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Abstract

Weierstrass’ example of an everywhere continuous but nowhere
differentiable function is given by w(x) =

∑∞
n=0 λn cos 2πbnx where

λ ∈ (0, 1), b ≥ 2, λb > 1. There is a well-known and widely accepted,
but as yet unproven, formula for the Hausdorff dimension of the graph
of w. Hunt [H] proved that this formula holds almost surely on the
addition of a random phase shift. The graphs of Weierstrass-type func-
tions appear as repellers for a certain class of dynamical system; in this
note we prove formulae analogous to those for random phase shifts of
w(x) but in a dynamic context. Let T : S1 → S1 be a uniformly ex-
panding map of the circle. Let λ : S1 → (0, 1), p : S1 → R and define
the function w(x) =

∑∞
n=0 λ(x)λ(T (x)) · · ·λ(Tn−1(x))p(Tn(x)). The

graph of w is a repelling invariant set for the skew-product transforma-
tion T (x, y) = (T (x), λ(x)−1(y−p(x))) on S1×R and is continuous but
typically nowhere differentiable. With the addition of a random phase
shift in p, and under suitable hypotheses including a partial hyperbol-
icity assumption on the skew-product, we prove an almost sure formula
for the Hausdorff dimension of the graph of w using a generalisation
of techniques from [H] coupled with thermodynamic formalism.

§1 Introduction

The study of everywhere continuous but nowhere differentiable functions
has a long history. The first, and perhaps most studied, example is the
Weierstrass function

w(x) =
∞∑

n=0

λn cos 2πbnx, λ ∈ (0, 1), b ∈ N. (1)
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This series converges uniformly, hence w is continuous. If λb > 1 then w is
nowhere differentiable.

More generally, consider the graph of an arbitrary function w : [0, 1] →
R:

graph(w) = {(x,w(x)) | x ∈ [0, 1]} ⊂ R2.

If w is differentiable then graph(w) is a 1-dimensional manifold and con-
sequently has Hausdorff dimension 1. If w is nowhere differentiable then
graph(w) is typically a fractal and the dimension of graph(w) gives an indi-
cation of how irregular w is.

Computing the box dimension of graph(w) is often straightforward. In-
deed, for the Weierstrass function w one can easily check [BU] that

dimB graph(w) = 2− log λ−1

log b
. (2)

It is widely conjectured that the Hausdorff dimension dimH graph(w) of the
Weierstrass function is also given by (2).

There are examples [PU] of functions of the form (1) where cos 2πbnx is
replaced by the nth Rademacher function (note that this is piecewise con-
stant but not continuous) and λ is a Pisot number for which dimH graph(w) <
dimB graph(w). More generally, given any integers n > m > 1, letting
α = log m/ log n and choosing any s ∈ (1, 2−α), one can construct [PU, M] a
Hölder continuous function ws,α of exponent α such that dimB(graph(ws,α)) =
2− α but dimH(graph(ws,α)) = s < 2− α.

It is often the case, however, that if one introduces a random parameter
into the construction of a fractal, then the conjectured value of the Hausdorff
dimension for the non-random case can be proved to hold for almost every
value of this parameter. Hunt proved in [H] that if θ = (ϑn)∞n=0, where
ϑn ∈ [0, 1] are chosen uniformly and independently, then with

wθ(x) =
∞∑

n=0

λn cos 2π(bn + ϑn), λ ∈ (0, 1), b ∈ N, b ≥ 2, λb > 1 (3)

the Hausdorff dimension of graph(wθ) is

dimH graph(wθ) = 2− log λ−1

log b
a.s.

Indeed, as is remarked in [H], one can replace cos in (3) with a suitably
smooth periodic function p satisfying a mild condition on its critical points.

One can view graph(w) as the invariant set (indeed, a repeller) for a cer-
tain skew-product dynamical system. In order to make some of the objects
below continuous, it is technically more convenient to work on the circle
S1 = R/Z. Define T : S1 → S1 by T (x) = bx mod 1 and define

T̂ : S1 × R → S1 × R : (x, y) 7→ (T (x), λ−1(y − cos 2πx)).
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Let w be defined as in (1). Then T̂ (graph(w)) = graph(w). More generally,
one can consider skew-products defined on S1 × R of the form T̂ (x, y) =
(T (x), λ(x)−1(y − p(x)) where p : S1 → R and λ : S1 → (0, 1). Define

w(x) =
∞∑

n=0

λ(x)λ(T (x)) · · ·λ(Tn−1(x))p(Tn(x)). (4)

Then graph(w) is a T̂ -invariant repeller for T̂ .
One can then consider the case when T is replaced by a uniformly ex-

panding map of the circle. In the context of hyperbolic dynamics, one can
often recognise the dimension of an invariant set as the solution of a certain
equation, often called Bowen’s equation, of the form P (sf + g) where P
denotes the topological pressure. For many dynamically-defined fractal sets
one can also often recognise the dimension as the entropy of the underlying
dynamics divided by the Lyapunov exponent, with respect to an appropriate
invariant measure.

In [Be] the box dimension of the graph of a function of the form (4) is
calculated to be the unique solution s to the equation P ((1 − s) log T ′ +
log λ) = 0.

