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NON-AXIOMATIZABILITY OF REAL SPECTRA IN L∞λ

TIMOTHY MELLOR AND MARCUS TRESSL

Abstract. We show that the property of a spectral space, to be a spectral

subspace of the real spectrum of a commutative ring, is not expressible in the

infinitary first order language L∞λ of its defining lattice. This generalises a
result of Delzell and Madden which says that not every completely normal

spectral space is a real spectrum.
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1. Introduction

For a while it was an open question whether real spectra are precisely the com-
pletely normal spectral spaces. In [Del-Mad], a counterexample is given, hence a
completely normal spectral space is constructed, which is not homeomorphic to the
real spectrum of any (commutative, unital) ring. We extend this result here in two
ways:

1. We show that the spectral space constructed in [Del-Mad] is also not home-
omorphic to any spectral subspace of a real spectrum.

2. We show that there is no infinitary first order description which charac-
terises real spectra.

The second point needs explanation. By Stone duality, the category of spectral
spaces and spectral maps is anti-equivalent to the category of bounded distributive
lattices and bounded lattice homomorphisms. Hence the question what the topo-
logical type of real spectra is, can also be asked on the lattice side: Classify all
lattices that correspond to real spectra via Stone duality.

Now the class of all bounded distributive lattices is first order axiomatisable
in the language of posets (consisting of one binary relation symbol) and we can
rephrase our question in terms of model theory: Is the class of those lattices that
correspond to real spectra via Stone duality, first order axiomatizable? It should
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be mentioned here that this indeed generalises the original question, since the class
of all lattices corresponding to completely normal spectral spaces is easily seen to
be first-order axiomatizable (by expressing that for each element a of the lattice L,
the lattice {b ∧ ¬a | b ∈ L} is normal, cf. [Joh]).

Now our theorem 5.1 also negates this more general question in a strong way:
The class of all lattices that correspond to real spectra via Stone duality is not first
order axiomatizable even in the infinitary language L∞λ of lattices.

In this context it must be mentioned that the (specialisation-)order type of real
spectra is know by [DiGlLu]. Whereas the (specialisation-)order type of arbitrary
spectral spaces is still unknown (this is called Kaplansky’s problem and asked in
[Kap, chap. 1]). The topological type of Zariski spectra of rings has been deter-
mined by Hochster in the first place: these are precisely the spectral spaces (cf.
[Hoc]).

For model theoretic terminology see [Hod]; the definition of L∞λ can be found
in [Di, p.65]. For basic properties of spectral spaces we refer to [Hoc], [CaCo] and
[Joh]; a summary can be found in [Schw-Tre, section 2]). The definition of the real
spectrum and the fact that it is indeed a completely normal spectral space can be
found in [BCR].

2. Spectral spaces from Dedekind complete orders

Recall that a totally ordered set X = (X,≤) is Dedekind complete if every
subset of X has a supremum in X. In this case, every subset of X has an infimum,
X has a largest element, denoted by > and a smallest element, denoted by ⊥.

If X is a totally ordered set, then the Dedekind completion of X is defined to
be “the” Dedekind complete set X, containing X as an ordered subset, such that
X is dense in X, i.e. for all y1, y2 ∈ X with y1 < y2, if there is no point x ∈ X
with y1 < x < y2, then y1, y2 ∈ X. An explicit description of X is

X := X ∪ {+∞,−∞} ∪ {the non-principal cuts of X}
together with its natural order. Of course we won’t add ±∞ if X has already a
largest or a smallest element. Recall that a cut (L,R) of X is called principal, if
the set L has a supremum in X ∪ {±∞}; these are the cuts of the form ±∞ or of
the form x+ or x− for some x ∈ X.

We recall a few easy facts related to Dedekind complete orders.

2.1. Fact. For every totally ordered set X, the following are equivalent:

(i) X is compact in the interval topology.
(ii) X is Dedekind complete. �

2.2. Fact. If X and Y are Dedekind complete orders, then the lexicographical prod-
uct X × Y is again Dedekind complete. �

2.3. Fact. The following are equivalent for every ordered set X:

(i) X is compact and connected in the interval topology.
(ii) X is Dedekind complete and there is no jump in X, i.e. there are no x < y

in X such that the open interval (x, y) is empty. �

2.4. Fact. The following are equivalent for every ordered set X:

(i) X is boolean (i.e. X is compact and every connected subset of X is a
singleton) in the interval topology.
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(ii) X is Dedekind complete and jump dense, i.e. for all x < y from X there
are x ≤ a < b ≤ y such that (a, b) = ∅.

If this is the case, then the clopen subsets of X are the finite unions of closed
intervals [a, b] such that a has an immediate predecessor in X ∪ {±∞} and b has
an immediate successor in X ∪ {±∞}. �

2.5. Lemma. Let X be a Dedekind complete ordered set and let Y be a Dedekind
complete, boolean ordered set with at least two elements. Then X × Y is again
Dedekind complete and boolean in the lexicographical order topology.

