
Computing the Condition Number of Tridiagonal
and Diagonal-Plus-Semiseparable Matrices in

Linear Time

Hargreaves, Gareth I.

2006

MIMS EPrint: 2006.15

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

COMPUTING THE CONDITION NUMBER OF TRIDIAGONAL

AND DIAGONAL-PLUS-SEMISEPARABLE MATRICES

IN LINEAR TIME ∗

GARETH I. HARGREAVES†

Abstract. For an n × n tridiagonal matrix we exploit the structure of its QR factorization
to devise two new algorithms for computing the 1-norm condition number in O(n) operations.
The algorithms avoid underflow and overflow, and are simpler than existing algorithms since tests
are not required for degenerate cases. An error analysis of the first algorithm is given, while the
second algorithm is shown to be competitive in speed with existing algorithms. We then turn
our attention to an n × n diagonal-plus-semiseparable matrix, A, for which several algorithms
have recently been developed to solve Ax = b in O(n) operations. We again exploit the QR
factorization of the matrix to present an algorithm that computes the 1-norm condition number
in O(n) operations.

Key words. condition number, tridiagonal matrix, diagonal-plus-semiseparable matrix, QR
factorization

AMS subject classifications. 15A09, 65F35, 15A12

1. Introduction. Consider a nonsingular matrix A ∈ Rn×n and the linear
system Ax = b. The condition number of A,

κ(A) = ‖A‖‖A−1‖,

is often computed or estimated since it provides a measure of the sensitivity of the
solution to perturbations in A and b. The condition number depends on the choice
of matrix norm. We will consider the matrix 1-norm

‖A‖1 = max
j

∑

i

|aij |.

Various techniques exist for estimating the condition number of a general matrix in
O(n2) operations, given a suitable factorization of the matrix.

Some matrices with a special structure allow the linear system to be solved in
O(n) operations rather than the O(n3) operations required for a general matrix.
Techniques for estimating the condition number of such matrices typically reduce
to O(n) operations. However, the structure of the inverse may make it possible to
compute the condition number exactly in O(n) operations. Two types of matri-
ces for which this can be achieved are tridiagonal and diagonal-plus-semiseparable
matrices.

Tridiagonal matrices occur in many areas of numerical analysis. The lower
(upper) triangular part of the inverse of the tridiagonal can be represented by the
lower (upper) triangular part of the outer product of two vectors [14]. It is this
compact representation that Higham [11] exploits to give several algorithms for
computing the 1-norm of the inverse in O(n) operations. However, the algorithms
for a general tridiagonal matrix are prone to underflow and overflow. The algorithm
for the positive definite case, which is implemented in LAPACK [1], is shown not
to have such problems.

Dhillon [6] describes four algorithms based on LDU factorizations. The first
of these is less prone to underflow and overflow than Higham’s algorithms but

∗Numerical Analysis Report 447, Manchester Centre for Computational Mathematics, April
2004; revised November 2004. This work was supported by an Engineering and Physical Sciences
Research Council Ph.D. Studentship.

†School of Mathematics, University of Manchester, Manchester, M13 9PL, England
(hargreaves@ma.man.ac.uk, http://www.ma.man.ac.uk/~hargreaves/).

1

has restrictions on the tridiagonal matrix. These restrictions are eliminated using
IEEE arithmetic [13] in the second algorithm, and various tests to guard against
underflow and overflow problems are added to give the third and fourth algorithms.
The resulting codes are complicated as they contain various tests to deal with
degenerate cases.

A semiseparable matrix is the sum of the strictly upper triangular part of a
rank-1 matrix and the lower triangular part of another rank-1 matrix. Therefore the
inverse of a tridiagonal matrix is semiseparable. Another link between tridiagonal
and semiseparable matrices is that a symmetric matrix can be reduced to either of
these forms using orthogonal transformations. This has led to new algorithms for
solving the symmetric eigenvalue problem by reduction to semiseparable form [20]
instead of tridiagonal form.

A diagonal-plus-semiseparable (dpss) matrix is the sum of a diagonal matrix and
a semiseparable matrix. Recently several algorithms have been developed to solve
Ax = b, where A is a dpss matrix, in O(n) operations [2], [5], [7], [17]. Applications
of solving linear systems of this form include boundary value problems for ordinary
differential equations [9], [16], [18], integral equations [15] and orthogonal rational
functions [3]. Unlike tridiagonal matrices, we know of no existing methods for
computing the condition number of a dpss matrix exactly in O(n) operations.

In Section 2 we use the properties of the QR factorization of a tridiagonal ma-
trix to present two new algorithms for computing the 1-norm of the inverse of a
tridiagonal matrix in O(n) operations. The algorithms are more elegant and sim-
pler than Dhillon’s algorithms since they do not require tests for degenerate cases.
Numerical experiments show that the second algorithm is marginally slower than
the quickest of Dhillon’s algorithms, but is faster than his recommended algorithm.
A rounding error analysis of the first algorithm is given.

In Section 3 we extend the techniques developed for the tridiagonal case to the
dpss case, to present an algorithm that computes the 1-norm of a dpss matrix in
O(n) operations. The condition number of a dpss matrix can instead be estimated
in O(n) operations by adapting the LAPACK [1] condition number estimator to
take advantage of the structure of the dpss matrix; we show, however, that our new
algorithm is quicker than the possibly inaccurate estimate.

2. Tridiagonal matrices. Let the tridiagonal matrix

T =




α1 γ1

β1 α2 γ2

β2
. . .

. . .
. . . αn−1 γn−1

βn−1 αn



∈ R

n×n.(2.1)

Since we can solve a tridiagonal system in O(n) operations, we would also like to
compute the condition number at the same cost. Computing ‖T‖1 can trivially
be done in O(n) operations so the problem remains to compute ‖T−1‖1 in O(n)
operations.

We present two new algorithms for computing ‖T−1‖1 matrix in O(n) opera-
tions. The algorithms use the properties of QR factorizations of tridiagonal matrices
and extend some of the ideas of Bini, Gemignani and Tisseur [4] for computing the
trace of the inverse of a tridiagonal matrix. The new algorithms attempt to avoid
underflow and overflow without the need for tests to deal with degenerate cases as
in [6].

2.1. A new algorithm to compute ‖T−1‖1. The QR factorization of T
in (2.1) can be obtained using n− 1 Givens rotations, Gi, so that

QTT = R and QT = Gn−1 . . .G2G1,(2.2)

2

where R is upper triangular. The Givens rotation Gi is equal to the identity except
for rows and columns i and i+ 1, where

Gi([i, i+ 1], [i, i+ 1]) =

[
φi ψi

−ψi φi

]
, φ2

i + ψ2
i = 1.(2.3)

Since T is tridiagonal, the upper triangular matrix R is of the form

R =




r1 s1 t1
. . .

. . .
. . .

rn−2 sn−2 tn−2

rn−1 sn−1

rn



.

