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Abstract
As the standard method for solving systems of linear equations, Gaussian elimination (GE) is one of
the most important and ubiquitous numerical algorithms. However, its successful use relies on under-
standing its numerical stability properties and how to organize its computations for efficient execution
on modern computers. We give an overview of GE, ranging from theory to computation. We explain
why GE computes an LU factorization and the various benefits of this matrix factorization viewpoint.
Pivoting strategies for ensuring numerical stability are described. Special properties of GE for certain
classes of structured matrices are summarized. How to implement GE in a way that efficiently exploits
the hierarchical memories of modern computers is discussed. We also describe block LU factorization,
corresponding to the use of pivot blocks instead of pivot elements, and explain how iterative refinement
can be used to improve a solution computed by GE. Other topics are GE for sparse matrices and the
role GE plays in the TOP500 ranking of the world’s fastest computers.
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Introduction

Gaussian elimination (GE) is the standard method for
solving a system of linear equations. As such, it is one
of the most ubiquitous numerical algorithms and plays
a fundamental role in scientific computation.

GE was known to the ancient Chinese [Lay-Yong and
Kangshen, 1989] and is familiar to many school chil-
dren as the intuitively natural method of eliminating
variables from linear equations. Gauss used it in the
context of the linear least squares problem [Gauss,
1995], [Grcar, 2010], [Stewart, 1995]. Undergraduates
learn the method in linear algebra courses, where it is
usually taught in conjunction with reduction to echelon
form. In this linear algebra context GE is shown to be
a tool for obtaining all solutions to a linear system, for
computing the determinant, and for deducing the rank
of the coefficient matrix. However, there is much more
to GE from the point of view of matrix analysis and ma-
trix computations.

In this article we survey the many facets of GE that are
relevant to computation—in statistics or in other con-
texts. We begin in the next section by summarizing
GE and its basic linear algebraic properties, including
conditions for its success and the key interpretation of
the elimination as LU factorization. Then we turn to
the numerical properties of LU factorization and dis-
cuss pivoting strategies for ensuring numerical stability.
In the section “Structured Matrices” we describe some

special results that hold for LU factorization when the
matrix has particular properties. Computer implemen-
tation is then discussed, as well as a version of GE that
uses block pivots. Iterative refinement—a means for
improving the quality of a computed solution—is also
described.

We will need the following notation. The unit roundoff
(or machine precision) is denoted by u; in IEEE dou-
ble precision arithmetic it has the value u = 2−53 ≈
1.1 × 10−16. We write fl(A) for the result of round-
ing the elements of A to floating point numbers. The
ith unit vector ei is the vector that is zero except for
a 1 in the ith element. The notation 1: n denotes the
vector [1, 2, . . . , n], while n : − 1: 1 denotes the vector
[n, n−1, . . . , 1]. A(i, j), with i and j vectors of indices,
denotes the submatrix of A comprising the intersection
of the rows specified by i and the columns specified by
j. ‖A‖ denotes any subordinate matrix norm, and we
sometimes use the ∞-norm, given for A ∈ Rn×n by
the formula ‖A‖∞ = max1≤i≤n

∑n
j=1 |aij |.

LU Factorization

The aim of GE is to reduce a full system of n lin-
ear equations in n unknowns to triangular form using
elementary row operations, thereby reducing a prob-
lem that we can’t solve to one that we can. There are
n − 1 stages, beginning with A(1) = A ∈ Rn×n,

1To appear in Wiley Interdisciplinary Reviews: Computational Statistics. Version of 31-1-11.
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b(1) = b, and finishing with the upper triangular sys-
tem A(n)x = b(n). At the start of the kth stage we have
converted the original system to A(k)x = b(k), where

A(k) =

[ k−1 n−k+1

k−1 A
(k)
11 A

(k)
12

n−k+1 0 A
(k)
22

]
, (1)

with A(k)
11 upper triangular. The kth stage of the elimi-

nation zeros the elements below the pivot element a(k)kk

in the kth column of A(k) according to the operations

a
(k+1)
ij = a

(k)
ij −mika

(k)
kj , i, j = k + 1: n, (2a)

b
(k+1)
i = b

(k)
i −mikb

(k)
k , i = k + 1: n, (2b)

where the quantities

mik = a
(k)
ik /a

(k)
kk , i = k + 1: n

are called the multipliers and a(k)kk is called the pivot. At
the end of the (n − 1)st stage we have the upper trian-
gular system Ux ≡ A(n)x = b(n), which is solved by
back substitution. Back substitution for the upper trian-
gular system Ux = b is the recurrence

xn = bn/unn

xk =

(
bk −

n∑
j=k+1

ukjxj

)
/ukk, k = n− 1 : −1 : 1.

