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Abstract. We describe the linear and nonlinear stability and instability of
certain symmetric configurations of point vortices on the sphere forming rel-

ative equilibria. These configurations consist of one or two rings, and a ring
with one or two polar vortices. Such configurations have dihedral symmetry,
and the symmetry is used to block diagonalize the relevant matrices, to distin-
guish the subspaces on which their eigenvalues need to be calculated, and also
to describe the bifurcations that occur as eigenvalues pass through zero.
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1. Introduction. Since the work of Helmholtz [10], and later Kirchhoff [13], sys-
tems of point vortices on the plane have been studied as finite-dimensional approx-
imations to vorticity dynamics in ideal fluids. For a general survey of patterns of
point vortices see Aref et al [1]. Point vortex systems on the sphere, introduced by
Bogomolov [2], provide simple models for the dynamics of concentrated regions of
vorticity, such as cyclones and hurricanes, in planetary atmospheres. In this paper
we consider a non-rotating sphere, since the rotation of the sphere induces a non-
uniform background vorticity which makes the whole system infinite-dimensional.

As in the planar case, the equations governing the motion of N point vortices on
a sphere are Hamiltonian [2] and this property has been used to study them from a
number of different viewpoints. Phase space reduction shows that the three vortex
problem is completely integrable on both the plane and the sphere: the motion of
three vortices of arbitrary vorticity on a sphere is studied in [12]. The stability of
some of the relative equilibria described in [12] are computed in [39] and numerical
simulations are presented in [20]. The existence of relative equilibria of N vortices
is treated in [19], and the nonlinear stability of a latitudinal ring of N identical
vorticities is computed in [3], and independently in the present paper. In fact the
linear stability results of such a ring obtained in [38] coincide with the Lyapounov
stability results. The stability of a ring of vortices on the sphere together with a
central polar vortex is studied in [5], and again independently in the present paper,
though with different methods (and stronger results). The existence and nonlinear
stability of relative equilibria of N vortices of vorticity +1 together with N vortices
of vorticity −1 are studied in [15]. It has also been proved in [17] that relative equi-
libria formed of latitudinal rings of identical vortices for the non-rotating sphere
persist to relative equilibria when the sphere rotates. However, the question of sta-
bility becomes much more delicate: for motions that are not relative equilibria, the
vorticity of a point vortex is no longer preserved as it interacts with the background
vorticity, and the problem becomes fundamentally infinite-dimensional. In [14] Ku-
rakin studies the stability of equilibrium configurations of identical vortices placed
at the vertices of regular polyhedra; he finds that the tetrahedron, octahedron and
icosahedron are stable, while the other two are unstable. Finally, studies of periodic
orbits of point vortices on the sphere can be found in [41, 42, 18, 16].

Our study of the stability of relative equilibria is based on the symmetries of the
system, and especially the isotropy subgroups of the relative equilibria. The Hamil-
tonian is invariant under rotations and reflexions of the sphere and permutations
of identical vortices. However, some of these symmetries (eg reflexions) are not
symmetries of the equations of motion: they are time-reversing symmetries. From
Noether’s theorem, the rotational symmetry provides three conserved quantities,
the components of the momentum map Φ : P → R3 where P is the phase space.

Relative equilibria (re) are dynamical trajectories that are generated by the
action of a 1-parameter subgroup of the symmetry group. More intuitively, they
correspond here to motions of the point vortices which are stationary in a steadily
rotating frame. In other words, the motion of a relative equilibrium corresponds to a
rigid rotation of N point vortices about some axis (which we always take to be the z-
axis). In the same way as equilibria are critical points of the HamiltonianH , relative
equilibria are critical points of the restrictions of H to the level sets of Φ. Section
2 is devoted to a description of the system of point vortices on the sphere, and
to an outline of stability theory for relative equilibria. The appropriate concept of
stability for relative equilibria of Hamiltonian system is Lyapounov stability modulo
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a subgroup. The stability study is realized using on one hand the energy-momentum
method [36, 34] which consists of computing the eigenvalues of a certain Hessian, and
leads to nonlinear stability results, and on the other hand a linear study computing
the eigenvalues of the linearization of the equations of motion. To both these ends,
we block diagonalize these matrices using a suitable basis, the symmetry adapted
basis (Section 3), which makes use of the specific dihedral symmetry of the relative
equilibrium. This is equivalent to noting that the matrices (or certain submatrices)
are circulant, as used in [5]. The symmetry adapted basis splits the tangent space
to the phase space into a number of modes, from ` = 0 to ` = [n/2] (where n
is the number of vortices in the ring), and calculations can proceed separately for
each mode. Moreover, the symmetry is also used to apply the energy-momentum
method as it helps distinguish on which subspaces computations are needed. In
Section 4 we outline the different bifurcations which occur in this system: symmetric
pitchforks, Hamiltonian Hopf bifurcations and those bifurcations which occur due
to the ‘geometry of reduction’—those occurring in a neighbourhood of points with
zero momentum.

The remaining five sections each treat one of five different types of relative equi-
librium, consisting of rings of identical vortices together with possible vortices at the
poles, whose existence were proved in [19]. The notation for the different configura-
tions is taken from the same source and is described at the end of the introduction.
We now outline the main stability results.

We begin in Section 5 by computing the stability of the relative equilibria con-
sisting of a single ring of identical vortices, a configuration denoted Cnv(R) (Figure
1.1(a)). We show in Theorem 5.2 that for n ≥ 7, they are unstable for all co-
latitudes1 of the ring, while for n < 7 there exist ranges of Lyapounov stability
when the ring is near a pole. These results are not new [38] (for linear stability
results) and [3] (for nonlinear stability), but serve to demonstrate the method used
in later sections.

In Section 6, we study the stability of the relative equilibria Cnv(R, p) (Fig-
ure 1.1(b)) which are configurations formed of a ring of n identical vortices together
with a single polar vortex. For n ≥ 7 they are all unstable if the vorticity κ of
the polar vortex has opposite sign to that of the ring. However if the vorticities
have the same sign then for each co-latitude of the ring there exists a range of κ
for which the relative equilibrium is Lyapounov stable. Adding polar vortices can
therefore stabilize the unstable pure ring relative equilibria. The detailed results are
contained in Theorem 6.2, its corollary and the following discussion. Our results
are consistent with those of [5] (aside from an error in their Figure 7 where the
wrong curves are plotted), though the present methods are stronger as they give
more regions of stability than obtained in [5]—see Remark 6.4.

In Sections 7 and 8 we investigate configurations formed of two rings of arbitrary
vorticities (each ring, as always, consisting of identical vortices). In [19] it was shown
that two rings of n vortices can be relative equilibria if and only if they are either
aligned or staggered. These two arrangements are denotedCnv(2R) and Cnv(R,R′)
respectively (see Figure 1.2). Here we show that for almost all pairs of ring latitudes
there is a unique ratio of the ring vorticities for which these configurations are
relative equilibria. Numerical computations of their stability suggest that these
relative equilibria can only be stable if n ≤ 6, and in the aligned case the two rings

1the co-latitude θ of a point on the sphere is the angle subtended with the North pole
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Figure 1.1. The Cnv(R) and Cnv(R, p) relative equilibria, here
shown for n = 4. The Cnv(R, 2p) configurations have a vortex at
the South pole as well.

must be close to opposite poles, and hence have opposite vorticities. In some cases,
staggered rings may also be stable when in the same hemisphere.

Finally, in Section 9 we study the relative equilibria Cnv(R, 2p) which are con-
figurations formed of a ring of n identical vortices together with two polar vortices.
The two polar vorticities make this a 2-parameter family of systems. We obtain
analytic (in)stability criteria, but only with respect to certain modes (` ≥ 2). As
in the case of a single polar vortex, the two polar vortices play the role of control
parameters for the stability. The details are contained in Theorem 9.2. We then
continue with numerical investigations for the remaining mode (` = 1) in order
to provide full stability criteria; the conclusions are shown in a series of stability
diagrams. Further diagrams are available on the second author’s website [27].

The numerical computations all consist simply of computing the eigenvalues of
the Hessian of the Hamiltonian and the linear vector field on the symplectic slice,
using the block diagonalization of the matrices to simplify the calculations. These
are precisely the same calculations as in the earlier sections where they can be
performed analytically. The numerics are all done using Maple, and a selection of
the code can also be downloaded from [27].

In principle the method applies to larger numbers of rings but the algebraic
problem of diagonalizing the matrices in general becomes intractable; however nu-
merical studies for particular (numerical) values of the vorticities in the rings would
be feasible.

Symmetry group notation All possible symmetry types of configurations of point
vortices on the sphere were classified in [19]. The symmetry group of the system
is of the form O(3) × S, where S is a group of permutations, and a particular
configuration with symmetry, or isotropy, subgroup Σ < O(3)× S is denoted Γ(A),
where Γ is the projection of Σ to O(3) and A represents the way Σ permutes the
point vortices, so describing their geometry (for example A = R means they are in
a ring, A = p means a polar vortex). The classical Schönflies-Eyring notation for
subgroups of O(3) is used.

In this paper we single out configurations consisting of concentric rings of identi-
cal vortices, with the same number of vortices in each ring, and with possible polar
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Figure 1.2. Configurations of types Cnv(2R) (2 aligned rings)
and Cnv(R,R′) (2 staggered rings). As in the previous figure, this
is depicted for n = 4.

vortices. These configurations have cyclic symmetry (in the ‘horizontal plane’), and
the Schönflies-Eyring notation for this subgroup of O(3) is Cn < SO(3). In fact we
only consider the cases where the rings are either aligned (the vortices lie on the
same longitudes) or staggered (they lie on intermediate longitudes, out of phase by
π/n). In these two cases the symmetry group is the larger dihedral group Cnv (n
being the number of vortices in each ring, and v denoting the fact that there are
vertical planes of reflexion). For such configurations, we write Cnv(k1R, k2R

′, kpp)
to mean that there are kr = k1 + k2 rings and kp polar vortices. The difference
between R and R′ is that the k1 rings R are all aligned and the k2 rings R′ are stag-
gered with respect to the first (and so aligned with each other). Of course kp = 0, 1
or 2.

In particular, the following table shows the five types of configuration we consider
in detail and the relevant section in this paper:

Cnv(R) a single ring of n identical vortices § 5
Cnv(R, p) a single ring as above, together with a polar vortex § 6
Cnv(2R) a pair of aligned rings of n identical vortices § 7

Cnv(R,R′) a pair of staggered rings of n identical vortices § 8
Cnv(R, 2p) a single ring as above, together with two polar vortices § 9

We also refer on occasion to other symmetry types. In particular Dnh is the
subgroup of O(3) generated by the dihedral group Cnv together with a reflexion in
the horizontal plane: it is the symmetry group of a pair of aligned rings of vortices
lying symmetrically about the equator. Similarly, Dnd is the subgroup generated
by Cnv together with a combined reflexion-rotation: reflexion about the horizontal
plane combined with a rotation by π/n (the rotations in Cnv are through multiples
of 2π/n). This is the symmetry group of a pair of staggered rings of vortices lying
at opposite latitudes.

For the symmetry arguments to hold, the vortices in a single ring must be iden-
tical, but we do not assume that the vortices in different rings or at the poles are
identical.



444 FREDERIC LAURENT-POLZ, JAMES MONTALDI AND MARK ROBERTS

Historical note An early version of this paper was written in 2002, with most of
the stability calculations performed by the first author (FLP). It was submitted soon
after, but the editor asked for more extensive numerics. This lay in the to-do pile of
the other two authors for the intervening years (FLP having left academic research
in the meantime), and the occasion of Tudor Ratiu’s birthday celebration was the
impetus required to produce a final version, with the more extensive numerics—
especially those in the final section.

2. Point vortices on the sphere and stability theory. In this section we
briefly recall that the system of point vortices on a sphere is an n-body Hamiltonian
system with symmetry and we review the stability theory for relative equilibria.

2.1. Point vortices. Consider n point vortices x1, . . . , xn ∈ S2 with vorticities
κ1, . . . , κn ∈ R. Let θi, φi be respectively the co-latitude and the longitude of the
vortex xi (so θ = 0 corresponds to the North pole). The dynamical system is
Hamiltonian with Hamiltonian given by

H = −
∑

i<j

κiκj ln(1 − cos θi cos θj − sin θi sin θj cos(φi − φj))

and conjugate variables given by qi =
√

|κi| cos θi and pi = sign(κi)
√

|κi|φi. Note
that many authors have a constant factor (involving π) in the Hamiltonian; this
will not effect the existence or stability of the relative equilibria, but is equivalent
to a rescaling of time by that factor.

The phase space is P = {(x1, . . . , xn) ∈ S2× · · · ×S2 | xi 6= xj if i 6= j} endowed
with the symplectic form ω =

∑

i κi sin θi dθi ∧ dφi. The Hamiltonian vector field
XH satisfies ω( · , XH(x)) = dHx. If we consider S2 as a subset of R3, so each
vortex xj ∈ R3, then we obtain

ẋi = XH(x)i =
∑

j,j 6=i

κj
xj × xi

1− xi · xj
, i = 1, . . . , N,

H = −
∑

i<j

κiκj ln(‖xi − xj‖2/2).
(2.1)

It follows that H is invariant under O(3) acting by rotations and reflexions of the
sphere.

The rotation subgroup SO(3) leaves the symplectic form invariant, and so the
Hamiltonian vector field XH is SO(3)-equivariant. On the other hand, the reflexions
in O(3) reverse the sign of the symplectic form and so give rise to time-reversing
symmetries of XH . Moreover H , ω and XH are all invariant (or equivariant) with
respect to permutations of vortices with equal vorticity.