The following theorem of [8] describes the structure of QT , which allows us to
compute the elements of T−1 in O(n) operations.

Theorem 2.1. Let T ∈ Rn×n be tridiagonal and unreduced and let T = QR be

its QR factorization computed according to (2.2). Define

D = diag(1,−ψ1, ψ1ψ2, . . . , (−1)n−1ψ1ψ2 · · ·ψn−1),

u = D−1[1, φ1, φ2, . . . , φn−1]
T ,(2.4)

v = D[φ1, φ2, . . . , φn−1, 1]T .

Then

QT =




v1u1 ψ1 0
v2u1 v2u2 ψ2

...
...

. . .
. . .

... vn−1un−1 ψn−1

vnu1 vnu2 · · · vnun−1 vnun



.(2.5)

From Theorem 2.1, the (i, j) element of T−1, ηij , is given by

ηij = eT
i T

−1ej = eT
i R

−1QT ej = uje
T
i R

−1v, i ≥ j.

Defining w as the solution of Rw = v, we have

ηij = uje
T
i w = ujwi, i ≥ j.(2.6)

We can therefore find the elements of T−1 in the lower triangle using (2.6).
We note that we can obtain the strictly upper triangular part of T−1 by applying

the above procedure to

T̃ =




αn βn−1

γn−1
αn−1 βn−2

γn−2
. . .

. . .
. . . α2 β1

γ1 α1



,

so that

T̃−1 =




ηnn · · · ηn1

. . .
...

... η22 η21
η1n · · · η12 η11


 .

3

The QR factorization of T̃ (which is essentially the QL factorization of T) is

given by T̃ = Q̃R̃, where Q̃ is made up of n − 1 Givens rotations and R̃ is upper
triangular. By Theorem 2.1 the lower triangular part of Q̃T is determined by vectors
ũ and ṽ, where the components of ũ and ṽ are defined by the n−1 Givens rotations.
Hence the (i, j) element of T̃−1 is given by

η̃ij = eT
i T̃

−1ej = eT
i R̃

−1Q̃T ej = ũje
T
i R̃

−1ṽ = ũje
T
i w̃ = ũjw̃i, i ≥ j,

where w̃ is the solution of R̃w̃ = ṽ.
The (i, j) element of T−1, i < j, is therefore given by

ηij = ũn−j+1ṽn−i+1.

We now return to the elements of T−1 in the lower triangle. The computation
of u and v using (2.4) may cause underflow and overflow since the diagonal entries
of D are products of ψi with |ψi| ≤ 1. In [4] it was noted that a way of avoiding
such problems for computing the diagonal elements of T−1 is to scale the triangular
system Rw = v with the diagonal matrix D. This gives R′w′ = v′, where

R′ = D−1RD, w′ = D−1w, v′ = D−1v = [φ1, . . . , φn−1, 1]T .(2.7)

Using this scaling avoids products of ψi. The entries of R′ are given by

r′i = ri, s′i = −ψisi, t′i = ψiψi+1ti,(2.8)

and since |ψi| ≤ 1, these values cannot overflow.
Let

u′ = [1, φ1, φ2, . . . , φn−1]
T .(2.9)

As φ2
i + ψ2

i = 1, the components of u′ are all bounded by 1 in modulus. Since
w = Dw′ and u = D−1u′, the diagonal elements of T−1 are given by

ηii = uiwi = u′iw
′

i, i = 1:n.

The strictly lower triangular elements are given by

ηij = ujwi =
di

dj

u′jw
′

i, i > j,

and hence

|ηij | = |ψj . . . ψi−1u
′

jw
′

i|, i > j,

for which we clearly have possible underflow problems if ηij is computed in this way.
Fortunately, this problem can be overcome by considering how to compute the

1-norm of the jth column of the strictly lower triangular part of T−1, which is given
by

σj = |u′j |(|w′

j+1ψj | + |w′

j+2ψjψj+1| + · · · + |w′

nψj . . . ψn−1|), j = 1:n− 1.

If σj is computed in this way O(n2) operations would be required to compute σj

for j = 1:n− 1. The underflow problem can be overcome and the operation count
reduced by an order of magnitude using nested multiplication. We can rewrite σj

as

σj = |u′j |(((· · · ((|ψn−1w
′

n| + |w′

n−1|)|ψn−2| + |w′

n−2|) · · ·)|ψj+1| + |w′

j+1|)|ψj |),
j = 1:n− 1.

4

Therefore σj can be computed using

1 σ′

n−1 = |ψn−1w
′

n|
2 for j = n− 1:−1: 2
3 σ′

j−1 = (σ′

j + |w′

j |)|ψj−1|
4 end
5 for j = 1:n− 1, σj = |u′j |σ′

j , end

(2.10)

This method of computing σj , avoids forming explicit products of ψi and allows σj ,
j = 1:n − 1, to be computed in O(n) operations. For underflow to occur σj/|u′j |
must underflow, and since σj/|u′j | ≥ σj , this can only occur if σj , the 1-norm of

the jth column of the strictly lower triangular part of T−1, underflows. We note
that this is very unlikely and that underflow does not cause the algorithm to break
down.

When considering T̃ , we can use a similar approach that also adds the absolute
values of the diagonal elements of T−1. This enables us to compute the 1-norm
of the jth column of the upper triangular part of T−1, denoted by σ̃j , in O(n)
operations without the risk of underflow. Defining σn = 0 the 1-norm of T−1 is
then given by

‖T−1‖1 = max
j=1:n

(σj + σ̃j).

The pseudocode in the following algorithm summarizes the method described
above. The function (φ, ψ, r) = Givens(a, b) computes r =

√
a2 + b2, φ = a/r and

ψ = b/r, and guards against overflow.
Algorithm 2.1. Computes τ = ‖T−1‖1, where T is given by (2.1).
1 for k = 1: 2
2 a = α1, g = γ1, u

′

1 = 1
3 for i = 1:n− 1
4 (φi, ψi, r

′

i) = Givens(a, βi)
5 if r′i = 0, τ = ∞, return, end
6 s′i = −ψi(φig + ψiαi+1)
7 a = −ψig + φiαi+1, u

′

i+1 = φi, v
′

i = φi

8 if i < n− 1, ti = ψ2
i γi+1, g = φiγi+1, end

9 if i > 1, t′i−1 = ψit
′

i−1, end
10 end
11 r′n = a, v′n = 1
12 if r′n = 0, τ = ∞, return, end
13 w′

n = v′n/r
′

n

14 w′

n−1 = (v′n−1 − w′

ns
′

n−1)/r
′

n−1

15 for i = n− 2:−1: 1
16 w′

i = (v′i − w′

i+1s
′

i − w′

i+2t
′

i)/r
′

i

17 end
18 if k = 1
19 Compute σj using the code given in (2.10)
20 α = α(n:−1: 1), δ = β, β = γ(n− 1:−1: 1), γ = δ(n− 1:−1: 1)
21 else
22 σ̃n = |w′

n|
23 for i = n− 1:−1: 1
24 σ̃i = σ̃i+1|ψj | + |w′

i|
25 end
26 for i = 1:n− 1, σ̃j = σ̃j |u′j |, end
27 end
28 end
29 τ = maxi=1:n(σi + σ̃n−i+1)

5

Cost: Assuming the function Givens requires 6 operations, the total cost is
51n operations.