Much insight into GE is obtained by expressing it in
matrix notation. We can write A(k+1) = MkA

(k),
where the Gauss transformation Mk = I −mke

T
k with

mk = [0, . . . , 0,mk+1,k, . . . ,mn,k]
T . Overall,

Mn−1Mn−2 . . .M1A = A(n) =: U,

By using the fact that M−1k = I + mke
T
k it is easy to

show that

A =M−11 M−12 . . .M−1n−1U

= (I +m1e
T
1 )(I +m2e

T
2 ) . . . (I +mn−1e

T
n−1)U

=

(
I +

n−1∑
i=1

mie
T
i

)
U

=


1
m21 1

... m32
. . .

...
...

. . .
mn1 mn2 . . . mn,n−1 1

U =: LU.

The upshot is that GE computes an LU factorization
A = LU (also called an LU decomposition), where
L is unit lower triangular and U is upper triangular.
The cost of the computation is (2/3)n3 + O(n2) flops,
where a flop denotes a floating point addition, subtrac-
tion, multiplication or division. There is no difficulty in

generalizing the LU factorization to rectangular matri-
ces, though by far its most common use is for square
matrices.

GE may fail with a division by zero during formation of
the multipliers. The following theorem shows that this
happens precisely whenA has a singular leading princi-
pal submatrix of dimension less than n [Higham, 2002,
Thm. 9.1]. We define Ak = A(1 : k, 1: k).

Theorem 1 There exists a unique LU factorization of
A ∈ Rn×n if and only if Ak is nonsingular for k =
1: n−1. IfAk is singular for some 1 ≤ k ≤ n−1 then
the factorization may exist, but if so it is not unique.

The conditions of the theorem are in general difficult to
check, but for some classes of structured matrices they
can be shown always to hold; see the section “Struc-
tured Matrices”.

The interpretation of GE as an LU factorization is very
important, because it is well established that the ma-
trix factorization viewpoint is a powerful paradigm for
thinking and computing [Golub and Van Loan, 1996],
[Stewart, 2000]. In particular, separating the computa-
tion of LU factorization from its application is benefi-
cial. We give several examples. First, note that given
A = LU we can write Ax = b1 as LUx = b1, or
Lz = b1 and Ux = z; thus x is obtained by solving
two triangular systems. If we need to solve for another
right-hand side b2 we can just carry out the correspond-
ing triangular solves, re-using the LU factorization—
something that is not so obvious if we work with the
GE equations (2) that mix up operations on A and b.
Similarly, solving AT y = c reduces to solving the tri-
angular systems UT z = c and LT y = z using the avail-
able factors L and U . Another example is the computa-
tion of the scalar α = yTA−1x, which can be rewritten
α = yTU−1 · L−1x (or α = yT · U−1L−1x) and so
again requires just two triangular solves and avoids the
need to invert a matrix explicitly. Finally, note that if
A = LU and A−1 = (bij) then

u−1nn = eTnU
−1en = eTnU

−1L−1en = eTnA
−1en = bnn.

Thus the reciprocal of unn is an element of A−1, and
so we have the lower bound ‖A−1‖ ≥ |u−1nn |, for all the
standard matrix norms.

A very useful representation of the first stage of GE is

A =

[ 1 n−1

1 a11 aT

n−1 b C

]
=

[
1 0

b/a11 In−1

] [
a11 aT

0 C − baT /a11

]
.

