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Abstract

The dynamics of point vortices is generalized in two ways: first by making the strengths complex, which allows for sources
and sinks in superposition with the usual vortices, second by making them functions of position. These generalizations
lead to a rich dynamical system, which is nonlinear and yet has conservation laws coming from a Hamiltonian-like
formalism. We then discover that in this system the motion of a pair mimics the behavior of rays in geometric optics.
We describe several exact solutions with optical analogues, notably Snell’s law and the law of reflection off a mirror, and
perform numerical experiments illustrating some striking behavior.
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Introduction

The dynamics of point vortices with fixed strengths in a
2-dimensional ideal fluid has a classical pedigree, e.g. Lamb
[7], Art. 154–160. The subject continues to be actively
pursued: a modern survey [1] on its equilibrium aspect
alone lists more than 100 papers.

We generalize vortex dynamics in two ways, firstly al-
lowing, besides vortices, sources/sinks as well as their su-
perpositions (‘poles’), and secondly allowing the strengths
of these poles to vary as functions of position in the plane.

The first generalization goes back to a 1928 paper by
Friedman and Polubarinova-Kochina (the former is the
same Friedman as in the eponymous cosmological model).
The rather more recent paper by Borisov & Mamaev [3]
contains references as well as a good theoretical analy-
sis. There is also a very readable account of the history,
derivations and generalizations of point vortex models in
the paper by Llewellyn Smith in this issue [8]. Lacomba
[6] has also recently studied interactions between vortices
and sources/sinks. Here we present a couple of new exact
solutions and alternative derivations of some old ones.

The second generalization seems less explored, and leads
to rich dynamics, which we illustrate with a variety of
exact solutions with analogues in geometric optics, the
position-dependent strength of a pole replacing the medium-
dependent index of refraction. As typical examples we de-
tail the analogues of Snell’s law and the law of reflection
off a mirror, in generalized forms. Optical analogy is not
so obvious: though it was suggested by Kimura [5] that in
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the dipole limit a classical vortex pair should travel along
a geodesic, the principle governing light rays in geometric
optics is one of least time, not of least length. Nevertheless,
the dynamics of poles with position-dependent strengths
turns out to be quite versatile in mimicking the ray rep-
resentation of phenomena of wave propagation. Take for
instance the work by Berry [2] on focusing and defocusing
of surface waves by underwater landscape. It will become
clear that such effects are realizable by our dynamics, too.
There are also similarities with results of Longuet-Higgins
on trapping waves around islands [9].

In an interesting paper, Hinds, Johnson and McDon-
ald [4] consider the dynamics of a pair of vortex patches
as they cross a step change in the depth of the fluid, and
also find the pair is refracted provided they are sufficently
well separated compared to their size and the angle of in-
cidence, otherwise they find vortex shedding. While we
do not claim our introduction of a ‘seabed’ function gen-
uinely models a variation in depth, we do consider only
point vortices (and poles) so vortex shedding would not
arise.

In the language of dynamical systems, this second gen-
eralization through the introduction of a ‘seabed’ function
S in section 4 puts us in the realm of hybrid systems, where
different equations of motion govern different regions of the
phase space.

It may not be amiss to point out that the dynami-
cal system (2), which is the chief object of our study, is
quite nonlinear—in a sense more so than say the Euler or
Navier-Stokes equations. In the latter, indeed, the non-
linearity is separated out as an additive term (v · ∇)v =
∇(1

2
v
2) − v × (∇× v), so that we can resort to lineariza-

tion by dropping this nonlinear term or by substituting
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for it a term (background flow · ∇)v (Stokes and Oseen
approximations, respectively). In contrast, our system is
so nonlinear that it is not even clear whether or not there
exists a ‘linearization’ of the system that makes sense.

In the light of this inseparable nonlinearity, it is note-
worthy that our system proves to be analysable in elemen-
tary terms, and many instances of complete integrability
explicitly spelt out. This is thanks, ultimately, to the fact
that the classical vortex dynamics is Hamiltonian and our
generalization is something like Hamiltonian.