The rotational symmetry implies the existence of a momentum map Φ : P →
so(3)∗ ' R

3:

Φ(x) =

N
∑

j=1

κjxj (xj ∈ S2 ⊂ R
3) (2.2)

which is conserved under the dynamics. In other words each of the three components
of Φ(x) is a conserved quantity. We will always orient the solution we are studying
so that Φ(x) lies on the z-axis, and write Φ(x) = (0, 0, µ). There is no intrinsic
difference between µ > 0 and µ < 0—they are rotationally equivalent. However
when studying bifurcations in a neighbourhood of a point with µ = 0, then the two
sides should be distinguished.
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2.2. Relative equilibria. A point xe ∈ P is a relative equilibrium if and only if
there exists ξ ∈ so(3) ' R3 (the angular velocity) such that xe is a critical point
of the function Hξ(x) = H(x) − 〈Φ(x), ξ〉, where the pairing 〈 , 〉 between R3 and
its dual is identified with the canonical scalar product on R3. Equivalently, relative
equilibria are critical points of the restriction of H to Φ−1(µ), since the level set
Φ−1(µ) are always non-singular for point vortex systems of more than two vortices.
The function Hξ is called the augmented Hamiltonian.

Since the momentum is conserved, we can choose a frame for R3 such that Φ
is parallel to the z-axis (provided the momentum is non-zero). It follows from the
symmetry that the angular velocity ξ ∈ R3 is also parallel to the z-axis. We can
therefore identify ξ and Φ with their z-components and the augmented Hamiltonian
becomes simply Hξ(x) = H(x)− ξΦ(x).

Let f : P → R be a K-invariant function with K a compact group. Recall that
Fix(K) = {x ∈ P | g · x = x, ∀g ∈ K}. The Principle of Symmetric Criticality [35]
states that a critical point of the restriction of a K-invariant function f to Fix(K)
is a critical point of f . As a corollary, if the Hamiltonian is invariant under K and
xe is an isolated point in Fix(K) ∩ Φ−1(µ), then xe is a relative equilibrium. It
follows in particular that all configurations of type Cnv(R), Cnv(R, p) (Figure 1.1),
and Cnv(R, 2p) are relative equilibria: take K such that π(K) = Cnv where π :
O(3)× Sn → O(3) is the Cartesian projection.

Finally, one can show that if xe is a relative equilibrium with angular velocity ξ,
then Hξ is a Gxe

-invariant function, where Gxe
< O(3)× S is the symmetry group

(isotropy group) of the configuration xe.

2.3. Stability theory and isotypic decomposition. Stability is determined by
the energy-momentum method together with an isotypic decomposition of the sym-
plectic slice. We recall the main points of the method.

Let xe ∈ P be a relative equilibrium, µ = Φ(xe), and ξ be its angular velocity.
The energy-momentum method consists of determining the symplectic slice

N = (so(3)µ · xe)
⊥ ∩KerDΦ(xe)

transverse to so(3)µ · xe, where

SO(3)µ = {g ∈ SO(3) | Coadg ·µ = µ}
and then examining the definiteness of the restriction d2Hξ|N (xe) of the Hessian
d2Hξ(xe) to N . (In practice we will represent µ as a vector, in which case Coadg µ =
gµ is just matrix multiplication.) IfK is a group acting on the phase space a relative
equilibrium xe is said to be Lyapounov stable modulo K if for all K-invariant open
neighbourhoods V of K · xe there is an open neighbourhood U ⊆ V of xe which
is invariant under the Hamiltonian dynamics. The energy-momentum theorem of
Patrick [36] holds since SO(3) is compact, and so we have:

If d2Hξ|N (xe) is definite, then xe is Lyapounov stable modulo SO(3)µ.

For µ 6= 0, SO(3)µ is the set of rotations with axis 〈µ〉, and so isomorphic to SO(2),
while for µ = 0, SO(3)µ = SO(3). If µ 6= 0 Lyapounov stability modulo SO(3)µ of a
relative equilibrium with non-zero angular velocity coincides with ordinary (orbital)
stability of the corresponding periodic orbit.

The second ingredient consists of performing an isotypic decomposition of the
symplectic slice N in order to block diagonalize d

2Hξ|N (xe). Let V be a finite
dimensional representation of a compact Lie group K. Recall that a K invariant
subspace W ⊂ V of K is said to be irreducible if W has no proper K invariant



446 FREDERIC LAURENT-POLZ, JAMES MONTALDI AND MARK ROBERTS

subspaces. Since K is compact, V can be expressed as a direct sum of irreducible
representations: V = W1 ⊕ · · · ⊕ Wn. In general this is not unique. There are a
finite number of isomorphism classes of irreducible representations of K in V , say
U1, . . . , U`. Let Vk (k = 1, . . . , `) be the sum of all those irreducible representations
Wj in the above sum for which Wj is isomorphic to Uk. Then V = V1 ⊕ · · · ⊕ V`.
This decomposition of V is unique and is called the K-isotypic decomposition of
V [40]. By Schur’s Lemma, the matrix of a K-equivariant linear map f : V → V
block diagonalizes with respect to a basis B = {B1, . . . ,Bl} where Bk is a basis of
Vk, each block corresponding to a subspace Vk. The basis B is called a symmetry
adapted basis. In this paper, the isotropy group K is a dihedral group, and the
corresponding symmetry adapted basis consists of ‘Fourier modes’, defined below.

Let G denote the group of all symmetries of the Hamiltonian H and vector field
XH and G0 the subgroup consisting of time-preserving symmetries, i.e. those act-
ing symplectically. The elements of G \G0 reverse the symplectic form, and hence
reverse the vector field XH , so effectively reversing time. In the case of N identical
vortices we have G = O(3)×SN and G0 = SO(3)×SN . Since Hξ is a Gxe

-invariant
function, the restricted Hessian d2Hξ|N (xe) is Gxe

-equivariant as a matrix. More-
over the symplectic slice N is a Gxe

-invariant subspace and so we can implement
a Gxe

-isotypic decomposition of N to block diagonalize d2Hξ|N (xe). This block
diagonalization of d2Hξ|N (xe) simplifies the computation of its eigenvalues, and
hence of its definiteness. If it is definite then the relative equilibrium is Lyapounov
stability modulo SO(3)µ.

If d2Hξ|N (xe) is not definite then we study the spectral stability of xe. In par-
ticular we examine the eigenvalues of LN , the matrix of the linearized system on
the symplectic slice, that is LN = JN d2Hξ|N (xe), where J

−1
N is the matrix of ω|N .

The matrix LN is G0
xe
-equivariant and so we perform a G0

xe
-isotypic decomposition

of N to obtain a block diagonalization of LN , and so to determine the spectral
stability of xe. In particular, if LN has eigenvalues with non-zero real part, then xe

is linearly unstable. Note that the block diagonalization of d2Hξ|N (xe) refines that
of LN since G0

xe
⊂ Gxe

.
Throughout this paper, we will align the vortices so that φ(xe) lies along the

z-axis, and we write φ(xe) = (0, 0, µ). If µ 6= 0 then Lyapounov stable will mean
Lyapounov stable modulo SO(2), while if µ = 0 it means Lyapounov stable modulo
SO(3).

3. Symmetry adapted bases for rings and poles. In this section we give the
ingredients needed to determine the symmetry adapted bases for the symplectic slice
at the configurations described above, that is those of type Cnv(k1R, k2R

′, kpp). In
the first subsection we give a general symmetry adapted basis for the tangent space
Txe

P to the phase space at such a configuration, and express the derivative of the
momentum map and tangent space to the group orbit in this basis. In the following
two subsections we describe the isotypic decomposition of Txe

P , first for a single ring
and then in general. Recall that the isotropy subgroup Gxe

is always a dihedral
group Cnv (which has order 2n) and that the irreducible representations of this
group are of dimension 1 or 2. The cyclic subgroup Cn acts symplectically and is
denoted G0

xe
.

The actual symmetry adapted bases of the symplectic slices will be given case-
by-case in the following sections. We do not give the proof of the results in the first
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subsection, since they can be easily deduced from the proofs of Propositions 4.1–4.4
in [15].

3.1. Description of the symplectic slice. Let xe be a Cnv(k1R, k2R
′, kpp) con-

figuration. Let kr = k1 + k2 be the total number of rings. The total number of
vortices is then N = nkr + kp, where kp = 0, 1 or 2 is the number of polar vortices.
We suppose the vorticities in ring j are κj for j = 1, . . . , kr while the vorticities of
the possible polar vortices are κN for the North pole and κS for the South pole. In
this paper we only consider in detail kr = 1 or 2, but here we describe the more
general case.

For each ring j = 1, . . . , kr let s = 1, . . . , n label the vortices in the ring in cyclic

order (in an easterly direction), and define real tangent vectors α
(`)
j,θ etc. in Txe

P by

α
(`)
j,θ + i β

(`)
j,θ =

∑n
s=1 e

i`φj,s δθj,s

α
(`)
j,φ + i β

(`)
j,φ =

∑n
s=1 e

i`φj,s δφj,s

(3.1)

where ` = 0, . . . , [n/2], i =
√
−1 and φj,s = 2πs/n− φ0

j , which is the longitude of

the sth vortex in ring j, where φ0
j = 0 or π/n depending on whether the jth ring

of vortices is of type R or R′. Note that β
(`)
j,θ , β

(`)
j,φ vanish for ` = 0 and n/2 (for n

even). The vectors α
(`)
j,θ etc. defined in (3.1) are called the Fourier modes, and are

depicted (for n = 4 and 5 and rings of type R) in Figure 9.6 at the end of the paper.
For each pole i = 1, . . . , kp (where kp = 0, 1, 2) we also have tangent vectors δxi

and δyi.
The tangent vectors defined in the last two paragraphs are almost canonical, in

the sense that

ω
(

α
(`)
j,θ, α

(`)
j,φ

)

=

{

n sin θj κj if ` = 0, n/2
1
2n sin θj κj otherwise

ω
(

β
(`)
j,θ , β

(`)
j,φ

)

= 1
2n sin θj κj

ω (δxi, δyi) = sign(zi)κi,

(3.2)

while all other pairings vanish.
The cyclic subgroup Cn of the isotropy subgroup Cnv < O(3)×S (see the end of

the Introduction) acts symplectically, and in terms of the Fourier modes, the action
of the generator σ ∈ Cn is

σ · (α(`)
j,θ + iβ

(`)
j,θ) = exp

(

2πi`
n

)

(α
(`)
j,θ + iβ

(`)
j,θ)

σ · (α(`)
j,φ + iβ

(`)
j,φ) = exp

(

2πi`
n

)

(α
(`)
j,φ + iβ

(`)
j,φ)

σ · (δxj + iδyj) = exp
(

2πi
n

)

(δxj + iδyj).

(3.3)

The reflexions in Cnv ' Dn (dihedral group) act antisymplectically. One of the
reflexions κ ∈ Dn \Cn acts on the sphere by (θ, φ) 7→ (θ, −φ) and by permuting
the particles within each ring by,

κ · (1, . . . , n) =
{

(n− 1, . . . , 1, n) for rings of type R,

(n, . . . , 2, 1) for rings of type R′.

The difference arises because for rings of type R, vortex n lies in the half-plane
φ = 0, while for rings of type R′ it lies in the half-plane φ = −π/n. In terms of the
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Fourier modes, this reflexion acts by,

α
(`)
j,θ 7→ α

(`)
j,θ , β

(`)
j,θ 7→ −β

(`)
j,θ ,

β
(`)
j,φ 7→ β

(`)
j,φ , α

(`)
j,φ 7→ −α

(`)
j,φ,

δx 7→ δx , δy 7→ −δy .

Each of the subspaces
〈

α
(`)
j,θ, β

(`)
j,θ

〉

and similarly with φ areDn-invariant isotropic

subspaces.

In order to compute a specific basis for the symplectic slice it is necessary to have
expressions for the derivative of the momentum map and the tangent space to the
group orbit at a Cnv(k1R, k2R

′, kpp) configuration. These expressions are given in
the next two propositions. Since Cnv refers to fixed vertical reflexion planes, the
values of φ0

j in (3.1) above can be taken to be:

φ0
j =

{

0 if j = 1 . . . k1

π/n if j = (k1 + 1) . . . kr

where kr = k1 + k2 is the total number of rings.

Proposition 3.1. At a Cnv(k1R, k2R
′, kpp) configuration, the differential of the

momentum map is as follows: let

u =
∑

j,`

(

a
(`)
j,θα

(`)
j,θ + a

(`)
j,φα

(`)
j,φ + b

(`)
j,θβ

(`)
j,θ + b

(`)
j,φβ

(`)
j,φ

)

+
∑

j polar

(cjδxj + djδyj),

be a tangent vector (the a
(`)
j,θ etc. are its components with respect to the Fourier basis,

where j numbers the rings and ` the modes in each ring), then

dΦ(u)

=

kr
∑

j=1

κj cos θj(a
(1)
j,θ + ib

(1)
j,θ ) + i

kr
∑

j=1

κj sin θj(a
(1)
j,φ + ib

(1)
j,φ) +

∑

j polar

κj(cj + idj)

⊕

−
kr
∑

j=1

κj sin θja
(0)
j,θ

where the direct sum corresponds to the Cnv-invariant decomposition of so(3)∗ as a
direct sum of a plane (the ‘x-y-plane’) and the line Fix(Cnv, so(3)

∗) (the ‘z-axis’).

This is proved from the definition of the momentum map (2.2), and some Fourier
type calculations. The kernel of the momentum map is readily read off from this.
The following proposition results from similar calculations involving the infinitesi-
mal rotation matrices in R3:

Proposition 3.2. Let xe be a Cnv(k1R, k2R
′, kpp) configuration, and µ = Φ(xe).

If µ 6= 0, then the tangent space to the orbit so(3)µ · xe is generated by the vector

kr
∑

j=1

α
(0)
j,φ.
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If µ = 0, then so(3)µ · xe = so(3) · xe and is generated by the vector above, and the
following two other vectors,

kr
∑

j=1

(

β
(1)
j,θ + cot θj α

(1)
j,φ

)

+
∑

j polar

sign(zj) δyj ,

kr
∑

j=1

(

α
(1)
j,θ − cot θj β

(1)
j,φ

)

+
∑

j polar

sign(zj) δxj .

Now, so(3)µ · xe ⊂ ker dΦxe
and the symplectic slice N is the orthogonal com-

plement to the former inside ker dΦ (or indeed any complementary subspace, not
necessarily orthogonal, though to take advantage of the symmetry group the sub-
space should chosen to be invariant under Gxe

).

3.2. Single ring. Let xe be a Cnv(R, kpp) configuration, a single ring of n vortices
together with kp polar vortices where, of course, kp = 0, 1 or 2. Since there is only

one ring, we write α
(`)
θ , β

(`)
θ etc. instead of α

(`)
1,θ, β

(`)
1,θ etc.

