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Geometric structure in the tempered dual of SL(4)

Kuok Fai Chao and Roger Plymen

Abstract

We exhibit a definite geometric structure in the tempered dual of SL(4,Qp). Especially interesting
is the case of SL(4,Q2), when we reveal a tetrahedron of reducibility in the tempered dual. This
conforms to a recent geometric conjecture.

1. Introduction

Let G be a reductive p-adic group. The tempered dual Irrtemp(G) of G admits a natural
topology in which it is locally compact. A connected component of Irrtemp(G) will be denoted
by Irrtemp(G)s. The label s encodes a complex torus Ds, a compact torus Es, and a finite
group W s. The group W s acts on Es and Ds.

This data allows us to construct the extended quotient Es//W s. The extended quotient
Es//W s has more than one connected component, unless the action of W s is free (which is
rare).

It follows that the compact spaces Irrtemp(G)s and Es//W s cannot, in general, be homeo-
morphic. The cuspidal support map Sc assigns to each point in Irrtemp(G) its cuspidal support
in the algebraic variety Ds/W s, see [11, VI.7.1]. The geometric conjecture developed in [1],[2],
[3],[4] asserts that there exists a continuous bijection

µs : Es//W s → Irrtemp(G)s

which behaves well with respect to the map Sc, in the sense that

Sc ◦ µs = πs√
q (1.1)

where πs√
q is a deformation of the standard projection πs : Es//W s → Es/W s to the so-called

q-projection πs√
q : Es//W s → Ds/W s. The natural number q is the cardinality of the residue

field of the underlying local field F ; if F = Qp then q = p. We should point out that the
geometric conjecture predicts a geometric structure in the dual of a p-adic group which was
previously unknown (apart from an early intimation in [5]).

We will prove Eqn.(1.1) for the special linear group SL4(Qp) when s = [T, σ]G, with T a
maximal torus in G. The case p = 2 is especially interesting. In this case, there is a tetrahedron
of reducibility in the tempered dual of SL4 which does not occur when p > 2. The extended
quotient performs a deconstruction: it creates the ordinary quotient and six unit intervals. The
six intervals are then assembled into the six edges of a tetrahedron, and create a perfect model
of reducibility, see §4.

By a cocharacter we shall mean a morphism C× → T∨ of algebraic groups, where T∨ is the
dual torus in the Langlands dual G∨. The q-projection πs√

q is constructed from a finite set of

cocharacters (depending on s), see [3, §1]. The cocharacters which enter the definition of the
q-projection πs√

q depend only on two-sided cells c, see §3 and §4.

2000 Mathematics Subject Classification 20G05, 22E50.
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There is an abundance of L-packets in the tempered dual of SL4. There are, for example,
L-packets in the tempered dual of SL4(Q2) which are parametrized by the 1-skeleton of a
tetrahedron. The L-packets which occur in this article all conform to the L-packet conjecture
in [4, §10].

2. Some background material

The extended quotient. We recall the definition of the extended quotient. Let X be a
Hausdorff topological space. Let Γ be a finite group acting on X as homeomorphisms. Let

I(X) = {(x, γ) ∈ X × Γ : γx = x}

with group action on I(X) given by

α · (x, γ) = (αx, αγα−1)

for α ∈ Γ. Then the extended quotient is given by

X//Γ := I(X)/Γ =
⊔
γ∈Γ

Xγ/Γ (2.1)

with one γ in each conjugacy class of Γ. The map (x, γ) 7→ x induces the standard projection

π : X//Γ→ X/Γ.

Extended affine Weyl groups. Let G = SL4(F ). Let s = [T, σ]G be a Bernstein
component with respect to a character σ of T . In this section, we will write Ws = W s the
isotropy group of s. We let πσ|T = σ where πσ is a (unitary) character of the standard maximal
torus T̃ = F× × F× × F× × F× of G̃ = GL4(F ).