1. Equation of motion

We begin with a discussion of 2-dimensional ideal fluid
flow in terms of complex potential, but shall specialize
soon. Consider N interacting points z1, . . . , zN ∈ C called
poles, each pole zi carrying with it a family of complex-
valued functions

{

µi
n(z)

}

n∈Z
called strengths, only finitely

many of which are nonzero. The poles move according to

d

dt
zi(t) =

∑

j : j 6=i

∑

n∈Z

µj
n

(

zj(t)
) (

zi(t)− zj(t)
)n

(1)

for i = 1, . . . , N ( denotes complex conjugation). The
dynamics of (1), being 1st-order in time t, has no inertia,
in the sense that the poles’ instantaneous positions deter-
mine their velocities: the phase space is a product of N
copies of C (minus diagonals if we wish a priori to exclude
collisions), not a (co)tangent bundle. We can set up a dy-
namical system like this on any domain of any Riemann
surface. In simple domains that arise in practice, solutions
can be found by the method of images.

A term of the form µ(z − zj)n on the right side of (1)
represents a flow velocity induced by zj at z. The pictures
for n = −1 have rotational symmetry: source or sink of
flux 2πµ for µ real, vortex of circulation 2π

√
−1µ for µ

pure imaginary, in general a superposition of these, i.e. a
spiral node. Other n exhibit other symmetries: multipolar
flows for n < −1, uniform flow for n = 0, and corner flows
for n > 0.

2. Homogeneous systems, conservation laws

Now suppose (1) is homogeneous so that µi
n = 0 except

for a certain exponent n = n0, and moreover all µi := µi
n0

are fixed. Then (1) may be recast in the ‘canonical’ form

d

dt
zi =

2

µi

∂

∂ zi
H ,

with

H(z1, . . . , zN) = Re
∑

i,j : i<j

µiµj G(zi − zj)

and

G(zi − zj) =







1

n0+1
(zi − zj)

n0+1 when n0 6= −1 ,

log(zi − zj) when n0 = −1

(G as in ‘Green’). From

d

dt
H
(

z1(t), . . . , zN(t)
)

=
∑

i

( ∂

∂zi
H · d

dt
zi +

∂

∂ zi
H · d

dt
zi

)

=
∑

i

Re(µ)

∣

∣

∣

∣

d

dt
zi(t)

∣

∣

∣

∣

2

we see

Theorem 2.1. If all µi are pure imaginary and fixed, then
H is conserved.

Next let the homogeneity degree n0 be odd, with µ
i still

fixed. Pairwise cancellation in (1) yields
∑

i µ
i dzi/dt = 0,

whence

Theorem 2.2. If the degree of homogenity is odd and µ :=
∑

i µ
i 6= 0, then the ‘center of strength’

c =

∑

i µ
i zi

µ

is conserved. If µ = 0, then for every partition of the
index set I ⊔ I ′ = {1, . . . , N} such that µI :=

∑

i∈I µ
i 6=

0 and µI′ :=
∑

i′∈I′ µi′ 6= 0, the difference between the
‘subcenters’

∑

i∈I µ
i zi

µI

−
∑

i′∈I′ µi′ zi′

µI′

is conserved.

The ‘partition’ part of this Theorem is elementary but
does not appear to have been used prior to the paper by
Montaldi, Soulière, Tokieda [10].

If instead the homogeneity degree n0 is even and there
are just 2 poles z, z′ with strengths µ, µ′, then µz − µ′z′

is a conserved quantity. However, this does not appear to
extend to more than 2 poles.

Finally, how can we extend the affine symmetry of the
phase space to that of the phase space-time so as to pre-
serve the invariance of (1)? The requirement that time t
be real gives the answer.

Theorem 2.3. The system (1) is invariant under the ac-
tion of C∗ ⋉ C if and only if it is homogeneous of degree
n0 = −1 : here (a, b) ∈ C∗ ⋉ C acts by sending (t, z) to
(|a|2t, az + b).
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3. Exact solutions

We shall, in the remainder of the paper, focus on the
theory where (1) involves only the exponent n0 = −1. In
this section we suppose all the strengths are fixed: µi

−1(z) =
µi. Thus the equations of motion become

d

dt
zi(t) =

∑

j : j 6=i

µj

zi(t)− zj(t)
(i = 1, . . . , N) . (2)

We consider position-dependent strengths in sections 4 and
5. When all µi are pure imaginary, we are back to classi-
cal point vortices and recover the logarithmic H as their
Hamiltonian.