Proposition 3.3. For these single ring configurations, the symplectic slice can be
decomposed by Fourier modes (or isotypic representations) as

N =

[n/2]
⊕

`=1

V`,

where for ` ≥ 2,

V` =
〈

α
(`)
θ , α

(`)
φ , β

(`)
θ , β

(`)
φ

〉

(with the understanding that β
(n/2)
θ = β

(n/2)
φ = 0 when n is even). So dimV` = 4

for 1 < ` < n/2, and if n is even dimVn/2 = 2. Furthermore,

dimV1 =



















2kp + 2 if µ 6= 0 and n > 2

2kp if µ = 0 and n > 2

2kp if µ 6= 0 and n = 2

max{0, 2kp − 2} if µ = 0 and n = 2.

A basis for V1 follows from Propositions 3.1 and 3.2, and is given in the relevant
section.

Representations As representations of Gxe
' Cnv ' Dn andG0

xe
' Cn, the V` are

pairwise distinct, so by Schur’s Lemma both the Hessian d2Hξ|N and the linearized
vector field LN block diagonalize with respect to this decomposition. We now give
a brief description of these representations. These statements follow directly from
the definition of the Fourier modes in (3.1) above.

For 2 < ` < n/2, the Fourier subspace V` is 4-dimensional, and consists of
a direct sum of two 2-dimensional symplectic irreducibles, one isomorphic to the
usual representation of Cn acting on the plane with ‘speed’ ` (that is, a rotation
by ρ in Cn acts on the plane by a rotation through `ρ), and the other the dual
representation. Of course, the reflexions in Cnv act antisymplectically.

For ` = n/2 (when n is even), Vn/2 is 2-dimensional, with G0
xe

acting by {±I},
but Gxe

acting by reflexion in a line. More specifically, Vn/2 =
〈

α
(n/2)
θ , α

(n/2)
φ

〉

and
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one generator of Gxe
acts trivially on α

(n/2)
θ and by −1 on α

(n/2)
φ , while another

acts the other way around.

The subspace V1 is more involved. The representations
〈

α
(1)
θ , β

(1)
θ

〉

,
〈

α
(1)
φ , β

(1)
φ

〉

and 〈δxj , δyj〉 (j = 1, . . . , kp) do not lie in the symplectic slice, and it is necessary
to use Propositions 3.1 and 3.2 to write down the bases of V1 which will be central
in later calculations. However, the underlying representations are all isomorphic
(i.e., ignoring the symplectic structure); they are copies of the basic 2-dimensional
representations of the dihedral group Cnv, and it follows that V1 is a direct sum
of such representations. But as symplectic representations this is more subtle: the
subspaces 〈δxj , δyj〉 are symplectic, while the others mentioned are isotropic.

3.3. General case. In the general case where xe is a Cnv(k1R, k2R
′, kpp) config-

uration (kp = 0, 1 or 2), we have the following decomposition.

Proposition 3.4. For these multiring configurations, the symplectic slice decom-
poses as a direct sum of Fourier modes

N =

[n/2]
⊕

`=0

V`

where for 2 ≤ ` ≤ [n/2],

V` =
〈

α
(`)
j,θ, α

(`)
j,φ, β

(`)
j,θ , β

(`)
j,φ | j = 1 . . . kr

〉

,

which is of dimension 4kr if ` < n/2 and 2kr if ` = n/2, where kr is the total
number of rings. The subspaces V0 and V1 are subspaces of the corresponding spaces
determined by Propositions 3.1 and 3.2 and are given in the relevant sections.

The spaces V` as representations of Gxe
and G0

xe
and 2 ≤ ` ≤ n/2 will just be

the sum of several copies of the corresponding V` for a single ring.

4. Bifurcations and symmetry. The configurations we consider in this paper
depend on a number of parameters, both external and internal (the internal param-
eter is the conserved momentum, the external ones the vorticity). As a result, one
finds many bifurcations and since the system has symmetry, the bifurcations will
reflect this symmetry, and in particular will depend on how the symmetry group of
a given relative equilibrium (re) acts on the eigenspace in which the bifurcation oc-
curs. Of course, the transitions involving a change in stability are such bifurcations.
Here we present a brief zoology of the bifurcations that are encountered.

The simplest steady-state bifurcation in a Hamiltonian system is the saddle-
node, where two equilibria come together and vanish. However, because we are
considering symmetric relative equilibria (re), there is always a ‘central’ symmetric
re which persists throughout the bifurcation and so the saddle-node will not arise.
Consequently, the simplest bifurcation we encounter is the pitchfork.

Some details about how the action of the symmetry group influence which steady-
state bifurcations to expect generically were elaborated in [9], see also [4] for a
summary. However, only symplectic actions were considered there (without time-
reversing symmetries), and the extra time-reversing symmetries restrict what hap-
pens generically so their results are not directly applicable.

Remark 4.1. When the relative equilibrium (or reduced equilibrium) has a mode
with imaginary eigenvalues, one can apply the symmetry methods of [29, 30] to find
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(a) Transcritical D4-pitchfork

(b) ‘Standard’ D4-pitchfork

Figure 4.1. Contours of the generic 1-parameter family of D4-
invariant functions in the plane Hλ(z) = λ|z|2 + a|z|4 + bRe(z4) +
O(z5). The top pair (a) represent a transcritical bifurcation and
occur if |a| < |b|, while the bottom pair (c) and (d) represent a
standard pitchfork bifurcation, occurring if |a| > |b|. In both cases
the left-hand figure represents λ < 0 and the right-hand one λ > 0.
(Distinguishing between sub- and super-critical cases depends on
stability information in other ‘modes’.) See text for how these
relate to other dihedral groups.

families of relative periodic orbits in a neighbourhood of the relative equilibrium
with prescribed spatio-temporal symmetries. We do not pursue this here.

4.1. Symmetric pitchfork bifurcations. In this bifurcation, there is a central
‘core’ re which persists throughout the bifurcation, and whose eigenvalues (of the
linearization) pass through zero as parameters are varied. As the transition occurs,
other re branch off from the central one. In our setting this bifurcation occurs with
the symmetry of a dihedral group Dk (where k depends on both ` and n).

One can distinguish between transcritical pitchfork bifurcations on the one hand
and standard pitchforks on the other; in the former there are bifurcating solutions
on both sides of the bifurcation point, while in the latter the bifurcating solutions
all coexist for the same parameter values: see Figure 4.1. Which occurs depends
principally on the value of k. A typical pitchfork bifurcation with D3 symmetry is
transcritical, analogous to (a) in the figure but with 3-fold symmetry, while a typical
pitchfork with Dk-symmetry for k > 4 is a standard pitchfork analogous to (b) but
again with k-fold symmetry. If k = 4 then either case can occur, as described in
the figure.

Note that if a standard pitchfork bifurcation involves a change in stability then
it is either sub- or super-critical, depending on whether the bifurcating solutions
are stable or unstable respectively.
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Figure 4.2. The two scenarios for the generic movement of eigen-
values in symmetric steady-state pitchfork bifurcation.

In the bifurcations occurring in this paper, if the symmetry is Cnv ' Dn, and
the bifurcation is in mode `, then the effective symmetry for the bifurcation is Dk

where k = n/(n, `), where (n, `) is the highest common factor of n and `. This is
because all points in this mode have Z(n,`)-symmetry, see ( 3.3), leaving an effective
action of Dn/Z(n.`) ' Dk.

For example, if n is even and ` = n/2 then k = 2 and there is an effective action
of D2 ' Z2×Z2, and all points of this mode have Zn/2-symmetry. It follows that if
the bifurcation involves this mode, then all bifurcating solutions have at least this
symmetry. In fact an analysis of the generic bifurcation shows that they have a
further Z2 giving Dn/2 symmetry. The generic pitchfork bifurcation in this mode
is the well-known one where there are two branches of bifurcating solutions and a
Z2-symmetry is lost; since the central equilibrium has Dn symmetry the bifurcating
solutions will still have a Dn/2-symmetry.

At the other extreme, if n and ` are coprime, then k = n and the bifurcating
solutions have only Z2-symmetry, generated by one of the reflexions in Dn.

Figures 5.1 and 5.2 show symmetries of bifurcating solutions.

As the eigenvalues pass through zero in either type of pitchfork bifurcation there
are two possibilities, the so-called splitting and passing behaviours (see Figure 4.2):

Pitchfork of splitting type: This is the familiar scenario where a complex
conjugate pair of imaginary eigenvalues of the linear system collide at 0 and
then become real and opposite. The central (relative) equilibrium is then pos-
sibly elliptic or Lyapounov stable on one side of the bifurcation, and linearly
unstable on the other.

Pitchfork of passing type: This is similar, except that the eigenvalues pass
through each other and remain on the imaginary axis. See Figure 4.2. If
the central re is say Lyapounov stable (or elliptic) before the bifurcation,
then in a pitchfork of passing type the central re becomes (remains) elliptic,
and in the standard pitchfork bifurcation k of the bifurcating solutions are
Lyapounov stable (elliptic) while the other k are linearly unstable. In the
transcritical case, all the bifurcating re are linearly unstable.

For example, if a bifurcation takes place due to a degeneracy in the mode space
Vn/2, then generically it will be a standard Z2-pitchfork bifurcation, and the cen-
tral relative equilibrium will pass from being (Lyapounov) stable to being linearly
unstable. A study of higher order terms will distinguish between standard sub- and
super-critical pitchfork bifurcations (something we don’t do in this paper).
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If on the other hand a bifurcation occurs in the mode V` with 0 < ` < n/2 then
generically one may see pitchforks of either passing or splitting type.

4.2. Hamiltonian Hopf bifurcation. This occurs when two imaginary eigenva-
lues of a (relative) equilibrium collide and move off the imaginary axis. This can
only happen if the (reduced) Hessian matrix at the (relative) equilibrium is not
definite.

There are two possible scenarios depending on the higher order terms:
(a) the two Lyapounov modes associated with the two imaginary eigenvalues are
globally connected, and the set of all of these collapse to a point as the eigenvalues
collide, and
(b) the two Lyapounov modes are not part of the same family, and as the eigenvalues
move off the imaginary axis, so the two families connect and move away from the
(relative) equilibrium.

For a detailed description of the bifurcations of periodic and relative periodic
orbits that can be expected in this case see [23, 21, 7, 4].

4.3. Bifurcations from zero momentum. Consider a relative equilibrium x0 in
a system with SO(3)-symmetry with zero momentum, whose reduced Hessian is
non-degenerate.

If the angular velocity of the re is non-zero, then through that re there is a
curve of re parametrized by µ. If the reduced Hessian of x0 is positive definite
(so xe is Lyapounov stable) then generically on one side of the curve the re is also
Lyapounov stable, while on the other it is elliptic, [26].

The genericity assumption is that the frequency of the rotation of the re (which
is |ξ|) is distinct from the frequencies of the normal modes of the reduced system.
This ro-vibrational resonance is discussed briefly at the end of [25], where it is made
clear how it is related to the Hamiltonian Hopf bifurcation; the associated dynamics
is the subject of a paper by Patrick [37], where he calls it group-reduced resonance.
This resonance phenomenon can be seen for a ring and 2 polar vortices in Section 9.
The bifurcations arising as parameters are varied have not been studied.

If on the other hand the angular velocity of x0 is zero then for each non-zero
µ there are at least 6 re, and if x0 is definite as above, then at least 2 of these
are each of Lyapounov stable, elliptic and unstable. Moreover, if the equilibrium in
question has symmetry, then the symmetry can be used to give precise estimates
for the numbers of re in a neighbourhood. Details can be found in [28] and a study
of deformations from zero velocity to non-zero velocity can be found in [26].

5. A ring of identical vortices: Cnv(R). The linear stability of Cnv(R) relative
equilibria was determined by Polvani and Dritschel in [38]. A few years ago, Boatto
and Cabral [3] studied their Lyapounov stability and found that the two types of
stability coincide: whenever the relative equilibrium fails to be Lyapounov stable
the linearization of XH has real eigenvalues. In this section, we give another proof
using the geometric method of this paper. The calculations are also used in later
sections.

5.1. Symplectic slice. For n vortices of unit vorticity the Hamiltonian is

H(θj , φj) = −
∑

j<k

ln (1− sin θj sin θk cos(φj − φk)− cos θj cos θk) (5.1)

and the augmented Hamiltonian is Hξ = H − ξ
∑

j cos θj .
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Let xe be a Cnv(R) relative equilibrium and θ0 the co-latitude of the ring. The
angular velocity of xe is

ξ =
(n− 1) cos θ0

sin2 θ0
,

since Hξ has a critical point there and
∂Hξ

∂θj
(xe) =

(n−1) cos θ0−ξ sin2 θ0
sin θ0

. The momen-

tum of the relative equilibrium is just µ = n cos θ0.

The second derivatives of H at the relative equilibrium are:

∂2H
∂θ2

j

= − (n−1)(n−5)
6 sin2 θ0

∂2H
∂θj∂θk

= 1
2 sin2 θ0 sin2(π(j−k)/n)

∂2H
∂θj∂φj

= 0 ∂2H
∂θj∂φk

= 0

∂2H
∂φ2

j

= 1
6 (n

2 − 1) ∂2H
∂φj∂φk

= − 1
2 sin2(π(j−k)/n) .

We note that
∑n−1

r=1 1/ sin2(πr/n) = 1
3 (n

2 − 1) [11].

Notation In order to harmonize the statements of the results between n even and
n odd, we introduce the following notation: let η

(`)
1 , η

(`)
2 , η

(`)
3 , η

(`)
4 be objects defined

for all 2 ≤ ` ≤
[

n−1
2

]

, where [m] is the integer part of m ∈ N, and only η
(`)
1 , η

(`)
2 for

` = n/2 when n is even. Then define
{

η
(`)
1 , η

(`)
2 , η

(`)
3 , η

(`)
4 | 2 ≤ ` ≤ [n/2]

}∗

to be
{

for even n :
{

η
(`)
1 , η

(`)
2 , η

(`)
3 , η

(`)
4 | 2 ≤ ` ≤ n

2 − 1
}

∪
{

η
(n/2)
1 , η

(n/2)
2

}

for odd n : {η(`)1 , η
(`)
2 , η

(`)
3 , η

(`)
4 | 2 ≤ ` ≤ [n/2]}.