We denote by W 0
s the isotropy of s̃ = [T̃ , πσ]G̃. The group W 0

s is a finite Weyl group. Let Φs

denote a root system for W 0
s , and let Φ+

s = Φs ∩ Φ+, where Φ+ is a positive root system for
the Weyl group of G. Then Φ+

s is a positive system in Φs. The group Ws is not a Weyl group
in general. However, we have the following relation (see for instance [8, Prop. 2.3]):

Ws = W 0
s o Cs, (2.2)

where

Cs =
{
w ∈W 0

s : w · Φ+
s = Φ+

s

}
.

Let T∨ denote the dual torus of T in the Langlands dual G∨ = PGL4(C) of G. Let X(T∨)
be the group of characters of T∨. We have

X(T∨) '
{

(l1, l2, l3, l4) ∈ Z4 : l1 + l2 + l3 + l4 = 0
}
.

We set

W e
s = X(T∨) oW 0

s .

Then W e
s is the extended affine Weyl group of the p-adic group H0

s . The group H0
s arises

from [12, § 8]. Let Φ∨s denote the set of coroots of the root system Φs. The quadruple
(X(T ),Φs, X(T∨),Φ∨s ) is the root datum of H0

s . There is a canonical bijection (due to Lusztig
[9]) between two-sided cells in W e

s and unipotent classes in the Langlands dual of H0
s .

Here are two relevant cases (the character τ is defined in §3):
– s = [T, 1]G, W 0

s = S4, Cs = 1, H0
s = SL(4)

– s = [T, τ ]G, W 0
s = 1, Cs = Z/2Z× Z/2Z, H0

s = T.

The R-groups. We have 5 conjugacy classes of Levi subgroups of SL4, one for each
partition of 4. Let P = MU be a standard parabolic subgroup of G = SL4(F ). Let M̃ be
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the corresponding Levi subgroup of G̃ = GL4(F ) so that M = M̃ ∩ SL4(F ). We will use the
framework, notation and results in [7]. Let σ ∈ E2(M) and πσ ∈ E2(M̃) with πσ ⊃ σ. Let
W (M) be the Weyl group of M . Let

L(πσ) := {η ∈ F̂×|πσ ⊗ η ' wπσ for some w ∈W}
X(πσ) := {η ∈ F̂×|πσ ⊗ η ' πσ}

By [7, Theorem 2.4], the R-group of σ is given by

R(σ) ∼= L(πσ)/X(πσ).

From now on, we will restrict ourselves to the case M = T the standard maximal torus.
For the Bernstein component s = [T, σ]G, we let πσ|T = σ where πσ is a unitary character of
M̃ . From now on, we denote (GLn1 ×GLn2 × · · · ×GLnr ) ∩ SLn by n1 + n2 + · · ·+ nr where
Σni = n. For example, 1 + 1 + 1 + 1 means (GL1 ×GL1 ×GL1 ×GL1) ∩ SL4.

Recalling the definition of Es, we see that Es may be identified with T4/T, the maximal
compact subgroup of the dual torus T∨ in the Langlands dual G∨ = PGL4(C).

For the principal series of SL4, an explicit bijection between Es//W s and Irrtemp(G)s

is constructed in [6]. The method comprises a case-by-case analysis. In order to avoid the
repetitive arguments [6], we have selected two cases which sufficiently illustrate the method.
All remaining details are set out in [6]. As for the dependence of cocharacters on two-sided
cells, these cases neatly illustrate the two extremes: in one case, we have Ws = W 0

s = S4 ; in
the other case, we have Ws = Cs = Z/2Z× Z/2Z.

3. The arithmetically unramified case

We will focus on the case when s = [T, σ]G with σ = 1, the trivial character of T .

Theorem 3.1. Let s = [T, 1]G. There exists a continuous bijection

µs : Es//W s → Irrtemp(G)s

such that

Sc ◦ µs = πs√
q (3.1)

where πs√
q is a deformation of the standard projection πs : Es//W s → Es/W s to the

q-projection πs√
q : Es//W s → Ds/W s.

Proof. The group W s is the symmetric group S4. This group has five conjugacy classes, one
for each cycle type. We now compute the extended quotient. We view S4 as the permutation
group of 4 letters (abcd).