3.1. Self-similar solutions

If a collection of poles happens to move in a self-similar
manner, then Theorem 2.3 reduces the (complex) degree
of freedom from N to 1, down to a single equation

d

dt
Z =

M

Z
, (3)

or in polar coordinates

d

dt

1

2
|Z|2 = ReM , |Z|2 d

dt
argZ = ImM .

The solution is

Z(t) = T exp
(√

−1
ImM

ReM
logT

)

Z(0) , (4)

where

T =

√

1 +
ReM

|Z(0)|2/2 t if ReM 6= 0 ,

and

Z(t) = exp
(√

−1
ImM

|Z(0)|2 t
)

Z(0) if ReM = 0 . (5)

We remark however that there is really no need to treat
the case (5) apart from (4), since (4) converges to (5) in
the limit ReM → 0.

If ReM 6= 0, then the poles spiral in and collapse to
their center of strength after time −|Z(0)|2/2ReM (in the
future if ReM < 0, in the past if > 0). If ReM = 0, then
the configuration of the poles merely spins while remaining
congruent to itself.

3.2. Pair

A pole pair z, z′ of fixed strengths µ, µ′ moves self-
similarly around its center of strength c. With a little
manipulation (2) takes the form of (3):

d

dt
(z − c) =

|µ′|2
µ+ µ′

1

z − c

and the same equation for z′ − c with prime and unprime
exchanged. If µ + µ′ = 0 , then Theorem 2.2 implies that
the pair moves along parallel trajectories, around a ‘center
at infinity’ (c → ∞). In particular if µ, µ′ are real and
µ + µ′ = 0, then the source chases the sink and the sink
runs away from the source, while their mutual distance
remains constant.

More generally, a short calulation shows that the dis-
tance between a pair of poles remains constant provided
their strengths have the opposite real part: Re(µ+µ′) = 0.
In other words, one should be a sink, the other a source of
the same strength, and each combined with an arbitrary
rotational (vortex) part. Indeed, we find from (2) that

d

dt
|z − z′|2 = 2Re(µ+ µ′).

3.3. Regular polygons

Place N poles of equal fixed strengths µ at the vertices
of a regular N -gon, plus 1 pole of strength µ′ at the center
c . The poles spiral self-similarly out or in, clockwise or
anticlockwise, depending on N,µ, µ′. In terms of any one
of the vertices z , (2) takes the form of (3):

d

dt
(z − c) =

(

N − 1

2
µ+ µ′

)

1

z − c
.

If µ′ = −(N − 1)µ/2, then all the poles are immobilized.

4. Position-dependent strengths, optical analogy

We continue to assume that the equation of motion
(1) involves only the exponent n0 = −1 but now we al-
low the strengths to be position-dependent, in such a way
that they all share a common dependence on the posi-
tion: µi(z) = µi · S(z) for some complex constants µi

(i = 1, . . . , N) and some real-valued function S (‘seabed’
or ‘step’). Thus the equations of motion are

d

dt
zi(t) =

∑

j : j 6=i

µjS(zj(t))

zi(t)− zj(t)
(i = 1, . . . , N) . (6)

We begin by deriving a Noether-type conservation law
under the extra assumption that all µi are imaginary (vor-
tices); on the other hand, the argument that follows works
for the general exponent n0 . Now under this extra as-
sumption, the differential 2-form

Ω =
1

2

∑

i

µiS(zi) dzi ∧ dzi.

is a symplectic form on the phase space: it is closed dΩ = 0
and non-degenerate wherever all S(zi) are nonzero, though
the non-degeneracy is not needed for the argument. De-
note the vector field (6) by V , and let

H(z1, . . . , zN ) = Re
∑

i,j : i<j

µiµj S(zi)S(zj)G(zi − zj). (7)
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Unless the strengths are constants, Hamilton’s equation
does not hold: dH(·) is not equal to ιV Ω(·) = Ω(V, ·), be-
cause of the terms involving the derivative of S(z). How-
ever, suppose S admits the symmetry of some Euclidean
motion represented by a vector field u on C—meaning
that u is everywhere tangent to the level curves of S and
preserves mutual distances between points. Then the u-
component of Hamilton’s equation does hold, and we have:

ιuΩ(V ) = Ω(u, V ) = −Ω(V,u) = −dH(u) = 0.