The matrixC−baT /a11 is the Schur complement of a11
in A. More generally, it can be shown that the matrix
A

(k)
22 in (1) can expressed asA(k)

22 = A22−A21A
−1
11 A12,

whereAij ≡ A(1)
ij ; this is the Schur complement ofA11
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in A. Various structures of A can be shown to be inher-
ited by the Schur complement (for example symmet-
ric positive definiteness and diagonal dominance), and
this enables the proof of several interesting results about
the LU factors (including some of those in the section
“Structured Matrices”).

Explicit determinantal formulae exist for the elements
of L and U (see, e.g., Householder [1964, p. 11]):

`ij =
det
(
A([1: j − 1, i], 1: j)

)
det(Aj)

, i ≥ j,

uij =
det
(
A(1: i, [1: i− 1, j])

)
det(Ai−1)

, i ≤ j.

Although elegant, these are of limited practical use.

Pivoting and Numerical Stability

In practical computation it is not just zero pivots that
are unwelcome but also small pivots. The problem with
small pivots is that they can lead to large multipliers
mik. Indeed if mik is large then there is a possible loss
of significance in the subtraction a(k)ij −mika

(k)
kj , with

low-order digits of a(k)ij being lost. Losing these digits
could correspond to making a relatively large change to
the original matrixA. The simplest example of this phe-
nomenon is for the matrixA =

[
ε
1
1
1

]
, where we assume

0 < ε < u. GE produces[
ε 1
1 1

]
=

[
1 0
1/ε 1

] [
ε 1
0 −1/ε+ 1

]
= LU.

In floating point arithmetic the factors are approximated
by

fl(L) =

[
1 0
1/ε 1

]
=: L̂,

f l(U) =

[
ε 1
0 −1/ε

]
=: Û ,

which would be the exact answer if we changed
a22 from 1 to 0. Hence L̂Û = A + ∆A with
‖∆A‖∞/‖A‖∞ = 1/2 � u. This shows that for this
matrix GE does not compute the LU factorization of a
matrix close to A, which means that GE is behaving as
an unstable algorithm.

Three different pivoting strategies are available that at-
tempt to avoid instability. All three strategies ensure
that the multipliers are nicely bounded: |mik| ≤ 1,
i = k + 1: n.

Partial pivoting. At the start of the kth stage, the kth
and rth rows are interchanged, where

|a(k)rk | := max
k≤i≤n

|a(k)ik |.

Thus an element of maximal magnitude in the pivot col-
umn is selected as pivot.

Complete pivoting. At the start of the kth stage rows k
and r and columns k and s are interchanged where

|a(k)rs | := max
k≤i,j≤n

|a(k)ij |;

in other words, a pivot of maximal magnitude is chosen
over the whole remaining submatrix.

Rook pivoting. At the start of the kth stage, rows k and
r and columns k and s are interchanged, where

|a(k)rs | = max
k≤i≤n

|a(k)is | = max
k≤j≤n

|a(k)rj |;

in other words, a pivot is chosen that is the largest in
magnitude in both its column (as for partial pivoting)
and its row. The pivot search is done by repeatedly
looking down a column and across a row for the largest
element in modulus; see Figure 1.

Partial pivoting requires O(n2) comparisons in total.
Complete pivoting requires O(n3) comparisons, which
is of the same order of magnitude as the arithmetic and
so is a significant cost. The cost of rook pivoting is in-
termediate between the two and depends on the matrix.

The effect on the LU factorization of the row and col-
umn interchanges in these pivoting strategies can be
captured in permutation matrices P and Q; it can be
shown that PAQ = LU with a unit lower triangular
L and upper triangular U (with Q = I for partial piv-
oting). In other words, the triangular factors are those
that would be obtained if all the interchanges were done
at the start of the elimination and GE without pivoting
were used.

In order to assess the success of these pivoting strate-
gies in improving numerical stability we need a back-
ward error analysis result. Such a result expresses the
effects of all the rounding errors committed during the
computation as an equivalent perturbation on the orig-
inal data. Since we can assume P = Q = I without
loss of generality, the result is stated for GE without
pivoting. This is the result of Wilkinson [1961] (which
he originally proved for partial pivoting); for a modern
proof see Higham [2002, Thm. 9.3, Lem. 9.6].