Lines 2–12 compute the vectors r′, s′, t′ in (2.8), u′ in (2.9) and v′ in (2.7) and
lines 13–17 solve the linear system R′w′ = v′. The 1-norms of the columns of the
strictly lower and the upper triangular parts of T−1 are computed in lines 19 and
22–26 respectively. The only divisions in the algorithm are by ri. Hence the test
on line 5 prevents division by zero, which is possible if T is singular.

Algorithm 2.1 does not have to deal with the reduced case separately as in [11],
or have numerous tests to deal with the reduced case as in [6]. It can also be easily
be adapted to compute ‖T−1‖1 for T ∈ Cn×n by using complex Givens rotations
and the complex conjugate of v′ in (2.7).

We note that there are certain similarities between Algorithm 2.1 and those
in [6]. All the algorithms use factorizations: triangular factorizations in [6] and
orthogonal factorizations in Algorithm 2.1. Also, Algorithm 2.1 and the algorithms
in [6] both compute two factorizations, with the first proceeding from the top of T
to the bottom and the second from bottom of T to the top. In Algorithm 2.1 this
takes the form of a QR factorization followed by a QL factorization, whereas in [6]
the factorizations T = L+D+U+ and T = L−D−U− are computed, where L+ and
L− are lower bidiagonal, U+ and U− upper bidiagonal, and D+ and D− diagonal.

2.2. Reducing the operation count. The matrix T in (2.1) is said to be
unreduced if βiγi 6= 0 for i = 1:n− 1. If T is unreduced then it can be scaled using
the diagonal matrix

D = diag(di), d1 = 1, di =
β1 . . . βi−1

γ1 . . . γi−1
, i > 1,

so that T̃ = TD is symmetric. In this section we will use this property to obtain
an algorithm for computing ‖T−1‖1 that requires approximately half the number
of operations of Algorithm 2.1.

We first note that it is also possible to use a similar scaling so that Ť = ĎT
is symmetric, where Ď is diagonal and is defined by products of γi/βi. A naive
method of computing ‖T−1‖1 would be to use this scaling to form Ť , compute the
absolute column sums of Ť−1 using the ideas of Section 2.1 and making use of its
symmetry, and then recover the absolute column sums of T−1 using T−1 = Ť−1Ď.
Explicitly forming Ť in this approach can lead to underflow and overflow due to
the computation of the elements of Ď. We will use the scaling T̃ = TD without
forming T̃ and use the structure of T−1 to deal with reduced T .

The QR factorization of T̃ has the form

QT T̃ = RD,

where Q and R satisfy QTT = R and can be computed using (2.4). The matrix Q

is defined by (2.5). The (i, j) element of T̃−1, η̃ij , is therefore given by

η̃ij = d−1
i ujwi,

where w is the solution of the triangular system Rw = v.
In Section 2.1 we showed how to scale the system Rw = v to avoid underflow

and overflow. Using the same procedure here we find that

|η̃ij | = |d−1
i ψj . . . ψi−1u

′

jw
′

i|, i ≥ j,

where u′ is defined by (2.9) and w′ is defined by (2.7).

Since T−1 = DT̃−1 the (i, j) element of T−1, ηij , satisfies

|ηij | = |ψj . . . ψi−1u
′

jw
′

i|, i ≥ j,

6

which is precisely what we found in Section 2.1. Therefore the 1-norm of the jth
column of the strictly lower triangle of T−1, σj , can be calculated as described in
Section 2.1.

Using the symmetry of T̃−1 the upper triangular elements of T̃−1 satisfy

|η̃ij | = |d−1
j ψi . . . ψj−1u

′

iw
′

j |, i ≤ j,

and therefore using T−1 = DT̃−1

|ηij | =

∣∣∣∣
di

dj

ψi . . . ψj−1u
′

iw
′

j

∣∣∣∣ , i ≤ j,

=

∣∣∣∣
γi . . . γj−1

βi · · ·βj−1
ψi . . . ψj−1u

′

iw
′

j

∣∣∣∣ .(2.11)

Using nested multiplication, similar to that described for computing σj , we can
compute the 1-norm of the jth column of the upper triangle of T−1, σ̃j , using

1 σ̃1 = |u′1|
2 for j = 1:n− 1
3 σ̃j+1 = σ̃j |γjψj/βj | + |u′j+1|
4 end
5 for j = 1:n, σ̃j = |w′

j |σ̃j , end

(2.12)

Computing σ̃j in this way allows us to make use of the lower triangular part of T−1

to find the upper triangular part and therefore approximately halves the number
of operations required compared with the method of the previous section. We note
that we encounter division by zero when computing σ̃j if βj = 0 and hence the
procedure described above is only valid for tridiagonal matrices with all βj 6= 0.
However, it is possible to remove this restriction by considering the structure of T
when bk = 0 for some k.

If the tridiagonal matrix T has bk = 0 then we can write it as

T =

[
T1 C
0 T2

]
, T1 ∈ R

k×k, T2 ∈ R
(n−k)×(n−k), C ∈ R

k×(n−k),

where C = ck−1eke
T
1 and ej denotes the jth unit vector. The inverse of the tridi-

agonal matrix is then given by

T−1 =

[
T−1

1 −T−1
1 CT−1

2

0 T−1
2

]
,

and

T−1
1 CT−1

2 = ck−1(T
−1
1 ek)(T−1

2 e1)
T .(2.13)

We note that the kth column sum of xyT , where x, y ∈ Rn, is ‖x‖1|yk| and therefore
we can find the column sums of (2.13) using the last column sum of T−1

1 and the
first row of T−1

2 .
Suppose we are using the procedure described in (2.12) to compute σ̃j . Then

if we encounter a βj that is zero at line 3, the absolute last column sum of T−1
1 is

given by w′

j σ̃j . The absolute values of the entries of the upper triangular part of

T−1
2 are given by (2.11). Since we know the last absolute column sum of T−1

1 and
the absolute values of the first row of T−1

2 , we can combine these and the absolute
values of the upper triangular part of T−1

2 to give the 1-norm of the jth column of
the upper triangular part of T−1 for j = k + 1:n. This is achieved by setting

σ̃j+1 = |σ̃jwjcju
′

j+1| + |u′j+1|,
7

instead of line 3. The |u′j+1| term corresponds to the 1-norm of the upper triangular

part of T−1
2 and the other term corresponds to the 1-norm of the columns of (2.13).

