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Fast Implicit Solvers using Stabilized Mixed Approximatio

Qifeng Liad" and David Silvestet*

1 School of Mathematics, University of Manchester, Manehebt13 9PL, United Kingdom.

SUMMARY

This paper concerns a new class of robust &fidient methods for solving the Navier-Stokes equations for
unsteady incompressible flow. In previous work (Kay etSiAM J. Sci. Compu010; 32:111-128) we
established thefiectiveness of an implicit time integrator using a stabdize@pezoid rule with an explicit
Adams-Bashforth method for error control. The role of thebiity of the spatial approximation on the
overall accuracy of the implicit solution algorithm is therpary focus here. In particular, the relationship
between spatial stabilization and temporal solution amurs assessed computationally for the case of the
lowest order conforming mixed approximation. Copyrigh0000 John Wiley & Sons, Ltd.

Received ...
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1. MOTIVATION

Stabilized low-order spatial approximation is a computadily convenient approach when solving
incompressible flow problems using finite element discagtim methods. Nevertheless, the
interplay between spatial stability and temporal soluticouracy seems to be a somewhat delicate
issue. Whilst the role of stabilization in steady state floatyhemns is more-or-less understood, see
for example, Roos et al. [1, ch. 4], the theoretical undeipig for spatially stabilized methods is
not so well developed when modelling unsteady flow. Thisésrtiotivation for this paper.

There is a contentious issue underlying our study: nanvehy, bother with stabilized spatial
approximation?0ur results will show that this is an open question — therediguarantee that
improved spatial stabilization enhances solution acguvelten solving transient flow problems.

The methodology we consider is the lowest order conformpreximation Q1—Py). Whilst our
*Correspondence to: School of Mathematics, University ohbhester, United Kingdom. E-maill. silvester@
manchester.ac.uk
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2 QIFENG LIAO AND DAVID SILVESTER

focus is on two dimensions (continuous bilinear velocityl a@iscontinuous constant pressure on
rectangles), our conclusions remain valid for the thremetiisional analogue (continuous trilinear
velocity and discontinuous constant pressure on bricks)y Wiight the@Q,—P; methodology be
of particular interest? We can think of two reasons: firaghler order approximation methods do
not provide higher accuracy when the domain has cornerssecuhd, our theoretical results in [2,
chapter 4] show the robustness of stabilizg@-P, approximation on highly anisotropic meshes in
the case of Stokes flow. Such meshes are typically used whelvireg shear layers in convection-
dominated flows. Standard (inf-sup) stable mixed approtionamethods tend to be much less

robust if the elements are highly stretched.

2. DISCRETIZATION OF THE NAVIER-STOKES EQUATIONS

Let Q be a flow domain ifR? with a polygonal boundargQ. We want to solve the following

initial-boundary value problem: find the fluid velociiyX, t) and the pressurg(X, t) satisfying

%'_yvzmn.vmw:o in Qx0T (1)
vV.-d=0 in QxI[0,T], (2)

d=g on 6Qpx[0,T], ®)

%-ﬁp:é on Qy x[0,T], (4)

d(x,00=0 in Q. 5)

Our notation is completely standard> 0 is a viscosity parameter (the inverse of the Reynolds
number in a dimensionless settind),> 0 is some final timedQp is the Dirichlet boundary and
0Qy is the Neumann boundary such th&t = 0Qp U 0Qy andoQp N dQy = 0. In this paper, both
0Qp andoQy are assumed to have positive measure.

For any potential numerical scheme solving (1)—(5), theeetlaree important issues: the spatial
discretization, the temporal discretization and the liresdion of the quadratic terrd- Vd. The
stabilized adaptive TR (Trapezoid Rule) time stepping meétintroduced by Kay et al. [3] and the
linearisation approach of Simo & Armero [4] that is advochite[3] is adopted here. A feature of
this methodology is that it can be used to solve a demandisigigam in “black-box” fashion—that
is, without tuning parameters, and not knowing the stric{for example, the Strouhal number)
of the long-time solution beforehand. Full details are jfed below. The spatial discretization
strategy is dferent to that in [3] however—instead of using stable (Taylood) approximatioh

we use a stabilized mixed approximation method herein.

"See [5, ch. 5] for a full discussion of inf-sup stability andlassification of stable and unstable mixed methods.