In this paper, we study the Hausdorff dimension of equations of the
form (4) where the function p is modified by the addition of a random phase
shift. One aim is to put the results of [H] into the context of thermodynamic
formalism. Indeed, we prove:

Theorem 1.1
Suppose that T is a C2 uniformly expanding map of the circle. Let λ : S1 →
(0, 1) be C1, and let p : S1 → R be, for example, a polynomial or a finite
sum of trigonometric functions. Define

wθ(x) =
∞∑

n=0

λ(x)λ(T (x)) · · ·λ(Tn−1(x))p(Tn(x) + ϑn)

where the ϑn are chosen uniformly and independently from S1. Then there
exists a T -invariant probability measure µ0 such that

dimH graph(wθ) = 1 +
hµ0(T ) +

∫
log λ dµ0∫

log T ′ dµ0
a.s.

where hµ0(T ) denotes the measure-theoretic entropy of T with respect to
µ0.

The precise statement and hypotheses are given below in Theorem 2.4. In
particular, µ0 can be identified to be the equilibrium state of a certain Höld-
er continuous potential. We also make precise the conditions assumed on
p.
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In §2 we give the necessary background and state two results which give
an upper and lower bound, respectively, on dimH(graph(wθ)). In §3 we
prove the upper bound. In §4, we prove the lower bound; the key estimate
in §4 is a generalisation of the method used in [H].

§2 Preliminaries and statement of results

§2.1 Expanding circle maps

Let T : S1 → S1 be a C1+ε map, i.e. T is continuous, continuously differ-
entiable and the derivative is Hölder continuous. By replacing T with T 2

if necessary, there is no loss in assuming that T is orientation-preserving.
There exists a partition of S1 into intervals Ij = [aj−1, aj ], 1 ≤ j ≤ N ,
(where the intervals are taken mod 1 if necessary) such that the restriction
T : Ij → S1 is a homeomorphism on Ij and a diffeomorphism on the interior
of Ij . We assume that T is uniformly expanding, in the sense that there
exists β > 1 such that T ′(x) ≥ β for all x ∈ S1.

Let Tj : S1 → Ij , 1 ≤ j ≤ N , denote the inverse branches of T . Let
x0, x1, . . . , xn−1 ∈ {1, . . . , N}. Define

[x0, x1, . . . , xn−1] = Tx0Tx1 · · ·Txn−1(S
1)

and note that this is an interval. We call such sets cylinders of rank n. Let
Cn denote the set of all cylinders of rank n and note that, for each n ≥ 1,
Cn is a partition of S1.

§2.2 Pressure

Let g : S1 → R be Hölder continuous. Define |g|α = supx 6=y |g(x) −
g(y)|/d(x, y)α. There are many equivalent ways of defining the pressure
P (g) of g, and here we briefly review those that we will need in what fol-
lows.

§2.2.1 Pressure via cylinders

Let g : S1 → R be Hölder continuous. Define the pressure of g to be

P (g) = lim
n→∞

1
n

log
∑

[x0,x1,...,xn−1]∈Cn

exp
n−1∑
j=0

g(T j(x)) (5)

where the x in the summand is taken to be any point in [x0, x1, . . . , xn−1]. It
follows immediately from the definition and the following lemma that P (g)
is independent of the choice of points x ∈ [x0, x1, . . . , xn−1].
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Lemma 2.1
Let g : S1 → R be Hölder continuous of exponent α. If x, y are in the same
cylinder of rank n then∣∣∣∣∣∣

n−1∑
j=0

g(T j(x))− g(T j(y))

∣∣∣∣∣∣ ≤ |g|α
1

1− β−α
.

Proof. Recall that Tj : S1 → Ij denote the inverse branches of T . As
[x0, x1, . . . , xn−1] = Tx0◦Tx1◦· · ·◦Txn−1(S

1) it follows that diam[x0, x1, . . . , xn−1] ≤
1/βn. A straightforward calculation shows that if x, y ∈ [x0, x1, . . . , xn−1]
then∣∣∣∣∣∣

n−1∑
j=0

g(T j(x))− g(T j(y))

∣∣∣∣∣∣ ≤ |g|α
n−1∑
j=0

d(T j(x), T j(y))α ≤ |g|α
1

1− β−α
.

❏

§2.2.2 Pressure via spanning sets

We can also define pressure via spanning sets [W, for example]. Let d(x, y) =
min{|x − y|, 1 − |x − y|} denote the metric on S1 inherited from [0, 1]
with 0 identified with 1. Define a family of metrics dn by dn(x, y) =
max{d(T j(x), T j(y)) | 0 ≤ j ≤ n − 1}. For δ > 0 and x ∈ S1 define
the (n, δ)-Bowen ball Bn,δ(x) = {y ∈ S1 | dn(x, y) < δ}. A subset F ⊂ S1

is said to be (n, δ)-spanning if
⋃

x∈F Bn,δ(x) = S1.
Let g : S1 → R be continuous. Define

Pn(g, δ) = inf
∑
x∈F

exp
n−1∑
j=0

g(T j(x)) (6)

where the infimum is taken over all (n, δ)-spanning sets.
Define

P (g, δ) = lim sup
n→∞

1
n

log Pn(g, δ).

Then one can show that if δ1 < δ2 then P (g, δ1) ≥ P (g, δ2) so that P (g) =
limδ→0 P (g, δ) exists.

Recall that a dynamical system T is said to be expansive with expan-
sivity constant δ0 > 0 if d(Tn(x), Tn(y)) ≤ δ0 for all n ≥ 0 implies x = y. If
T is a uniformly expanding map of S1 then T is expansive with expansivity
constant 1/β. One can show [W, Theorem 9.6] that if δ0 is an expansivity
constant then P (g) = P (g, δ) whenever δ < δ0/4.
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§2.2.3 Pressure via the variational principle

We can also define P (g) via the variational principle [W]. Let g : S1 → R
be continuous. Then

P (g) = sup
{

hµ(T ) +
∫

g dµ

}
(7)

where hµ(T ) denotes the entropy of T and the supremum is taken over all
T -invariant probability measures µ.