(5.2)

In Proposition 3.3 a basis is given for each of the V` except for ` = 1. The
following proposition does the same for V1.

Proposition 5.1. For n = 2 the symplectic slice is 0. For n ≥ 3, the symplectic

slice decomposes as N =
⊕[n/2]

`=1 V`, where for µ 6= 0

dimV` =

{

2 if ` = 1 or n/2

4 otherwise.

If µ = 0 then V1 = 0, while for µ 6= 0, V1 = 〈e1, e2〉, where
e1 = sin θ0 α

(1)
θ + cos θ0 β

(1)
φ

e2 = sin θ0 β
(1)
θ − cos θ0 α

(1)
φ .

With respect to the resulting basis for the symplectic slice, the Hessian d2Hξ|N (xe)
is diagonal, and LN block diagonalizes in 2× 2 blocks.

Proof. It is straightforward to check that the vectors above do form a basis for V1

at xe thanks to Propositions 3.1 and 3.2.
The Hessian d2Hξ|N (xe) and the linearization LN are both G0

xe
-invariant. As-

sume n odd. It follows from Section 3.2 and Schur’s Lemma (see the introduction)
that d2Hξ|N (xe) and LN both block diagonalize into 4 × 4 blocks and one 2 × 2
block corresponding to the subspaces

V` =
〈

α
(`)
θ , β

(`)
θ , α

(`)
φ , β

(`)
φ

〉
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and 〈e1, e2〉, respectively. See the proof of Theorem 4.5 of [15] for a detailed proof
of a similar assertion.

Now fix ` and denote by s an anti-symplectic (time-reversing) element of Gxe
. For

example s could be the reflexion y 7→ −y together with an order two permutation

of Sn. The restriction of Hξ to V` is Z2[s]-invariant. Moreover
〈

α
(`)
θ , β

(`)
φ

〉

and
〈

β
(`)
θ , α

(`)
φ

〉

are non-isomorphic irreducible representation of Z2[s] on V`. Hence

d2Hξ|N (xe) block diagonalizes into 2 × 2 blocks which correspond to subspaces
〈

α
(`)
θ , β

(`)
φ

〉

,
〈

β
(`)
θ , α

(`)
φ

〉

, and 〈e1, e2〉. This result does not depend on the details

of the Hamiltonian, only its symmetries. However taking account of its particular
form, one can improve the block diagonalization. Indeed one has

d
2Hξ(xe) · (α(`)

θ , β
(`)
φ ) = d

2Hξ(xe) · (β(`)
θ , α

(`)
φ ) = 0

and d2Hξ(xe) · (e1, e2) = 0 which gives the desired diagonalization of the Hessian.
The particular form of the symplectic form also enables us to improve the diago-

nalization of LN . Among the basis vectors of V`, only ω(α
(`)
θ , α

(`)
φ ) and ω(β

(`)
θ , β

(`)
φ )

do not vanish, and so the restriction of ω to V` block diagonalizes into two 2 × 2

blocks which correspond to the subspaces
〈

α
(`)
θ , α

(`)
φ

〉

and
〈

β
(`)
θ , β

(`)
φ

〉

. The block

diagonalization of LN then follows from LN = JNd2Hξ|N (xe).
The case n even is very similar, except that there is an additional 2× 2 block in

the G0
xe
-isotypic decomposition, and leads to the same result.

5.2. Stability. The block diagonalization of d2Hξ|N (xe) and LN enable us to find
formulae for their eigenvalues, and thus to conclude criteria for both Lyapounov
and linear stability.

Theorem 5.2. The stability of a ring of n identical vortices depends on n and the
co-latitude θ0 as follows:

n condition for stability
2, 3 all θ0
4 cos2 θ0 > 1/3
5 cos2 θ0 > 1/2
6 cos2 θ0 > 4/5
≥7 always linearly unstable

For n = 4, 5, 6, the ring is linearly unstable if the inequality is reversed.

Proof. Any arrangement of two vortices is a relative equilibrium [12]. When per-
turbing such a relative equilibrium, we obtain a new relative equilibrium close to
the first. Thus any relative equilibrium of two vortices is Lyapounov stable modulo
SO(2) (and modulo SO(3) if µ = 0).

Now assume n ≥ 3. We first study Lyapounov stability. Suppose further that
µ 6= 0 and so the ring is not equatorial. A simple calculation shows that d2Hξ(xe) ·
(β

(`)
θ , β

(`)
θ ) = d2Hξ(xe)·(α(`)

θ , α
(`)
θ ) and d2Hξ(xe)·(β(`)

φ , β
(`)
φ ) = d2Hξ(xe)·(α(`)

φ , α
(`)
φ ).

Hence it follows from Proposition 5.1 that

d
2Hξ|N (xe) = diag

(

λ1, λ1, {λ(`)
θ , λ

(`)
φ , λ

(`)
θ , λ

(`)
φ | 2 ≤ ` ≤ [n/2]}∗

)
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(recall notation from (5.2)) where

λ1 = sin2 θ0λ
(1)
θ + cos2 θ0λ

(1)
φ ,

λ
(`)
θ = d2Hξ(xe) · (α(`)

θ , α
(`)
θ ),

λ
(`)
φ = d

2Hξ(xe) · (α(`)
φ , α

(`)
φ ).

Thanks to the following formula [11, p.271]

n−1
∑

j=1

cos(2π`j/n)

sin2(πj/n)
=

1

3
(n2 − 1)− 2`(n− `),

we find after some computations that λ
(`)
φ = n`(n− `)/2 and

λ
(`)
θ =

n

2 sin2 θ0

[

−(`− 1)(n− `− 1) + (n− 1) cos2 θ0
]

. (5.3)

The eigenvalues λ
(`)
φ are all positive and λ1 = n(n − 1) cos2 θ0 > 0. The relative

equilibrium is therefore Lyapounov stable (modulo SO(2)) if (n − 1) cos2 θ0 > (` −
1)(n − ` − 1) for all ` = 2, . . . , [n/2], that is if cos2 θ0 > ([n/2] − 1)(n − [n/2] −
1)/(n− 1) = 1

n−1

[

n2

4

]

− 1. This gives the desired values.

We now turn to linear stability. It follows from Proposition 5.1 and the block
diagonalization of d2Hξ|N (xe) that

LN

=diag

(

(

0 −λ1

λ1 0

)

,

{(

0 −λ
(`)
φ

λ
(`)
θ 0

)

,

(

0 −λ
(`)
φ

λ
(`)
θ 0

)

| 2 ≤ ` ≤ [n/2]

}∗)

where the blocks are given up to a strictly positive scalar factor. The eigenvalues
of LN are therefore

±iλ1,

{

±i

√

λ
(`)
θ λ

(`)
φ | 2 ≤ ` ≤ [n/2]

}

,

(up to a positive factor) and so the relative equilibrium is linearly unstable if λ
(`)
θ < 0

for some `, that is if

cos2 θ0 <
1

n− 1

[

n2

4

]

− 1.

In particular this inequality is satisfied if θ0 = π/2 and n > 3.
When the ring is equatorial, one has θ0 = π/2 and µ = 0. In particular λ1 = 0.

This is because the symplectic slice is smaller (Gµ = SO(3) for µ = 0): it follows
from Proposition 3.2 that we have to remove the vectors e1, e2 from the basis for
µ 6= 0 (that is to remove λ1 from the previous eigenvalue study). However, this does
not change the instability results, as the instability is primarily due to the ` = [n/2]
mode. It follows that the Cnv equatorial relative equilibria are linearly unstable for
n > 3, and Lyapounov stable (modulo SO(3)) for n = 3.
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Figure 5.1. Polar view of the ` = [n/2] bifurcations for n = 4, 5, 6.
The dotted lines represent the ‘central’ relative equilibrium with
Dn = Cnv symmetry, while the dots are the vortices of the (stable)
bifurcating relative equilibrium with lower symmetry; the grey lines
in the centre of each represent the lines of reflexion. The figures
would be rotating in time.

5.3. Bifurcations. The loss of stability of the ring is as usual accompanied by a
bifurcation. The proof above shows that the ‘critical mode’ for stability is ` = [n/2].
For n ≥ 7 a ring is always unstable to this mode, while for 4 ≤ n ≤ 6 the ring is
stable when sufficiently close to the pole, and loses stability to this mode as it moves
closer to the equator. Here we describe the bifurcations that accompany this loss
of stability.

There is another bifurcation that occurs in all rings with n ≥ 6, namely in the
` = 2 mode. Indeed, expression (5.3) shows that only the modes ` = 2 and ` = [n/2]

can satisfy λ
(`)
θ = 0 (the former at cos2 θ0 = n−3

n−1 ). We are only considering ‘relative
steady-state’ bifurcations, so where the eigenvalues pass through zero.

The dihedral symmetry in each mode dictates the type of bifurcation to expect:
if ` = n/2 so dimV` = 2, one has a Z2-pitchfork bifurcation involving a loss of
Z2-symmetry. On the other hand if dimV` = 4 then there is a pitchfork bifurcation
with dihedral symmetry. See Section 4 for a discussion of these. Here we describe
briefly the bifurcations arising for low values of n: the pattern continues for larger
n.

n = 3: There is no bifurcation: the relative equilibrium is always Lyapounov
stable (relative to SO(2) if µ 6= 0 and to SO(3) if µ = 0).

n = 4: The only bifurcation occurring is when cos2 θ0 = 1/3 where the stability
of the ring changes. The mode ` = 2 which is involved in the bifurcation is
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Figure 5.2. Perturbations of the n-ring in the mode ` = 2. These
configurations are invariant under a subgroup isomorphic to Z2 or
Z2×Z2 according to the parity of n, and the grey lines in the centre
of each represent the lines of reflexion. The dotted figures are the
regular n-gons.

of dimension 2, spanned by α
(2)
θ , α

(2)
φ . It is the eigenvalue corresponding to

α
(2)
θ that passes through zero, which tells us the symmetry of the bifurcating

relative equilibria: they consists of a pair of 2-rings on different latitudes,
denoted C2v(R,R′), as shown in Figure 5.1(a).

n = 5: Again the only bifurcation occurs in the ` = 2 mode when θ0 = π/4
and 3π/4. This mode is 4-dimensional, with an action of D5. For θ close to
these values (and either above or below: we have not calculated the higher
order terms to determine this) there are 5 saddle points (unstable relative
equilibria) and 5 other critical points which will be elliptic (and possibly non-
linearly stable, depending whether the bifurcation is sub- or super-critical).
See Figure 5.1 (b) for a representation of a typical bifurcating solution.

n = 6: In this case there are two bifurcations as the co-latitude increases. The
first occurs at cos2 θ0 = 4/5 in the ` = 3 mode where the regular hexagon
loses stability. Here there is a usual Z2-pitchfork bifurcation, resulting in
a pair of staggered 3-rings (that is, C3v(R,R′)), which will be elliptic; see
Figure 5.1 (c) for a typical bifurcating configuration. The second bifurcation
occurs at cos2 θ0 = 3/5 in the ` = 2 mode; the effective action will be ofD3 and
so if it is generic one expects a transcritical bifurcation. Figure 5.2 (a) shows
a typical bifurcating configuration in this mode. Between the two bifurcation
values of θ0, the reduced system has a pair of (double) imaginary eigenvalues
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and a pair of real eigenvalues. Closer to the equator, all the eigenvalues are
real.

n = 7: Here there is just one bifurcation (the ring is always unstable due to
the mode ` = 3, where the linear system has real eigenvalues). It occurs
at cos2 θ0 = 2/3 in the 4-dimensional ` = 2 mode. This is a D7-pitchfork,
which is a standard pitchfork, and analogous to that shown (for n = 4) in
Figure 4.1 (b). Whether the bifurcating solutions exist for θ > θ0 or for
θ < θ0 depends on the higher order terms, and we have not analysed these.

n = 8: Again there is just one bifurcation, occurring at cos2 θ0 = 5/7. In this
case, since again ` = 2 the effective action on V2 is one of D4. Depending
on the higher order terms, the bifurcation is either transcritical, as in Fig-
ure 4.1 (a), or standard pitchfork as in Figure 4.1 (b). (They are not sub- or
super-critical as the central equilibrium is unstable throughout the bifurca-
tion.) One type of bifurcating solution will be as depicted in Figure 4.1 (c)
while the other will be as in Figure 4.1 (d).

Similar conclusions can be made for n ≥ 9, where all ` = 2 bifurcations will
be standard pitchfork, rather than transcritical. Further calculations involving the
higher order terms in the bifurcations occurring here can be found in [32].

6. A ring with a polar vortex: Cnv(R, p). A configuration consisting of a ring of
identical vortices placed regularly around a line of latitude, together with a single
pole either at the North or South pole is always a relative equilibrium, rotating
steadily about the ‘vertical’ axis. We assume that the polar vortex lies at the North
pole and its vorticity is κ, while the remaining n vortices are all identical with vortex
strength 1 and lie in a regular ring on a fixed circle of co-latitude θ0.

This relative equilibrium is of symmetry type Cnv(R, p) and denoted xe. Its
momentum is Φ(xe) = (0, 0, µ), where µ = κ+ n cos θ0.

The Hamiltonian is given by

H = Hr +Hp

where Hr is the contribution to the total Hamiltonian from the interactions within
the ring (5.1), and

Hp(x, y, θi, φi)

=− κ

n
∑

j=1

ln
(

1− x sin θj cosφj − y sin θj sinφj −
√

1− x2 − y2 cos θj

)

,

is the Hamiltonian responsible for the interaction of the polar vortex and the ring.
In this case

Hξ = H − ξ





∑

j

cos θj + κ
√

1− x2 − y2



 .

