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Abstract. Complex physical systems can often be simulated
using very high-resolution models but this is not always prac-
tical because of computational restrictions. In this case the
model must be simplified or parameterised, but this is a no-
toriously difficult process that often requires the introduction
of ‘model assumptions’ that are hard or impossible to jus-
tify. Here we introduce a new approach to parameterising
models. The approach makes use of a newly developed com-
puter program, which we call iGen, that analyses the source
code of a high-resolution model and formally derives a much
faster parameterisation that closely approximates the origi-
nal, reporting bounds on the error introduced by any approx-
imations. These error bounds can be used to formally justify
use of the parameterised model in subsequent numerical ex-
periments. Using increasingly complex physical systems as
examples we illustrate that iGen has the ability to produce pa-
rameterisations that run typically orders of magnitude faster
than the underlying, high-resolution models from which they
are derived and show that iGen has the potential to become
an important tool in model development.

1 Introduction

The process of creating parameterisations for geophysical
models often requires the introduction of “model assump-
tions” and it is generally accepted that these assumptions are
often difficult to justify from the underlying equations of mo-
tion (Winsberg, 2001). Usually the physical process to be
parameterised can quite easily be simulated accurately using
a sufficiently high-resolution model that resolves all the rel-
evant scales, this model can be justified since by definition it
integrates the underlying equations of motion with sufficient
accuracy. However, superparameterisations aside (Khairout-
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dinov et al., 2005), such high-resolution models would run
far too slowly to be considered to be practical parameterisa-
tion schemes. However, suppose we view the high-resolution
model as a formal definition of the desired behaviour of the
parameterisation, rather than a code to be executed. The
problem of parameterisation then reduces to one of find-
ing a computer program that closely approximates the high-
resolution model but uses far fewer computational opera-
tions. To this end, we have developed iGen: a program that
analyses the source code of a high-resolution model, applies
appropriate approximations, derives the source code of a
faster model and reports bounds on the error between the fast
model and the high-resolution model. Because the parame-
terisation is formally derived from the high-resolution model,
the output from the parameterisation can be used to jus-
tify conclusions about the behaviour of the high-resolution
model, and so about the physical system of interest.

iGen can be used to generate parameterisations in the fol-
lowing way: We begin with a high-resolution model of the
physical process to be parameterised. The inputs and outputs
of this model will be the high-resolution start and end state
of the simulation. For the parameterisation, however, we re-
quire less detailed inputs and outputs so we must ‘wrap’ the
model in some extra code to account for this. The exact way
this is done depends somewhat on the nature of the param-
eterisation. However, in general, we add code at the end of
the model to extract the value of the desired physical quan-
tity from the high-resolution output, this is usually straight
forward as it involves just throwing some information away.
In addition, we add code at the beginning to transform the
input to the parameterisation into the high-resolution input
required by the model. This is generally more involved since
the input to the parameterisation may not uniquely specify a
high-resolution state, in this case we use a random number
generator to create a distribution of possible high-resolution
states. This distribution represents the conditional proba-
bility of being in a specific high-resolution state given the
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input(T)
// Wrapper: turn T into position & velocity
// Rand() returns a random number in [-1:1]
x = (Rand()+1.0)/2.0
y = (Rand()+1.0)/2.0
angle = PI*(Rand()+1.0)
speed = sqrt(T + T*Rand()/2.0)
vx = speed*sin(angle)
vy = speed*cos(angle)

// Simulate atom bouncing around box
p = 0.0 // pressure (impulse)
t = 0.0 // time
while(t < TMAX) {
x = x + vx*DT
y = y + vy*DT
if(x > 1.0) {
x = 2.0 - x
p = p + (2.0 * vx)
vx = -vx

}
if(x < 0.0) {
x = -x
vx = -vx

}
if(y > 1.0) {
y = 2.0 - y
vy = -vy

}
if(y < 0.0) {
y = -y
vy = -vy

}
t = t + DT

}

// Wrapper: return average impulse per sec
p = p/TMAX

output(p)

Fig. 1. Program to simulate an atom bouncing around a 2-
dimensional box

input state of the parameterisation. This ‘wrapped’ model
now has the required inputs and outputs and can be analysed
by iGen for a user-specified range of inputs. iGen can then
‘integrate over’ any random numbers and apply approxima-
tions to generate an efficient parameterisation scheme with
formally bounded error in means and, if desired, higher mo-
ments.