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§0000)
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STABILIZED Q;—FP, FOR UNSTEADY INCOMPRESSIBLE FLOW 3

To get to a semidiscrete version of (1)—(5), we must partitive time interval [0T] into N
subintervalg[ty, th:1]}o<n<n—1- We letky,1 := thi1 — t, denote the current time step anduédenote
u(X t,). Following [3], at a general TR step our task is to computeia of functionsd™* € HE,
p™?! e L?(Q), that solve the linearized variational problem

kni(drwl’v) + V(VU”+1, Vv) + (Wm-l . Vdn+l,V) _ (pn+1’ V. \—/>)
+1
oan

2 n
= (W?W"‘M(U 7\7)’ (6)
0, (@)

(V-u™q)

for all (v, q) € Hg, x L*(Q). Our notation is conventional: the velocity solution asslttspaces are

given by
Hi = {de HY(Q)?| d™ = g™ ondQp|, Hg, ={Ve HY(Q)?| V=00noQp|,

and the convection field in (6) is extrapolated from previeel®city estimates via

Wl =1+ kn+1) gn — (kn+1) g1

Mixed approximation of (6)—(7) is easily achieved, see [b,5, and is associated with the
construction of finite dimensional spacxg approximatinngo, and M" approximatingL?(%Q).
Our focus here is on the lowest order rectang@ar Py approximation with the degrees of freedom
shown in Fig. 1. We will, however, compare ta—P, results with those obtained using the higher
orderQ,—P; approximation shown in Fig. 2. Thus, for a given a spatialdétibion of rectangular
elements, the following fully discretized problem must blved at every time level: fin(T,;1+1 € XE
and pn+l € Mh WhereXh is a finite dimensional approximation of the velocity spadwoundary

data®’

solvmg theOseerproblem:

2(dr:‘+1 V) + v ka1 (VAL V) + Ko (WL - VAT, Gh) — (pTFL, V- W)
n

au,
(a—t“, Vh) = v (VO V) — (W™ - VAR W), (8)
0, 9)

(V- di*, o)

for all (v, o) € X x M, wherew™! = (1+ %:)dn - (%:2)d"L. The velocity and acceleration at
th+1 can then be updated via
agnt o 00
dn+1 Uh + kn+1 dh s T = Zd'? - W (10)
As discussed in [3], in order to start the time integratioroteptial flow problem is solved to obtain

0
the initial acceleration: we seea% e Xt p? € M", solving thepotential flowproblem:

(— Vh) — (ph, V-V = —v (VU,?, V) — (U,? . VU,?, Vh), (12)
au?
(V- ,qh) = 0, (12)
Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§0000)
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4 QIFENG LIAO AND DAVID SILVESTER

for all (Vh, gn) € Xf) x M". We will return to this problem later.

Figure 1.Q1—P, rectangular elemens (velocity node;e pressure).

. L.

Figure 2.Q,—P; element ¢ velocity node;o pressure;—T> pressure derivative).

As is well known, theR;—Py approximation is not (inf-sup) stable for arbitrary regatar grids.
For enclosed flow problems (i.ﬁ,QNds= 0), the discrete pressure approximation is not even unique
up to a constant, due to the so-called checkerboard pressute: see [5, pp. 235-238]. For a natural
outflow condition withmeds> 0, there is a unique discrete pressure solution, althougtaked
“pesky pressure modes” see Gresho & Sani [6, pp. 686—691j stilBbe an issue—especially i

is large. We will focus on this in Section 3.

Twma Twms

Tm2 Tma

Figure 3. A 2x 2 macroelemeni.

Figure 4. An example of a rectangular partitionifgwith a macroelement partitioningy, in bold.

In order to construct a stabilized,—P, approximation, see Kechkar & Silvester [7], the notion
of a macroelement needs to be reviewed. A2 macroelement is the union of four neighbouring
elements sharing a common vertex. Fig. 3 shows a genericoglaonentM which consists

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§0000)
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STABILIZED Q;—FP, FOR UNSTEADY INCOMPRESSIBLE FLOW 5

of elementsTy;,i =1:4 (M = Ui_14T wj, M = M \ dM). For a rectangular partitioningp, the
associated macroelement partitioning is denoted gy An example is shown in Fig. 4. In this
paper we assume that aily, has a unique & 2 macroelement partitioning), associated with
it. The framework can easily be extended to more generakgedy. by defining a 8 3 or

3 x 2 macroelement. Thus, a “macroelement” in subsequentosactill always refer to a & 2
macroelement. Moreover, a (local jump) stabilizgg-P, approximation is easily stated. At every

TR step we computef}:1+1 € X{; and pﬂ*l e M" solving the stabilized Oseen problem:

2d™%, V) + v kns1 (VAL V9) + Koo (WL - V™ 0) — (1, V - Oh)

oan
= (529 - (VO V) - (W VAR W), (13)
~(V-d™%an) - BY(PR ™ an) =0, (14)

for all (Vi,, gn) € XQ x M. In (14),3 is the stabilization parameter afiidpy, gy) is given by

M « 1

T = 3 Il (15

() = Y Cra(Pn, ), (16)
MeTy

wherel'y is the set consisting of the four interior element edgeseémtlacroelemeril € Ty, [
is the jump across eddeandhg is the length oE. For further details see [5, p.259]. From Silvester
[8], the key idea of the local jump stabilization is to forbe fpressure approximation to be constant
on each macroelement, so that all local checkerboard peessoades are controlled. The larger the
parameter valug is, the closer to a constant on each macroelement the peeapproximation
becomes.

For the initial time step, the stabilized method is to ff&% e Xt, p? € M", solving thestabilized

potential flowproblem:

aljl‘? 0 0 0 0
(W? vh) - (ph7 \ vh) = v (VU > Vvh) - (Uh : Vah’ Vh), (17)

aa? 0
-(V- . »0h) = B (Ph, Gn)
for all (Vh, gn) € Xf} x M".

In our self-adaptive time stepping algorithm, the stepssilzg) , are generated using the standard

0, (18)

AB2-TR heuiristic, see [3]. The other parameters are setlasvia

e initial time step= 10°°;
e time stepping tolerance 107%;

e averaging frequency parametgr = 10.

We deliberately take a tiny initial time step. We note that $tabilization in (18) is not absolutely

necessary—the system (17)—(18) is solvable witk 0. Computational experiments suggest

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§0000)
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6 QIFENG LIAO AND DAVID SILVESTER

however, that the added stabilization allows the first fawetistep to increase more quickly—
certainly for times shorter than the initial response timfemred to in [3]. Our general experience
is that the stabilization strategy in (14) does not genesagenall time step restriction. This is in
contrast to other approaches that have been discussed litethture, where for transient Stokes
problems it is observed that time steps associated withligedhmethods can not be much smaller
than the mesh size. For example, Bochev et al. [9] show tbatydckward-Euler time stepping,
residual based stabilized methods are stable only wiienCH. A detailed study by Burman and
Fernandez [10] establishes that pressure stabilizedadsttincluding our local jump stabilized
method) are unconditionally stable for TR time steppingdfthe initial data is regular enough. In
the experiments reported here the initial data is zero agaagty of the initial data is assured. The
stability of the stabilized Oseen system (13)—(14) for \v@amall time steps in cases when the initial
data is rough remains an open question.

The rest of this paper is devoted to numerical results. Widedls on two classical test problems;
steady flow over a backward facing step and periodic flow atoam obstacle. Both of these
problems are hard-wired into our IFISS software toolboX,[afhd every experiment reported below

can be reproduced by running IFISS with the parametersfepeéeis above.

H/2
vyl o y

)
Figure 5. The backward—facing step domain.

3. TEST PROBLEM 1: DESIGN OF THE STABILIZATION PARAMETER

The flow domain for the first test problem is shown in Fig. 5. Theer pointO is the origin of the
cartesian coordinate system and the dimensions are sett$d th2, Ly = 1 andLp = 5. The initial
condition (5) implies that the flow is initially at rest. Thedndary conditions are set as follows.

The Poiseuille velocity profilé = (u, v), with
u=(1-e')4y1-y), v=0 (19)

is imposed on the inflow boundary (the left boundary), theurstcondition (4) is applied on
the outflow (the right boundary), and all other boundariegeh#o-slip and no-penetration so that
d = (0,0). TheQ1—P, subdivision is the uniform square mesh withk= 1/8, and theQ,—P; mesh

is uniform withh = 1/4, so we have the same number of velocity degrees of freedbiotincases.