Theorem 2 Let A ∈ Rn×n and suppose GE produces
a computed solution x̂ to Ax = b. Then

(A+∆A)x̂ = b, ‖∆A‖∞ ≤ p(n)ρnu‖A‖∞,

where p(n) is a cubic polynomial and the growth factor

ρn =
maxi,j,k |a(k)ij |
maxi,j |aij |

.
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Ideally, we would like ‖∆A‖∞ ≤ u‖A‖∞, which re-
flects the uncertainty caused simply by rounding the el-
ements of A. The growth factor ρn ≥ 1 measures the
growth of elements during the elimination. The cubic
term p(n) arises from many triangle inequalities in the
proof and is pessimistic; replacing it by its square root
gives a more realistic bound, but this term is in any case
outside our control. The message of the theorem is that
GE will be backward stable if ρn is of order 1. A pivot-
ing strategy should therefore aim to keep ρn small.

If no pivoting is done ρn can be arbitrarily large. For
example, for the matrix A =

[
ε
1
1
1

]
(0 < ε < u) men-

tioned at the start of this section, ρn = 1/ε− 1.

The maximum size of the growth factor for the three
pivoting strategies has been the subject of much re-
search. For partial pivoting, Wilkinson [1961] showed
that ρn ≤ 2n−1 and that this bound is attainable. In
practice, ρn is almost always of modest size (ρn ≤ 50,
say), but a good understanding of this phenomenon is
still lacking.

For complete pivoting a much smaller bound on the
growth factor was derived by Wilkinson [1961]:

ρn ≤ n1/2(2 · 31/2 · · ·n1/(n−1))1/2 ∼ c n1/2n
1
4 logn.

However, this bound usually significantly overestimates
the size of ρn. Indeed for many years a conjecture that
ρn ≤ n for complete pivoting (for real A) was open.
This was finally resolved by Gould [1991] and Edel-
man [1992], who found an example with ρ13 > 13. Re-
search on certain aspects of the size of ρn for complete
pivoting is ongoing [Kravvaritis and Mitrouli, 2009].
Interestingly, ρn ≥ n for any Hadamard matrix (a ma-
trix of 1s and −1s with orthogonal columns) and any
pivoting strategy [Higham and Higham, 1989]. For
rook pivoting, the bound ρn ≤ 1.5n

3
4 logn was obtained

by Foster [1997].

In addition to the backward error, the relative error
‖x − x̂‖/‖x‖ of the solution x̂ computed in floating
point arithmetic is also of interest. A bound on the rela-
tive error is obtained by applying standard perturbation
bounds for linear systems to Theorem 2 [Higham, 2002,
Chap. 7]. A typical bound is

‖x− x̂‖∞
‖x‖∞

≤ cnuκ∞(A)

1− cnuκ∞(A)
,

where κ∞(A) = ‖A‖∞‖A−1‖∞ is the matrix condi-
tion number with respect to inversion and cn = p(n)ρn.

Structured Matrices

A great deal of research has been directed at special-
izing GE to take advantage of particular matrix struc-
tures and to proving properties of the LU factors and

the growth factor. We give a just a very brief overview.
For further details of all these properties and results see
Higham [2002].

GE without pivoting exploits symmetry, in that if A is
symmetric then so are all the reduced matrices A(k)

22 in
(1), but symmetry does not by itself guarantee the exis-
tence or numerical stability of the LU factorization. If
A is also positive definite then GE succeeds (in light of
Theorem 1) and the growth factor ρn = 1, so pivoting
is not necessary. However, it is more common for sym-
metric positive definite matrices to use the Cholesky
factorization A = RRT , where R is upper triangular
with positive diagonal elements [Higham, 2009]. For
general symmetric indefinite matrices factorizations of
the form PAPT = LDLT are used, where P is a per-
mutation matrix, L is unit lower triangular, and D is
block diagonal with diagonal blocks of dimension 1 or
2. Several pivoting strategies are available for choosing
P , of which one is a symmetric form of rook pivoting.