Clearly these ideas apply to T−1
1 and T−1

2 and therefore the procedure will work
if there are several βk equal to zero. We summarize this method of computing the
absolute column sums of the upper triangular part of T−1 as follows:

1 σ̃1 = |u′1|
2 for j = 1:n− 1
3 if βj = 0
4 σ̃j+1 = |σ̃jw

′

jγju
′

j+1| + |u′j+1|
5 else
6 σ̃j+1 = σ̃j |γjψj/βj | + |u′j+1|
7 end
8 end
9 for j = 1:n, σ̃j = |w′

j |σ̃j , end

(2.14)

Defining σn = 0, we have ‖T−1‖1 = maxj=1:n(σj +σ̃j). The following algorithm
computes ‖T−1‖1 using the method described in this section.

Algorithm 2.2. Computes τ = ‖T−1‖1, where T is given by (2.1).
1 Use lines 2–12 and 19 in Algorithm 2.1 to compute σi

2 Compute σ̃i using the code in (2.14)
3 τ = maxi=1:n(σi + σ̃i)
Cost: Assuming the function Givens requires 6 operations, the total cost is

31n operations.

2.3. Rounding error analysis. A rounding error analysis of Algorithm 2.1
is given. We have been unable to give a rounding error analysis of Algorithm 2.2
since when considering the upper triangular part of T−1 we obtain error results
which are bounded by the norm of T̃ = TD, which cannot be bounded a priori.
However, extensive numerical experiments suggest that Algorithm 2.2 behaves in a
stable way.

We will use the standard model for floating point arithmetic:

fl(x op y) = (x op y)(1 + δ1) =
x op y

1 + δ2
, |δ1|, |δ2| ≤ u, op = +,−, /, ∗,

where u is the unit roundoff of the computer. We denote by ‖ · ‖F the unitarily
invariant Frobenius norm and make use of the following lemmas [12].

Lemma 2.2 ([12, Lem. 3.4]). If |δi| ≤ u and ρi = ±1 for i = 1:n, and nu < 1,
then

n∏

i=1

(1 + δi)
ρi = 1 + θn,

where

|θn| ≤
nu

1 − nu
=: γn.

We also make use of the constant

γ̃n =
cnu

1 − cnu
,

where c denotes a small integer constant whose exact value is unimportant.
Lemma 2.3 ([12, Lem. 6.6]). Let A,B ∈ Rn×n. If |A| ≤ |B| then ‖A‖F ≤

‖B‖F .

Lemma 2.4. Let A ∈ Rn×n. Then ‖A‖1 ≤ √
n‖A‖F and ‖A‖F ≤ √

n‖A‖1.

8

Given a tridiagonal matrix T ∈ Rn×n, the first step of the algorithm is to
compute the QR factorization of T . From [12, Thm. 19.10] we have that there

exists an orthogonal Q such that the computed upper triangular matrix R̂ satisfies

T + ∆T = QR̂, ‖∆T‖F ≤ γ̃n‖T‖F .(2.15)

We make the simplifying assumption that the defining variables of the n − 1
Givens rotations, φ1, . . . , φn−1 and ψ1, . . . , ψn−1, are computed exactly. Using D =
diag(d1, . . . , dn), where D is given by (2.4), the components of the computed scaled

upper triangular matrix R̂′ (2.8) satisfy

r̂′i = r̂i,

ŝ′i =
di+1

di

ŝi(1 + ∆si), |∆si| ≤ γ1,

t̂′i =
di+2

di

t̂i(1 + ∆ti), |∆ti| ≤ γ2.

We now consider solving the triangular system R̂′w′ = v̂′ and the errors in-
volved in solving the system using backward substitution. Since we have made
the assumption that φ1, . . . , φn−1 are computed exactly, the vectors v′ = D−1v =
[φ1, . . . , φn−1, 1]T and u′ = Du = [1, φ1, . . . , φn−1]

T must also be computed exactly.
The last component of the computed solution to the triangular system therefore
satisfies

r̂nŵ
′

n(1 + θ1) =
vn

dn

,

which simplifies to

dnr̂n(1 + ∆̃rn)ŵ′

n = vn, |∆̃rn| ≤ γ1.

The computed component ŵ′

n−1 satisfies

r̂n−1ŵ
′

n−1(1 + θ′1) =
vn−1

dn−1
− ŵ′

n

dn

dn−1
ŝn−1(1 + ∆sn−1)(1 + θ3),

which simplifies to

dn−1r̂n−1(1 + ∆̃rn−1)ŵ
′

n−1 = vn − ŵ′

ndnŝn−1(1 + ∆̃sn−1),

where |∆̃rn−1| ≤ γ1, and |∆̃sn−1| ≤ γ4.
Similarly for i = 1:n− 2, ŵ′

i satisfies

dir̂i(1 + ∆̃ri)ŵ
′

i = vi − ŵ′

i+1di+1ŝi(1 + ∆̃si) − ŵ′

i+2di+2 t̂i(1 + ∆̃ti),

where

|∆̃ri| ≤ γ1, |∆̃si| ≤ γ4, |∆̃ti| ≤ γ5.

Combining the above results for all the components of ŵ′ and using Lemma 2.3
gives

(R̂+ ∆̃R)Dŵ′ = v,(2.16)

where

‖∆̃R‖F ≤ γ5‖R̂‖F ≤ γ5‖T‖F +O(u2).

9

By considering the errors in computing σj using nested multiplication as de-
scribed in Section 2.1, the computed 1-norm of the jth column of the lower trian-
gular part of T−1 is found to satisfy

σ̂j =




n∑

i=j

|η̂ij |


 (1 + γ2n−2),(2.17)

where

η̂ij = (−1)i+jψj . . . ψi−1û
′

jŵ
′

i

= diuje
T
i ŵ

′

= diuje
T
i D

−1(R̂+ ∆̃R)−1v using (2.16)

= eT
i (R̂ + ∆̃R)−1QT ej .

Rearranging (2.15) gives R̂ = QT (T + ∆T) and hence

η̂ij = eT
i (QT (T + ∆T) + ∆̃R)−1QT ej

= eT
i (T + ∆T +Q∆̃R)−1ej

= eT
i (T + ∆̃T)−1ej ,

where

‖∆̃T‖F = ‖∆T +Q∆̃R‖F ≤ γ̃n‖T‖F .

Using Lemma 2.4 we have

‖∆̃T‖1 ≤ nγ̃n‖T‖1.

Using the result [19]

‖A−1 − (A+E)−1‖1

‖A−1‖1
≤ e

1 − e
, e = κ1(A)

‖E‖1

‖A‖1
< 1,

and defining (T̂−1)ij = η̂ij we have

‖T̂−1 − T−1‖1

‖T−1‖1
=

‖(T + ∆̃T)−1 − T−1‖1

‖T−1‖1

≤ e

1 − e
, e = κ1(T)

‖∆̃T‖1

‖T‖1
< 1.