– γ = (abcd), Eγ/Z(γ) = Es/W s

– γ = (acbd), Eγ/Z(γ) ∼= T2

– γ = (bcad), Eγ/Z(γ) ∼= T
– γ = (badc), Eγ/Z(γ) ∼= T t T
– γ = (bcda),

Eγ/Z(γ) = {(1, 1, 1, 1), (1,−1, 1,−1), (1, i,−1,−i), (1,−i,−1, i)}
= pt1 t pt2 t pt3 t pt4

Hence, we have

Es//W s = Es/W s t T2 t T t T t T t pt1 t pt2 t pt3 t pt4 (3.2)
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Now we identify each element in the compact subspace Irrt(G)s. In the following, Stk will
denote the Steinberg representation of GLk. The induced representations

{Ind4
(2+1+1)(z

val
1 St2 ⊗ zval

2 ⊗ 1) : z1, z2 ∈ T}

are irreducible, tempered, their infinitesimal characters lie in s, and they are parametrized by
T2.

The induced representations

{Ind4
(3+1)(z · St3 ⊗ 1) : z ∈ T}

are irreducible, tempered, have central characters in s and are parametrized by T.
The induced representations

{Ind4
(2+2)(z · St2 ⊗ St2) : z ∈ T}

have central characters in s, and are parameterized by T. They are irreducible except when
z = −1. The R-group is as follows:

R((−1)val · St2 ⊗ St2) =< (−1)val > .

There are two irreducible components, denoted by ρ+ and ρ−. We will locate ρ− in the second
copy of T and identify ρ+ by pt1.

The Steinberg representation St(SL4) has central character in s. We identify this represen-
tation by pt2.

The unramified unitary principal series of SL4 contains points of reducibility. In fact, there
is a circle of reducibility, as we now proceed to explain. Let t = (z,−z, 1,−1) except z = i and
let χt be the corresponding unramified unitary character. Then the representation χt is given
by

zval ⊗ (−z)val ⊗ 1⊗ (−1)val.

Then (−1)val is the generator of L̄(χt) and X(χt) = 1. Hence

R(χt) = Z/2Z

and the induced representation

λ(t) := IndGB(χt)

is reducible and admits two irreducible subrepresentations:

λ(t) = λ(t)+ ⊕ λ(t)−.

We assign λ(t)+ to [z,−z, 1,−1] ∈ Es/W s and λ(t)− to z ∈ T.

Now, we turn to the point t = (i,−i, 1− 1). Then

L̄(χt) =< ival >

and X(χt) = 1. We infer that R(χt) = Z/4Z. The induced representation τ = IndGB(χt) is
reducible with 4 irreducible constituents τ1, τ2, τ3, τ4. We assign τ1 to [i,−i, 1,−1] ∈ Es/W s

and τ2 to the point i in the third copy of T and assign τ3 and τ4 to pt3 and pt4 respectively.
For t = (z1, z2, z3, 1) ∈ Es/W s except t = (z,−z, 1,−1), the induced representation

IndGM (χt) is irreducible.
We build a map

µ : Es//W s −→ Irrtemp(G)s
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and here are the details:

Point in Es/W s Irreducible representation Cocharacter h(t)

(z1, z2) ∈ T2 Ind4
(2+1+1)(z1 · St2 ⊗ zval◦det

2 π ⊗ π) (t, t−1, 1, 1)

z ∈ T Ind4
(3+1)(z · St3 ⊗ π) (t2, 1, t−2, 1)

z ∈ T Ind4
(2+2)(z · St2 ⊗ St2) (t, t−1, t, t−1)

z ∈ T λ(t)+ 1
pt1 ρ+ (t, t−1, t, t−1)
pt2 St(SL4) (t3, t, t−1, t−3)
pt3 τ3 1
pt4 τ4 1

t ∈ Es/W s IndGB(χt) 1

It is clear that Eqn.(1.1) is satisfied. We note that the compact space Irrtemp(G)s is
non-Hausdorff. One connected component contains a double-point, and another connected
component contains a double-circle (and a quadruple point), see [10].

The Langlands dual group of H0
s = SL4(F ) is the complex Lie group PGL4(C). There are

five unipotent classes in PGL4(C):

u0 ≤ u3 ≤ u2 ≤ u1 ≤ ue,

which are respectively parametrized by the following partitions of 4:

(14) ≤ (2, 12) ≤ (22) ≤ (3, 1) ≤ (4).