For each Hölder continuous g : S1 → R there exists a unique T -invariant
probability measure µg which attains the supremum in (7), i.e. P (g) =
hµg(T ) +

∫
g dµg. We call µg the equilibrium state with potential g.

Equilibrium states have the following Gibbs property. Let g : S1 → R be
Hölder continuous and let δ > 0. Then there exists a constant C(g, δ) > 1
such that for any x ∈ S1 and any Bowen ball Bn,δ(x) we have

1
C(g, δ)

≤
µg(Bn,δ(x))

exp
∑n−1

j=0 g(T j(x))− nP (g)
≤ C(g, δ). (8)

§2.2.4 Properties of pressure

Let f, g be Hölder continuous. It is clear from any of the definitions of
pressure that if f ≤ g then P (f) ≤ P (g). In particular if f ≥ 0 and g
is any function then s 7→ P (sf + g) and s 7→ P (−sf + g) are increasing
and decreasing functions of s, respectively. It is also well-known that the
dependence of P (f) is continuous [W, for example] (indeed, analytic) on f ,
so that s 7→ P (sf + g), P (−sf + g) are continuous functions of s.

It is also clear from (7) that if c is a constant then P (g + c) = P (g) + c
and that, if c ≥ 1, then P (cg) ≤ cP (g).

§2.3 Hausdorff dimension

Let E ⊂ Rn and s ≥ 0. The s-dimensional Hausdorff measure of E is defined
by

Hs(E) = lim
δ→0

inf
∑

j

diam(Ij)s

where the infimum is taken over all countable open covers Ij such that
E ⊂

⋃
j Ij and the diameter diam Ij ≤ δ. The Hausdorff dimension of E is

defined by

dimHE = inf{s | Hs(E) = 0} = sup{s | Hs(E) = ∞}.

One can also characterise Hausdorff dimension in terms of energy inte-
grals. Let µ be a probability measure supported on E. For s ≥ 0 define the
s-energy of µ to be

Is(µ) =
∫ ∫

dµ(x) dµ(y)
‖x− y‖s
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and define the correlation dimension of µ to be sup{s | Is(µ) < ∞}. Then
the Hausdorff dimension dimH(E) is the supremum of the correlation di-
mensions over all probability measures supported on E.

§2.4 Random dynamical systems

Let λ : S1 → (0, 1) be Hölder continuous. Let p : S1 → R be continuous.
Let T : S1 → S1 be a uniformly expanding map of S1. Define

T̂ : S1 × R → S1 × R : (x, y) 7→ (T (x), λ(x)−1(y − p(x))).

We introduce a random phase-shift as follows. Equip S1 with Lebesgue
measure. Let Ω = {(ϑj)∞j=0 | ϑj ∈ S1}. Equip Ω with the measure given by
the Cartesian product of Lebesgue measure; we will denote this measure by
dθ.

Let τ : Ω → Ω be the left shift map, so that if θ = (ϑj)∞j=0 then (τ(θ))j =
ϑj+1. Define the random dynamical system T̃ by

T̃ : Σ× R× Ω → Σ× R× Ω : (x, y, θ) = (T (x), λ(x)−1(y − p(x + ϑ0), τ(θ)))

and consider the projection onto the (x, y) co-ordinates

T̂θ(x, y) = (T (x), λ(x)−1(y − p(x + ϑ0))).

Define λn(x) = λ(x)λ(T (x)) · · ·λ(Tn−1(x)), λ0(x) = 1. Then for each
θ = (ϑj)∞j=0 ∈ Ω, the function

wθ(x) =
∞∑

n=0

λn(x)p(Tn(x) + ϑn) (9)

is a continuous function (as the sum converges uniformly), and graph(wθ) is
T̂θ-invariant. To see this, simply observe that

T̂θ(x,wθ(x)) =

(
T (x), λ−1(x)

( ∞∑
n=0

λn(x)p(Tn(x) + ϑn)− p(x + ϑ0)

))

=

(
T (x),

∞∑
n=1

λ(T (x)) · · ·λ(Tn−1(x))p(Tn(x) + ϑn)

)
= (T (x), wτ(θ)(T (x))).

§2.5 Statement of results

We assume that T̂ is partially hyperbolic, i.e. there exists ρ > 1 such that

1 < ρ ≤ inf
x∈S1

λ(x) inf
x∈S1

T ′(x). (10)
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That is T̂ is partially hyperbolic if the maximum rate of exponential ex-
pansion in the R-direction is strictly less than the maximum rate of expo-
nential expansion in the S1-direction. In the case where λ is constant and
T (x) = bx mod 1, this reduces to λb > 1.

There is an obvious obstruction to the regularity of w: if there exists a
smooth solution u to the cohomological equation p(x) = λ(x)u(T (x))−u(x)
then w = u and the graph of w is as smooth as u. Generically this does not
happen [HNW].

The following gives an upper bound for dimH(graph(wθ)); note that in
this case the bound holds for all θ ∈ Ω.

Proposition 2.2 (Upper bound)
Suppose that T : S1 → S1 is a C1+ε uniformly expanding map of the circle.
Let λ : S1 → (0, 1) be C1. Let p : S1 → R be C1. Suppose that the partial
hyperbolicity assumption (10) holds. Then there exists a unique s > 0 such
that

P ((1− s) log T ′ + log λ) = 0. (11)

Moreover dimH(graph(wθ)) ≤ s for every θ ∈ Ω.