If A is diagonally dominant by rows, that is,

n∑
j=1
j 6=i

|aij | ≤ |aii|, i = 1: n,

or A is diagonally dominant by columns (that is, AT

is diagonally dominant by rows) then it is safe not to
use interchanges: the LU factorization without pivoting
exists and the growth factor satisfies ρn ≤ 2.

If A has bandwidth p, that is, aij = 0 for |i − j| > p,
then in an LU factorization L and U also have band-
width p (`ij = 0 for i > j + p and uij = 0 for
j > i + p). With partial pivoting the bandwidth is not
preserved, but it is nevertheless true that in PA = LU
the upper triangular factor U has bandwidth 2p and
L has at most p + 1 nonzeros per column; moreover,
ρn ≤ 22p−1−(p−1)2p−2. Tridiagonal matrices (p = 1)
form an important special case.

A matrix is totally nonnegative if the determinant of
every square submatrix is nonnegative. The Hilbert
matrix (1/(i + j − 1)) is an example of such a ma-
trix. If A is nonsingular and totally nonnegative then
it has an LU factorization A = LU in which L and U
are totally nonnegative, so that in particular L and U
have nonnegative elements. Moreover, the growth fac-
tor ρn = 1. More importantly, for such matrices it can
be shown that a much stronger componentwise form of
Theorem 2 holds with |∆aij | ≤ cnu|aij | for all i and j,
where cn ≈ 3n.

Algorithms

In principle, GE is computationally straightforward. It
can be expressed in pseudocode as follows:
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for k = 1:n− 1
for j = k:n

for i = k + 1:n
mik = aik/akk
aij = aij −mikakj

end
end

end

Here, pivoting has been omitted, and at the end of the
computation the upper triangle of A contains the upper
triangular factor U and the elements of L are the mij .
Incorporating partial pivoting, and forming the permu-
tation matrix P such that PA = LU , is straightforward.

There are 3! ways of ordering the three nested loops
in this pseudocode, but not all are of equal efficiency
for computer implementation. The kji ordering shown
above forms the basis of early Fortran implementations
of GE such as those in Forsythe and Moler [1967],
Moler [1972], and the LINPACK package [Dongarra
et al., 1979]—the inner loop traverses the columns of
A, which matches the order in which Fortran stores
the elements of two-dimensional arrays. The hierarchi-
cal computer memories prevalent from the 1980s on-
wards led to the need to modify implementations of
GE in order to maintain good efficiency: now the loops
must be broken up into pieces, leading to partitioned (or
blocked) algorithms. For a given block size r > 1, we
can derive a partitioned algorithm by writing[

A11 A12

A21 A22

]
=

[
L11 0
L21 In−r

] [
Ir 0
0 S

]
×
[
U11 U12

0 In−r

]
,

where A11, L11, U11 ∈ Rr×r. Ignoring pivoting, the
idea is to compute an LU factorization A11 = L11U11

(by whatever means), solve the multiple right-hand side
triangular systems L21U11 = A21 and L11U12 = A12

for L21 and U12 respectively, form S = A22 −L21U12,
and apply the same process to S to obtain L22 and
U22. The computations yielding L21, U12, and S are
all matrix–matrix operations and can be carried out us-
ing level 3 BLAS [Dongarra et al., 1990a], [Dongarra
et al., 1990b], for which highly optimized implemen-
tations are available for most machines. The optimal
choice of the block size r depends on the particular
computer architecture. It is important to realize that
this partitioned algorithm is mathematically equivalent
to any other variant of GE: it does the same operations
in a different order, but one that reduces the amount of
data movement among different levels of the computer
memory hierarchy. In an attempt to extract even bet-
ter performance recursive algorithms of this form with
r ≈ n/2 have also been developed [Gustavson, 1997],
[Toledo, 1997].