The Cnv(R, p) relative equilibrium at x = y = 0, θj = θ0, φj = 2πj/n has angular
velocity

ξ =
(n− 1) cos θ0 + κ(1 + cos θ0)

sin2 θ0
=

µ+ (κ− 1) cos θ0

sin2 θ0

since
∂Hξ

∂θj
(xe) = − (n−1) cos θ0+κ(1+cos θ0)−ξ sin2 θ0

sin θ0
must vanish.
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The second derivatives at the relative equilibrium of H can be derived from those
for Hr given in the previous section, together with (for n > 2):

∂2Hp

∂θ2

j

= κ
1−cos θ0

∂2Hp

∂x2 = nκ
2 =

∂2Hp

∂y2

∂2Hp

∂x∂θj
= −κ cos(2πj/n)

1−cos θ0

∂2Hp

∂y∂θj
= −κ sin(2πj/n)

1−cos θ0

∂2Hp

∂x∂φj
= −κ sin θ0 sin(2πj/n)

1−cos θ0

∂2Hp

∂y∂φj
= κ sin θ0 cos(2πj/n)

1−cos θ0
,

while the other second derivatives all vanish. Here we have used that
∑

cos2(2πj/n)
= n/2 for n > 2. For n = 2 this sum is 2 and one obtains

∂2Hp

∂x2 = 2κ
1−cos θ0

∂2Hp

∂y2 = − 2κ cos θ0
1−cos θ0

.

6.1. Symplectic slice. The following proposition gives the symmetry adapted ba-
sis for Cnv(R, p) relative equilibria.

Proposition 6.1. With the symplectic slice decomposition described in Proposition

3.3, that is N =
⊕[n/2]

`=1 V`, and for n ≥ 3 and µ 6= 0 a basis for V1 is {e1, e2, e3, e4},
where































e1 = cos θ0 β
(1)
φ + sin θ0 α

(1)
θ

e2 = κ β
(1)
φ + n

2 sin θ0 δx

e3 = cos θ0 α
(1)
φ − sin θ0 β

(1)
θ

e4 = κ α
(1)
φ − n

2 sin θ0 δy .

With respect to the resulting basis for N , the Hessian d2Hξ|N (xe) block diagonalizes
into two 2 × 2 blocks (corresponding to ` = 1) and (2n − 6) 1 × 1 blocks, and LN

block diagonalizes into one 4×4 block (for ` = 1) and the remaining are 2×2 blocks.
When µ = 0, V1 drops dimension by 2, and in particular the vectors e1+

2
ne2 and

e3 +
2
ne4 lie in the tangent space to the group orbit so one can take V1 = 〈e1, e3〉,

and in this basis the Hessian restricted to V1 is diagonal.
The case where n = 2 is discussed below.

For later use we record the symplectic form on the space V1, the values follow
from (3.2):

ω(e1, e2) = 0 ω(e3, e4) = 0

ω(e1, e3) = n cos θ0 sin
2 θ0 ω(e1, e4) =

1
2nκ sin2 θ0

ω(e2, e3) =
1
2nκ sin2 θ0 ω(e2, e4) = − 1

4n
2κ sin2 θ0.

(6.1)

It follows that 〈e1, e2〉 and 〈e3, e4〉 are invariant Lagrangian subspaces (and the
representation is the sum of an irreducible and its dual).

Proof. The proof is similar to the proof of Proposition 5.1, and we omit the details.

Using equations (3.3) one sees that the subspaces 〈e1, e3〉 and 〈e2, e4〉 are in-
variant and by (6.1 above) they are symplectic. It follows that V1 is the direct
sum of two representations of complex dual type [29] (they are dual as on one the
orientations defined by ω and by Cn coincide, while for the other they are opposite).
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6.2. Stability. The block diagonalizations of the proposition enable us to prove
the following stability theorem for n ≥ 4, illustrated by Figure 6.1. The cases n = 2
and 3 are treated afterwards (and illustrated in Figure 6.2).

Theorem 6.2. A Cnv(R, p) relative equilibrium with n ≥ 4 and µ 6= 0 is
(i) Lyapounov stable if

κ > κ0 and κ(κ+ n cos θ0)(aκ− b) < 0,

(ii) spectrally unstable if and only if

κ < κ0 or 8aκ > (n sin2 θ0 + 4(n− 1) cos θ0)
2,

where
a = (1 + cos θ0)

2(n cos θ0 − n+ 2)

b = (n− 1) cos θ0 (n sin2 θ0 + 2(n− 1) cos θ0)

κ0 =
([

(n−2)2

4

]

− (n− 1) cos2 θ0

)

/(1 + cos θ0)
2.

(6.2)

As will be seen in the proof, the conditions involving κ0 arise from the ` = [n/2]
mode, while the others arise from the ` = 1 mode.

Proof. (i) We first study the Lyapounov stability. Following the beginning of the
proof of Theorem 5.2, we obtain from Proposition 6.1 that

d
2Hξ|N (xe) = diag(A,A,D)

where D = diag({λ(`)
θ , λ

(`)
φ , λ

(`)
θ , λ

(`)
φ | 2 ≤ ` ≤ [n/2]}∗),

A =

(

q11 q12
q12 q22

)

and

λ
(`)
θ = d2Hξ(xe) · (α(`)

θ , α
(`)
θ )

λ
(`)
φ = d

2Hξ(xe) · (α(`)
φ , α

(`)
φ )

q11 = d2Hξ(xe) · (e1, e1)
q12 = d2Hξ(xe) · (e1, e2)
q22 = d2Hξ(xe) · (e2, e2).

Note that D exists only for n ≥ 4. From the previous section one has λ
(`)
φ =

n`(n− `)/2 and some additional computations give

λ
(`)
θ =

n

2 sin2 θ0

[

−(`− 1)(n− `− 1) + (n− 1) cos2 θ0 + κ(1 + cos θ0)
2
]

.

The eigenvalues λ
(`)
φ are all positive, thus D is definite if and only if, for all ` =

2, . . . , [n/2],

κ(1 + cos θ0)
2 > (`− 1)(n− `− 1)− (n− 1) cos2 θ0.

This holds if and only if the inequality is satisfied for ` = [n/2], which is equivalent
to κ > κ0.

The relative equilibrium is therefore Lyapounov stable if A is positive definite,
that is if q11q22 − q212 > 0 and q11 > 0. Some lengthy computations give

q11q22 − q212 = − 1
8n

2κ(κ+ n cos θ0)(aκ− b)
q11 = 1

2nκ(1 + cos θ0)
2 + n(n− 1) cos2 θ0
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where a, b are given in the theorem. Now, if κ > κ0, then q11 > 0: indeed

q11 = 1
2n(1 + cos θ0)

2(κ− κ0) +
1
2n(n− 1) cos2 θ0 +

n
2

[

(n−2)2

4

]

.

We proved therefore that this re is Lyapounov stable if κ > κ0 and κ(κ+n cos θ0)(aκ
− b) < 0.

(ii) We now study the spectral stability of the relative equilibrium. It follows
from Proposition 6.1 and the block diagonalization of d2Hξ|N (xe) that

LN = diag

(

AL,

{(

0 −λ
(`)
φ

λ
(`)
θ 0

)

,

(

0 −λ
(`)
φ

λ
(`)
θ 0

)

| 2 ≤ ` ≤ [n/2]

}∗)

where the blocks are given up to a positive scalar factor and

AL =









0 0 a b
0 0 c d
−a −b 0 0
−c −d 0 0









, where















a = βq11 − γq12
b = βq12 − γq22
c = αq12 − γq11
d = αq22 − γq12

and
α = − 4 cos θ0

n(κ+n cos θ0) sin2 θ0

β = 1
(κ+n cos θ0) sin2 θ0

γ = − 2
n(κ+n cos θ0) sin2 θ0

.

These (α, β and γ) arise from L = Jd2Hξ, where J is the inverse of the matrix of
the symplectic form whose coefficients are given in (6.1).

The eigenvalues (up to a positive factor) of LN are therefore

± 1√
2

√

σ ±√
ν ,

{

±i

√

λ
(`)
θ λ

(`)
φ | 2 ≤ ` ≤ [n/2]

}∗

where ν = a4 + 4a2bc − 2a2d2 + 4bcd2 + d4 + 8adbc and σ = −a2 − 2bc− d2. The

eigenvalues ±i
√

λ
(`)
θ λ

(`)
φ are all purely imaginary if and only if κ > κ0. After some

lengthy but straightforward computations we obtain that

σ = 1
8 sin2 θ0

[

4(1 + z)2(nz − n+ 2)κ

−n2z4 + 4n(n− 1)z3 − 2(3n2 − 8n+ 4)z2 − 4n(n− 1)z − n2
]

ν = − 9
16 sin4 θ0

[

8(1 + z)2(nz − n+ 2)κ−
(

n(1− z2) + 4(n− 1)z
)2
]

where z = cos θ0. One can check that if ν ≥ 0, then
√
ν+σ ≤ 0 and the eigenvalues

are purely imaginary. If ν < 0, then the eigenvalues have a non-zero real part.

Thus the eigenvalues ±
√

σ ±√
ν are purely imaginary if and only if ν ≥ 0 which

is equivalent to 8aκ ≤ (n sin2 θ0 + 4(n− 1) cos θ0)
2.

A spectrally stable relative equilibrium for which the Hessian d2Hξ|N (xe) is not
definite is said to be elliptic. Note that in principle an elliptic relative equilibrium
may be Lyapounov stable, but if there are more than 4 vortices then it is expected to
be unstable as a result of Arnold diffusion. Moreover an elliptic relative equilibrium
typically becomes linearly unstable when some dissipation is added to the system [8];
however adding dissipation to the point vortex system would have more profound
effects, such as spreading of vorticity into vortex patches.
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Corollary 6.3. A Cnv(R, p) relative equilibrium with n ≥ 4 and µ 6= 0 is elliptic
if and only if

κ ≥ κ0, κ(κ+ n cos θ0)(aκ− b) ≥ 0 and 8aκ ≤ (n sin2 θ0 + 4(n− 1) cos θ0)
2,

where a, b and κ0 are given in (6.2).

Discussion of results for n ≥ 4 See Figure 6.1.

• If the sign of the vorticity of the polar vortex is opposite to that of the ring
then there are stable configurations only for n ≤ 6. Conversely configurations
with n ≤ 6 and θ0 close to π, ie with the ring close to the opposite pole, are
Lyapounov stable for all κ < 0.

• The region of Lyapounov stability is larger when the vorticities of the pole and
the ring have the same sign (κ > 0). The stability frontiers in the upper-left
corners of Figure 6.1 go to infinity as θ0 approaches arccos(1−2/n). It follows
that for n ≥ 4 and θ0 > arccos(1−2/n), the relative equilibria are Lyapounov
stable for all sufficiently large κ. Thus, a ring of vortices is stabilized by a
polar vortex with a sufficiently large vorticity of the same sign as the vortices
in the ring. Note that for 4 ≤ n ≤ 6 and κ positive, but sufficiently small, a
ring near the opposite pole is only elliptic and may not be Lyapounov stable.

• The limiting stability results for θ0 = 0, ie when the ring is close to the polar
vortex, coincide with the stability of a planar n-ring plus a central vortex, see
[6] and [17]. This is also true for n = 2 and n = 3.

• The stability boundary where κ = κ0 corresponds to the mode ` = [n/2] and is
analogous to the stability boundary for a single ring. When n is even stability
is probably lost through a pitchfork bifurcation to a relative equilibrium of
type Cn

2
v(R,R′, p) consisting of two staggered n

2 -rings and a pole as (κ, θ0)
passes through this boundary. This is illustrated for n = 4 in Figure 8 of
[19], where branch (g) meets branch (d). When n is odd there is an analogous
transcritical bifurcation to relative equilibria with only a single reflexional
symmetry which fixes two vortices and permutes the others. These are denoted
by Ch(

n−1
2 R, 2E) in [19]. A nice illustration in the case n = 3 can be found in

Figure 8 of [5]. We have not checked the non-degeneracy conditions for these
bifurcations.

• The ` = 1 mode is responsible for two types of bifurcation. See Section 4 for
descriptions of the associated bifurcations.

Firstly, when the eigenvalues become zero, the kernel is a single irreducible
symplectic representation of complex type (it is a plane with Cn acting by
rotations) so the eigenvalues pass through zero and remain on the imaginary
axis. This corresponds to a transition from Lyapounov stable to elliptic (the
very thin blue (or light grey) sliver in the top left-hand corners of the figures).

Secondly, at the other side of the blue (or light grey) sliver, the pair of
eigenvalues continues to move away from 0 along the imaginary axis until it
meets the other pair from the ` = 1 mode; these then ‘collide’ and leave the
imaginary axis through a Hamiltonian Hopf bifurcation.

• The transition from Lyapounov stable to elliptic when passing across the curve
where µ = 0 is a generic phenomenon, and can be explained by the geometry
of the reduced spaces, and occurs when the re with zero momentum is in fact
an orbit of equilibria. See [26] for details.
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Figure 6.1. Bifurcation diagrams for Cnv(R, p) relative equilib-
ria. See Fig. 6.2 for the key. The bifurcation diagrams for n ≥ 7
are similar to that for n = 8, while those for n = 4 and 6 are
similar to that for n = 5. The circles represent the eigenvalues
of the mode ` = 1, while the crosses represent those of the mode
[n/2]. Notice the sliver of elliptic near the upper left hand corner
of both diagrams: these are not drawn to scale as they are too
thin—cf. Fig. 6.2 (n = 3), where it is drawn to scale. Stability is
modulo rotations about the vertical axis (i.e., SO(2)), or modulo all
rotations if µ = 0. See text for more details. In the stable regions
all eigenvalues are imaginary.
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• Finally we note that when κ crosses zero, eigenvalues change sign without
strictly passing through zero due to the fact that the symplectic form becomes
degenerate for κ = 0.

• There are other bifurcations which do not involve loss of stability, as they
occur in one particular mode, while the relative equilibrium is already unstable
because of a different mode. For example, for n = 4 and 5 (and perhaps
others) there is an inverted parabola in the κ < 0 region along which there is
a Hamiltonian Hopf bifurcation in the ` = 1 mode (similar to that for n = 3
below).

Discussion of the case n = 3 See Figure 6.2.