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§0000)
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STABILIZED Q;—FP, FOR UNSTEADY INCOMPRESSIBLE FLOW 7

To show the importance of stabilization, pressure solsti@t t = 100 computed using
unstabilized@,—P; (i.e. settings = 0 in (14)) and withQ,—P; are shown in Fig. 6 and Fig. 7,
respectively. Looking at Fig. 6 we see that when the flow ishlyigriscous (e.g.v = 1), the
unstabilized@,—P, pressure approximation has spurious oscillations in th&ream channel
(-1,0)x (0,1) and also in the vicinity of the step corner. In contrast,e ,—P; pressure
approximation in Fig. 7 is non-oscillatory. Looking mor@stly at Fig. 6, the spurious pressure
oscillations of unstabilize@,—P, can be seen to diminish in magnitude as the viscosity pasarset
reduced. This suggests that the stabilization paramedetdhbe scaled in proportion to the viscosity
in order to avoid over-stabilizing the pressure approxiamat-rom [5, pp. 238—-240], we know that
the optimal stabilization parameter for stabiliz@g—P, approximation for the steady-state Stokes
problem is8 = 1/4. Thus, we hypothesise that the “best” stabilization patamin (14) is given by
the choices* = %v. Note that this design of the stabilization parameter isgetely independent
of the time step (cf. the residual based stabilization nethd9]). Confirmation of our hypothesis
comes from the pressure solutions computed ughgPy with g* = %v which are illustrated in
Fig. 8. Comparing the reference pressure solutions in Rigtlvthose shown in Fig. 8 it is élicult

to see any dference!

4. TEST PROBLEM 2: STEADY FLOW OVER A STEP FOR REYNOLDS NUMBERO0

4.1. Problem description and logistics

The flow domain for the second test problem is also shown in5sigut this time we lengthen the
outflow so thatH = 2, Ly = 1 andLp = 30. The boundary and initial conditions of test problem 2
are the same as those in test problem 1. If we set the visquemityneter to the value= 1/600 then
the flow is expected to remain steadyhere are two pieces of evidence supporting this expeatatio
First, Gresho et al. [12] performed extensive numericakexpents on a closely related problem
which is equivalent to our test problem except that the epsirlength_ is set to zero (or in other
words, there is no inlet channel). Their results estabhiahflow at this Reynolds number ultimately
attains a steady-state. Second, tieda of the inlet channel is investigated in detail by Bartb8]]
where it is shown that for a small viscosity parameter, thetichannel has only a small influence
on the flow field away from the corner. The authors of [13] alsmpout that for very viscous flow,
a long inlet channel could lead to a better agreement betweserical solutions and experimental
results. This is the reason we included a non-trivial intediir computational model.

Results for two uniform meshes are reported below: one &rned to as the coarse mesh and

the other as the fine mesh. For #f¢—P; approximation, the coarse mesh is uniform witk 1/8

#The parameter value= 1/600 corresponds to flow &e= 800 with the standard non-dimensionalisation, see [12].

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§0000)
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8 QIFENG LIAO AND DAVID SILVESTER

@v=1
15
10
5
0 2 4 -1
(b) v = 1/50
0.1
0.05
0
-0.05
0 2 4 -1
(c)v=1/100

-0.02
-0.04
-0.06

:
:
:
:

Figure 6. Test Problem 1: Pressure solutions=atl00, computed usin@;—P, with 8 = 0.

(16145 velocity degrees of freedom). The coarse mesi®feitP; approximation, is also uniform
with h = 1/16. This gives that same velocity degrees of freedom in tloectages. In either case, the
fine mesh is obtained by a uniform refinement of the coarse mesh

The rest of the section is structured as follows: first, vigations of velocity and pressure
fields computed using stabilize@,—P, with 8 = g* will be presented. Subsequently, stabilized

and unstabilized results will be compared using the follgyrineasures:

e velocity change per time step and the overall kinetic energy

e time steps generated by our “black-box” time stepping matho

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§0000)
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STABILIZED Q;—FP, FOR UNSTEADY INCOMPRESSIBLE FLOW 9

@v=1
15
10
5
0 2 4 -1
(b) v = 1/50
0.1
0.05
0
-0.05
0 2 4 -1
(c)v=1/100
0
-0.05
-0.1
0
-0.02
-0.04
-0.06

0 2 4 -1

Figure 7. Test Problem 1: Pressure solutions=at.00, computed usin@—P;.

¢ lengths of the upper and lower eddies;
e velocities and pressures at three history poiRis= (0,0) (the corner),P; = (10,0.75)
(downstream of the step) a3 = (28, 0) (near the outlet) ;

e vorticity and the mean vorticity.

The time interval for computing these quantities i4B0]. The simulations reported in [12] suggest

that this time interval is long enough for the flow to settlevddo a steady state.

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§0000)
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10 QIFENG LIAO AND DAVID SILVESTER

@v=1

14
12
10

N &~OYOO

0.1
0.05

-0.05

-0.02
-0.04
-0.06

0 2 4 -1

Figure 8. Test Problem 1: Pressure solutions=atL00, computed usin@;—P, with 8 = 8*.