We mention two very active areas of current research in
GE, and more generally in dense linear algebra compu-
tations, both of which are aiming to extend the capabil-
ities of the state of the art package LAPACK [Ander-
son et al., 1999] to shared memory computers based on
multi-core processor architectures. The first is aimed
at developing parallel algorithms that run efficiently on
systems with multiple sockets of multicore processors.
A key goal is to minimize the amount of communication
between processors, since on such evolving architec-
tures communication costs are increasingly significant
relative to the costs of floating point arithmetic. A sec-
ond area of research aims to exploit graphics processing
units (GPUs) in conjunction with multicore processors.
GPUs have the ability to perform floating point arith-
metic at very high parallelism and and are relatively in-
expensive. Current projects addressing these areas in-
clude the PLASMA (http://icl.cs.utk.edu/
plasma) and MAGMA (http://icl.cs.utk.
edu/magma) projects. Representative papers are But-
tari et al. [2009] and Tomov et al. [2010]. Further activ-
ity is concerned with algorithms for distributed memory
machines, aiming to improve upon those in the ScaLA-
PACK library [Blackford et al., 1997]; see, for example,
Grigori et al. [2008].

Block LU Factorization

At each stage of GE a pivot element is used to eliminate
elements below the diagonal in the pivot column. This
notion can generalized to use a pivot block to eliminate
all elements below that block. For example, consider
the factorization

A =


0 1 1 1
−1 1 1 1
−2 3 4 2
−1 2 1 3



=


1 0 0 0
0 1 0 0
1 2 1 0
1 1 0 1




0 1 1 1
−1 1 1 1
0 0 1 −1
0 0 −1 1


≡ L1U1.

GE without pivoting fails onA because of the zero (1,1)
pivot. The displayed factorization corresponds to using
the leading 2× 2 principal submatrix of A to eliminate
the elements in the (3 : 4, 1: 2) submatrix. In the con-
text of a linear system Ax = b, we have effectively
solved for the variables x1 and x2 in terms of x3 and x4
and then substituted for x1 and x2 in the last two equa-
tions. This is the key idea underlying block Gaussian
elimination, or block LU factorization. In general, for
a given partitioning A = (Aij)

m
i,j=1 with the diagonal

blocks Aii square (but not necessarily all of the same
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dimension), a block LU factorization has the form

A =


I
L21 I

...
. . .

Lm1 . . . Lm,m−1 I



×


U11 U12 . . . U1m

U22

...
. . . Um−1,m

Umm

 ≡ LU,
where L and U are block triangular but U is not nec-
essarily triangular. This is in general different from the
usual LU factorization. A less restrictive analogue of
Theorem 1 holds Higham [2002, Thm. 13.2].

Theorem 3 The matrix A = (Aij)
m
i,j=1 ∈ Rn×n has

a unique block LU factorization if and only if the first
m−1 leading principal block submatrices ofA are non-
singular.

The numerical stability of block LU factorization is less
satisfactory than for the usual LU factorization. How-
ever, if A is diagonally dominant by columns, or block
diagonally dominant by columns in the sense that

‖A−1jj ‖
−1 −

n∑
i=1
i6=j

‖Aij‖ ≥ 0, j = 1: n,

then the factorization can be shown to be numerically
stable [Higham, 2002, Chap. 13].

Block LU factorization is motivated by the desire to
maximize efficiency on modern computers through the
use of matrix–matrix operations. It has also been widely
used for block tridiagonal matrices arising in the dis-
cretization of partial differential equations.

Iterative Refinement

Iterative refinement is a procedure for improving a com-
puted solution x̂ to a linear system Ax = b—usually
one computed by GE. The process repeats the three
steps

1. Compute r = b−Ax̂.

2. Solve Ad = r.

3. Update x̂← x̂+ d.

In the absence of rounding errors, x̂ is the exact solu-
tion to the system after one iteration of the three steps.
In practice, rounding errors vitiate all three steps and the
process is iterative. For x̂ computed by GE, the system
Ad = r is solved using the LU factorization already
computed, so each iteration requires only O(n2) flops.

Iterative refinement was popular in the 1960s and
1970s, when it was implemented with the residual r
computed at twice the working precision, which we
call mixed precision iterative refinement. On some ma-
chines of that era it was possible to accumulate in-
ner products in extra precision in hardware, making
implementation of the process easy. From the 1980s
onwards, computing extra precision residuals became
problematic and this spurred research into fixed pre-
cision iterative refinement, where only one precision
is used throughout. In the last few years mixed pre-
cision iterative refinement has come back into favour,
because modern processors either have extra precision
registers or can perform arithmetic in single precision
much faster than in double precision but also because
standardized routines for extra precision computation
are now available [Basic Linear Algebra Subprograms
Technical , BLAST], [Baboulin et al., 2009], [Demmel
et al., 2006].