For the lower bound we need some additional smoothness assumptions
on p. Recall that p(ϑ) has a critical point of order k if p′(ϑ) = p′′(ϑ) =
· · · = p(k−1)(ϑ) = 0 but p(k)(ϑ) 6= 0. We say that a smooth function p
satisfies the critical point hypothesis if there exists r > 0 such that for all
a ∈ (0, 1) and c ∈ R, the critical points of p(a+ϑ)−cp(ϑ) have orders strictly
less than r. This assumption is satisfied by any polynomial, any finite sum
of trigonometric functions, and we would expect it to hold generically for
smooth functions on S1.

Proposition 2.3 (Lower bound)
Suppose that T : S1 → S1 is a C1+ε uniformly expanding map of the circle.
Let λ : S1 → (0, 1) be such that log λ is Hölder continuous. Let p : S1 → R
satisfy the critical point hypothesis. Suppose that the partial hyperbolicity
assumption (10) holds.

Let g : S1 → R be Hölder continuous. Then there exists a unique
solution sg > 0 to

P ((sg − 1) log T ′ + 2(g − P (g))− log λ) = 0. (12)

Moreover sg ≤ dimH(graph(wθ)) for almost every θ ∈ Ω.

We can now state the main result.

Theorem 2.4
Suppose that T : S1 → S1 is a C1+ε uniformly expanding map of the circle.
Let λ : S1 → (0, 1) be C1. Let p : S1 → R satisfy the critical point
hypothesis. Suppose that the partial hyperbolicity assumption (10) holds.
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Let s0 be the unique solution to (11) and let µ0 be the unique equilibrium
state of the potential g0 = (1−s0) log T ′+log λ. Then for almost every θ ∈ Ω

dimH(graph(wθ)) = 1 +
hµ0(T ) +

∫
log λ dµ0∫

log T ′ dµ0
. (13)

Remark. For an invariant probability measure µ and continuous function
g : S1 → R, the measure-theoretic pressure of g with respect to µ is defined
to be Pµ(g) = hµ(T ) +

∫
g dµ and can be regarded as a generalisation of

entropy. Thus we can regard the right-hand side of (13) as the sum of the
dimension of graph(wθ) in the S1-direction and the dimension of graph(wθ)
in the R-direction, where the latter has the form of (a generalisation of)
entropy divided by the Lyapunov exponent of T with respect to µ0.

Remark. If T (x) = bx mod 1 where b ≥ 2 is an integer, then µ0 is the
equilibrium state of log λ. In this case, (13) takes the form

dimH(graph(wθ)) = 1 +
P (log λ)

log b
a.e..

If in addition λ(x) = λ is constant then µ0 is Lebesgue measure, hµ0(T ) =
log b and we rederive the result in [H].

Proof of Theorem 2.4. Let s0, g0 and µ0 be as in the statement of the
theorem. Note that P (g0) = 0. By the variational principle, we have that

hµ0(T ) + (1− s0)
∫

log T ′ dµ0 +
∫

log λ dµ0 = 0.

It follows that

s0 = 1 +
hµ0(T ) +

∫
log λ dµ0∫

log T ′ dµ0

and from Proposition 2.2 that dimH(graph(wθ)) ≤ s0 for almost every θ ∈ Ω.
Let s1 be the unique solution to (12) with potential g0. It follows from

Proposition 2.3 that s1 ≤ dimH(graph(wθ)) for almost every θ ∈ Ω. It
remains to show that s1 = s0. First note that from (12) we have that

P ((s1 − 1) log T ′ − log λ + 2(1− s0) log T ′ + 2 log λ) = 0,

that is
P ((1− 2s0 + s1) log T ′ + log λ) = 0.

As s0 is the unique solution to P ((1− s0) log T ′ + log λ) = 0, it follows that
1− s0 = 1− 2s0 + s1, i.e. s0 = s1, and the result follows. ❏
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§3 Proof of Proposition 2.2

The upper bound continues to be true without the addition of the random
phase shift θ. Indeed, [Be] considers invariant graphs that include those of
the form w(x) =

∑∞
n=0 λ(x)λ(T (x)) · · ·λ(Tn−1(x))p(Tn(x)) and proves that

the box dimension of graph(w) is given by (11). The following proposition
in a non-random context is proved in [Be]. For a function γ : S1 → R and an
interval I ⊂ [0, 1], the height of γ over I, denoted by heightI(γ), is defined
to be

heightI(γ) = sup
s,t∈I

|γ(s)− γ(t)|.

Proposition 3.1
Let [x0, x1, . . . , xn−1] ∈ Cn be a cylinder of rank n. Then there exists C > 0
(independent of x, n) such that

height[x0,x1,...,xn−1](wθ) ≤ Cλn(x).

Proof. Let Ti be the inverse branches of T . For each ϑ ∈ S1 define

T̂i,ϑ(x, y, θ) = (Ti(x), λ(Ti(x))y + p(Ti(x) + ϑ), ϑθ)

where if θ = (ϑ0, ϑ1, . . .) then ϑθ denotes the sequence (ϑ, ϑ0, ϑ1, . . .). Then
T̂ T̂i,ϑ(x, y, θ) = (x, y, θ) so that T̂i,ϑ are the inverse branches of T̂ .