To illustrate this technique consider a simulation of a gas
contained within a 2-dimensional box and suppose that we
wish to parameterise the pressure of the gas in terms of its
temperature. In this case, the high-resolution model is a sim-
ulation of an atom bouncing around a box of unit dimen-
sion. To wrap the model we extract the pressure by calcu-
lating the average impulse per second on the right hand wall
of the box and use this as output. The input is the temper-
ature which is proportional to the average kinetic energy of
the atom (for simplicity we assume a top hat distribution of
kinetic energy rather than the Maxwell-Boltzmann distribu-
tion, but this does not affect the result). The initial position
and direction of motion of the atom is chosen at random us-
ing a random number generator. The pseudocode for the pro-
gram is shown in figure 1 with the different sections marked.

iGen was used to analyse this program. The analysis re-
quired no approximations (other than the finite precision of

the sqrt, sin and cos functions) and after integrating over
the random numbers, the result was a successful identifica-
tion of the thermodynamic relationship, p∝ T , as we would
expect from the theory of ideal gasses.

2 Symbolic analysis

iGen works by using the technique of ‘symbolic analysis’
(Fahringer and Scholz, 2003) in which the variables of the
program are not considered to be floating point numbers with
specific values but instead are considered to be symbolic ex-
pressions that are functions of the input variables. iGen con-
siders variables to be pairs (C,b) where C is a multivariate
polynomial and b is a constant bound on the error between C
and the value the variable would have in the absence of any
approximations. We call these pairs ‘polynomial bounds’.

For example, suppose we wish to generate an approxima-
tion of the very simple program

input(x)
a = x + 1.0
y = a*a
y = y*y

output(y)

for inputs in the range −0.1≤x≤ 0.1.
Normally, we would simply execute this program for some

input, say x= 0.1. So, after the first line a= 1.1, after the
second line y = 1.1× 1.1 = 1.21, the next line y = 1.21×
1.21 = 1.4641. So the output would be 1.4641. However,
when analysing the program the input value is not known.
Instead, the input, x, is the polynomial bound (x,0.0) and
the output is a polynomial bound with x as an independent
variable. That is, the output, y, is a function of the input, x,
together with a bound on the error between this function and
the original program.

Arithmetic on polynomial bounds is interpreted in the fol-
lowing way:

(P,ε1)+(Q,ε2)→ (P +Q,ε1 +ε2)

(P,ε1)−(Q,ε2)→ (P −Q,ε1 +ε2)

(P,ε1)×(Q,ε2)→ (P ×Q,B(P )ε2 +B(Q)ε1 +ε1ε2)

(R,ε)−1→
(
R−1,εB

(
R−1

)2
)

where B(P ) is a constant bound on the absolute value of P
calculated by summing the absolute values of its Chebyshev
coefficients. Here, the rule for finding the reciprocal makes
use of the inequality B(P 2)≤B(P )2.

An implementation of arithmetic on polynomial bounds
may also approximate the polynomial part according to

(P ±δ,ε)→ (P,ε+B(δ)) .
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This allows the implementation to increase execution speeds
by using approximate arithmetic on polynomials. iGen rep-
resents polynomials as a set of values at certain collocation
points. We chose to use the Gauss-Lobatto collocation points
because of their good convergence properties (Boyd, 2001).
This is extended to the multivariate case by using a gen-
eralised, adaptive sparse grid as described in Gerstner and
Griebel (2003).