Suppose first that the relative equilibrium has non-zero momentum. For n = 3 (so 4
vortices altogether), by the proof of Theorem 6.2 we have d2Hξ|N (xe) = diag(A,A)
and LN = AL. Hence C3v(R, p) is Lyapounov stable if κ(κ+ 3 cos θ0)(aκ− b) < 0,
and spectrally unstable if and only if

8aκ > (3 sin2 θ0 + 8 cos θ0)
2,

where a = (3 cos θ0−1)(1+cos θ0)
2 as in Theorem 6.2. These results are illustrated

in Figure 6.2.

• Notice that a polar vortex destabilizes a 3-ring if either the polar vortex is in
the same hemisphere as the ring and has a sufficiently strong vorticity of the
same sign as the ring, or the polar vortex has the opposite sign vorticity and
the ring lies in an interval containing θ0 = 2π/3 that grows as the magnitude
of the polar vorticity increases. These two regions have a vertical asymptote
at cos θ0 = 1/3 determined by the vanishing of a.

• Outside these regions there is a patchwork of regimes in which the relative
equilibrium is either Lyapounov stable or elliptic.

• The relative equilibria with µ = 0 have a 2-dimensional symplectic slice, and
are all Lyapounov stable. The transition point where µ = ξ = 0, κ = 1 and
cos(θ0) = −1/3 corresponds to the stable equilibrium consisting of 4 identical
vortices placed at the vertices of a regular tetrahedron [39, 19, 14].

• Comparing this case with the diagram for n = 5 shows large regions of stability
with κ < 0 which are unstable for n = 5. The instability for n = 5 is due to
the ` = 2 mode which is absent for n = 3.

Discussion of the case n = 2 See Figure 6.2.

The C2v(R, p) relative equilibria are isosceles triangles lying on a great circle, and
for θ0 = 2π/3 the triangle becomes equilateral. We again discuss the stability
of those with non-zero momentum. Indeed, any 3-vortex configuration with zero
momentum is a relative equilibrium since the reduced space is just a point, and is
consequently also Lyapounov stable relative to SO(3) [36].

For n = 2 the symmetry adapted basis for V1 is

e1 = κ α
(1)
θ + 2 cos θ0 δx,

e2 = κ α
(1)
φ + 2 sin θ0 δy.

with ω(e1, e2) = 2κ sin θ0 (2 cos θ0 + κ) (which vanishes only when µ = 0). Following
the proof of Theorem 6.2 we obtain

d
2H

(1)
ξ = 2κµ

(

κ(1+cos θ0)
2+3 cos2 θ0+2 cos θ0
sin2 θ0

0

0 −(1 + 2 cos θ0)

)

.
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Figure 6.2. Bifurcation diagrams forC3v(R, p) andC2v(R, p) rel-
ative equilibria (so a total of 4 and 3 vortices respectively); the polar
vortex of strength κ is at the North pole. Stability is modulo SO(2)
about the polar axis, or modulo SO(3) when µ = 0 (see text). The
circles represent the eigenvalues of the mode ` = 1.
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Consequently, for µ 6= 0, the C2v(R, p) relative equilibrium is Lyapounov stable if
this matrix is definite, so if

(1 + 2 cos θ0)[(1 + cos θ0)
2κ+ cos θ0(2 + 3 cos θ0)] < 0.

It is spectrally unstable if the inequality is reversed. See Figure 6.2.

• There are two stable regions. For θ0 < 2π/3 the relative equilibria are stable
provided the polar vorticity is less than a certain θ0 dependent critical value,
while for θ0 > 2π/3 they are stable for all polar vorticities greater than a
critical value. As θ0 → π this value goes to −∞.

• For θ0 = π/2, where the 2-ring is equatorial and the isosceles triangle is right-
angled, they are stable if and only if κ < 0. This is in agreement with [39,
Theorem III.3], with Γ1 = Γ2 = 1, and Γ3 = κ.

• The restricted three vortex problem The range of stability when κ = 0 does
not coincide with the range of stability for a single ring. Indeed the C2v(R)
relative equilibria are Lyapounov stable for all co-latitudes (see Theorem 5.2)
while C2v(R, p) is unstable for κ = 0 and θ0 ∈ (0, π/2). This means that if
we place a passive tracer or ghost vortex at the North pole and a ring of two
vortices in the Northern hemisphere, then the passive tracer will be unstable.

Remark 6.4. The stability of Cnv(R, p) relative equilibria has also been studied
in [5]. However our method differs significantly from theirs in that we consider the
definiteness of the Hessian d2Hξ|N (xe) on the 2n− 2 dimensional symplectic slice,
while in [5] the authors determine conditions for the Hessian to be definite on the
whole 2n + 2 dimensional tangent space. The result is that we prove the relative
equilibria to be Lyapounov stable in a larger region of the parameter space. Notice
in particular that for n ≤ 6 our results say that a positive vorticity n-ring near the
South pole is Lyapounov stable if the North pole has either negative or sufficiently
positive vorticity. However in [5] only the case of negative North polar vorticity
is shown to be Lyapounov stable. In this paper we also give criteria for when the
relative equilibria are unstable by considering the eigenvalues of the linearization
LN .

7. Two aligned rings: Cnv(2R). In this section we consider relative equilibria
xe of symmetry type Cnv(2R), that is configurations formed of two ‘aligned’ rings
of n vortices each as illustrated in Figure 1.2. We can assume without loss of
generality that the vorticities of the vortices in the first and second ring are 1 and
κ, respectively, and we denote their co-latitudes by θ1 and θ2. We can also assume
that the ring of vorticity 1 and co-latitude θ1 lies in the Northern hemisphere,
θ1 ∈ (0, π/2]. The first question to answer is, for which values of the parameters
(θ1, θ2, κ) is the configuration Cnv(2R) a relative equilibrium? It was shown in [19]
(p. 126) that for given κ > 0 and each µ with |µ| < n|1 + κ| there is at least one
solution for (θ1, θ2) with n cos θ1 + nκ cos θ2 = µ and with θ1 < θ2 and at least one
with θ2 < θ1. We now make this more precise.

The isotropy subgroup Gxe
is the dihedral group Cnv. The fixed point set

Fix(Gxe
) consists of all pairs of aligned rings, with one vortex from each ring on a

given meridian, so can be parametrized by x := cos θ1 and y := cos θ2. Denote by
F̃ the restriction of a function F to Fix(Gxe

). The Hamiltonian can be split in such
a way that

H = H11 + κH12 + κ2H22
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whereH11, H12, H22 do not depend on κ, H̃11 does not depend on y and H̃22 does not
depend on x (H11 governs the interactions within the first ring, H12 the interactions
between the rings etc). The following proposition shows that for almost every pair
(θ1, θ2) there exists a unique κ such that the Cnv(2R) configuration with parameters
(θ1, θ2, κ) is a relative equilibrium.

Proposition 7.1. Let xe be a Cnv(2R) configuration with parameters (θ1, θ2, κ).

1. There exists a unique κ ∈ R∗ such that xe is a relative equilibrium if and only
if both the following conditions hold:

(

∂H̃12

∂y
− ∂H̃11

∂x

)

(cos θ1, cos θ2) 6= 0,

(

∂H̃22

∂y
− ∂H̃12

∂x

)

(cos θ1, cos θ2) 6= 0.

2. The configuration xe is a relative equilibrium for all κ ∈ R
∗ in the degenerate

case when both the following conditions hold:
(

∂H̃12

∂y
− ∂H̃11

∂x

)

(cos θ1, cos θ2) = 0,

(

∂H̃22

∂y
− ∂H̃12

∂x

)

(cos θ1, cos θ2) = 0.

In both cases the angular velocity ξ of xe satisfies

ξ =
1

n

(

∂H̃11

∂x
(xe) + κ

∂H̃12

∂x
(xe)

)

.

The sign of κ as a function of θ1, θ2 is shown in Figure 7.1.

Proof. Since H − ξΦ is a Gxe
-invariant function (see Section 2) the Principle of

Symmetric Criticality [35] implies that xe is a relative equilibrium if and only if it

is a critical point of H̃ − ξΦ̃. It follows from Φ̃ = n(x+ κy) that d(H̃ − ξΦ̃)(xe) = 0
is equivalent to the pair of equations:

κ

(

∂H̃22

∂y
(xe)−

∂H̃12

∂x
(xe)

)

+
∂H̃12

∂y
(xe)−

∂H̃11

∂x
(xe) = 0

ξ =
1

n

(

∂H̃11

∂x
(xe) + κ

∂H̃12

∂x
(xe)

)

.

The proposition follows easily from these.

For example, in the case n = 4 the degenerate case occurs when the two rings
form the vertices of a cube. Hence for any values of the vorticities of the two rings
the ‘cube configuration’ is a relative equilibrium. However among this family of
relative equilibria only one is an equilibrium, namely the one for which the two
rings have the same vorticities, κ = 1, which corresponds to the Oh(f) equilibrium
of [19], a cube formed of identical vortices, and which is known to be unstable [14].
In Figure 7.1, the cubic configurations are marked by two dots. For n = 2, the
degenerate case occurs when the vortices form a square lying on a great circle.

For θ2 = π− θ1, the configuration has an extra symmetry and its symmetry type
is Dnh(2R). Such a configuration is a relative equilibrium if the two rings have
opposite vorticities (κ = −1). The existence and stability of such relative equilibria
were studied in [15].
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θ1

θ2

µ = 0

κ = 0

κ = ∞

b

b

κ > 0

κ < 0

Figure 7.1. Sign of κ for Cnv(2R) relative equilibria. The degen-
erate case occurs where the curves κ = 0 and κ = ∞ intersect. The
figure is for n = 4, but is similar for other values of n. The only
region of stability (see Fig. 7.2) lies at the bottom right hand and
top left-hand corners, corresponding to the rings lying far apart in
opposite hemispheres, and is contained in the region κ < 0. Along
both diagonals (where θ1 = θ2 and θ1 + θ2 = π) one has κ = −1.
The two black curves are where µ = 0. Note that reflecting along
either diagonal exchanges the rings, so corresponds to changing κ
to κ−1.

With the help of the discussion of Section 3.3, one can perform a Gxe
-invariant

isotypic decomposition and find that the symmetry adapted basis for the symplectic
slice at a Cnv(2R) relative equilibrium with n ≥ 3 and µ 6= 0 is

(

e1, e2, f1, f2, f3, f4, f5, f6, B2, B3, . . . , B[n/2]

)

where
e1 = α

(0)
0,φ − α

(0)
1,φ

e2 = κ sin θ2 α
(0)
0,θ − sin θ1 α

(0)
1,θ

f1 = sin θ1 α
(1)
0,θ + cos θ1 β

(1)
0,φ f2 = sin θ2 α

(1)
1,θ + cos θ2 β

(1)
1,φ

f3 = κ sin θ2 β
(1)
0,φ − sin θ1 β

(1)
1,φ f4 = cos θ1 α

(1)
0,φ − sin θ1 β

(1)
0,θ ,

f5 = cos θ2 α
(1)
1,φ − sin θ2 β

(1)
1,θ f6 = κ sin θ2 α

(1)
0,φ − sin θ1 α

(1)
1,φ

and,

B` =
{

α
(`)
0,θ, α

(`)
1,θ, α

(`)
0,φ, α

(`)
1,φ, β

(`)
0,θ, β

(`)
1,θ, β

(`)
0,φ, β

(`)
1,φ

}

for 2 ≤ ` < n/2

Bn/2 =
{

α
(n/2)
0,θ , α

(n/2)
1,θ , α

(n/2)
0,φ , α

(n/2)
1,φ

}

for even n.

The adapted basis for n = 2 is simply (e1, e2; f6, f7), where

f7 = κ cos θ2 α
(1)
0,θ − cos θ1 α

(1)
1,θ .

Remark Almost all Cnv(2R) relative equilibria have a non-zero momentum. Indeed
µ = 0 if and only if x + κy = 0, and from the expression of κ one can show that
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Figure 7.2. Stability results for Cnv(2R) relative equilibria; that
is for two aligned rings. The coloured regions in the left-hand
diagram represents the configurations that are Lyapounov stable.
The figure is for n = 2, but is very similar for n ≤ 6. The right-
hand figure illustrates the different sizes of the stable regime for the
different values of n. If n is odd there is a narrow strip (too narrow
to discern on this diagram) between the Lyapounov stable and the
linearly unstable configurations where the relative equilibria are
elliptic. For n ≥ 7, it seems that all relative equilibria are unstable.

this last equation defines an algebraic curve in variables (x, y) ∈ [0, 1)× (−1, 1) '
FixCnv (depicted in Figure 7.1). Numerics suggest that equilibria (ξ = 0) occur
along curves that are extremely close to these momentum zero curves, and indeed
would be indistinguishable in the diagram.

With respect to this basis d2Hξ|N (xe) block diagonalizes into: two 1×1 blocks for
` = 0, two 3× 3 blocks for ` = 1, two 4× 4 blocks for each of ` = 2 . . . [(n− 1)/2]),
together with two 2 × 2 blocks for ` = n/2 when n is even. The linearization
LN block diagonalizes into half as many blocks of twice the size. In order to
calculate the stability of the relative equilibria, we ran aMaple program to compute
numerically the eigenvalues of each of the blocks of d2Hξ|N (xe) and LN . The results
are summarized for n = 2 . . . 6 in Figure 7.2. Figure 7.1 shows how the sign of κ
varies for relative equilibria with different values of θ1 and θ2. A selection of the
Maple code is available for download from [27]; further diagrams are also available
from the same site.

Discussion of results Here we outline conclusions from a series of numerical cal-
culations, using Maple. These involved calculating eigenvalues of the Hessian
matrix and the linearization using the Fourier bases described above, varying the
co-latitudes θ1 and θ2 across the range 0 to π in steps of 10−2 (and occasionally
smaller steps to investigate specific bifurcations).
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• These numerical calculations suggest strongly that the relative equilibria
Cnv(2R) are never stable if the two rings lie in the same hemisphere (Fig-
ure 7.2) or have the same sign vorticity (Figure 7.1).

• The stable configurations are for one ring close to the North pole and the other
ring close to the South pole, and always with vorticity of opposite signs. For
n = 4, the furthest from the poles both rings can be is about 40◦ of latitude.
This is in agreement with Theorem 4.8 of [15].

• For n > 2, as n increases the region of stability decreases in size. Numerical
experiments with n ≥ 7 suggest that in these cases the relative equilibria are
never stable.