4.2. The flow field at snapshot times

Some reference flow solutions are shown in Fig. 9 to Fig. 18mFFig. 9(a), at an early time
(t ~ 10), two separation eddies can be seen clearly—one is ther @ojoly and other is the lower
eddy. In addition, the upper eddy at this time is quite smadl elose to the inlet channel. At later
times Fig. 9(b) and Fig. 9(c) show that the main upper eddyeatawards the outflow boundary and
the lower eddy becomes longer. Also, besides the main edsbiese small eddies appear in these
last two pictures. Eventually, in Fig. 10 we see that the nugiper and lower eddies become stable

features, whereas the other small eddies seem to haveadesbight timet ~ 100, the streamlines

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§0000)
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STABILIZED Q;—FP, FOR UNSTEADY INCOMPRESSIBLE FLOW 11

close to the outflow boundary are not parallel to theaxis. The streamlines become closer to
parallel att ~ 200, and a “visual” steady-state is reachetda¥50. The pressure solution evolution
is shown in Fig. 11 and Fig. 12. These snapshots show thatrdssyre changes rapidly at the

beginning, but reaches a smooth steady-state profile béferend of the time interval.

4.3. Comparison of stabilized and unstabilized results

In the rest of the section, results will be compared for fdteraative approaches:

A referenceQ,—P; approximation (black);

UnstabilizedQ,—P, approximation (i.e3 = 0) (red);

Optimally stabilized@,—P, approximation withg* = 7v (blue);

Over-stabilized?;—P, approximation withB = %1 (green).

The colors will be used to identify thefirent solutions in the associated figures.

First, Fig. 13 shows the time steps that are generated indinese of the time integration. It can
be seen that, independent of the mesh, the time step behdwiall four approaches are broadly
similar. The unstabilized®,—P, results (in red) and the optimally stabiliz€d—P, results (in blue)
cannot be distinguished from each other.

A commonly used criterion for assessing when a time depérilten solution becomes steady
is the relative velocity change between successive tinps{sze e.g. Barrenechea & Blasco [14]).
Typically, the flow is deemed to be steady when the relatiange in the velocity is gficiently
small. This measure is assessed in Fig. 14. Note that alnf@tinods ultimately attain a very small
relative velocity change (smaller than 2] The kinetic energy evolution is shown in Fig. 15. The
results computed by all four discretization methods arg ekrse to each other. This suggests that
the kinetic energy is a relatively insensitive measure efdpatial accuracy.

We now consider the recirculating eddy structure of thedstdbow. There are two separation
bubbles in the steady-state flow field (the lower eddy and pipeueddy). To identify their structure

some notation is needed. For eacyrid valuex, (also,yx denotes & grid value), we set

Ui, = MINUOC Y X = X6 0 <Y < T Ui, = MINUOK Y X = X =1 < Yic < O).

This leads to the simple characterization
Xt = U < 0L X0 = {Xd Uiy, < OF.

Thus, for the upper eddy, the starting point is defined byxtged value which is just smaller than
min{xﬁf} and the reattachment point is m;ﬁ#’}. The distance between these two points is referred
to as the length of the upper eddy. The lower eddy is assumsthtbatx = 0 and its length is
given by ma*x:gw}. The above characterization only makes sense if there igher eddy except

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§0000)
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12 QIFENG LIAO AND DAVID SILVESTER

0
0

3
3

5
5

2
2

B* (early time).

20
20

5

10.15
1

30.04
15

t

)

(@t
(b

10

Figure 9. Velocity streamlines generalized by stabiliggd-Py with 8
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STABILIZED Q;-P, FOR UNSTEADY INCOMPRESSIBLE FLOW 13

(a) t =100.12

(b) t =200.28
1 :

N

- o ——

-1
0 10 15 20 25 30
() t =449.07
1 :
0 -
_l L L T
0 5 10 15 20 25 30

Figure 10. Velocity streamlines generalized by stabilighe-Py with g = g* (long time).

() t=10.15

0 5 10 15 20 25 30 -1
(b) t =30.04

Figure 11. Pressure generalized by stabiligbd-Py with 8 = g* (early time).
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14 QIFENG LIAO AND DAVID SILVESTER

(a) t=100.12

0 5 10 15 20 25 30 1

Figure 12. Pressure generalized by stabiliged-Py with 8 = 8* (long time).