Consider the action of T̂i,ϑ on the first two coordinates. This has deriva-
tive (

T ′
i (x) 0

Si,ϑ(x, y) λ(Ti(x))

)
where Si,ϑ(x, y) = λ′(Ti(x))T ′

i (x)y + p′(Ti(x) + ϑ)T ′
i (x).

First note that

(T̂x0,ϑ0 ◦ T̂x1,ϑ1)
′(x, y)

= T̂ ′
x0,ϑ0

(T̂x1,ϑ1(x, y))T̂ ′
x1,ϑ1

(x, y)

=
(

T ′
x0

(Tx1(x)) 0
Sx0,ϑ0(T̂x1,ϑ1(x, y)) λ(Tx0Tx1(x))

)(
T ′

x1
(x) 0

Sx1,ϑ1(x, y) λ(Tx1(x))

)
=

(
T ′

x0
(Tx1(x))T ′

x1
(x) 0

Sx0,ϑ0(T̂x1(x, y))T ′
x1

(x) + λ(Tx0Tx1(x))Sx1,ϑ1(x, y) λ(Tx0Tx1(x))λ(Tx1(x))

)
.

Induction then allows us to write the derivative of (T̂x0,ϑ0 T̂x1,ϑ1 · · · T̂xn−1,ϑn−1)(x, y)
in the form

n−1∏
j=0

T ′
xj

(Txj+1 · · ·Txn−1(x)) 0

(∗)
n−1∏
j=0

λ(Txj · · ·Txn−1(x))


10



where

(∗) =
n−1∑
k=0

k−1∏
j=0

λ(Txj · · ·Txn−1(x))Sxk,ϑk
(T̂xk+1,ϑk+1

· · · T̂xn−1,ϑn−1(x, y))

×
n−1∏

j=k+1

T ′
xj

(Txj+1 · · ·Txn−1(x))

and products such as
∏n−1

n , etc, are interpreted as being empty.
Let J ⊂ I be a subinterval and let γ(t) = (γH(t), γV (t)) be a differen-

tiable curve in J ×R (we use H, V to denote the ‘horizontal’ (along I) and
‘vertical’ (along R) directions, respectively, and write πH , πV to denote the
corresponding projections). Choose points x+, x− ∈ [x0, x1, . . . , xn−1] such
that

height[x0,x1,...,xn−1](wθ) = wθ(x+)− wθ(x−).

Let γ0 denote the straight-line segment joining (x+, wθ(x+)) to (x−, wθ(x−))
and let γ = T̂ γ0. The vertical height of wθ over [x0, . . . , xn−1] is then
bounded by

height[x0,x1,...,xn−1](T̂x0,ϑ0 T̂x1,ϑ1 · · · T̂xn−1,ϑn−1γ)

≤
∫ ∣∣∣πV (T̂x0,ϑ0 T̂x1,ϑ1 · · · T̂xn−1,ϑn−1γ)′(t)

∣∣∣ dt

≤
∫ ∣∣∣∣∣∣

n−1∑
k=0

k−1∏
j=0

λ(Txj · · ·Txn−1γH(t))Sxk,ϑk
(T̂xk+1,ϑk+1

· · · T̂xn−1,ϑn−1(γ(t)))

×
n−1∏

j=k+1

T ′
xj

(Txj+1 · · ·Txn−1(γH(t)))

∣∣∣∣∣∣ |γ′H(t)| dt

+
∫ ∣∣∣∣∣∣

n−1∏
j=0

λ(Txj · · ·Txn−1(γH(t)))

∣∣∣∣∣∣ |γ′V (t)| dt. (14)

By the partial hyperbolicity assumption (10), we have that

sup
x,i

T ′
i (x) ≤ ρ−1λ(x)

where 0 < ρ−1 < 1.
Note that |wθ(x)| ≤ |p|∞/(1−|λ|∞). Let A = supi,ϑ supx,y |Si,ϑ(x)| < ∞

where the supremum over x, y is taken over x ∈ I, |y| ≤ |p|∞/(1 − |λ|∞).
Then we can bound the first integral in (14) by

A

n−1∑
k=0

k−1∏
j=0

λ(Txj · · ·Txn−1(γH(t)))
n−1∏

j=k+1

λ(Txj+1 · · ·Txn−1(γH(t)))ρj−n|γ′H(t)|.

11



By Lemma 2.1 we can bound this by

n−1∏
j=0

λ(T j(x))× C

n−1∑
k=0

ρ−k ≤ C ′
n−1∏
j=0

λ(T j(x))

for some constants C,C ′ > 0. Hence

height[x0,x1...,xn−1](T̂x0,ϑ0 T̂x1,ϑ1 · · · T̂xn−1,ϑn−1γ)

= wθ(x+)− wθ(x−)

≤
(

C ′
∫
|γ′H(t)|+ |γ′V (t)| dt

) n−1∏
j=0

λ(T j(x))

≤ (C ′|γ|H + |γ|V )
n−1∏
j=0

λ(T j(x))

≤ (C ′ + |wθ|∞)
n−1∏
j=0

λ(T j(x))

and the result follows. ❏

Proof of Proposition 2.2. First note that (1−s) log T ′+log λ ≤ −s log β+
‖ log T ′ + log λ‖∞. Hence

P ((1− s) log T ′ + log λ) ≤ −s log β + ‖ log T ′ + log λ‖∞ + htop(T )

where htop(T ) = P (0) is the topological entropy of T . As log β > 0, it follows
that P ((1 − s) log T ′ + log λ) → −∞ as s → ∞. By partial hyperbolicity,
log T ′ + log λ ≥ log ρ > 0 so that when s = 0, P ((1 − s) log T ′ + log λ) ≥
P (log ρ) > 0. As the pressure depends continuously on s, it follows that
there is a unique value s > 0 that solves (11).