Abusing notation, we denote by u both the given vector
field on C and its induced vector field on the phase space
CN , u(z1, . . . , zN ) = (u(z1), . . . ,u(zN )). The momentum
conjugate to u is a function ψ on the phase space such
that dψ = ιuΩ (ψ is just the stream function for u). The
above equation says that dψ(V ) = 0. Thus,

Theorem 4.1. If S admits the symmetry of a Euclidean
motion u, then the momentum ψ conjugate to u is a con-
served quantity of the dynamics.

There are two types of Euclidean motion, rotation and
translation. We now write ψ explicitly for both types. For
rotation, u = (−y, x) in Cartesian coordinates, we have

ιuΩ = −
∑

i

√
−1µiS(zi)(xi dxi + yi dyi)

(since dz∧dz = −2
√
−1 dx∧dy). If S admits a rotational

symmetry about the origin, we can write S = S(|z|2), and
then we find dψ = ιuΩ is satisfied by

ψ(z1, . . . , zN) = −
∑

i

√
−1µiσ(|zi|2), (8)

where σ′(u) = S(u). For translation, say u = (1, 0), we
find

ψ(z1, . . . , zN ) = −
∑

i

√
−1µiσ(yi) (9)

where σ′(y) = S(y). If S is constant, then these become
the usual conserved quantities in the point vortex problem:
respectively the angular impulse and (one component of)
the linear impulse, or center of vorticity after rescaling.

In the case of a pair of vortices, i.e. µ, µ′ are pure
imaginary, their mutual distance remains constant, even
with an arbitray ‘seabed’ function S(z). This is easy to see,
for the velocities of the vortices are then perpendicular to
the segment connecting the vortices; whether the velocities
have the same magnitude or not is irrelevant.

In most of our examples S(z) will be piecewise con-
stant. Then Theorems 2.1, 2.2, 2.3 hold piecewise until
one of the poles crosses a discontinuity of S, at which in-
stant H and the centers of strength jump to new values.
Moreover, in each of the examples S has a symmetry for
which our Noether-type theorem gives rise to a conserva-
tion law.

4.1. Analogue of Snell’s law

Let S(z) = s1 in the lower half-plane Im z < 0 and
S(z) = s2 in the upper half-plane Im z > 0, where s1, s2 ∈
R+. A pair of poles z, z′ with strengths −µS(z), +µS(z′)
(µ ∈ C), moving along parallel trajectories, arrives from
the lower half-plane (Figure 1 shows the case of vortices:
Re(µ) = 0).

z′(t)

z(t)

θ1

θ2
S = s2

S = s1

Figure 1: Snell’s law for vortices

When z′ crosses the real axis, the pair starts swerving
self-similarly around its center of strength c = (s2z

′ −
s1z)/(s2 − s1). When, after time t say, z crosses the real
axis, the pair resumes moving along parallel trajectories
inside the upper half-plane. The angles of incidence θ1,
θ2 of these trajectories pre- and post-crossing satisfy, if
Imµ 6= 0,

s1 sin θ1 exp
(

−Reµ

Imµ
θ1

)

= s2 sin θ2 exp
(

−Reµ

Imµ
θ2

)

,

(10)
and

θ1 = θ2 if Imµ = 0 . (11)

If µ is pure imaginary, the case depicted in Figure 1, then
(10) reduces to

s1 sin θ1 = s2 sin θ2 (12)

which is the analogue of Snell’s law in optics; s is then the
analogue of the index of refraction. At one extreme θ1 =
θ2 = 0 there is no refraction. At the other extreme θ2 =
π/2 the pair ‘skids’ along the real axis, hence reflection
into the lower half-plane occurs for

θ1 > arcsin
s2
s1
.