They correspond (see for instance [13]) to the two-sided cells

c0 ≤ c3 ≤ c2 ≤ c1 ≤ ce.

We write
pt1 = (1, 1, 1, 1) pt2 = (1,−1, 1,−1)

pt3 = (1, i,−1,−i) pt4 = (1,−i,−1, i)
(3.3)

and define

(Es//W s)0 := Es/W s t {(z,−z, 1,−1) : z ∈ T} t pt3 t pt4 ' Es/W s t T t pt3 t pt4

(Es//W s)3 := {(z1, z1, z2, 1) : z1, z2 ∈ T} ' T2

(Es//W s)2 := {(z, z, 1, 1) : z ∈ T} t pt1 ' T t pt1

(Es//W s)1 := {(z, z, z, 1) : z ∈ T} ' T

(Es//W s)e := pt2.

From Eqn.(3.2), we get the following cell-decomposition of Es//W s:

Es//W s = (Es//W s)0 t (Es//W s)3 t (Es//W s)2 t (Es//W s)1 t (Es//W s)e,

with cocharacters

h0 = 1, h3(t) = (t, t−1, 1, 1), h2(t) = (t, t−1, t, t−1)

h1(t) = (t2, 1, t−2, 1), he(t) = (t3, t, t−1, t−3).

We have included pt1 in the subset (Es//W s)2 in order to attach the two elements ρ+ and
ρ− to the same unipotent class. It should be a general fact that all the elements in a given
L-packet are attached to the same unipotent class.
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4. A tetrahedron of reducibility

We exhibit a tetrahedron of reducibility in the tempered dual of SL4(Q2) which does not
occur in the tempered dual of SL4(Qp) when p > 2. Let F denote the p-adic field Qp, and let
UnF := 1 + pnZp, n ≥ 1 denote the standard congruence unit groups. Let UF = o×F . For p = 2
define homomorphisms η, χ : U/U3 → Z/2Z as follows:

η(x) = 0, x ≡ 1 mod 4

η(x) = 1, x ≡ −1 mod 4

χ(x) = 0, x ≡ ±1 mod 8

χ(x) = 1, x ≡ ±5 mod 8

The map η defines an isomorphism of U/U2 onto Z/2Z and the map χ defines an isomorphism
of U2/U3 onto Z/2Z. The level of a character ψ of F× is the least integer n ≥ 0 such that ψ
is trivial on Un+1

F . Then we have η is level 1 and χ is level 2. The product η · χ is also level 2.
The three ramified quadratic characters of Q×2 create a unitary character of the standard

Borel subgroup in SL4(Q2):

τ :


x1 ∗ ∗ ∗
0 x2 ∗ ∗
0 0 x3 ∗
0 0 0 x4

 7→ η(x2)χ(x3)(η · χ)(x4)

Theorem 4.1. Let G = SL4(Q2) and s = [T, τ ]G. There exists a continuous bijection

µs : Es//W s → Irrtemp(G)s

such that

Sc ◦ µs = πs (4.1)

where πs is the standard projection πs : Es//W s → Es/W s. The orbifold Es/W s contains a
tetrahedron of reducibility.

Proof. We twist the character τ by an unramified unitary character ψ and form the induced
representation IndGB(ψτ). Let Es be the corresponding compact torus. The subgroup of the
Weyl group which fixes Es is the finite group W s := Z/2Z× Z/2Z. We have the standard
projection

π : Es//W s → Es/W s

of the extended quotient onto the ordinary quotient. The extended quotient Es//W s is the
disjoint union of 6 unit intervals a, b, c, d, e, f and the ordinary quotient Es/W s. In the
projection πs, these 6 intervals assemble themselves into the 6 edges of a tetrahedron in
Es/W s. The cardinality of each fibre of πs creates a perfect model of reducibility. The locus
of reducibility is the 1-skeleton R of a tetrahedron, and we have

|π−1(ψτ)| = |IndGB(ψτ)|

for all unramified unitary characters ψ of T . On the interior of each edge π(a), . . . , π(f) of R,
each induced representation admits 2 distinct irreducible constituents; on each vertex of R,
each induced representation admits 4 distinct irreducible components.