Let s0 be the unique solution to P ((1 − s0) log T ′ + log λ). Let s > s0.
Then P ((1 − s) log T ′ + log λ) = −η < 0. By the partial hyperbolicity
hypothesis, log λ + log T ′ > 0, hence P (−s log T ′) ≤ −η < 0. Hence there
exists N such that if n ≥ N then

∑
[x0,x1,...,xn−1]∈Cn

n−1∏
j=0

T ′(T j(x))1−s
n−1∏
j=0

λ(T j(x)) < e
−nη

2

and ∑
[x0,x1,...,xn−1]∈Cn

n−1∏
j=0

T ′(T j(x))−s < e
−nη

2

Let δ > 0. Then there exists N such that if n ≥ N then diam[x0, x1, . . . , xn−1] <
δ for all cylinders of rank n. By the Mean Value Theorem, for each [x0, x1, . . . , xn−1] ∈

12



Cn, choose x ∈ [x0, x1, . . . , xn−1] such that

diam[x0, x1, . . . , xn−1] =
n−1∏
j=0

T ′(T j(x))−1.

Consider the graph of wθ over the cylinder [x0, x1, . . . , xn−1]. This has
height at most Cλn(x). Hence at most

Cλn(x)
diam[x0, x1, . . . , xn−1]

+ 1 = C

n−1∏
j=0

T ′(T j(x))
n−1∏
j=0

λ(T j(x))

+ 1

sets of diameter at most diam[x0, x1, . . . , xn−1] are needed to cover the graph
of wθ over [x0, x1, . . . , xn−1]. Taking all such sets over all cylinders of rank
n gives an open cover Un of graph(wθ) of diameter at most δ. Hence

Hs
δ(graph(wθ))

≤
∑

U∈Un

(diam U)s

≤
∑

[x0,x1,...,xn−1]∈Cn

C
n−1∏
j=0

T ′(T j(x))
n−1∏
j=0

λ(T j(x)) + 1

 (diam U)s

≤ C
∑

[x0,x1,...,xn−1]∈Cn

n−1∏
j=0

T ′(T j(x))1−s
n−1∏
j=0

λ(T j(x))

+
∑

[x0,x1,...,xn−1]∈Cn

n−1∏
j=0

T ′(T j(x))−s

≤ (C + 1)e
−nη

2 .

Letting n → ∞ we have that Hs
δ(graph(wθ)) = 0. Letting δ → 0, we have

that Hs(graph(wθ)) = 0. Hence dimH graph(wθ) ≤ s. As s > s0 is arbitrary,
the result follows. ❏

§4 Proof of Proposition 2.3

We first need the following bounded distortion estimate on Bowen balls.

Lemma 4.1
Let f : S1 → R be Hölder continuous of exponent α. Let δ be less than the
injectivity radius of T . Then there exists a constant C > 0 such that for all
balls Bn,δ(z) and all x, y ∈ Bn,δ(z) we have∣∣∣∣∣∣

n−1∑
j=0

f(T j(x))− f(T j(y))

∣∣∣∣∣∣ ≤ C|f |αδα.

13



Proof. To see this note that if x, y, δ are as in the statement of the lemma,
then d(x, y) ≤ supx∈S1(T−1)′(x)d(x, y) ≤ β−1d(x, y). Inductively we obtain
that ∣∣∣∣∣∣

n−1∑
j=0

f(T j(x))− f(T j(y))

∣∣∣∣∣∣ ≤ |f |α
n−1∑
j=0

δα

βjα

≤ |f |α
1− β−α

δα.

❏

Remark. As λ is C1, log λ is Hölder continuous. It follows immediately
from Lemma 4.1 that, if δ > 0 is less than the injectivity radius of T , then
there exists Cλ > 0 such that for all balls Bn,δ(z) and all x, y ∈ Bn,δ(z) we
have

1
Cλ

≤ λn(x)
λn(y)

≤ Cλ. (15)

Proof of Proposition 2.3. First note that

(s−1) log T ′+2(g−P (g))− log λ ≥ s log β+2(g−P (g))−‖ log T ′+log λ‖∞.

Hence P ((s − 1) log T ′ + 2(g − P (g)) − log λ) ≥ s log β + P (2(g − P (g))) −
‖ log T ′ + log λ‖∞ so that P ((s − 1) log T ′ + 2(g − P (g)) − log λ) → ∞ as
s → ∞. Note that − log T ′ + 2(g − P (g)) − log λ ≤ − log ρ + 2(g − P (g)).
Hence when s = 0,

P ((s− 1) log T ′ + 2(g − P (g))− log λ) (16)
= P (− log T ′ + 2(g − P (g))− log λ)
≤ − log ρ + P (2g)− 2P (g). (17)

As P (2g)−2P (g) < 0, we see that P ((s−1) log T ′+2(g−P (g))− log λ) < 0
when s = 0. By the continuity of pressure, there exists a unique value sg > 0
solving (12).

Let g : S1 → R be Hölder continuous and let µg be the associated
equilibrium state. Let θ = (ϑj)∞j=0 ∈ Ω. Define a measure µ̂g on S1 × R
supported on graph(wθ) by µ̂g(E) = µg{x ∈ S1 | (x,wθ(x)) ∈ E}. We want
to show that if s < sg where sg is determined by (12) then

Is(µ̂g) =
∫ ∫

S1×S1

dµg(x) dµg(y)

((x− y)2 + (wθ(x)− wθ(y))2)s/2
< ∞

for dθ-almost every θ ∈ Ω. To do this, it is sufficient to assume that s > 1
and prove that

Es =
∫

Ω
Is(µ̂g) dθ < ∞.

14



By Fubini’s theorem we can write

Es =
∫ ∫

S1×S1

∫
Ω

dθ dµg(x) dµg(y)

((x− y)2 + (wθ(x)− wθ(y))2)s/2
.

Let r > 0 be determined by the critical point hypothesis. Choose δ <
1/4β and shrink δ further, if necessary, so that ‖T ′‖r

∞δ is less than the
injectivity radius of T . Note that δ is an expansivity constant for T . Let

Xr
n = {(x, y) ∈ S1 × S1 | dn(x, y) < δ, δ ≤ d(Tn(x), Tn(y))}.

Then clearly
⋃∞

n=0 Xr
n ⊂ {(x, y) ∈ S1×S1 | d(x, y) < δ} = ∆δ, a neighbour-

hood of the diagonal in S1 × S1.
Note that if (x, y) ∈ (S1 × S1) \∆δ then |x− y| ≥ δ. Hence∫ ∫

(S1×S1)\∆δ

∫
Ω

dθ dµg(x) dµg(y)

((x− y)2 + (wθ(x)− wθ(y))2)s/2

≤
∫ ∫

(S1×S1)\∆δ

∫
Ω

dθ dµg(x) dµg(y)
|x− y|s

≤ 1
δs

.

Hence
Es =

1
δs

+
∫ ∫

∆δ

∫
Ω

dθ dµg(x) dµg(y)

((x− y)2 + (wθ(x)− wθ(y))2)s/2
(18)

and it remains to show that the second term in (18) is finite.
Fix x, y ∈ Xr

n. Let zx,y(θ) = wθ(x) − wθ(y) and let hx,y denote the
density of zx,y. Then the second term in (18) can be written as

Es(δ) =
∞∑

n=0

∫ ∫
Xr

n

∫ ∞

−∞

hx,y(zx,y) dzx,y dµg(x) dµg(y)(
(x− y)2 + z2

x,y

)s/2
.

Let zx,y = |x− y|ux,y so that dzx,y = |x− y|dux,y. Then

Es(δ) =
∞∑

n=0

∫ ∫
Xr

n

∫ ∞

−∞

|x− y|1−shx,y(|x− y|ux,y) dux,y dµg(x) dµg(y)
(1 + u2

x,y)s/2
.

Let
K(s) =

∫ ∞

−∞

du

(1 + u2)s/2

and note that K(s) < ∞ if s > 1. Then

Es(δ) ≤ K(s)
∞∑

n=0

∫ ∫
Xr

n

|x− y|1−s sup
u∈R

hx,y(u) dµg(x) dµg(y).
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Let Fn be an (n, δ)-spanning set which achieves the infimum in (6) for
the potential (1− s) log T ′ + log λ. For z ∈ Fn let

Xr
n(z) = Xr

n ∩ (Bn,2δ(z)×Bn,2δ(z)) .

Let (x, y) ∈ Xr
n. As Fn is (n, δ)-spanning, there exists z ∈ Fn such that

dn(x, z) < δ. Hence dn(y, z) ≤ d(y, x) + d(x, z) ≤ 2δ. Clearly dn(x, z) < 2δ,
so it follows that (x, y) ∈ Xr

n(z). Hence

Xr
n =

⋃
z∈Fn

Xr
n(z).

Hence

Es(δ) ≤ K(s)
∞∑

n=0

∑
z∈Fn

∫ ∫
Xr

n(z)
|x− y|1−s sup

u∈R
hx,y(u) dµg(x) dµg(y).

We first bound hx,y.

Lemma 4.2
Let x, y ∈ Bn,2δ(z). Then supu∈R hx,y(u) < Chλn(z)−1 where Ch > 0 is a
constant independent of x, y, n.

Proof. Write

zx,y(θ) = wθ(x)− wθ(y)

=
∞∑

k=0

λk(x)p(T k(x) + ϑk)− λk(y)p(T k(y) + ϑk)

=
∞∑

k=0

zk,x,y(ϑk).

Let hk,x,y denote the density of zk,x,y. As the ϑks are independent, the
density of zx,y is the convolution of the densities of the zk,x,y. Hence

hx,y =
∞∗

k=0
hk,x,y. (19)

Now a bound on the convolution of the hk,x,y for finitely many values of n
will automatically be a bound on the infinite convolution in (19). Hence

hx,y ≤
r−1∗
j=0

hn+j,x,y

where n is chosen so that x, y are in the same Bowen ball Bn,2δ(z). By
Hölder’s inequality we can bound

r−1∗
j=0

hn+j,x,y ≤ ‖hn,x,y ∗ · · · ∗ hn+r−2,x,y‖r‖hn+r−1,x,y‖ r
r−1

.
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Repeated applications of Young’s inequality then implies that

‖hn,x,y ∗ · · · ∗ hn+r−2,x,y‖r ≤ ‖hn,x,y‖ r
r−1

· · · ‖hn+r−2,x,y‖ r
r−1

.

Hence

hx,y ≤
r−1∏
j=0

‖hn+j,x,y‖ r
r−1

. (20)

Define z′i,x,y(ϑi) by

zi,x,y(ϑi) = λi(x)
(

p(T i(x) + ϑi)−
λi(y)
λi(x)

p(T i(y) + ϑi)
)

= λi(x)z′i,x,y(ϑi).