Proof. By 2.2 and 2.4 we only need to show that X × Y is jump dense. This is
obvious. �

Let S be a finite total order with at least 2 elements. We will now consider X×S
lexicographically ordered together with the induced order topology.

By 2.5 the lexicographic productX×S is a boolean and Dedekind complete order.
It is worth noting that the order topology on X×S is in general incompatible with
the product topology on X × S, i.e. neither refines nor coarsens this topology.

2.6. Definition. Let S be an arbitrary boolean space. A partial order ≤ on S is
called a spectral order on S if for all x, y ∈ X with x 6≤ y there is a clopen subset
C of X such that x ∈ C, y 6∈ C and such that C is a final segment of ≤, i.e. for
all c, z ∈ X, c ∈ C and c ≤ z implies z ∈ C. The pair (S,≤) is called a Priestley
space (cf. [Pri]).

A morphism between Priestley spaces (X,≤X) and (Y,≤Y ) is a continuous map
f : X −→ Y which preserves the spectral orders, i.e. a ≤X b⇒ f(a) ≤Y f(b).

We shall use basic properties and terminology of spectral spaces. If X is a spectral
space, then K(X) denotes the set of closed and constructible subsets of X. Note
that K(X) is the bounded distributive lattice corresponding to X via Stone duality
(in our setup, such a lattice L is mapped to the spectral space SpecL of prime
filters of L which has the sets VL(a) := {p ∈ SpecL | a ∈ L} as a basis of closed
sets). We refer to [Schw-Tre, section 2] for more details.

2.7. Theorem. The functor from the category of spectral spaces together with spec-
tral maps to the category of Priestley spaces, which sends X to (Xcon, X) is an
isomorphism. Here Xcon denotes the patch space of X and  X denotes specialisa-
tion in X.

Proof. This is the content of [Pri2]. �

2.8. Example. If X is an ordered set and boolean in the order topology, then there
is a (unique) spectral topology τ on X such that

(a): The constructible topology of τ is the given one on X.
(b): For all x, y ∈ X, x ≤ y in the order of X if and only if y is in the closure of x

w.r.t. τ .

Hence the category of Dedekind complete, totally ordered and jump dense sets
is isomorphic to the category of spectral spaces which have a total specialization
order.

2.9. Proposition. Let X be a Dedekind complete order and let S be a finite spectral
space. Let ≤ be any total order of S such that ⊥S and >S are minimal points in
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the spectral topology of S (of course, such an order only exists if S is a singleton or
not irreducible). Let X × S be equipped with the order topology of the lexicographic
order of X and (S,≤). Then the partial order

(x, s) 4 (y, t) :⇐⇒ x = y and s t in S (i.e. t ∈ {s})
is a spectral order on the boolean space X × S.

Proof. X × S is boolean by 2.5.
Take α = (x, s), β = (y, t) ∈ (X,S) with α 64 β. We have to find a clopen final

segment C such that α ∈ C and β 6∈ C.

Case 1. x 6= y, say x > y.
If y, x is a jump of X, then take C := ([x,⊥S),→) = ((y,>S),→). If y, x is not

a jump of X, then there is some z ∈ X with y < z < x. Let u ∈ S be the second
element in the total order of S. Then, as ⊥S is minimal, C := [(z, u),→) = ((z,⊥S
),→) is closed under 4.

Case 2. y = x. Hence, since α 64 β we know sY t in S.

We first claim that for every r ∈ S, there is a constructible set Cr ⊆ X ×S such
that Cr \ ({x} × S) is closed under 4 and such that Cr ∩ ({x} × S) = (x, r):

If r 6= >S and r 6=⊥S , then the point (x, r) is isolated in the order topology of
X × S. hence C := {(x, r)} has the required properties. If r = >S , then let r′ ∈ S
be the predecessor of >S in the total order of S. Then C = [(x, r),→) = [(x, r′),→)
has the required properties.

This shows claim 2 and we define

C :=
⋃

r∈S,s r
Cr.

Then C is clopen in X × S and C \ ({x} × S) is a final segment w. r. t. 4. But

C ∩ ({x}×S) is equal to {x}×{s}
S

, which is a final segment w. r. t. 4, too. Thus
C is a final segment w.r.t. 4 such that α ∈ C and β 6∈ C. �

2.10. Definition. Let X be Dedekind complete and let S be a finite spectral space
which is not irreducible. Let ≤ be any total order of S such that ⊥S and >S are
minimal points in the spectral topology of S.

We define

X#(S,≤)

as the spectral space whose patch space is the Dedekind complete order X ×S and
whose specialisation order is the partial order from 2.9. If S is the spectral space

consisting of three elements −1, 0, 1 with specialization order −1, 1 0 and total
order −1 < 0 < 1, the we write

X# instead of X#(S,≤).