• The stability boundaries for 2 ≤ n ≤ 6 approach configurations where one ring
is at a pole and the other lies at a particular co-latitude θz in the opposite
hemisphere. For n = 3, 4, θz ≈ 0.95rad ≈ 55◦, for n = 2, 5, θz ≈ 0.8rad ≈ 46◦,
and for n = 6, θz ≈ 0.45rad ≈ 25◦.

• For n = 2, 4 and 6 stability is first lost by a pair of imaginary eigenvalues of
the ` = n/2 block of LN passing through 0 and becoming real (the ‘splitting’
case described in Section 4). The difference between even and odd n (see next
point) is that the type of representation on the ` = n/2 mode is ‘of real type’.

• For n = 3 and 5 a pair of imaginary eigenvalues of the ` = (n − 1)/2 block
passes through 0 but remains on the imaginary axis, so the stability changes
from Lyapounov to elliptic (the ‘passing’ case described in Section 4). This
imaginary pair then collides with another pair, and all move off the imaginary
axis to form a complex quadruplet and create instability (a Hamiltonian Hopf
bifurcation). However, the elliptic regions are very narrow: for n = 3 with
θ1 = 0.1 the elliptic region is contained in |θ2 − 2.1438318| < 10−7. For
θ2 = π − θ1 (the Dnh(2R) configurations) the elliptic range is at its widest,
but is still only approximately |θ2 − 0.777| < 6 × 10−3, which is too small to
be seen in Figure 7.2. For n = 5 the elliptic region is even narrower.

• As (θ1, θ2) approaches the diagonal (that is, the rings approach one another)
so κ → −1, and the configuration approaches one of n dipoles (pairs with
equal and opposite vorticities).

• When κ = 0 (or κ−1 = 0) the system is not Hamiltonian, as the symplectic
form is degenerate, and since we are using Hamiltonian methods further work
would be needed to find the stability at these points.

8. Two staggered rings: Cnv(R,R′). In this section we consider relative equi-
libria formed of two rings of n vortices each of strengths 1 and κ and co-latitude
θ1 and θ2 respectively. They differ from those of the previous section in that the
rings here are ‘staggered’, that is they rotated relative to each other with an offset
of π/n. Their symmetry type is Cnv(R,R′). As in the previous section we can
assume without loss of generality that the ring of vorticity 1 and co-latitude θ1 lies
in the Northern hemisphere. The difference between the stabilities of aligned and
staggered rings is striking: compare Figures 7.2 and 8.2.

Proposition 7.1 also holds for Cnv(R,R′) configurations: for almost every pair
(θ1, θ2) there exists a unique κ such that the correspondingCnv(R,R′) configuration
is a relative equilibrium, and κ, ξ are given by the same expressions in terms of the
derivatives of H̃ij . The only difference from Section 7 is the expression for H̃12 in
terms of θ1 and θ2 (or x and y).
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Figure 8.1. Sign of κ for Cnv(R,R′) relative equilibria for n = 2
and 4. The diagrams for n ≥ 3 are all similar, with the central
strip where κ > 0 getting thinner as n increases. See the discussion
of results below for more details.

When θ2 = θ1 the configuration forms a single ring with 2n vortices with κ = 1:
all the vortices have the same vorticity. These are the relative equilibria of type
C2nv(R) studied in Section 3.2. For θ2 = π − θ1, the configuration has an extra
symmetry and its symmetry type is Dnd(R,R′). In this case κ = −1, the two rings
have opposite vorticities. The existence and stability of such relative equilibria were
studied in [15].

There exist also degenerate cases in the sense of Proposition 7.1. For n = 2 these
are, a square on a great circle which is a relative equilibrium whenever the opposite
vortices have the same vorticity and the tetrahedral configuration, which is shown
in [39] to be a relative equilibrium for any values of the four vorticities. These are
discussed further below.

With the help of the discussion of Section 3.3, one finds that a symmetry adapted
basis for the symplectic slice at a Cnv(R,R′) relative equilibrium with n ≥ 3 and
µ 6= 0 is given by:

(

e1, e2, e3, e4, e5, e6, e7, e8, B2, B3, . . . , B[n/2]

)

for n odd, while for n even one is given by:

(e1, e2, e3, e4, e5, e6, e7, e8, {B` | 2 ≤ ` ≤ n/2− 1} ,
α
(n/2)
0,θ − α

(n/2)
1,θ , α

(n/2)
0,φ − α

(n/2)
1,φ , β

(n/2)
1,θ , β

(n/2)
1,φ

)

,

where the expressions of e1, . . . , e8 and B` remain as in the previous section. The
corresponding symmetry adapted basis for n = 2 is simply (e1, e2, e3, e6). As in the
previous section, it can readily be seen that almost all Cnv(R,R′) relative equilibria
have non-zero momenta.

As for the aligned rings, we ran a Maple program to determine the stability of
the relative equilibria. The results are summarized in Figure 8.2 for n from 2 to 6.
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π
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Figure 8.2. Stability results for two staggered rings with n iden-
tical vortices in each (the Cnv(R,R′) relative equilibria). See Fig-
ure 6.2 for the meaning of the colours. The diagram for n = 6
(two rings with 6 vortices in each) is very similar to that for n = 5,
but with a smaller region of stability (reduced by about 70%). For
n ≥ 7, it seems that the relative equilibria are all unstable. The
diagonal dashed lines represent configurations with θ2 = π − θ1,
where κ = −1; the Dnd(R,R′) configurations of [15]. The figures
are produced using Maple, where the entire square is scanned with
a step-size of 10−2, so nearly 105 data points in each diagram.
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Discussion of results

• Referring first to Figure 8.1, the diagonal θ1 = θ2 corresponds to a single ring
with 2n vortices, so must allow κ = 1 for all n; for n ≥ 3 the two interior grey
regions appear to extend to the corners of the square, so that for all n there
are relative equilibria close to the poles with all possible values of κ. Each
curve is labeled with a 0 or an ∞, corresponding to the ‘value’ of κ along
that curve. The degenerate case occurs where the curves κ = 0 and κ = ∞
intersect. (Note that rotating the diagram by π corresponds to turning the
sphere upside down, which is a symmetry of the system and so preserves the
value of κ.)

• Numerical experiments suggest that stable relative equilibria only exist for
n ≤ 6.

• Refer now to Figure 8.2. For n = 5 and 6 the relative equilibria Cnv(R,R′)
are stable only if the two rings lie in the same hemisphere but are sufficiently
far apart.

• For n ≤ 4 these stable regions extend to include relative equilibria with the
rings in different hemispheres. However, contrary to the case Cnv(2R), the
stable regions are far from the line θ2 = π − θ1 corresponding to Dnd(R,R′)
relative equilibria.

• For n = 2 and 3 there is also a stable region with the two rings in the same
hemisphere and close to each other. This includes the stable C4v(R) and
C6v(R) relative equilibria discussed in Section 3.2.

• Note also that for n ≤ 6, there exist stable relative equilibria (for some values
of κ) in any neighbourhood of (θ1, θ2) = (0, 0), that is with the two rings close
to a pole.

• A study of the sign of κ shows that when 3 ≤ n ≤ 6 the relative equilibria
with κ < 0 are almost all unstable. The only ones that are not are elliptic,
and occur in very narrow strips around the ‘hairs’ towards the diagonal in the
diagrams for n = 4, 5, 6, and along the corresponding parts of the diagram for
n = 3, as well as the elliptic crescents near the centre of the n = 3 diagram.

However for n = 2 there exist relative equilibria with κ > 0 in the Lya-
pounov stable region corresponding to the two rings both being relatively close
to the equator, but in opposite hemispheres (see also the discussion below on
the tetrahedral configuration).

• It follows from Section 5 that the equatorial square is unstable if all the
vorticities are equal. However, the equatorial square with opposite vortices
having the same vorticity is always an equilibrium, regardless of the two values
of vorticity, and always with momentum µ = 0. This is the point in the centre
of the first diagram in Figure 8.2. The regions of stability and instability
neighbouring this central point correspond to different vorticity ratios. Since
µ = 0 the only relevant mode is ` = 0, and the corresponding Hessian is
diag[16κ, −4κ2] so the equatorial square is (linearly and non-linearly) stable
if and only if κ < 0. (This agrees with the conclusion in [15, Theorem 4.6]
where the case κ = −1 is considered.)

• It is shown by Pekarsky and Marsden [39] that the tetrahedral configuration

(where cos θ1 = 1/
√
3 = − cos θ2) is a relative equilibrium for all values of the

four vorticities, though they do not discuss the stabilities. Kurakin shows that
the tetrahedral equilibrium with all 4 vortices identical is Lyapounov stable
[14].
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In Figure 8.2 with n = 2, the tetrahedral configurations lie at the two
points where the two stable regions meet two unstable regions on the dashed
line (but not in the centre, which corresponds to the square). In particular
here we have two pairs of identical vortices (with vorticities 1 and κ) and these
are relative equilibria for all values of κ. For some values these are stable, and
will have the stable regions nearby, while for others they are unstable, and
will have the corresponding unstable regions nearby. Simple calculations show
that they are Lyapounov stable when |κ+ 5| > 2

√
6 (but κ 6= 0) and linearly

unstable in the remaining interval |κ + 5| < 2
√
6 (the bifurcation points are

κ ≈ −9.9 and −0.1).
• The analogous point with n = 3 corresponds to the configuration with 6
vortices lying at the vertices of an octahedron, with one ring (of unit vorticity)

with cos θ1 = 1/
√
3 forming one face, and the other ring (of vorticity κ)

forming the opposite face of the octahedron, where cos θ2 = −1/
√
3. This

is a relative equilibrium for all values of κ. Kurakin [14] has shown this is
stable when all vorticities are equal (the O(v) relative equilibrium of [19]).
Calculations using Maple show that this is in fact Lyapounov stable if κ > 0.
It is linearly unstable if |κ+ 7| < 4

√
3, otherwise it is elliptic.

• Some of the changes in stability as θ1, θ2 are varied coincide with a change
of sign of κ (for example, when n = 2 and one ring lies on the equator).
As already pointed out, when κ = 0 the system is not Hamiltonian, and
the methods used do not immediately apply. To our knowledge, bifurcations
involving a degeneracy of the symplectic form have not been investigated.

9. A ring with two polar vortices: Cnv(R, 2p). In this final section we consider
relative equilibria xe of symmetry type Cnv(R, 2p); that is configurations formed of
a ring of n vortices of unit strength, together with two polar vortices pN and pS of
strengths κN and κS , respectively at the North and South poles. We may assume
without loss of generality that the ring lies in the Northern hemisphere. There is
thus a 3-parameter family of relative equilibria to consider: the parameters being
κN , κS and either the momentum µ or the co-latitude θ0 of the ring.

The complexity of the study in this case is increased on two counts, compared
with the earlier setting of a ring with a single polar vortex: firstly there are now
three parameters κN , κS and the co-latitude θ0 of the relative equilibrium, and
secondly (for n > 2) the ` = 1 mode of the symplectic slice is of dimension 6 rather
than 4. So we need to study a 3-parameter family of 3-degree of freedom systems.
We proceed to obtain analytic (in)stability criteria for the relative equilibria with
respect to the ` ≥ 2 modes, which of course give sufficient conditions for genuine
instability. We then treat the remaining ` = 1 mode numerically for a few low
values of n. If n = 2 or 3 then there is only the ` = 1 mode; the results for n = 3
are very similar to larger rings (apart from the ‘cut-off’ due to the higher modes
when n > 3). On the other hand, for n = 2 the results are quite different, so we
describe this last case separately at the end of this section.

The Hamiltonian is given by

H = Hr +HpN
+HpS

+HNS
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where Hr is given in Section 5 and

HpN
= −κN

∑n
i=1 ln(1 − sin θi cosφi xN − sin θi sinφi yN − cos θi zN )

HpS
= −κS

∑n
i=1 ln(1− sin θi cosφi xS − sin θi sinφi yS − cos θi zS)

HNS = −κNκS ln(1− xNxS − yNyS − zNzS),

where zN =
√

1− x2
N − y2N and zS = −

√

1− x2
S − y2S , and we have assumed the n

vortices in the ring are of unit vorticity. The augmented Hamiltonian is:

Hξ = H − ξ





n
∑

j=1

cos θj + κN zN + κS zS



 .

The angular velocity of the relative equilibrium xe at xN = yN = xS = yS =
0, θj = θ0, φj = 2πj/n is found to be

ξ =
(n− 1) cos θ0 + κN(1 + cos θ0)− κS(1− cos θ0)

sin2 θ0
.

The momentum for this configuration is (0, 0, µ) with µ = κN −κS+n cos θ0, which
gives

ξ =
1

sin2 θ0
(µ+ (κN + κS − 1) cos θ0) .

The second derivatives of H at the relative equilibrium can be derived from those
for Hr (Section 5), those for Hp (Section 6), together with

∂2HNS

∂x2
N

=
∂2HNS

∂y2N
=

∂2HNS

∂x2
S

=
∂2HNS

∂y2S
=

∂2HNS

∂xN∂xS
=

∂2HNS

∂yN∂yS
=

1

2
κNκS , (9.1)

while the other second derivatives of HNS vanish.
As in the previous sections, we can choose a symmetry adapted basis of the

symplectic slice such that the matrices d2Hξ|N (xe) and LN block diagonalize. Bases
of V` for ` = 2, . . . n2 are given in Proposition 3.3.

Proposition 9.1. The symplectic slice decomposes as N =
⊕[n/2]

`=1 V`, where for
µ 6= 0

dimV1 =

{

4 if n = 2

6 if n ≥ 3.

If µ = 0 the dimension of V1 is reduced by 2.
For n ≥ 3 and µ 6= 0 a basis for V1 is {e1, e2, . . . , e6}, where

e1 = sin θ0 α
(1)
θ + cos θ0 β

(1)
φ

e2 = 2κN β
(1)
φ +N sin θ0 δx1

e3 = κS δx1 − κN δx2

e4 = sin θ0 β
(1)
θ − cos θ0 α

(1)
φ

e5 = 2κS α
(1)
φ −N sin θ0 δy2

e6 = κS δy1 − κN δy2.