GEOMETRIC STRUCTURE Page 7 of 9

Figure 1. The tetrahedron of reducibility.

We have R(τ) = Z/2Z× Z/2Z and W s = Z/2Z× Z/2Z. We compute the extended quotient:
– γ = (abcd), Eγ/W s = E/W s.
– γ = (badc), Eγ = {(1, 1, z, z), (1,−1, z,−z) : z ∈ T}.

Eγ/W γ ∼= I t I

– γ = (cdab), Eγ = {(1, z, 1, z), (1, z,−1,−z) : z ∈ T}.

Eγ/W γ ∼= I t I

– γ = (dcab), Eγ = {(1, z, z, 1), (1, z,−z,−1) : z ∈ T}.

Eγ/W γ ∼= I t I

This leads to the following formula for the extended quotient:

Es//W s = Es/W s t I t I t I t I t I t I

where I is the interval [−1, 1].
Let T∨ be the dual torus in PGL(4,C). Then (1, 1, z, z) ∈ T∨ and it is appropriate to use

homogeneous coordinates, in which case we write (1 : 1 : z : z). Suppose that z ± 1. Note that

χ(1 : χ : ηzval : χηzval) = (χ : 1 : ηzval : χηzval) = (1 : χ : ηzval : χηzval).

We infer that the L-group of the corresponding character is

L(1⊗ χ⊗ ηzval ⊗ χηzval) =< χ >= Z/2Z.

From the theory of the R-group, outlined in §2, we deduce that the representation induced
from the point (1 : 1 : z : z) ∈ T∨ is reducible with two irreducible constituents.

The remaining L-groups are as follows:

L(1⊗ (−1)valχ⊗ ηzval ⊗ χη(−z)val) =< (−1)valχ >= Z/2Z

L(1⊗ zval ⊗ 1⊗ zval) =< η >= Z/2Z

L(1⊗ zval ⊗ (−1)val ⊗ (−z)val) =< (−1)valη >= Z/2Z

L(1⊗ zval ⊗ zval ⊗ 1) =< χη >= Z/2Z

L(1, zval, (−z)val, (−1)val) =< (−1)valηχ >= Z/2Z.
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In each case, the corresponding induced representation has two irreducible constituents.
We will assign the following labels:

(1, 1, z, z)− (a)

(1,−1, z,−z)− (b)

(1, z, 1, z)− (c)

(1, z,−1,−z)− (d)

(1, z, z, 1)− (e)

(1, z,−z,−1)− (f)

We will now allow z = ±1 and investigate the points (1, 1, 1, 1), (1,−1, 1,−1), (1, 1,−1,−1)
and (1,−1,−1, 1). It is easy to check that

(1, 1, 1, 1) ∈ (a), (c), (e)

(1,−1, 1,−1) ∈ (b), (c), (f)

(1, 1,−1,−1) ∈ (a), (d), (f)

(1,−1,−1, 1) ∈ (b), (d), (e)

For such points, the R-group R(ψτ) is given by Z/2Z× Z/2Z. This implies that, for each
IndGB(ψτ), there are 4 irreducible constituents. The extended quotient is the disjoint union
of the ordinary quotient and six unit intervals. The six intervals are sent to the edges of a
tetrahedron by the canonical projection

π : Es//W s → Es/W s

The Langlands dual group of H0
s = T is the complex torus T∨ in PGL4(C). There is only

one unipotent class in T∨: the trivial class u0. Hence we set

(Es//W s)0 = Es//W s.

There only one cocharacter, the trivial cocharacter.

The pre-image of the interior of one edge is the union of two open intervals (the one
corresponding to the given edge and one in the ordinary quotient), replicating the fact that the
R-group has order 2, while the pre-image of a vertex is the union of three endpoints of intervals
and one point in the ordinary quotient, replicating the fact that the R-group has order 4 here.
The 1-skeleton of the tetrahedron is a perfect model of reducibility and confirms the geometric
conjecture in this case.
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