The following theorem summarizes the benefits itera-
tive refinement brings to the forward error [Higham,
2002, Sec. 12.1].

Theorem 4 Let iterative refinement be applied to the
nonsingular linear system Ax = b in conjunction with
GE with partial pivoting. Provided A is not too ill con-
ditioned, iterative refinement reduces the forward error
at each stage until it produces an x̂ for which

‖x− x̂‖∞
‖x‖∞

≈
{
u, for mixed precision,
cond(A, x)u, for fixed precision,

where cond(A, x) = ‖|A−1||A||x|‖∞/‖x‖∞.

This theorem tells only part of the story. Under suit-
able assumptions, iterative refinement leads to a small
componentwise backward error, as first shown by Skeel
[1980]—even for fixed precision refinement. For the
definition of componentwise backward error and further
details, see Higham [2002, Sec. 12.2].
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Figure 1: Illustration of how rook pivoting searches for the first pivot for a particular 6×6 matrix (with the positive
integer entries shown). Each dot denotes a putative pivot that is tested to see if it is the largest in magnitude in
both its row and its column.

Sparse Matrices [sidebar]

A matrix is sparse if it has a sufficiently large number of zero entries that it is worth taking advantage of them in
storing the matrix and in computing with it. When GE is applied to a sparse matrix it can produce fill-in, which
occurs when a zero entry becomes nonzero. Depending on the matrix there may be no fill-in (as for a tridiagonal
matrix), total fill-in (e.g., for a sparse matrix with a full first row and column), or something in-between. Various
techniques are available for re-ordering the rows and columns in order to reduce fill-in. Since numerical stability
is also an issue, these techniques must be combined with a strategy for ensuring that the pivots are sufficiently
large. Modern techniques allow sparse GE to be successfully applied to extremely large matrices. For an up to
date treatment that includes C codes see Davis [2006]. When the necessary memory or computation time for GE
to solve Ax = b becomes prohibitive we must resort to iterative methods, which typically require just the ability
to compute matrix–vector products with A (and possibly its transpose) [Saad, 2003].

TOP500 [sidebar]

The TOP500 list (http://www.top500.org) ranks the world’s fastest computers by their performance on the
LINPACK benchmark [Dongarra et al., 2003], which solves a random linear systemAx = b by an implementation
of GE for parallel computers written in C and MPI. Performance is measured by the floating point execution rate
counted in floating point operations (flops) per second. The user is allowed to tune the code to obtain the best
performance, by varying parameters such as the dimension n, the block size, the processor grid size, and so on.
However, the computed solution x̂ must produce a small residual in order for the result to be valid, in the sense
that ‖b−Ax̂‖∞/(u‖A‖∞‖x‖∞) is of order 1.

This benchmark has its origins in the LINPACK project [Dongarra et al., 1979], in which the performance of
contemporary machines was compared by running the LINPACK GE code dgefa on a 100× 100 system.

Conclusion
GE with partial pivoting continues to be the standard numerical method for solving linear systems that
are not so large that considerations of computational cost or storage dictate the use of iterative methods.
The first computer program for GE with partial pivoting was probably that of Wilkinson [1948] (his code
implemented iterative refinement too). It is perhaps surprising that it is still not understood why the
numerical stability of this method is so good in practice, or equivalently why large element growth with
partial pivoting is not seen in practical computations.

This overview has omitted a number of GE-related topics, including

• row or column scaling (or equilibration),

7



• Gauss–Jordan elimination, in which at each stage of the elimination elements both above and
below the diagonal are eliminated, and which is principally used as a method for matrix inversion,

• variants of GE motivated by parallel computing, such as pairwise elimination, in which eliminations
are carried out between adjacent rows only,

• analyzing the extent to which (when computed in floating point arithmetic) an LU factorization
reveals the rank of A,

• the sensitivity of the LU factors to perturbations in A.

For more on these topics see Higham [2002] and the references therein.
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