For x ∈ X we write x− := (x,−1), x+ := (x, 1) and we identify X with X × {0} in
X#.

2.11. Proposition. Let X be Dedekind complete and densely totally ordered. A
subset Y of X# is closed and constructible if and only if Y is a finite union of sets
of the form [(x, 0), (x′, 0)], where x, x′ ∈ X and x ≤ x′.

In particular K(X#) is order isomorphic to the lattice generated by the closed
intervals of X in the powerset of X
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Proof. This is clear with the characterization of the constructible subsets of X# in
2.4. �

3. Completely normal spectral spaces not occurring in real spectra

We use standard notation from commutative algebra: Let A be a ring (this means,
commutative and unital always). For f ∈ A, we denote by V (f) the set of all prime
ideals of A containing f and D(f) = SpecA \ V (f).

Following [Del-Mad] we shall work with Zariski spectra of real closed rings (in
the sense of N. Schwartz) instead of real spectra of commutative rings. Note that
every real spectrum is (naturally) homeomorphic to the Zariski spectrum of a real
closed ring. We refer to [Sch1] and [Schw-Ma] for real closed rings.

3.1. Proposition. Let A be a real closed ring and let X ⊆ SpecA be connected
such that there are points x, y ∈ X which do not have a common specialization
in SpecA. Let λ be an ordinal and for each α < λ let fα ∈ A such that for all
α < β < λ we have

fα(u) > fβ(u) > 0 (u ∈ X).

Then there is a collection (Uα)α<λ of open, nonempty and disjoint subsets of X.

Proof. Since x, y ∈ X do not have a common specialization in SpecA, there are
ϕ,ψ ∈ A with x ∈ V (ϕ), y ∈ V (ψ) and V (ϕ) ∩ V (ψ) = ∅. Since A is a real closed
ring, ϕ2 + ψ2 is a unit and we may define

g := f0 ·
ϕ2

ϕ2 + ψ2
.

Then g(x) = 0 and g(y) = f0(y).
We define

Uα := {u ∈ X | fα(u) < g(u) < fα+(u)} (α < λ).

Clearly the Uα are open and disjoint subsets of X. It remains to show that each
Uα is nonempty.

Otherwise X ⊆ {g ≤ fα} ∪ {g ≥ fα+} is covered by disjoint closed subsets of
SpecA. Since g(x) = 0 ≤ fα(x) and g(y) = f0(y) ≥ fα+(y) both sets are nonempty.
This contradicts the assumption that X is connected. �

3.2. Proposition. Let A be a real closed ring and let X ⊆ SpecA. Suppose there
are

(I): an open quasi-compact subset U of SpecA such that U ∩X is connected and
such that there are points x, y ∈ U ∩ X which do not have a common
specialization in U .

(II): an ordinal λ and for each α < λ, fα ∈ A such that for all α < β < λ we have

fα(u) > fβ(u) > 0 (u ∈ U ∩X).

Then there is a collection (Uα)α<λ of open, nonempty and disjoint subsets of U∩X.

Proof. Since A is real closed, there is some s ∈ A such that U = D(s). Since
x, y ∈ X do not have a common specialization in U , there are ϕ,ψ ∈ A with
x ∈ V (ϕ) ∩D(s), y ∈ V (ψ) ∩D(s) and V (ϕ) ∩ V (ψ) ∩D(s) = ∅. Then ϕ2 + ψ2 is
a unit in As, hence there is some h ∈ A such that sn · (h · (ϕ2 + ψ2) − s2k) = 0.
Define

g := f0 · ϕ2 · h.
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Then g(x) = 0 and g(y) = f0(y) · s2k(y).
We define

Uα := {u ∈ U ∩X | s2k · fα(u) < g(u) < s2k · fα+(u)} (α < λ).

Clearly the Uα are open and disjoint subsets of X. It remains to show that each
Uα is nonempty.

Otherwise U ∩X ⊆ {g ≤ s2k · fα} ∪ {g ≥ s2k · fα+} is covered by disjoint closed
subsets of SpecA. Since g(x) = 0 ≤ fα(x) and g(y) = s2k(y) · f0(y) ≥ fα+(y) both
sets are nonempty. This contradicts the assumption that U ∩X is connected. �

3.3. Corollary. Let A be a real closed ring and let X ⊆ SpecA. Suppose

(I): X is quasi-compact, connected with at least two points and there is no special-
ization inside X.

(II): There are an ordinal λ and for each α < λ, fα ∈ A such that for all α < β < λ
we have

fα(u) > fβ(u) > 0 (u ∈ X).

Then there is a collection (Uα)α<λ of open, nonempty and disjoint subsets of X.

Proof. