 1, where −π < arg(z) < π, is analytic. Thus with a
little manipulation the condition number of gk at a := ρeiθ is

cond(gk, a) =
|a1/2k |

2k|gk(a)| ≤
ρ1/2k

2k|gk(ρ)| . (3.3)

To obtain a lower bound for the condition number, suppose first that ρ < 1.
Then from (2.2) we have ρk+1 < 2. Using (2.1) we obtain

2k+1|gk+1(a)|
2k|gk(a)| =

2
|1 + a1/2k+1 | =

2
ρk+1

.

7

Thus the sequence 2k|gk(a)| is increasing since 2/ρk+1 > 1. In addition, this
sequence converges to | log(a)|. Therefore, | log(a)| is the least upper bound of
the sequence, that is, for all k we have

2k|gk(a)| ≤ | log(a)| = (log(ρ)2 + θ2)1/2.

Combining this bound with (3.3) yields

ρ1/2k

(log(ρ)2 + θ2)1/2
≤ cond(gk, a) ≤ ρ1/2k

2k|gk(ρ)| . (3.4)

There is a nice relation between cond(gk, a) and cond(gk, 1/a). We have

cond(gk, 1/a) =
|a−1/2k |

2k|gk(1/a)| =
1

2k|gk(a)| =
cond(gk, a)
|a1/2k | .

Now, if ρ > 1 then |1/a| = 1/ρ < 1, so we have using (3.4) the inequality

1
(log(ρ)2 + θ2)1/2

≤ ρ1/2k

cond(gk, 1/a) = cond(gk, a). (3.5)

The bounds (3.4) and (3.5) tell us that the condition number can be large if
ρ and θ are sufficiently close to 1 and 0, respectively, at the same time, and
it is not k that makes the condition number large. An example is instructive.
Take a = 1 − 2−50 + 2−24i. For k = 1: 50, we have cond(gk, a) ≈ 1.7 × 107,
using (3.3), and the relative error |gk(a)− r̂|/|gk(a)| ≈ 1.5× 10−8, where r̂ is
computed by Algorithm 3.2.

The numerical experiment in the next section gives more insight into sta-
bility of the algorithms.

4 Numerical experiment

In this section we conduct two numerical experiments. The first will show
the improved accuracy of Algorithm 3.2 over Algorithm 3.1, and the second
will show the accuracy of Briggs’ method for computing the logarithm when
equipped with Algorithm 3.2. Both were carried out in MATLAB R2010a on
a machine with Core i7 processor. For ease of notation, let the functions gk

and cond(gk, ·) above operate in an elementwise fashion when given vector
arguments.

Experiment 1. We generate a row vector v of 20 points linearly spaced be-
tween 2 and 10 using the MATLAB function linspace as v =linspace(2,10,20).
Then we build up the vector a = [10−8v, v, 108v] of length 60. The reason for
writing the vector a in this way is to test the behavior of the algorithms
for small, medium, and large elements. Denote by ĝk(a) the computed values
of gk(a) in floating point arithmetic using Algorithm 3.1 and Algorithm 3.2,
where k = 1: 60. The “exact” gk(a) were evaluated in 100 decimal digit arith-
metic using the Symbolic Math Toolbox. Figure 4.1 (top) displays the relative

8

1 10 20 30 40 50 60

10
−16

10
−12

10
−8

k

ek

Real case

Alg 3.1
Alg 3.2
cond

1 10 20 30 40 50 60

10
−16

10
−12

10
−8

k

ek

Complex case

Alg 3.1
Alg 3.2
cond

Fig. 4.1 Experiment 1: relative errors, ek, from Algorithm 3.1 and Algorithm 3.2 plotted
versus the number of square roots, k, applied to the entries of the vectors a (top) and b
(bottom).

errors ek := ‖gk(a)− ĝk(a)‖2/‖gk(a)‖2 and ‖cond(gk, a)‖2u (solid line), where
k = 1: 60. Notice that for each k in the top part two points are plotted repre-
senting the relative errors ek associated with each algorithm.

We repeat the test above for the vector a replaced by a vector b with
bj = aj + 2j(−1)j

eπij/60, where j = 1: 60. Figure 4.1 (bottom) shows the
result.

This experiment reveals the superiority of Algorithm 3.2 over Algorithm 3.1.
When the number of square roots k increases, the relative error for Algo-
rithm 3.1 deteriorates rapidly until it reaches 1 at k = 58. However, the relative
error remains of order u for each k when using Algorithm 3.2.

Experiment 2. In this experiment we test the computation of log10(a) from
(1.1) using Algorithm 3.2 to evaluate a1/2k − 1 versus the MATLAB function
log10. We set k = 54 (Briggs’ choice) 2 and use the vector a described at the
beginning of Experiment 1. We apply the MATLAB function log10 and (1.1)
to the entries of a, so denote the computed value by each of them by x̂. We
calculate the relative errors ej = | log10(aj)− x̂|/| log10(aj)|, where j = 1: 60.
For the “exact” log10(aj), we used the Symbolic Math Toolbox in 100 decimal
digits precision. We notice that log10 produces many errors of zero, but to
facilitate the plots we replace a zero error by 10−18. Figure 4.2 shows the

2 Of course, the choice of k should depend on a, but we want to see what would have
happened if Briggs had used the improved algorithm.

9

0 10 20 30 40 50 60

10
−17

10
−15

10
−13

j

ej

log10 (Alg 3.2)
MATLAB log10
cond

Fig. 4.2 Experiment 2: relative errors, ej , from computing log10(a) via (1.1) by using
Algorithm 3.2 and the MATLAB function log10.

result. The solid line represents the values cond(log10, aj)u for j = 1: 60,
where cond(log10, ·) is the condition number for the logarithm function to
base 10 given by cond(log10, z) = 1/| loge(10) log(z)|.

Briggs’ method equipped with Algorithm 3.2 is highly accurate and re-
turns results almost as good as those obtained by using the MATLAB function
log10. It is natural to ask how Briggs succeeded in obtaining 14 significant
digits in his tables while taking up to 54 successive square roots using Al-
gorithm 3.1! The answer [3, sec. 11.5], [5] is that Briggs calculated to about
30 decimal digits in order to obtain the 14-digit logarithms. If he had used
Algorithm 3.2, the calculation to 16 decimal digits would have been enough
for him to generate his tables.

5 Conclusion

Some of the key properties of the field of the real numbers are not valid in the
floating point arithmetic. For instance, associativity and the distribution law
are not properties of floating point arithmetic. Thus different mathematical
formulations of problems can lead to more or less accurate and stable numer-
ical algorithms. This is what makes numerical computing so interesting. Poor
accuracy in the computation of the expression a1/2k −1 has been the weakness
of the inverse scaling and squaring method. We solved this problem by using a
variant of this expression. Algorithm 3.2 behaves in a stable manner reflecting
the conditioning of the problem. The importance of Algorithm 3.2 stems from
the fact that it is readily extended to matrix case. We are currently applying
this idea to derive a new inverse scaling and squaring algorithm for the matrix
logarithm.

Acknowledgments

I am very grateful to Professor Nick Higham for his valuable comments and
suggestions on several drafts of this manuscript. I also thank the University of
Manchester for allowing me to use their electronic resources.

10

References

1. L. Dieci and A. Papini. Conditioning and Padé approximation of the logarithm of a
matrix. SIAM J. Matrix Anal. Appl., 21(3):913–930, 2000.

2. N. J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, second edition, 2002. ISBN 0-89871-
521-0. xxx+680 pp.

3. N. J. Higham. Functions of Matrices: Theory and Computation. Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, USA, 2008. ISBN 978-0-898716-46-7.
xx+425 pp.

4. C. S. Kenney and A. J. Laub. Condition estimates for matrix functions. SIAM J. Matrix
Anal. Appl., 10(2):191–209, 1989.

5. C. S. Kenney and A. J. Laub. A Schur–Fréchet algorithm for computing the logarithm
and exponential of a matrix. SIAM J. Matrix Anal. Appl., 19(3):640–663, 1998.

6. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes
in FORTRAN: The Art of Scientific Computing. Cambridge University Press, second
edition, 1992. ISBN 0-521-43064-X. xxvi+963 pp.