Let h′i,x,y denote the density of z′i,x,y(ϑi). Then

hi,x,y(u) =
1

λi(x)
h′i,x,y

(
u

λi(x)

)
. (21)

We will prove that
‖h′n+j,x,y‖ r

r−1
≤ M (22)

for j = 0, . . . , r − 1, for some M independent of x, y. It then follows from
(21) that

‖hn+j,x,y‖ r
r−1

≤ Mλn+j(x)−1/r ≤ ‖λ‖−j/r
∞ Mλn(x)−1/r. (23)

Hence from (20)

hx,y ≤ M r‖λ‖(r−1)/2
∞ λn(x)−1 ≤ Chλn(z)−1.

where the last equality follows from the remark following Lemma 4.1.
It remains to prove (22). Write ϑ′j = T j(y) + ϑj so that

z′n+j,x,y(ϑn+j) = p(Tn+j(x)− Tn+j(y) + ϑ′n+j)−
λn+j(y)
λn+j(x)

p(ϑ′n+j).

Now x, y ∈ Xr
n(z). Hence d(T j(x), T j(y)) ≤ δ for 0 ≤ j ≤ n− 1 and δ ≤

d(Tn(x), Tn(y)). Recalling that β ≤ infx∈S1 T ′(x) it follows that βj−1δ ≤
d(Tn+j(x), Tn+j(y)) < ‖T ′‖j

∞δ for j = 0, 1, . . . , r − 1. In particular, there
exists κ > 0 such that

κ ≤ |Tn+j(x)− Tn+j(y)| < 1− κ

for j = 0, 1, . . . , r − 1.
Let Λ = supx∈S1 λ(x)/ infx∈S1 λ(x). By (15) there exists Cλ > 0 such

that
1

CλΛr
≤ λn+j(x)

λn+j(y)
≤ CλΛr
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for j = 0, 1, . . . , r − 1.
Suppose that q : S1 → R has a critical point of order k at x0 ∈ S1 and

q(k)(x0) = b. Then the density of q in a neighbourhood of q(x0) behaves like
C(b)t(1−k)/k where the constant C(b) is of the order O(b−1/k). Hence if all
the critical points of q have order less than r then the density hq of q is such
that ‖hq‖ r

r−1
< ∞. Suppose we have a family qj : S1 → R, j ∈ J , which

have critical points of order less than r. If the values of qk
j (x0) = b where x0

is a critical point of order k for qj , as j ranges over J , k < r, are uniformly
bounded away from 0 then there exists M > 0 such that ‖hqj‖ r

r−1
≤ M for

all j ∈ J .
By the critical point hypothesis, the critical points of

z′n+j,x,y(ϑn+j) = p(Tn+j(x)− Tn+j(y) + ϑ′n+j)−
λn+j(y)
λn+j(x)

p(ϑ′n+j)

have orders less than r, and the corresponding kth derivatives (1 ≤ k < r)
take values bounded away from zero as |Tn+j(x) − Tn+j(y)| ∈ [κ, 1 − κ],
λn(x)/λn(y) ∈ [(CλΛr)−1, CλΛr], a compact set. Hence there exists M > 0
such that ‖h′n+j,x,y‖ r

r−1
≤ M for j = 0, . . . , r − 1 and all x, y ∈ S1. ❏

To complete the estimate on the bound of Es we need the following
result.

Lemma 4.3
Let x, y ∈ Bn,2δ(z). Then |x − y|1−s ≤ CT (Tn)′(z)s−1 where CT > 0 is a
constant independent of x, y, n.

Proof. This follows immediately from Lemma 4.1 and the fact that s > 1.
❏

From Lemmas 4.2 and 4.3 it follows that

Es(δ) ≤ K(s)ChCT

∞∑
n=0

∑
z∈Fn

∫ ∫
Xr

n(z)
(Tn)′(z)s−1λn(z)−1 dµg(x) dµg(y)

As the integrand is constant on each ball Bn,2δ(z), each x and y in the
integrand are in the same ball Bn,δ(z), and Xr

n(z) ⊂ Bn,2δ(z)×Bn,2δ(z), we
can bound Es(δ) by

K(s)ChCT

∞∑
n=0

∑
z∈Fn

(Tn)′(z)s−1λn(z)−1

∫ ∫
Bn,2δ(z)×Bn,2δ(z)

dµg(x) dµg(y)

≤ K(s)ChCT

∞∑
n=0

∑
z∈Fn

(Tn)′(z)s−1λn(z)−1µg(Bn,2δ(z))µg(Bn,2δ(z)).
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Hence, by (8), Es(δ) is bounded above by

K(s)ChCT C(g, 2δ)2
∞∑

n=0

∑
z∈Fn

exp
n−1∑
j=0

(
(s− 1) log T ′(T j(z))− log λ(T j(z))

+ 2(g(T j(z))− P (g))
)
.

As 1 < s < s(g), where s(g) is the the unique solution to (12), we have
that P ((s − 1) log T ′ − log λ + 2(g − P (g))) = −η < 0. Then there exists
C > 0 such that for all n ≥ 0 we have

∑
z∈Fn

exp
n−1∑
j=0

(s− 1) log T ′(T j(z))− log λ(T j(z)) + 2(g(T j(z))− P (g))

≤ C exp
−nη

2 .

In particular, if 1 < s < s(g) then

Es(δ) ≤ CK(s)ChCT C(g, 2δ)2
∞∑

n=0

exp
−nη

2 < ∞.

By choosing s arbitrarily close to s(g), the result follows. ❏
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