One proof of (10) and (11) goes as follows. During the
crossing, i.e. while z′ is already in the upper half-plane but
z is still in the lower half-plane, z′ − z evolves according
to

d

dt
(z′ − z) =

µ(s2 − s1)

z′ − z

4



which is in the form (3) with Z = z′−z andM = µ(s2−s1).
As remarked after (5), the special case of Reµ = 0 may
be treated as the limit Reµ→ 0, so we shall proceed with
the proof assuming Reµ 6= 0. With this in mind, we have
ImM/ReM = −Imµ/Reµ, so by (4)

z′(t)− z(t) = T exp
(

−
√
−1

Imµ

Reµ
logT

)

(z′(0)− z(0)) ,

(13)
where

T =

√

1 +
(s2 − s1)Reµ

|Z(0)|2/2 t .

Since
z − c =

s2
s1 − s2

(z′ − z) (14)

(of course: the point is that during the crossing the solu-
tion is self-similar), (13) also gives

z(t)− c = T exp
(

−
√
−1

Imµ

Reµ
logT

)

(z(0)− c) . (15)

The equations (13) and (15) convey all the information we
need to compare the positions of the pair at time 0 (or
more precisely 0+) when the crossing starts and at time t
(or t−) when it ends.

First, taking the argument of (13) we find

θ2 = − Imµ

Reµ
logT + θ1 . (16)

Next, taking the imaginary part of (15) we find

left side = 0− Im c =
s1

s2 − s1
Im z(0)

because Im z(t) = Im z′(0) = 0, and we find

right side =
T s2
s1 − s2

|z′(0)− z(0)| sin
(

− Imµ

Reµ
log T + θ1

)

because by virtue of (14) z(0)− c is expressible as

s2
s1 − s2

|z′(0)− z(0)| exp(
√
−1 θ1) .

Using (16) and equating the two sides,

Ts2 sin θ2 = s1
−Im z(0)

|z′(0)− z(0)| = s1 sin θ1 .

But again by (16)

if Imµ = 0 , then θ2 = θ1 ,

and

if Imµ 6= 0 , then T = exp
Reµ

Imµ
(θ1 − θ2) .

The formulae (10) and (11) are proved.

Another, slightly different, formulation of this gener-
alized Snell’s law is to say that during the crossing the
quantity

s sin θ exp

(

−Reµ

Imµ
θ

)

remains constant if Imµ 6= 0, and θ remains constant if
Imµ = 0. In this formulation, the law clearly holds in the
more general set-up where a real-valued ‘seabed’ function
S(z) depends only on Im z but otherwise varies arbitrarily:
just divide the plane into thin strips parallel to the real
axis and approximate S(z) by a function constant on each
strip, like a sloping beach.

When µ is pure imaginary, a shorter proof of (12) is
available via Noether’s theorem 4.1. The invariance un-
der translations along the real direction gives rise to the
conserved quantity Re (µS(z′)z′ − µS(z)z), and hence of
Im (S(z′)z′ − S(z)z). From the fact already observed that
the distance between the vortices remains constant, (12)
follows immediately by geometry.

4.2. Analogue of the law of reflection

Let S(z) = −s1 in the lower half-plane Im z < 0 and
S(z) = s2 in the upper half-plane Im z > 0, where s1, s2 ∈
R+. The difference from the set-up for Snell’s law is that
S changes sign between the half-planes. To fix ideas, let
us think of µ such that Reµ > 0, Imµ 6 0. A pair z,
z′ with strengths −µS(z), +µS(z′), moving along parallel
trajectories, arrives from the lower half-plane (Figure 2).

z′(t)

z(t)

θ1

θ2

S = s2

S = −s1

Figure 2: Law of reflection for vortices

When z′ crosses the real axis, the pair starts spiraling
out self-similarly around its center of strength c = (s2z

′ +
s1z)/(s2 + s1). When, after time t say, z′ again crosses
the real axis (it does so necessarily before z does), the
pair resumes moving along parallel trajectories inside the
lower half-plane. Exactly the same line of calculation as
for Snell’s law proves that the angles of incidence θ1, θ2 of
these trajectories pre- and post-reflection satisfy, if Imµ 6=
0,

sin θ1 exp
(

−Reµ

Imµ
θ1

)