So, the simple example program can be interpreted as a
sequence of operations on polynomial bounds. The output
can be calculated by first setting the input variable, x, equal
to the polynomial bound (x,0.0). The first line sets a to
(1+x,0.0), the second line sets y to (1+2x+x2,0.0), af-
ter the next line y becomes (1+4x+6x2 +4x3 +x4,0,0)
so the output of the program can be considered to be the
polynomial bound (1 + 4x+ 6x2 + 4x3 + x4,0.0). If we
evaluate this polynomial at x = 0.1, for example, we get
1+0.4+0.06+0.004+0.0001 = 1.4641, as we would ex-
pect.

Suppose we now tell iGen that it can apply simplifica-
tions as long as the absolute error in the output remains
bounded by 0.04. The polynomial bound can be written in
the Chebyshev basis as (0.0000125T4(x′)+0.001T3(x′)+
0.03005T2(x′)+0.403T1(x′)+1.03004,0.0) where Tn(x′)
is the nth Chebyshev polynomial and we use the normali-
sation x′ = 10x so that the independent variable lies in the
range −1≤ x′ ≤ 1. This can be approximated by simply
truncating the appropriate number of higher order Chebyshev
terms, giving (0.403T1(x′) + 1.03004,0.0310625), where
the bound is calculated using the inequality |Tn(x)| ≤ 1.0.
This can easily be turned back into the program

input(x)
y = 4.03*x + 1.03004

output(y)

which approximates the original program given at the start
of this section with an error bounded by ±0.0310625 and
reduces the number of computational operations from 3 to 2.

2.1 Other program structures

The simple example program above illustrates the basic tech-
nique of using iGen to generate parameterisations. However,
a typical programming language contains many structures
that are not present in the example. In the following sections
we specify how iGen deals with these structures.

2.1.1 Random numbers

As mentioned in the introduction, when we wrap the high-
resolution model the transformation from low-res input to
high-res input will generally make use of a random number
generator. To generate random numbers we call a function,
rand(), which, upon execution, returns a random floating
point number in the range (−1 : 1) with a top-hat probability

distribution. When analysing a call to rand(), iGen gen-
erates a unique, especially tagged variable. The moments of
each output can then be calculated by integrating over each
of the tagged variables. For example, take the program

input(x)
x = x + 0.005*rand()
a = x + 1
y = a*a
y = y*y

output(y)

The first moment of y would be

ȳ= 1
2

∫ 1

−1

[
(1+4x+6x2 +4x3 +x4)+

(0.02+0.06x+0.06x2 +0.02x3)r0+
(0.00015+0.0003x+0.00015x2)r20+
(5×10−07 +5×10−07x)r30+
6.25×10−10r40

]
dr0

where r0 is the output of the random number generator. Since
the outputs are always expressed in polynomial form, it is
easy for iGen to integrate them symbolically. Evaluating this
integral gives

ȳ=1.000050000125+4.0001x+6.00005x2 +4x3 +x4 .

2.2 Fixed loops

A loop with a fixed number of iterations can be expressed as
the composition of a vector of polynomial bounds. Take, for
example, the program

input(r)
x = 0.0
y = 1.0
z = 0.0
loop 6 times {

dx_dt = 10.0*(y-x)
dy_dt = r*x - y - x*z
dz_dt = x*y - (8.0/3.0)*z
x = x + dx_dt*0.01
y = y + dy_dt*0.01
z = z + dz_dt*0.01

}
output(x)

which integrates the Lorenz equations over six time-steps.
To deal with the loop, we first identify the variables whose
initial values are used in a single iteration of the body of the
loop; in this case x, y and z. We now place these into a vector
of polynomial bounds

L=

 (x,0.0)
(y,0.0)
(z,0.0)

 .
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A single iteration of the body of the loop can now be calcu-
lated, in the usual way, as the vector

L=

 (x+0.1y−0.1x,0.0)
(y+0.01rx−0.01y−0.01xz,0.0)

(z+0.01xy− 0.08
3 z,0.0)

 .