Therefore

‖T̂−1 − T−1‖1 ≤ κ1(T)
‖∆̃T‖1‖T−1‖1

‖T‖1

≤ nγ̃nκ1(T)‖T−1‖1.(2.18)

Using (2.17) and (2.18)

|σ̂j − σj | ≈

∣∣∣∣∣∣

n∑

i=j

(|η̂ij | − |ηij |)

∣∣∣∣∣∣
≤

n∑

i=j

|η̂ij − ηij | ≤ nγ̃nκ1(T)‖T−1‖1.

A similar result holds for the 1-norm of the columns of the upper triangular part of
T−1. Hence if we denote by τ̂ , our approximation to ‖T−1‖1, computed in floating
point arithmetic, we have

|τ̂ − ‖T−1‖1|
‖T−1‖1

≤ 2nγ̃nκ1(T).(2.19)

This error result is the best we can expect, since it can be shown that the condition
number of computing the condition number is the condition number [10].

10

2.4. Numerical experiments. We compare the accuracy of our new al-
gorithms against Dhillon’s recommended algorithm nrminv final2, Algorithm 4.2
from [11] and MATLAB’s cond, which computes the condition number of a ma-
trix in O(n3) operations. The speed of the new algorithms is tested with Dhillon’s
nrminv final2 but also the quicker algorithm nrminv final1. The test matrices are
described in Table 2.1.

Table 2.1
Test matrices.

Matrix Type Description
1 Nonsymmetric random tridiagonal, elements uniformly distributed in [−1, 1].
2 gallery(’randsvd’,100,1e15,2,1,1) in MATLAB, which creates a random

tridiagonal matrix with all singular values close to 1 except for one that is of
order 10−15 , so that the 2-norm condition number is 1015.

3 gallery(’randsvd’,100,1e15,3,1,1) in MATLAB, which creates a random
tridiagonal matrix with geometrically distributed singular values and 2-norm
condition number 1015.

4 Tridiagonal with αi = 108, βi = γi = 1.
5 Tridiagonal with αi = 10−8, βi = γi = 1.
6 gallery(’lesp’,100) in MATLAB.
7 gallery(’dorr’,100,1e-4) in MATLAB.
8 Nonsymmetric tridiagonal, elements uniformly distributed in [−1, 1] except

β50 given by 1 × 10−50 multiplied by a random number in [−1, 1].
9 Nonsymmetric tridiagonal, elements of α and γ uniformly distributed in

[−1, 1] and βi given by 1 × 10−50 multiplied by a random number in [−1, 1],
for i = 1: n.

10 Symmetric tridiagonal with αi = 0, βi = γi = 1.

The results, given in Table 2.2, show that the new algorithms give the results
up to four decimal place of accuracy for all but test matrix 7. Also, the new
algorithms do not suffer from the underflow and overflow problems of Higham’s
algorithm, which breaks down for test matrices 2, 4, 6, and 9 due to overflow. All
the algorithms correctly detect the singular test matrix 10. The difference in results
for test matrix 7 are due to rounding errors, and in fact all the methods tested are
inaccurate since the actual condition number is 8.885×1024. As noted in Section 2.3,
the best error bound we can expect to obtain for computing the condition number
is of the form (2.19). In this case the bound (2.19) is approximately 1034 which
suggests that the computed condition number may be inaccurate.

Table 2.2
Computation of κ1(T) on test matrices. Test matrices 1 − −9 are of order 100 and test

matrix 10 is of order 99.

Matrix Higham’s nrminv final2 Algorithm Algorithm MATLAB’s
Type algorithm 2.1 2.2 cond

1 2.9946e+03 2.9946e+03 2.9946e+03 2.9946e+03 2.9946e+03
2 NaN 1.4979e+15 1.4979e+15 1.4979e+15 1.4979e+15
3 4.5336e+15 4.5336e+15 4.5336e+15 4.5336e+15 4.5336e+15
4 NaN 1.0000 1.0000 1.0000 1.0000
5 100.0000 100.0000 100.0000 100.0000 100.000
6 NaN 67.1164 67.1164 67.1164 67.1164
7 2.3712e+19 2.7617e+19 1.9403e+19 2.1895e+19 3.5211e+19
8 1.0568e+04 1.0568e+04 1.0568e+04 1.0568e+04 1.0568e+04
9 NaN 6.1603e+10 6.1603e+10 6.1603e+10 6.1603e+10
10 ∞ ∞ ∞ ∞ ∞

Before we consider the times taken by the various algorithms we first consider
the cost. For Algorithms 2.1 and 2.2, this depends on how the function Givens is
implemented. In our experiments we use the LAPACK [1] routine DLARTG in place
of Givens, which requires at most 10 operations but typically 6. The maximum

11

number of operations required by the algorithms for computing ‖T−1‖1 are given
in Table 2.3.

Table 2.3
The maximum number of operations required to compute the 1-norm of the inverse of an

n × n tridiagonal matrix for Dhillon’s algorithms and the algorithms presented here.

Algorithm nrminv final1 nrminv final2 Algorithm 2.1 Algorithm 2.2
Total 22n 27n 59n 35n

Table 2.4 shows the times taken for the new algorithms and Dhillon’s algorithms
to compute κ1(T) for nonsymmetric random tridiagonal matrices. The algorithms
were implemented in Fortran 77 and compiled using the NAGWare Fortran 95 com-
piler with the normal optimization level (-O2) and IEEE arithmetic. The machine
used was a 2010MHz AMD Athlon machine running Linux.

The results show that nrminv final1 is the quickest as expected. However,
Algorithm 2.2 runs much more quickly than the operation count would suggest,
which could be due to the fewer if-statements required. As a result, Algorithm 2.2
is only marginally slower than nrminv final1. However Algorithm 2.2 is quicker
than nrminv final2, which is the recommended algorithm in [6] due to less element
growth in its computation. Interestingly, if compiled with no optimization (-O0)
Algorithm 2.2 is as quick as nrminv final1.

Table 2.4
Time taken in seconds to compute the 1-norm of the inverse of a random n × n tridiagonal

matrix, for various n.

Dimension 106 2 × 106 4 × 106 6 × 106 8 × 106

nrminv final1 0.31 0.60 1.22 1.78 2.54
nrminv final2 0.37 0.73 1.45 2.17 3.08
Algorithm 2.1 0.60 1.20 2.37 3.54 4.87
Algorithm 2.2 0.33 0.65 1.26 1.93 2.72

3. Diagonal-plus-semiseparable matrices. A semiseparable matrix, S, is
the sum of the strictly upper triangular part of a rank-1 matrix and the lower
triangular part of another rank-1 matrix,

S = tril(qpT , 0) + triu(xyT , 1)

Here, tril(A, i) denotes a matrix A with the entries above the ith diagonal set to
zero, where i = 0 is the leading diagonal and i > 0, i < 0, is above and below the
leading diagonal respectively. Similarly triu(A, i) denotes A with the entries below
the ith diagonal set to zero.

A diagonal-plus-semiseparable (dpss) matrix, A, is the sum of a diagonal matrix
and a semiseparable matrix:

A = diag(z) + S =




p1q1 + z1 x1y2 · · · x1yn

p1q2
. . .