With respect to the resulting basis for N , the Hessian d
2Hξ|N (xe) block diagonalizes

into two 3× 3 blocks (for the ` = 1 mode) and the remainder is diagonal, while LN

block diagonalizes into one 6 × 6 block (for ` = 2), and the remainder into 2 × 2
blocks.

If µ = 0 and n ≥ 3 one can take for example {e2, e3, e5, e6} as a basis for V1.
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Figure 9.1. The relative equilibria Cnv(R, 2p) in the Northern
hemisphere are unstable ‘below’ this ruled surface in (θ0, κS , κN )-
space, shown in the figure for n = 4. Above the surface the relative
equilibrium is stable with respect to all the ` ≥ 2 modes.

Proof. The proof is similar to that for a single ring (see Section 3.2 and Proposi-
tion 5.1).

9.1. The higher modes ` ≥ 2. The mode ` = 1 gives a 3× 3 block (for µ 6= 0 and
n > 2) from which, unfortunately, we can not derive a useful formula for stability
analogous to that for a single polar vortex. However, we can derive formulae for the
stability of the other modes, and thereby obtain the following sufficient condition
for instability, illustrated by Figures 9.1 and 9.2. These modes occur (with the same
bases) for µ = 0 and µ 6= 0 and the results here are valid in both cases, but only
for n ≥ 4: for n = 2, 3 the only mode is ` = 1.

Theorem 9.2. A Cnv(R, 2p) relative equilibrium with n ≥ 4 and µ 6= 0 is linearly
unstable if

κN (1 + cos θ0)
2 + κS(1− cos θ0)

2 <
[

n2

4

]

− (n− 1)(1 + cos2 θ0),

and is stable with respect to the ` ≥ 2 modes if this inequality is reversed.

Thus one finds increasing either polar vorticity tends to stabilize the relative
equilibrium, and if both polar vorticities are negative then the system is linearly
unstable (this is only for n ≥ 4).

Proof. The proof is similar to that for Theorem 6.2. Following the notation of the
proof of that theorem, we have that the eigenvalues of the reduced Hessian are given

by λ
(`)
φ = n`(n− `)/2 and
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λ
(`)
θ =

n

2 sin2 θ0

[

−(`− 1)(n− `− 1) + (n− 1) cos2 θ0 + κN (1 + cos θ0)
2

+κS(1− cos θ0)
2
]

.

The relative equilibrium is linearly unstable if there exists ` ≥ 2, such that λ
(`)
θ < 0.

Since the least λ
(`)
θ is for ` = [n/2], the relative equilibrium is linearly unstable if

−([n/2]− 1)(n− [n/2]− 1)+ (n− 1) cos2 θ0 + κN (1+ cos θ0)
2 + κS(1− cos θ0)

2 < 0,

and is stable with respect to the ` ≥ 2 modes if this inequality is reversed. This
gives the desired criterion.

Stability of the ` ≥ 2 modes From the theorem we can deduce the following results
about the (in)stability of the Cnv(R, 2p) relative equilibria with respect to the ` ≥ 2
modes. These modes only occur for n ≥ 4. We continue to assume the ring lies in
the Northern hemisphere.

• In the limiting case as the ring converges to the North pole (θ0 = 0), for all
values of κS the relative equilibria are linearly unstable if κN < 1

4 (
[

n2/4
]

−
2n+2). This agrees with the instability of a ring and single pole when ‘κ < κ0’
in Proposition 6.2.

• At the opposite extreme, when the ring is at the equator (θ0 = π/2) they are
linearly unstable if κN + κS <

[

n2/4
]

− n + 1. The right hand side of this
inequality is non-negative for all positive integers n, and so the ‘equatorial’
Cnv(R, 2p) relative equilibria are unstable if the total polar vorticity has op-
posite sign to that of the ring. If κN + κS > 0 then the critical ratio of the
total polar vorticity to the total ring vorticity needed to stabilize the ` ≥ 2
modes grows linearly with n.

• For all n ≥ 4 the relative equilibria are unstable for all latitudes in the North-
ern hemisphere if κN < 1

4 (
[

n2/4
]

− 2n+2) and κN +κS <
[

n2/4
]

−n+1. In
particular, for n ≥ 7 the relative equilibria are unstable for all θ0 if κN < 0
and κS < 0.

To determine which of these relative equilibria that are stable to the higher
modes, are in fact genuinely stable re it is necessary to evaluate the eigenvalues
arising from the ` = 1 mode. This we do numerically except in the special case of
an equatorial configuration with polar vortices of equal strength.

9.2. Numerical study of the mode ` = 1. For n > 2 and µ 6= 0 the subspace
V1 is 6-dimensional, with basis given in Proposition 9.1. We are only able to obtain
analytical results in the special case that the configuration is an equatorial re with
zero momentum. In other cases we have performed a numerical study using Maple.
In this numerical study, we only investigate the ‘possibly stable’ regime given by
Theorem 9.2 ; that is, we assume, for n > 3, that

κN (1 + cos θ0)
2 + κS(1− cos θ0)

2 >
[

n2

4

]

− (n− 1)(1 + cos2 θ0).

For n = 2 and 3 there is no higher mode. There are many details here that invite
further investigation. The case n = 2 is rather different from the others, and we
treat it in a separate section. The principal difference between n = 3 and n > 3 is
the presence or not of higher modes. We show the figures for n = 3 in some detail
(see Figure 9.3). The figures for n > 3 are similar (after a rescaling of the polar
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κS

κN

n = 4

n = 8

n = 10 Unstable near

North pole

Unstable at all

latitudes

Unstable near

equator

Figure 9.2. Schematic diagram showing the instabilities of the
Cnv(R, 2p) configurations due to the ` ≥ 2 modes: (a) The shaded
regions depict the values of the polar vorticities for which all the
relative equilibria in the Northern hemisphere are unstable: the
darkest region represents n = 4, the next n = 8 and the lightest
n = 10. (b) demonstrates that above each shaded region of (a) the
corresponding relative equilibria near the North pole are unstable,
while to the right it is the relative equilibria near the equator which
are unstable.

vorticities), but have a cut-off given by the higher modes. Figure 9.4 shows the case
n = 4.

Equatorial re with zero momentum The configuration with an equatorial ring
(θ0 = π/2) has momentum zero when κS = κN (= κ). Since in this case the relative
equilibrium is in fact an equilibrium, a method for the full analysis of the relative
equilibria in a neighbourhood can be found in [28], particularly Theorems 2.1 and
2.7. The fact that the symmetry group of the relative equilibrium is Dn×Z2 (where
Z2 is reflexion in the equator, which acts antisymplectically, as in [28]), the results of
that paper show that, assuming generic higher order terms, for each µ close to zero
there are (generically) 2n + 2 relative equilibria, two of which have Dn symmetry
and these are the points which lie on the Cnv(R, 2p)-stratum we are considering.
If the equatorial re is Lyapounov stable (see below), then the two nearby ones on
this stratum can be either elliptic or Lyapounov stable depending on higher order
terms (and we see from the numerics they are elliptic).

For this zero-momentum equatorial equilibrium, the ` = 1-mode is just 4-
dimensional (for n > 2), and can be spanned by the basis {e2, e3, e5, e6} from the
proposition above. The Hessian on this mode block diagonalizes as two identical
2x2 matrices.

Proposition 9.3. For n ≥ 3, the eigenvalues of the linear system at the equilibrium
with zero momentum on the equator are

λ = ± 1
2

√

−n2 − 2κ(n− 4) .
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θ0 = π/2 θ0 = 1.45

θ0 = 1.3 θ0 = 1.0

Figure 9.3. Stability diagrams for a 3-ring with two polar vortices
— C3v(R, 2p), showing vorticities in the range |κN |, |κS | ≤ 10, at
four specific values of the co-latitude. The horizontal axis is κN ,
the vertical κS . See Fig. 6.2 for the meaning of the colours.

In particular, combining with the higher modes when n > 3, we deduce that this
configuration is Lyapounov stable under the following circumstances:

n = 3 n = 4 n = 5 n = 6 . . . n = 12
κ < 9

2 κ > 1
2 κ > 1 κ > 4 κ > 25

2

If the inequality is reversed, the configuration is linearly unstable.

Other configurations For these we have not succeeded in obtaining analytic con-
ditions. The numerical calculations suggest the following:
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θ0 = π/2 θ0 = 1.45

θ0 = 1.3 θ0 = 1.0

Figure 9.4. Stability diagrams for a 4-ring with 2 poles (that is,
C4v(R, 2p)), showing vorticities in the range |κN |, |κS | ≤ 10, at
four specific values of the co-latitude. Below and to the left of the
grey line the configuration is unstable to the higher modes. The
horizontal axis is κN , the vertical κS . The stability diagrams for
n > 4 are all similar (after a change in the scale of the vorticity).
See Fig. 6.2 for the meaning of the colours.

• For all n and for all sufficiently large and positive polar vorticities there are
ranges of θ0 with elliptic relative equilibria.

• For all n and for κN sufficiently positive and κS < 0 there are Lyapounov
stable relative equilibria with the ring in the Northern hemisphere.

• When the equatorial ring configuration has non-zero momentum, one finds
several regions of stability, shown in the first plot in each of Figures 9.3 and
9.4. In particular the reduced Hessian is degenerate if κN + κS = n.
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• The straight line between the Lyapounov and elliptic regions in the two figures
is where µ = 0.

• The transition between elliptic and unstable in the upper right hand part of
the diagram is through a Hamiltonian Hopf bifurcation.

• The point where the unstable region is tangent to the line µ = 0 (most visible
for θ0 = 1.3) arises where there is a ro-vibrational resonance, as described in
Section 4.3. The transitions between elliptic and unstable re arbitrarily close
to this point arise as Hamiltonian Hopf bifurcations, a fact which resonates
with the description in [25].

9.3. Kite configurations: C2v(R, 2p). Here we consider the remaining case n =
2, which consists of a 2-ring with two poles: this is a kite-shaped configuration of
vortices lying on a meridian, where the meridian rotates in time about the axis
through the poles. The only mode in the symplectic slice is ` = 1, which is 4-
dimensional, or 2-dimensional when µ = 0. It has a basis

e1 = κN α
(1)
θ − 2 cos θ0 δx1 , e2 = κS δx1 − κN δx2

e3 = κN α
(1)
φ − 2 sin θ0 δy1, e4 = κS δy1 − κN δy2 .

The subspaces 〈e1, e2〉 and 〈e3, e4〉 are both Lagrangian and invariant under the
group. The reflexion κ : (x, y, z) → (x,−y, z) acts trivially on the first of these
subspaces and by −I on the second, which implies that the Hessian on this slice
block diagonalizes. The entries are too long to usefully reproduce here.

When µ = 0, the symplectic slice is 2-dimensional, and we can use {e1, e3}
as a basis. Because of the invariance under the reflexion κ, the reduced Hessian
on this slice is a diagonal matrix, but again one obtains expressions too long to
usefully reproduce here. In the special case of an equatorial configuration, which
has momentum zero if and only if κN = κS (= κ), the diagonal Hessian simplifies
to diag[4κ3,−4κ2], so the configuration is Lyapounov stable if κ < 0 and linearly
unstable if κ > 0.

The angular velocity of the relative equilibrium is given by

ξ =
1

sin2 θ0
((κN + κS + 1) cos θ0 + κN − κS) .

Conclusions from numerics See Figure 9.5. Note that with just 4 vortices, the
reduced spaces have dimension 4, so any elliptic (relative) equilibria has a good
chance of being Lyapounov stable, by KAM confinement. We have not checked
any of the non-degeneracy conditions for this to hold, so we continue to distinguish
between re that we know to be Lyapounov stable by energy-momentum confinement
(definiteness of the Hessian on the symplectic slice), and those we only know to be
elliptic.

• If both polar vorticities are positive then all configurations are linearly unsta-
ble.

• Apart from a very small region, the only Lyapounov stable configurations
occur with both polar vorticities negative. The very small region has κS > 0
but small, and κN < 0 (for the ring in the Northern hemisphere); it is close
to the line where µ = 0.

• If the ring is equatorial (θ0 = π/2), so the configuration is a square lying on a
great circle, with one pair of opposite vortices having unit vorticity, and the
other two having vorticity κN and κS , one sees that the relative equilibrium
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θ0 = π/2 θ0 = 1.45

θ0 = 1.3 θ0 = 1.0

θ0 = 0.5

Figure 9.5. Stability diagrams for the kite-shaped configuration
C2v(R, 2p). Showing |κN |, |κS | ≤ 10, at five specific values of the
co-latitude. The horizontal axis is κN , the vertical κS . See Fig. 6.2
for the meaning of the colours.
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is Lyapounov stable if and only if both κN , κS < 0. There is a transition
across the line κN + κS = 4, to the right of which the system has a pair of
real eigenvalues and a pair of imaginary ones. In the unstable ‘bulbs’ near the
origin, the linear system has a quadruplet of eigenvalues, and the transition
from the nearby elliptic regions is via a Hamiltonian Hopf bifurcation..

• As the ring is placed nearer the North pole, there opens up a region of in-
stability near the negative part of the diagonal. The straight line boundary
between the Lyapounov stable and elliptic regions corresponds to µ = 0 (here
we have µ = κN − κS + 2 cos θ0), and so the transition is that described in
Section 4.3. The transition from elliptic to unstable is through a pitchfork
of splitting type, giving a pair of imaginary and a pair of real eigenvalues.
Continuing the path to the right, the two real eigenvalues meet again at 0
to become imaginary, giving a Lyapounov stable configuration via another
pitchfork of splitting type.

• There is a point of interest on the µ = 0 locus (particularly visible in the
figure for θ0 = 1.0) where the region of linear stability (in white) is tangent to
the region of Lyapounov stability (in red). This occurs at points where there
is a ro-vibrational resonance, as described in Section 4.3.

• In the region of linear instability shown in the bottom left quadrant of the
θ0 = 1.0 diagram (in the θ0 = 1.3 diagram the corresponding region would
be further out, and so is not seen), the linear system has a quadruplet of
eigenvalues, and the transition from the elliptic region into this unstable
one is by a Hamiltonian Hopf bifurcation, corresponding to the fact that
the ro-vibrational resonance of the previous point is essentially a form of
Hamiltonian-Hopf bifurcation.
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