(a) Time steps (coarse mesh) (b) Time steps (fine mesh)

35 35
3} 3
25 N 1 25
2t 2
g / ‘ g
15} \ | g 1 1s
1} 1
05} "/ V2 Y \_/ =
0 ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
0 100 200 300 400 0 100 200 300 400
Time Time

Figure 13. Time step evolution: black ,—P; ; red is unstabilized1—Fy ; blue isQ1—Py with g = 8*;
green isQ1—Py withg = 1/4.

the main upper and lower eddies, and so is not appropriate tifeeflow not close to being steady.
For this reason, the length of the eddies are only computetd=$®10. The time-evolution of the
eddies (computed using simple approach above) is shownginlei The results witl® = 0 and

B = p* are indistinguishable. Two other observations are apatgprirst, on the coarse mesh, the

Q1—P, approximations wittg = 0 or 8 = 8* are much closer to the referen@—P; results than

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§0000)
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STABILIZED Q;—FP, FOR UNSTEADY INCOMPRESSIBLE FLOW 15

(a) velocity change (coarse mesh) (b) velocity change (fine mesh)

-15 -15
-2
[} ]
o)) o))
c c
@ ®
S S
2720 2
£ £
o o
[} [}
> >
-3
-35 : : : : -35 . : : :
100 200 300 400 0 100 200 300 400
Time Time
1
. . Ur?+ B Ur?“o
Figure 14. Semi-log plot .
e
h llo
(a) Kinetic Energy (coarse mesh) (b) Kinetic Energy (fine mesh)
14 : : : : 14 : : :
12 12
. 10 > 10
2 <)
2 8 2 8
w ]
2 Q
© 6 g 6
£ £
¥
4 Xy
2 2
0 : : : : 0 : : : :
0 100 200 300 400 0 100 200 300 400
Time Time

Figure 15. Kinetic energy evolution.

the results withg = 1/4. Second, all four results are in close agreement when cadpusing the
finer mesh. To give some quantitative information, the \fee values provided by Gartling [15]
are presented in Table |. These were obtained by directlyrapthe steady-state problem for the
domain withLy = 0. It can be seen that our fine mesh results (at the final tineeglayhtly smaller
than the reference values. This is not so surprising, sisdésaussed in [13], the blunt inlet channel
in [15] is known to give longer separation eddy lengths whernviscosity is small.

Next, the evolution of the horizontal velocity and the veativelocity at the history point3, and
P3 are shown in Fig. 17 and Fig. 18. (The velocity at history p&nis simply zero). The pressure
evolution at the three history points is shown in Fig. 19. tAik point data is in close agreement,
except for Fig. 17(c), Fig. 19(a) and Fig. 19(c) where theltssvith Q,—Py with 8 = %1 are visually

different.

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§0000)
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16 QIFENG LIAO AND DAVID SILVESTER

Table I. Comparison of fine mesh eddy structuretf0).

Method Lower  Upper  Upper Upper

length start end length

Gartling [15] 12.20 9.70 20.96 11.26
QP 11.4375 9.2812 20.4375 11.1562

Qi-Pywithg=0 114062 9.2500 20.4375 11.1875
Qi-Pywithg=p* 114062 9.2500 20.4375 11.1875
Q1—-Powith 8 = %1 11.4062 9.1562 20.3125 11.1562

The final quantity that is compared is the vorticity:

w=Vxil= 2—\; - Z—;,
with a direction perpendicular to the two dimensional damgig. 20 and Fig. 21 show the contour
lines of the vorticity computed usin@.—Py with g8 = g*. From Fig. 20(a), at ~ 10, the fluid
rotation around the step corner is very strongt At30, it is clear that the vorticity is large in three
places: the step corner, the lower eddy reattachment poihtree upper eddy reattachment point.
When the time becomes very largey450), the vorticity contour lines seem to reach a steadg sta
and the main rotation of the flow is at the step corner.

In addition, the mean vorticitywq which is defined by

m=fM
Q

is also computed. Note that, using the Green’s theorem,

f U-szw,
00 o

wheret’is the unit tangential direction on the boundary. Given thpased flow boundary condition
onoQp, a non-trivial tangential velocity can only appear on thiéflow boundaryQy. That is, for

alld = (uv)" € HE,

wq = ﬁQN V. (20)

From (20), the mean vorticity can be used to check tfectveness of the outflow boundary model.
Ideally, the mean vorticity should be to close to zero, he.ftow field should be essentially parallel
to the horizontal axis. In this situation, the natural coiodgi (4) is valid and has the correct physical
meaning—zero pressure on the outflow boundary. In order hieee this computationally, the
downstream channel must be long enough for the flow to “Sefie mentioned earlier, the advice
in Gresho et al. [12] is thdtp = 30 is long enough for this value of the Reynolds number. Tharme
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(a) Upper eddy start (coarse mesh) (b) Upper eddy start (fine mesh)
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Time Time
(c) Upper eddy length (coarse mesh) (d) Upper eddy length (fine mesh)
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(e) Lower eddy length (coarse mesh) (f) Lower eddy length (fine mesh)
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Figure 16. Separation bubbles: blackls—P; ; red is unstabilized,—P; ; blue isQ.—Py with g = 8*;
green isQ1—Po with 8 = 3.

vorticity evolution is shown in Fig. 22. From this figure,stélear that the mean vorticity stays close
to zero for all time: independent of the approximation mettiogy. For the fine mesh, the absolute
value of the mean vorticity at= 450 lies between & 10* and 2x 1072 in all cases considered.
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(@) uat P2 (coarse mesh) (b) uat P2 (fine mesh)
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Figure 17. Horizontal velocity at the history points.

4.4. Some linear algebra issues

We conclude this section with a comment about linear algebpects. When the adaptive time
stepping algorithm was being tested in the IFISS package etyuivalent linear algebra problems
representing the system to be solved at every timestep wagdered: the standard saddle-point
system associated with (6)—(7) or (13)—(14), that is,

I

or an alternative system that is obtained by rescaling tessoire vector in (21),

S
= , (22)
q kig

wherek; is the time step, ang = k; . Note that although (21) and (22) are mathematically

F BT
B -C

u

p

; (21)

F kBT
kB —kC

equivalent, solving (22) using the MATLAB sparse “backhlasolver is much faster (often an
order of magnitude faster) than solving (21Thus, the scaled formulation (22) is used for all

the numerical experiments in this paper. Using the defdakt“solver” in IFISS (preconditioned

$The reason for this surprising behaviour is thatffedént sparse reordering algorithm is applied in the twosase
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(@) vat P2 (coarse mesh) (b) vat P2 (fine mesh)
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Figure 18. Vertical velocity at the history points.

GMRES with residual reduction of 1P) in place of “backslash” gives the iteration counts in
Table Il. It is interesting to note that the standard systemaisier to precondition than the rescaled
system. Moreover the optimally stabiliized system witk g* is significantly better conditioned

than the (over-stabilized) system wigh= 1/4. Further details of the fast solver technology that is

built into IFISS can be found in overview paper by Elman efl].

Table 1l. Number of preconditioned GMRES iterations at thapshot time = 200

Coarse mesh Fine mesh
Method Standard RescaledStandard Rescaled
QP 15 13 11 10
Q1-Pywithg =0 5 5 5
Q1—Py with g = g* 5 10
Q1—Powithg = 1 36 84 33 70
Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§0000)
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(@) pat P1 (coarse mesh) (b) p at P2 (fine mesh)
0.05
-0.04
-0.05
a L
-0.06 0
-0.07
-0.08 . : : : -0.05 : : : :
0 100 200 300 400 0 100 200 300 400
Time Time
(c)pat P2 (coarse mesh) (d) pat P2 (fine mesh)
0.05 0.05
Q 0 1 0
-0.05 . : : : -0.05 : . . :
0 100 200 300 400 0 100 200 300 400
Time Time
~ e) p at P, (coarse mesh _ f)pat P, (fine mesh
g7 @patPyl ) o Opat Py )
5
0
o
-5
-10 -10
0 100 200 300 400 0 100 200 300 400
Time Time

Figure 19. Pressure at history points.

5. TEST PROBLEM 3: PERIODIC FLOW AROUND A SQUARE CYLINDER

Our third test problem is that of flow in a channel around a sgjaglindrical obstruction. The flow
domain is shown in Fig. 23. The cylinder is positioned synrivally in the center of the channel.

The boundary conditions are set as follows. The Poiseuglecity profiled = (u, v), with
u=(1-e')@a-y), v=o (23)

is imposed on the inflow boundary (the left boundary), theurstcondition (4) is applied on
the outflow (the right boundary), and all other boundariegeh#o-slip and no-penetration so that
d = (0,0). From the work of Sharma & Eswaran [17], the solution o$ tieist problem is known to
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Figure 20. Vorticity computed usin@,—P, with g = * (early time).

be periodic for 80< Re < 320. Herein, we set the viscosity parametdo 1/300, which led to a
periodic solution in every case.
In order to check the performance of the four discretizatimthods, the drag céicientCy and

the lift codficientC, are computed so that

_ [9ut5 _ [9ut5
Ca= [O5Em -, == [(5En.+ pn) (24)

whereS is the surface of the cylinderi = (n,n,)" is the normal vector o, ts = (ny, —ny)" is
the tangential vector and is the tangential velocity. Two kinds of meshes were testedtis
flow problem. The first one is a uniform mesh—@,—P; it consists of 1008 rectangles, while
for Q1—P, it is obtained by unform refinement of th@,—P; mesh. The second mesh is highly
stretched—that used f@p,—P; is shown in Fig. 24. Th&;—P, mesh is again obtained by a single
uniform refinement—so the number of velocity degrees ofdose is the same in both cases. The

stretched mesh should provide much more accurate dragfacadiicients than the uniform mesh.

Solving the flow problem using the our time stepping methogghives the very interesting time
step evolution profiles shown in Fig. 25. Note that the tinepstvary by four orders of magnitude
over the course of the time integration! Although the timepstof our four discretization methods
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(a) mean vorticity (coarse mesh)

Figure 21. Vorticity computed usin@1—P, with 8 = 8* (long time).

(a) mean vorticity (fine mesh)
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Figure 22. Mean vorticityvg.

are visually dfferent at early time, they are in perfect agreement whisnarge—ultimately the
time steps all settle on a value close t0Dtime units.

Fig. 26 shows the computed drag fiodents. For the stretched mes,—P; and Q;—P, with
B =0 orp =p* are again in close agreement. Looking at Fig. 26(d) in motaildee find that
the Q,—P; codficient oscillates between 0.78 and 0.785, whereas the dptistabilized Q,—P,
codficient oscillates between 0.795 and 0.80, so tfteince is less than 3% of the magnitude. The
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Ly =175 Lp =575

Figure 23. A square cylinder in a channel.

overstabilised);—P, results are inaccurate, both qualitatively (especiallyttmn stretched mesh)
and quantitatively. Fig. 27 shows the computed lift ffi@@ents. There is good agreement @Qi—

P, with g = 0 org = g* with the referenc&,—P; values. The results fa@,—P, with 3 = 1/4 are
qualitatively incorrect. They magnitude of the lift osatilon can be seen to decrease over the time

interval rather than remaining constant!

Figure 24. Test problem 3: stretched mesh with 2826 recatang|

(a) Time steps (uniform mesh) (b) Time steps (stretched mesh)

0 100 200 300 0 100 200 300
Time Time

Figure 25. Test problem 3: time step evolution for the foysragimation methods.
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(a) Drag coefficients (uniform mesh) (b) Drag (uniform), zoom in
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(c) Drag coefficients (streched mesh) (d) drag (streched), zoom in
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Figure 26. Test problem 3: Drag d@eients.

The periods of the computed lift and drag ffloa@ents (used to define the Strouhal number of the
flow) are presented in Table Ill. Herein, a period is definethigylength of the time interval between
two local minima of the oscillation quantities, and is awgrd over the finalN periods up to the final
time. We see that results obtained by averaging over 5 anérl@ds are not significantly fierent.

The optimally stabilized results again show good agreeméhtthe reference results.

Table IIl. Periods of the drag and lift cieients on the stretched mesh.

Method Drag Drag Lift Lift
N=5 N=10 N=5 N=10
QP 1.3203 1.3177 2.6354 2.6354

Qi-Powithp=0 13196 1.3236 2.6472 2.6459
Qi-Powithg=p* 13226 1.3226 2.6451 2.6464
Q1—Powith = %1 1.3693 1.3708 2.7421 2.7366
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(a) Lift coefficients (uniform mesh) (b) Lift (uniform), zoom in
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Figure 27. Test problem 3: Lift céigcients.

6. SUMMARY

We have developed a fast and robust computational stratagfinding the numerical solution
of models of incompressible flow using implicit methods imgmction with a stabilized spatial
approximation method. We have demonstrated ffeztveness of this solution algorithm on a series
of benchmark problems, where it is shown in particular thei\little preliminary knowledge of
problem structure or parameter tuning is needediioiently compute accurate solutions. We have
also considered the design of an appropriate stabilizgtgsameter within the stabilize@,—P;
methodology. Our experiments show tigdt= %v is the appropriate scaling. This means that the
requirement for spatial stabilization §f,—P, approximation is reduced as the Reynolds number is
increased. For the test problems considered here the uizgdlf),—P, approach appears to be a

perfectly éfective discretization strategy.
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