. . .
...

...
. . . xn−1yn

p1qn · · · pn−1qn pnqn + zn


 .(3.1)

We assume that A is nonsingular.
Assuming that the defining vectors p, q, x, y and z are given, we show how

to compute the condition number of A in O(n) operations. This is achieved in a
similar way to the tridiagonal case in Section 2.1. We will again make use of the
special structure of Q and R in the QR factorization of A, solve a scaled linear

12

system and form absolute column sums using methods that avoid underflow and
overflow.

We first note that it is possible to compute ‖A‖1 in O(n) operations since the
ith absolute column sum can be computed using

|yi|(|x1| + |x2| + · · · + |xi−1|) + |pi|(|qi+1| + |qi+2| + · · · + |qn|) + |piqi + zi|.

By accumulating the sums |x1|+ |x2|+ · · ·+ |xi−1| and |qi+1|+ |qi+2|+ · · ·+ |qn| we
can compute the absolute column sums and hence ‖A‖1 in O(n) operations. The
problem remains to compute ‖A−1‖1.

3.1. Computing the 1-norm of the inverse of a dpss matrix. The
QR factorization of a diagonal-plus-semiseparable matrix can be considered in two
stages. First, it is shown in [2] that by applying Givens rotations and scaling we
can find an orthogonal matrix Q1 ∈ Rn×n so that QT

1 A = H , where H is upper
Hessenberg. We require the condition qn 6= 0, however we later show that if qn = 0
we need only consider a principal submatrix of A. The special structure of H and
Q1 is described in the following proposition which summarizes the result from [2].

Proposition 3.1. The upper Hessenberg matrix H = QT
1 A has an upper

triangular part that is equal to the upper triangular part of the rank-2 matrix abT +
fgT ∈ Rn×n and subdiagonal h ∈ Rn−1 , where

a =




1
q1
q2
...

qn−1



, b =




p1µ1 + z1q1
(q1x1)y2 + p2µ2 + z2q2

(
∑2

i=1 qixi)y3 + p3µ3 + z3q3
...

(
∑n−1

i=1 qixi)yn + pnµn + znqn



,(3.2)

f =




0
−µ1x1

−(
∑1

i=1 qixi)q2 − µ2x2

...

−(
∑n−2

i=1 qixi)qn−1 − µn−1xn−1



, g = y, h =




−z1µ2

−z2µ3
...

−zn−1µn


 ,(3.3)

with µi = q2i + · · · + q2n. The orthogonal matrix QT
1 is upper Hessenberg with an

upper triangular part that is equal to the upper triangular part of the rank-1 matrix

rsT ∈ Rn×n and subdiagonal t ∈ Rn−1 , where

r =




1
q1
q2
...

qn−1



, s = q, t =




−µ2

−µ3
...

−µn


 .(3.4)

We note that the defining vectors of H and QT
1 can all be computed in O(n)

operations.
The second stage is to reduceH to upper triangular form, which can be achieved

by n− 1 Givens rotations, Gi, defined by (2.3).
The first Givens rotation G1 is chosen to zero the first element of the subdiag-

onal of H , and is therefore defined by φ1 = (a1b1 + f1g1)/τ1 and ψ1 = h1/τ1 with
τ1 =

√
(a1b1 + f1g1)2 + h2

1. Since G1 zeros h1 and the upper triangular part of H is
the upper triangular part of abT + fgT , we apply G1 to a and f to give a(1) = G1a
and f (1) = G1f . Except for the first diagonal element, the upper triangular part of
G1H is the upper triangular part of the rank-2 matrix a(1)bT + f (1)gT . The first
diagonal element is given by τ1.

13

This can be repeated to zero the ith subdiagonal element of Gi−1 . . . G1H by
choosing

τi =

√
(a

(i−1)
i bi + f

(i−1)
i gi)2 + h2

i ,

φi = (a
(i−1)
i bi + f

(i−1)
i gi)/τi, ψi = hi/τi,

and forming a(i) = Gia
(i−1) and f (i) = Gif

(i−1).
After the n− 1 Givens rotations have been applied

QT
2Q

T
1 A = QT

2H = Gn−1 . . . G1H = R,(3.5)

where R is upper triangular. The strictly upper triangular part of R is the strictly
upper triangular part of a(n−1)bT + f (n−1)gT , where

a(n−1) = Gn−1 . . . G1a and f (n−1) = Gn−1 . . .G1f,

and the ith diagonal of R is given by τi for i = 1:n−1 and the nth diagonal element

is given by τn ≡ a
(n−1)
n bn+f

(n−1)
n gn. Since QT

2 is a product of n−1 Givens rotations
applied from top to bottom the structure of QT

2 is given by (2.5).
From (3.5), we have A−1 = R−1QT

2Q
T
1 . In order to compute ‖A−1‖1 we first

show how to find the lower triangular elements of R−1QT
2 by using a similar ap-

proach to how the lower triangular elements of the inverse of a tridiagonal matrix
are found in Section 2.1.

The (i, j) element of R−1QT
2 is

(R−1QT
2)ij = eT

i R
−1QT

2 ej = uje
T
i R

−1v, i ≥ j,

where ei denotes the ith unit vector. If we let w be the solution of the triangular
system Rw = v then

(R−1QT
2)ij = ujwi, i ≥ j.

In [2] it is shown that if the strictly upper triangular part of R is the strictly
upper triangular part of a rank-2 matrix then the triangular system Rw = v can be
solved in O(n) operations. However this method would require products of ψi in u
and v which may cause underflow and overflow problems. Instead, as in Section 2.1
we scale Rw = v using the diagonal matrix D (2.4) in order to avoid products of
ψi, to give R′w′ = v′ where

R′ = D−1RD, w′ = D−1w, v′ = D−1v = [φ1, . . . , φn−1, 1]T .

The scaled system can also be solved in O(n) operations due to the structure
of D. Given R, D and v′, the following solves R′w′ = v′ where R′ = D−1RD.

1 w′

n = v′n/τn
2 s′ = (−1)n−1ψn−1w

′

n[bn gn]T

3 w′

n−1 = (v′n−1 − (−1)n−2[an−1 fn−1]s
′)/τn−1

4 for i = n− 2:−1: 1
5 s′ = (s′ + (−1)iw′

i+1[bi+1 gi+1]
T)ψi

6 w′

i = (v′i − (−1)i−1[ai fi]s
′)/τi

7 end

(3.6)

Let

u′ = [1, φ1, . . . , φn−1]
T .

14

Since w = Dw′ and u = D−1u′, the diagonal elements of R−1QT
2 are given by

uiwi = u′iw
′

i, i = 1:n.(3.7)

The strictly lower triangular elements are given by

ujwi = (−1)i+j−1ψj . . . ψi−1u
′

jw
′

i, i > j.(3.8)

The lower triangular part of R−1QT
2 is therefore defined by the three vectors, u′,

w′ and ψ.
The structure of tril(R−1QT

2 , 0) and QT
1 can now be exploited to find the jth

absolute column sum of the strictly lower triangular part of A−1 = R−1QT
2Q

T
1 .