= sin θ2 exp
(

−Reµ

Imµ
θ2

)

. (17)
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If µ is pure imaginary, then (17) reduces to sin θ1 = sin θ2,
from which we extract

θ1 = π − θ2 if Imµ 6= 0 , Reµ = 0 . (18)

This is the analogue of the law of reflection in optics, θ1
being the angle of incidence, π− θ2 the angle of reflection.
Note that s does not feature in the results (17) and (18).
The reason is most readily appreciated in the case Reµ =
0: then reflection results from ‘pivoting’ of z′(0)− z(0) to
z′(t)−z(t), and the relative magnitudes of s1, s2 determine
where the pivot is (at the intersection of the dashed lines in
Figure 2), but the net pivoting angle is the same regardless
of where the pivot is.

If Imµ = 0, then no reflection occurs: z′ and z repel
each other along a straight line, z′ running away in the
upper half-plane and z running away in the lower half-
plane.

There arises a curious degeneracy when Reµ = 0 and
the pair hits the mirror head-on, θ1 = 0. The intuitive pic-
ture is that, barely into the upper half-plane, both poles
switch the sign of their strengths simultaneously, step back
barely into the lower half-plane, change the sign, etc., oscil-
lating upper, lower, upper, lower, . . . The pair gets trapped
in the mirror. This is reminiscent of work of Longuet-
Higgins [9] on trapping of waves.

We have detailed above two examples of the dynam-
ics of a pole pair across a straight-line discontinuity of a
piecewise constant ‘seabed’ function. In fact, these exam-
ples are the basic ingredients from which we can construct
almost all of the dynamics of small pole pairs on an arbi-
trary ‘seabed’ S. Here is the idea of the construction.

Given an arbitrary S, approximate it by a piecewise
constant function S′. The curves separating the level sets
of S′ are generically smooth, so for pole pairs small com-
pared with the length-scale of the ‘seabed’ geometry, each
curve can be approximated locally by a straight line. If S′

keeps the same sign on the two sides of such a line, use the
Snell calculation; if S′ changes the sign, use the reflection-
off-the-mirror calculation. In this approximation scheme,
the only risk of misrepresenting the dynamics occurs if
the pole pair hits a non-differentiable corner of one of the
curves. But non-differentiable corners can be eliminated
by perturbing the choice of S or of S′, and anyway trajec-
tories that hit such corners are negligible in the space of
all trajectories.

Now further optical analogues suggest themselves. Just
let loose an ensemble of small pole pairs. Since geometric
optics is reducible to the laws (12) and (18), it is clear that
our ensemble behaves like a pencil of light rays, although
the behavior is more general and the dynamics richer if
Reµ 6= 0. The difference of behavior is caused also by the
pole-to-pole interaction between different pairs—light rays
do not interact among themselves—but this can be made
small by making the pole pairs small.

b

b

S = s1 S = s2

(a) (b)

(c)

Figure 3: Leapfrogging and rainbow

4.3. Leapfrogging and rainbow

In vortex dynamics, two vortex pairs perform a motion
called leapfrogging (e.g. [10] and references therein). With
position-dependent strengths one pole pair can leapfrog all
by itself. Let S(z) = s1 in the left half-plane Re z < 0 and
S(z) = s2 in the right half-plane Re z > 0, where s1, s2 ∈
R+. A pair z, z′ with strengths

√
−1S(z),

√
−1S(z′) is

initially at positions ∆z ∈ C and 0. It is easy to check
that this pair leapfrogs along piecewise circular paths, as
in Figure 3(a), advancing by s2−s1

s2+s1

√
−1 |Im∆z| per half-

period. By distributing S in a circular bump, like a plateau
or a crater, we can also persuade a pair to leapfrog (quasi-)
periodically as in Figure 3(b).