The whole loop, then, is equal to the composition L6(x,y,z)
and the output, x, is just the first element of this. On per-
forming the composition and evaluating for the initial values
(0,1,0) for x, y and z respectively, the output equates to

x= −1.09964×10−15r′3 +5.66995×10−7r′2+
0.00169011r′+0.455595

where we specify that the input, r, is in the range 0≤ r≤
28 (which includes the value used by Lorenz) and r′ is the
normalised variable r=14(r′+1).

Using Chebyshev approximation (under the assumption
that errors up to 10−4 are acceptable), this can be approxi-
mated as

x=0.00171r+0.45532±5.6×10−5 .

This equation converts to a computer program

input(r)
x = 0.00171*r + 0.45532

output(x)

that calculates x in 2 arithmetic operations with an error
bounded by 5.6×10−5. This compares to 90 operations for
the original program.

An important point to note here is that in the previous
examples the calculation of the polynomial has proceeded
sequentially, in much the same order as it would during an
execution. The loop, L6, however, illustrates that an analy-
sis may proceed very differently from an execution. During
an execution of the loop, the program pointer would loop
round 6 times; during an analysis, on the other hand, we im-
mediately define the meaning of the loop as L6. This can
be evaluated in any way we please. For example, we may
evaluate M =L⊗L⊗L, then L6 =M⊗M , giving L6 in 3
(albeit polynomial) operations. In some cases, there exists
a closed form solution for a loop Ln in terms of n. As a
simple example, suppose we have a loop with 100 iterations,
and the body of the loop evaluates to L=< 2X,Y +1> for
an input vector <X,Y >. Ln can be immediately solved
as Ln =< 2nX,Y +n> giving L100 =< 2100X,Y +100>
without the need to go through the 100 iterations.

So, when a program is executed, a program pointer moves,
step by step, through the program. When a program is anal-
ysed, however, it’s equivalent polynomial is built up from the
structures of the program. There is no program pointer, struc-
tures can be transformed in any order, the end of the program
may be transformed before the beginning.

2.3 if statements

Consider the following program which roughly simulates a
ball bouncing on the floor in a gravitational field:

input(z) {
g = 10.0
dt = 0.01
v = 0.0

loop 100 {
z = z + v*dt - 0.5*g*dt*dt
v = v - g*dt
if(z < 0) {

v = -0.8*v
z = 0.0

}
}

output(z)
}

z is the height of the ball and v is its velocity in the up-
ward direction. The input is the initial height that the ball is
dropped from and is taken to be in the range 1≤ z≤ 2.

The new structure here is the if statement. This is dealt
with by using the Heaviside step function, defined as

H(x) =
{

1 if x> 0
0 if x< 0

where H(0) is undefined.
The body of the if statement can be calculated in the

same way as we did for fixed loops, giving the vector P =
((0.0,0.0),(−0.8v,0.0)). The condition of the if statement
is first turned into the homogeneous form B> 0 (in this case
we get −z > 0) then passed to the Heaviside step function,
giving H(−z) which is equal to 1 if the inequality is true,
0 otherwise. Multiplying the condition by −1 gives H(z)
which is the reverse: 0 if true, 1 otherwise. So the whole if
statement is equivalent to

F =H(−z)P +H(z)I

where I = ((z,0),(v,0)) is the identity vector (i.e. the nth

element is equal to the nth variable). So, if z < 0 then F =P
and if z > 0 then F = I . This is exactly the behaviour we
require for F to be equivalent to the if statement1.

So, the whole loop equates to the vector

L=
(

(H(z+0.01v−0.0005)(z+0.01v−0.0005),0)
((1−1.8H(z+0.01v−0.0005))(v−0.1),0)

)
1Strictly speaking, the floating point variable z may equal 0.0

when the if statement is reached, in which case F would be a func-
tion of H(0) which is undefined. However, this is rarely a problem
in practice since we will either already be integrating over the step
or we can integrate over an arbitrarily small uncertainty in the input
variables, making the result formally independent of H(0) as long
as P remains finite.
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and the whole program equates to L100((z,0),(0,0)).
In general, the condition in an if statement may also con-

tain conjunctions && or disjunctions || so that (A && B)
is true if and only if A and B are both true, and (A || B)
is true if and only if A or B or both are true. A disjunction
(A || B) is taken to be equivalent to A+B−AB and a
conjunction (A && B) is equivalent to AB.

When dealing with expressions that include the Heaviside
step function, iGen first applies the following set of simple
reasoning rules before the approximate expansion of the step
functions into polynomial bounds.

If the argument to a step function can be proved not to
cross zero then the function is replaced with 0 or 1:

H(A) = 1 if Bl(A)> 0

where Bl(A) is a lower bound on A.

H(A) = 0 if Bu(A)< 0

where Bu(A) is an upper bound on A. Lower and upper
bounds on polynomials were calculated using a0±B(A−
a0), where a0 is the zeroth order coefficient of A.

To simplify the form of complex booleans, the following
identities were used whenever the left hand sides were en-
countered.

1−H(A) =H(−A)

H (H(A)P +H(−A)Q) =H(A)H(P )+H(−A)H(Q)

if H(A)H(B)H(−C) = 0
and H(−A)H(C)H(−B) = 0
then H(A)H(B)+H(−A)H(C) =H(B)H(C) .

The final identity is proved by noting that

H(A)H(B)(H(C)+H(−C))+
H(−A)H(C)(H(B)+H(−B))=
H(B)H(C)+H(A)H(B)H(−C)+

H(−A)H(C)H(−B) .

This may seem like a rather arbitrary piece of reasoning, but
because of the way if statements split the input space into
two partitions, this structure was found to occur quite often.
Its effect is to join together neighbouring partitions that have
the same approximation.

Products of Heaviside functions of the form

H(P1)H(P2)...H(PN )

can sometimes be proved to be trivially true or false, and so
replaced by 1 or 0 respectively. The problem reduces to that
of deciding whether a set of inequalities on polynomials is
satisfiable. We used a simple algorithm based on the Gaus-
sian elimination method. The algorithm first transforms the
inequalities to equalities in the following way: Each Heavi-
side termH(Pn) is equivalent to the inequalityPn> 0. Since
Pn can be bounded above byBu(Pn) (as calculated using the

sum of its Chebyshev coefficients) then there exists a yn in
the range 0<yn≤Bu(Pn) that satisfies Pn−yn = 0. If we
let

yn =
B(Pn)(1+zn)

2

then zn is in the range [−1 : 1] and can be treated as a normal
Chebyshev variable. This leads to a set of equalities

P ′n =Pn−
B(Pn)(1+zn)

2
=0

for all 0<n≤N .
Once in this form, the highest degree terms that occur

in more than one equation can be successively removed by
Gaussian elimination. At each stage, the bounds of the re-
maining polynomials are checked. If any has an upper bound
that is below zero or lower bound above zero, the equation
cannot be satisfied and so there is no solution. An equation
P ′n was removed if it could be shown to be tautological, i.e. if
it could be reduced to a form zn =Q andQ could be bounded
by the interval [−1 : 1].

We found that this algorithm detected all instances en-
countered in our example programs without becoming pro-
hibitively slow. However, in the worst case, this algorithm
runs in worse than exponential time so the procedure quits
if the number of equalities exceeds a cutoff value. No fast
algorithm for solving this problem is known, the first algo-
rithm was due to Tarski (1951) but this also ran in worse than
exponential time. Exponential time algorithms were found
by Seidenberg (1954) and later by Collins (1975). More re-
cently, a sub-exponential time algorithm has been found by
Grigorev and Vorobjov (1988) but execution times remain
high.

2.3.1 Conditional loops

Conditional loops can be implemented using the structures
we have already described

while(A) {
...

}

is equivalent to

loop M {
if(A) {

...
}

}

for some M that gives the maximum number of times the
while loop can iterate over the domain of inputs.

By insisting thatM is given a finite value we are, in effect,
restricting iGen’s applicability to the subset of computer pro-
grams known as ‘basic recursive’. These are the programs
that can be proved to terminate. As it turns out (Solomonoff,
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2005), almost all computer programs in practical use hap-
pen to compute basic recursive functions. Upon reflection,
it is not surprising that numerical models can be shown to
terminate: they are written that way. For example, if it was
suspected that an algorithm could enter an infinite loop, this
would in all practical respects be considered to be a bad algo-
rithm and would be rewritten or thrown out of the model. The
one exception to this is the use of randomised algorithms,
some of which may technically never terminate. However,
these algorithms all have the property that the probability of
termination very quickly approaches 1 as the number of it-
erations of some loop increases. So, by limiting the number
of iterations we effectively take an algorithm with a vanish-
ingly small probability of not terminating and replace it with
an algorithm with a vanishingly small probability of return-
ing the wrong answer. So when we come to integrate over
the uncertainties in the input, as long as all outputs are finite,
there is always a finite M that ensures that the result is the
correct answer with a vanishingly small error. We therefore
restrict ourselves to the consideration of the basic recursive
functions without fear that this will be a problem for our pro-
posed application.

2.4 Arrays

Array reference and modification is performed by represent-
ing the whole array as a single polynomial with the array’s
index variable as an independent variable (multidimensional
arrays can trivially be reduced to one dimensional arrays by
using the memory address offset as the index of each ele-
ment). Suppose we have an array, A, of size N . We choose
the N equidistant points on the interval [-1:1]

xn =
2n

N−1
−1

where n is an integer in the range 0≤n<N . From this, we
let the Lagrange basis polynomials be defined as

ln =
∏

0≤i<N,i 6=n

x−xi

xn−xi
.

These polynomials have the important property that
ln(xm) = 0 if n 6=m and ln(xn) = 1. If we let ai be the
value of A[i] for all integers 0≤ i<N , then the (N−1)th

degree polynomial

A(x) =
N−1∑
i=0

aili

has the property that for any integer 0≤ j <N , A( 2j
N−1 −

1) = ai. So an array reference A[j] has the value

A

(
2j

N−1
−1

)
.

If we now define the bi-variate polynomial L(i,x) as

L(i,x) =
N−1∑
j=0

lj

(
2i

N−1
−1

)
lj(x)

so that L(i,x) = li(x) for any integer 0≤ i < N , then the
value of an array A after an assignment operation A[i] =
Y is equivalent to the polynomial

A+
(
Y −A

(
2i

N−1
−1

))
L(i) .

3 Applications of iGen

3.1 Automatic derivation of the Lorenz equations

iGen was used to analyse a high-resolution model of
Rayleigh-Benard convection in a 2-dimensional, laminar,
incompressible fluid on an 80x28 grid. The model was
wrapped so that the input was three variables (X,Y,Z).
These were converted to a state of the fluid according to

ψ(x,z) =
√

2κ(1+a2)
a

X sin(πax)sin(πz)

and

θ(x,z) =
√

2Y cos(πax)sin(πz)−Z sin(2πz)
πR

where ψ(x,z) is the stream-function, θ(x,z) is the tempera-
ture field, a= 1√

2
is the aspect ratio of the convective cells

andR=28 is the Rayleigh number of the flow. Similarly, the
output of the high-resolution model was converted back to
the (X,Y,Z) phase space by extracting the appropriate low-
est modes of ψ and θ according to

X =
1√

2κ(1+a2)

∫ ∫
ψ(x,y)sin(πax)sin(πz) dx dz

Y =
πR√
2a

∫ ∫
θ(x,y)cos(πax)sin(πz) dx dz

Z =−πR
2a

∫ ∫
θ(x,y)sin(2πz) dx dz

The final output of the wrapped model was the average rate
of change of X , Y and Z over a 0.00001s simulation.

The variables, (X,Y,Z), correspond to the variables of
the Lorenz equations (Lorenz, 1963), which describe a 3-
variable parameterisation of Rayleigh-Benard convection.
iGen analysed the wrapped model of Rayleigh-Benard con-
vection and produced the following simplified code:

input(x,y,z)
dx_dt = 9.95076*y + 9.94443*x
dy_dt = -0.991175*x*z - 0.999187*y

+ 27.9712*x
dz_dt = -2.65625*z + 0.997019*x*y

output(dx_dt, dy_dt, dz_dt)
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which is a statement of the Lorenz equations with a slight
difference (less than 0.9%) in the constants. This represents
an increase in execution speed of 5 orders of magnitude com-
pared to the wrapped model. The slight difference between
iGen’s analysis and the Lorenz equations is attributed to the
finite resolution of the grid, the finite time over which the in-
tegration was performed and the accuracy of the algorithm
used to solve the Poisson equation.

3.2 Mie scattering

In order to demonstrate iGen’s ability to deal with much
more complex mathematical functions, a program was writ-
ten to simulate the scattering of parallel light by spherical
water droplets. This was done using Mie theory (Bohren and
Huffman, 1998) which gives a method of solving Maxwell’s
equations for parallel light incident upon a sphere, using
complex spherical Bessel and Hankel functions. In order to
analyse this, iGen had to deal with polynomials that spanned
many orders of magnitude and included sharp peaks due to
resonances, without losing precision.

The program was wrapped to calculate the scattering cross
section per unit mass of water for light of wavelength 500nm
scattered by a thin layer of cloud. The cloud was made up of
spherical water droplets with refractive index of 1.33+1×
10−8ı. The droplets in a cloud are not generally all of the
same radius and are often assumed (Dobbie et al., 1999) to
have a gamma distribution given by

P (r) =Arαexp−βr

where

α=
1
ve
−3.0

and

β=
1
vere

and A is a normalisation factor, ve is the relative ‘effective
variance’ of the distribution and is set to 0.172, and re defines
an ‘effective radius’ of the droplets. re was taken to be the
input of the wrapped model, and defined to lie in the range
5µm to 40µm. The output of the wrapped model was defined
to be the reciprocal of the scattering cross section per unit
mass.

iGen was used to analyse this wrapped model and pro-
duced the simplified model for the scattering cross section
Ksca:

Ksca =
1

660.1re−2.188×10−4

with an error bounded by 4m2kg−1. This is plotted in figure
2 together with the exact result calculated using numerical
integration.
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Fig. 2. Plot of scattering cross section for fixed radius droplets
(solid line), numerically integrated over the droplet radius distri-
bution (dashes), and iGen’s simplified model (dots). For clarity, a
magnified section is shown in the lower plot.

3.3 Entrainment in stratocumulus

In order to show that this technique scales well and can be
applied to models of realistic complexity, iGen was used to
create a parameterisation of entrainment in nocturnal, non-
precipitating marine stratocumulus. Stratocumulus cloud oc-
curs at the top of a well mixed, turbulent boundary layer,
which underlies a much more stable free atmosphere. Ra-
diative cooling at the top of the cloud generates turbulence
which mixes or ‘entrains’ some of the free-atmosphere air
into the boundary layer. Given the rate of this entrainment,
the large scale dynamics of the boundary layer is easily cal-
culated from budgets of mass, energy and moisture. How-
ever, no analytic derivation of this entrainment rate has been
found. Lilly (1968) derives upper and lower bounds and
Stevens (2002) gives details of various parameterisations.
However, the simulation of marine stratocumulus remains a
large source of uncertainty and error in existing climate mod-
els (Bony and Dufrence, 2005; Dufrence and Bony, 2008).

The high-resolution model in this case was a 2-
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dimensional cloud resolving model with surface heat and
moisture fluxes and a longwave radiation scheme (Larson et
al., 2007). The cloud resolving model was wrapped so that
its input was a 5-variable specification of the large scale state
of the system and the output was the mean and variance per
second of the entrainment velocity over the final 4 hours of
a 6 hour simulation. The large scale state consisted of the
variables

– Specific liquid water content at cloud top

– Jump in specific total water at inversion

– Jump in buoyancy at inversion

– Down-welling radiation just above cloud top

– Up-welling radiation just below cloud base

iGen successfully analysed the wrapped model and pro-
duced 10th degree multivariate polynomials for mean en-
trainment and variance of entrainment per second. These
polynomials can be approximated to form a parameterisa-
tion of entrainment that executes in a few hundred arithmetic
operations. Over a timestep of 30 minutes, which is typi-
cal for a climate model, the error due to approximation was
shown to be small compared to the standard deviation. iGen’s
parameterisation of mean entrainment was shown to be in
good agreement with data from the DYCOMS-II field cam-
paign and from an intercomparison of cloud resolving mod-
els (Stevens et al., 2005). Full details of this experiment is
given in Tang and Dobbie (2011).

4 Discussion

These examples provide a ‘proof of concept’ of the tech-
nique of automatically creating parameterisations using
iGen. However, there remain many ways in which iGen
could be developed further. iGen’s use of an adaptive sparse
grid representation for polynomials goes some way to deal-
ing with the exponential increase in the size of polynomial
approximants as the number of independent (input) variables
of the parameterisation increases. However, this ‘curse of
dimensionality’ cannot be staved off forever and iGen’s per-
formance will quickly diminish as the number of indepen-
dent variables increases beyond around six, although the ex-
act number of independent variables that can be practically
analysed depends on the smoothness of the function calcu-
lated by the wrapped model. If the function contains many
discontinuities or singularities then iGen’s analysis will slow
down and the resulting parameterisations will have wider er-
ror bounds. This could be improved by including localised
adaptive grid refinement or having a piecewise polynomial
representation of variables.

The error bounds reported by iGen will remain reasonably
tight as long as the variables in the high-resolution model

never become very sensitive to initial conditions. If they do,
iGen will apply approximations in order to prevent the anal-
ysis becoming too slow. This introduces a small uncertainty
to the value of the variable, and if this uncertainty is subse-
quently amplified in the final result, the error bounds will end
up quite wide. To improve the calculation of error bounds
iGen could calculate probabilistic bounds, use bounds that
are functions of the input variables or use automatic differ-
entiation in order to apply approximations more intelligently.
iGen is being actively developed in this area.

5 Conclusions

In this paper we have described a new technique that allows
the formal generation of fast computer models whose error
is bounded compared to a high resolution model. This is im-
portant because it provides a formal, epistemic link between
the results of a numerical experiment and the physical sys-
tem that is being simulated. This ultimately allows conclu-
sions about the physical system to be convincingly justified
by the model results. The technique makes use of a computer
program called iGen that automatically generates the source
code of a parameterised model by analysing the source code
of a high resolution model. iGen’s ability to generate mod-
els was illustrated with a sequence of examples of increasing
complexity. iGen was shown to scale up to models of real-
istic complexity by generating a parameterisation of entrain-
ment in marine stratocumulus; an open problem that has been
identified as a large source of uncertainty and error in exist-
ing climate models (Bony and Dufrence, 2005; Dufrence and
Bony, 2008).

There is much scope for the further development of iGen
and the technique described here but the authors firmly be-
lieve that iGen has the potential to become an important tool
for model development.
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