Using (3.7), (3.8) and (3.4), the (i, j), i > j, element of A−1 is given by

(A−1)ij =

j∑

k=1

(
(−1)k+i−1

i−1∏

l=k

ψl

)
u′kw

′

irksj +

(
(−1)j+i

i−1∏

l=j+1

ψl

)
u′j+1w

′

itj

=

(
(−1)i+j

i−1∏

l=j+1

ψl

)
w′

i

(
sj

j∑

k=1

(
(−1)j+k

j∏

l=k

ψl

)
u′krk + u′j+1tj

)
.

The jth absolute column sum of the strictly lower triangular part of A−1 is therefore
given by

σj =

∣∣∣∣∣

n∑

i=j+1

(
(−1)j+i

i−1∏

l=j+1

ψl

)
w′

i

∣∣∣∣∣ ·
∣∣∣∣∣sj

j∑

k=1

(
(−1)k+j

j∏

l=k

ψl

)
u′krk + u′j+1tj

∣∣∣∣∣.

By considering

x′j =

n∑

i=j+1

(
(−1)j+i

i−1∏

l=j+1

ψl

)
w′

i

and

y′j = sj

j∑

k=1

(
(−1)k+j

j∏

l=k

ψl

)
u′krk + u′j+1tj ,

separately, given w′, u′, ψ, r, s and t we can compute σj for j = 1:n − 1 in O(n)
operations as follows:

1 ψ = −ψ
2 y′1 = ψ1u

′

1r1
3 x′n = |w′

n|
4 for i = 2:n− 1
5 y′i = (y′i−1 + u′iri)ψi

6 x′n−i = |x′n−i+1ψn−i+1 + w′

n−i+1|
7 end
8 for i = 1:n− 1
9 σi = x′i|y′isi + u′i+1ti|

10 end

(3.9)

In order to find the jth absolute column sum of the upper triangular part of
A−1, σ̃j , we can consider Ã = JAJ , where J has only ones on the antidiagonal. By
swapping p and q with y and x respectively, reversing the order of the vectors z, p,
q, x and y, and setting zi = xiyi + zi − piqi for i = 1:n, we can repeat the above

15

process on Ã to find the absolute columns sums of the strictly lower triangular part
of Ã−1 and hence the absolute column sums of the strictly upper triangular part of
A−1.

We have shown how to find the strictly lower and strictly upper triangular parts
of A−1, and it remains to find the diagonal elements of A−1. Given the strictly lower
and strictly upper triangular parts of A−1 it is possible to use AA−1 = I to find the
diagonal elements of A−1 in O(n) operations. However, this requires division by
the diagonal elements of A, and the diagonal may contain zeros or elements close
to zero that cause either breakdown of the algorithm or inaccurate results.

An alternative is to consider RA−1 = QT
2Q

T
1 and make use of

R(i, :)A−1(: , i) = (QT
2Q

T
1)ii.

The diagonal elements of A−1 therefore satisfy

(A−1)ii =

{
(QT

2
QT

1
)ii−R(i,i+1:n)A−1(i+1:n,i)

τi

, i < n,
(QT

2
QT

1
)ii

τi

, i = n.
(3.10)

It is possible to divide by τi ≡ R(i, i) since τi 6= 0 as A is nonsingular. The structure
of QT

1 and QT
2 is described in Proposition 3.1 and Theorem 2.1 respectively, and it

is not difficult to check that given that we have used the code in (3.6) and (3.9),
the following computes ci := (QT

2 Q
T
1)ii for i < n in O(n) operations.

1 s′ = w′

n[bn gn]
2 cn−1 = y′n−1s

′[an−1 fn−1]
T

3 for i = n− 2:−1: 1
4 s′ = ψi+1s

′ + w′

i+1[bi+1 gi+1]
5 ci = y′is

′[ai fi]
T

6 end

(3.11)

Similarly, by considering the structure of R and the strictly lower triangular
part of A−1, we can compute c̃i := R(i, i + 1:)A−1(i + 1:n, i) for i ≤ n in O(n)
operations as follows.

1 c̃1 = u′1a1

2 for i = 2:n
3 c̃i = c̃i−1ψi−1 + u′iai

4 end
5 for i = 1:n− 1
6 c̃i = c̃ivisi + ψiti
7 end
8 c̃n = c̃nvnsn

(3.12)

The absolute column sums and the absolute value of the diagonal of A−1 can
now be combined to give

‖A−1‖1 = max
i=1:n

(σi + σ̃i + |(A−1)ii|).

The following algorithm computes ‖A−1‖1 in O(n) operations.
Algorithm 3.1. Computes ξ = ‖A−1‖1, where A is an n × n dpss matrix

given by (3.1) with qn 6= 0 and x1 6= 0.
1 Compute vectors in (3.2), (3.3) and (3.4) efficiently
2 for i = 1:n− 1
3 (φi, ψi, τi) = Givens(aibi + figi, hi) and let Gi be given by (2.3)

16

4 a = Gia, f = Gif
5 ui+1 = φi, vi = φi

6 end
7 τn = anbn + fngn

8 Solve R′w′ = v′ using the code in (3.6)
9 Compute σi for i < n using the code in (3.9)

10 Set σ̃ = σ and repeat above on Ã
11 Compute (QT

2Q
T
1)ii using the code in (3.11)

12 Compute R(i, i+ 1 :)A−1(i+ 1 : n, i) using the code in (3.12)
13 Compute (A−1)ii for i ≤ n using (3.10)
14 ξ = maxi=1:n(σ̃i + σn−i+1 + |(A−1)n−i+1,n−i+1|)

Cost: Assuming the function Givens requires 6 operations, the total cost is 133n
operations.

The restrictions qn 6= 0 and x1 6= 0 in Algorithm 3.1 can easily be removed
by considering the structure of A−1. For example, if qi, . . . , qn are all zero, then
the last n − i + 1 columns of the strictly lower triangular part of A−1 are zero
and (A−1)jj = 1/zi for j = i:n. Therefore, the absolute column sums of the
strictly lower triangular part of A−1 can be computed by applying lines 1–9 on
A(1: i− 1, 1: i− 1).

3.2. Numerical experiments. To test Algorithm 3.1 we gave the defining
vectors of a dpss matrix random elements in [−1, 1]. We tested the resulting dpss
matrix and the matrices obtained by raising the components of the defining vectors
to the powers 2 to 6 elementwise. This was repeated twenty times to give 120
test matrices with condition numbers varying from approximately 104 to 5 × 1025.
The condition numbers of these test matrices were computed using Algorithm 3.1
and by forming the dpss matrices and using MATLAB’s cond. The quantity β =
(ξ−κ1(A))/κ1(A)2 was computed, where ξ denotes the condition number computed
using Algorithm 3.1 and κ1(A) denotes the condition number computed using cond,
and they are shown in Figure 3.1. We divide by κ1(A)2 since the condition number
of computing κ1(A) is κ1(A) [10]. Thus we expect β = O(u) for a forward stable
method, where u ≈ 10−16 is the unit roundoff. The results show that Algorithm 3.1
performs in a forward stable way.