A pole pair of opposite µ = ±
√
−1 and of separation

d > 0 approaches a disk of radius r > 0. Let S(z) = 1/r
inside the disk and S(z) = 1 outside. Figure 3(c) shows
how the pair gets refracted if one of the pair passes through
the disk while the other misses it; the angle of refraction
is 2 arctan(1− r)/d. If both enter the disk, then the pair
gets internally reflected a certain number of times before
it re-emerges, as in a rainbow.

In both Figures 3(b) and (c), the ‘seabed’ function has
circular symmetry. The Noether-type theorem 4.1 applied
to the rotational symmetry gives rise to a conservation law
as described in (8): namely conservation of

ψ(z, z′) = σ(|z|2)− σ(|z′|2),

where σ′(u) = S(u). In part (c), the conserved quantity
is, when both vortices are outside the disk of radius r,

ψ(z, z′) = |z|2 − |z′|2.
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5. Numerical results for vortex pairs

We show a sampling of striking numerical experiments
for vortex pairs; that is, with µ′ = −µ both pure imagi-
nary, and with variable ‘seabed’ function. Explicitly, we
consider the system

d

dt
z =

√
−1S(z′)

z − z′
,

d

dt
z′ = −

√
−1S(z)

z′ − z
. (19)

We consider S(z) to be a combination of piecewise linear
and constant functions.

The numerics were performed using Maple, with the
default method and a step-size ≈ 10−3, to integrate the
system (19) with particular initial values and particular
choices of the ‘seabed’ function S(z). The vortex pair is
separated by about 5 × 10−2 and the integration runs for
the order of a few hundred time units. There is much scope
for investigations in a similar vein of other cases and with
more poles. In the figures, for each pair, the blue vortex
corresponds to z, the red to z′ (as in Fig. 1). All figures
depict trajectories in the plane. The pairs depicted in
each figure are independent and not interacting with one
another: they are merely different initial conditions.

Recall that in the usual vortex dynamics (with S(z) =
1 everywhere), an isolated pair moves along a straight line
in a direction perpendicular to the segment that connects
the vortices. We say the pair faces this direction. In each
figure, the vortices in all pairs are separated by the same
distance and, as reamrked before subsection 4.1, this dis-
tance is a conserved quantity for arbitrary S(z).

5.1. Linear seabed

The ‘seabed’ function is S(z) = Im z. Initially the pairs
are facing various directions distributed uniformly around
the circle, and they all start very near the point z =

√
−1,

see Figure 4. All the trajectories are bent upward, asymp-
totic to the vertical direction: a focusing effect. Notice
the focusing effect is stronger than depicted: the horizon-
tal and vertical scales are different. If the initial points
are in the lower half plane, where S(z) < 0, they move
downward in the same way.

(In general, replacing S(z) by −S(z) is equivalent to
reversing vorticity—so interchanging the pair, or to revers-
ing time.)

In this example, and those of the following subsection,
the ‘horizontal’ (real) translation is a symmetry of S so the
Noether-type theorem 4.1 gives rise to a conservation law.
The conserved ‘momentum’ is given by (9), with σ′(y) = y.
Thus one can take σ(y) = 1

2
y2, so that ψ(z, z′) = 1

2
(y2 −

y′2) is a conserved quantity.

5.2. Piecewise linear seabeds

In this series of experiments (a)–(d), S(z) is a piecewise
linear, continuous function of Im z.

Figure 4: Linear Seabed

(a) Here we take

S(z) =











1 if Im z < 0 ,

1 + Im z if 0 6 Im z < 1 ,

2 if Im z > 1

whose graph as a function of Im z is .
Initially the pairs face various angular directions and

they start near the point z = −
√
−1. Pairs that initially

face downward will continue to move downward as S there
is flat, and these are not depicted. On the other hand, if
they have an initial upward component, then they enter
the sloping part of S (shown in grey in Figure 5), incur a
certain measure of focusing as described in subsection 5.1,
and then emerge on the flat part, moving thereafter along
straight lines. We see an overall refraction pattern much
as described in subsection 4.1 above.

The results can be compared with the analogous figure
where the change of ‘level’ is abrupt, which is precisely the
setting of subsection 4.1; see Figure 6, where the ‘seabed’
changes from 1 to 2 as Im (z) passes through 0.

(b) We next examine how the sloping part of the type
of ‘seabed’ used in (a) affects the angle of refraction. In
Figure 7, two vortex pairs initially face the angular direc-
tions π/4 and π/8 as measured from the real axis, and
start near z = −1. Each pair is then subjected to three
different ‘seabed’ functions.

The trajectory of each pair therefore splits into three
offshoots: the upper offshoot is subjected to a step func-
tion S(z) with a discontinuity across Im z = 0 (as above),
whose graph as a function of Im z is

7



Figure 5: Sloped step

Figure 6: Abrupt step

or in formulae

S(z) =

{

1 if Im z < 0 ,

2 if Im z > 0 .

The middle offshoot is subjected to the same ‘seabed’ as
in the previous experiment (a), whose graph was

The lower offshoot is subjected to a similar ‘seabed’ but
whose sloping part has gradient 1/2, stretched over the
wider strip 0 6 Im z < 2 :

In all three the function increases from 1 to 2 in value.

Figure 7: Comparison of interpolating slopes

The fact that for each pair the three offshoots end up
parallel suggests that the net angle of refraction is inde-
pendent of the type of ‘seabed’ to which an offshoot was
subjected. Similar experiments suggest the same is true
if the ‘seabed’ is nonlinear on the interpolating strip. In
the figure, it is the step function that deviates abruptly
along the trajectories: the greater the slope, the faster the
deviation.

(c) Now consider the ‘seabed’ function

S(z) =











−1 if Im z < 0 ,

−1 + Im z if 0 6 Im z < 2 ,

1 if Im z > 2

whose graph as a function of Im z is , which
is like experiment (a) except that this time S is negative
on the lower half-plane.

Figure 8: Experiment (c)

This may be viewed as a continuous version of the mir-
ror of subsection 4.2; here too, the pairs undergo overall
reflection, but closer inspection reveals that the change of
direction is less sudden. The penetration of the pair into
the strip where S slopes depends on its angle of departure.
See Figure 8.

(d) Placing together two mirrors from (c) face to face, we
take

S(z) = |Im z| − 2
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whose graph as a function of Im z is . On

the plane the graph of S looks like a trough. Pairs re-
leased from near z = 0 where S(z) < 0 move in a kind of
smoothed zigzag, drifting along the real axis. Their trajec-
tories are confined within a certain strip near the bottom
of the trough, as depicted in Figure 9. The width of the
confinement strip depends on the direction the pair ini-
tially faces. It depends little on the strength or the size
of the pair, for the same reason that these two parameters
do not feature in the law of reflection (17) and (18).

Figure 9: Vortex pairs trapped in mirrors

The amplitude of the smooth zigzags is shown in Fig-
ure 10, as a function of the angle of departure θ with the
horizontal (the abscissa is θ/π). The two curves are for dif-
ferent initial values of Im z; the lower one for Im z = 0.2,
the upper for Im z = 0.5 (where z is the mid-point of the
initial position of the pair). As can be seen in the previous
figure, zigzags take place in the strip −2 < Im z < 2 where
S(z) < 0. The maximum of the curves is attained by pairs
facing almost vertically upward. (If the pair faces exactly
upward, then it tends to Im z = 2 where S(z) = 0 in in-
finite time.) The minimum occurs where the pair faces
horizontally, and the motion has the initial point as an
extremum.

Figure 10: Amplitudes of trapped vortex pairs

Confinement likewise occurs with a step function ver-

sion of this, whose graph as a function of Im z is .

The trajectories, which resemble those in the trough above,
are readily derived by iterating formulae for the mirror in
subsection 4.2.

5.3. Caustic from a circular mirror

Figure 11: Caustic from a circular mirror

We take a mirror in the form of a circular arc (of radius
2 in the figure). The ‘seabed’ function is equal to −1
below the arc, +1 above the arc. An ensemble of pairs is
released, each pair initially facing vertically upward along
the bottom of the figure (below the mirror). They strike
the mirror at the top, and are reflected much as described
in subsection 4.2. Together they form a caustic, familiar
from when we observe the pattern of light on the surface
of tea inside a tea cup.
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