0 20 40 60 80 100 120
10

−30

10
−28

10
−26

10
−24

10
−22

10
−20

10
−18

Test Matrices

β

Fig. 3.1. β = (ξ−κ1(A))/κ1(A)2 for 120 test matrices A ∈ R
100×100 with varying condition

numbers.

17

The test matrices described above are all full matrices. Diagonal-plus-semiseparable
matrices with various components of the defining vectors set to zero were also tested
for which accurate results were obtained.

The condition number of a general real matrix can be estimated in O(n2) op-
erations using the LAPACK [1] routine DLACON. The algorithm estimates ‖B‖1

iteratively, for an arbitrary B, by computing the matrix-vector products Bx and
BT y at each iteration for carefully chosen x and y. No more than five iterations
are usually required [12, Sec. 15.3]. Therefore if we have a factorization of A such
as an LU factorization or a QR factorization then we can form the matrix-vector
products for B = A−1 in O(n2) operations and hence estimate ‖A−1‖1 in O(n2)
operations.

In [2], given the defining vectors of a dpss matrix, A, the QR factorization of
A is considered to give an algorithm for solving the linear system Ax = b in O(n)
operations. By storing the required vectors that define the QR factorizations of A
and AT , the LAPACK algorithm can be adapted to estimate ‖A−1‖1 in O(n) oper-
ations. We emphasize that this method only estimates ‖A−1‖1 and that inaccurate
estimates can easily occur.

We have found experimentally that estimating the 1-norm of the inverse of a
dpss matrix in this way requires two iterations, but this still requires 177n oper-
ations which, is 44n more than that required for Algorithm 3.1. Table 3.1 shows
the times taken in seconds to estimate ‖A−1‖1 using an adapted version of the
LAPACK algorithm for dpss matrices and the times taken to compute ‖A−1‖1 us-
ing Algorithm 3.1. The algorithms were implemented using Fortran 95 and run on
a 2010MHz AMD Athlon machine. The results show that Algorithm 3.1, which
actually computes ‖A−1‖1, is quickest.

Table 3.1
Time taken in seconds to compute the 1-norm of the inverse of a random n×n dpss matrix,

for various n.

Algorithm n = 5 × 105 n = 106 n = 2 × 106 n = 5 × 106

Algorithm 3.1 0.78 1.55 3.04 7.44
LAPACK style 1.15 2.23 4.52 10.83

4. Conclusion. We have presented two algorithms that compute the condition
number of a tridiagonal matrix in O(n) operations. The algorithms avoid underflow
and overflow and do not require tests for degenerate cases as in [6]. The second
algorithm is marginally slower than the quickest algorithm in [6], but is faster than
the recommended algorithm in [6]. An O(n) algorithm to compute the condition
number of a diagonal-plus-semiseparable matrix has also been given. Not only does
this compute the condition number exactly, but it is also significantly quicker than
a specialized implementation of the LAPACK condition number estimator.

5. Acknowledgements. I would like to thank Nick Higham for his invaluable
comments on this work.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D.
Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK

Users’ Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
third ed., 1999.

[2] M. Van Barel, E. Van Camp, and N. Mastronardi, Two fast algorithms for solving

diagonal-plus-semiseparable linear systems, J. Comput. Appl. Math., 164–165 (2004),
pp. 731–747.

18

[3] M. Van Barel, L. G. D. Fasino and, and N. Mastronardi, Orthogonal rational func-

tions and structured matrices., Tech. Report TW350, Katholieke Universiteit Leuven,
Belgium, 2002.

[4] D. A. Bini, L. Gemignani, and F. Tisseur, The Ehrlich-Aberth method for the nonsym-

metric tridiagonal eigenvalue problem, Numerical Analysis Report No. 428, Manchester
Centre for Computational Mathematics, Manchester, England, June 2003. To appear in
SIAM J. Matrix Anal. Appl.

[5] S. Chandrasekaran and M. Gu, Fast and stable algorithms for banded plus semiseparable

matrices, SIAM J. Matrix. Anal. Appl., 25 (2003), pp. 373–384.
[6] I. Dhillon, Reliable computation of the condition number of a tridiagonal matrix in O(n)

time, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 776–796.
[7] Y. Eidelman and I. Gohberg, A modification of the Dewilde-van der Veen method for

inversion of finite structured matrices, Linear Algebra and its Applications, 343–344
(2001), pp. 419–450.

[8] P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders, Methods for modifying matrix

factorizations, Mathematics of Computation, 28 (1974), pp. 505–535.
[9] L. Greengard and V. Rokhlin, On the solution of two-point boundary value problems,

Comm. Pure Appl. Math., 44 (1991), pp. 419–452.
[10] D. J. Higham, Condition numbers and their condition numbers, Linear Algebra Appl., 214

(1995), pp. 193–213.
[11] N. J. Higham, Efficient algorithms for computing the condition number of a tridiagonal

matrix, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 150–165.
[12] , Accuracy and Stability of Numerical Algorithms, Society for Industrial and Applied

Mathematics, Philadelphia, PA, USA, second ed., 2002.
[13] IEEE standard for binary floating point arithmetic, Tech. Report Std. 754–1985,

IEEE/ANSI, New York, 1985.
[14] Y. Ikebe, On inverses of Hessenberg matrices, Linear Algebra and its Applications, 24

(1979), pp. 93–97.
[15] S.-Y. Kang, I. Koltracht, and R. Rawitscher, Nyström–Clenshaw–Curtis quadrature for

integral equations with discontinuous kernels, Mathematics of Computation, 72 (2003),
pp. 729–756.

[16] J. Lee and L. Greengard, A fast adaptive numerical method for stiff two-point boundary

value problems, SIAM Journal on Scientific Computing, 18 (1997), pp. 403–429.
[17] N. Mastronardi, S. Chandrasekaran, and S. Van Huffel, Fast and stable two-way

algorithm for diagonal plus semi-separable systems of linear equations, Numerical Linear
Algebra with Applications, 8 (2001), pp. 7–12.

[18] H. P. Starr, On the numerical solution of one-dimensional integral and differential equa-

tions, PhD thesis, Yale University, 1991.
[19] G. W. Stewart, Introduction to Matrix Computations, Academic Press, New York, NY,

USA, 1973.
[20] R. Vandebril, M. Van Barel, and N. Mastronardi, An orthogonal similarity reduction of

a matrix to semiseparable form., Tech. Report TW355, Katholieke Universiteit Leuven,
Belgium, 2003. To appear in SIAM J. Matrix Anal. Appl.

19

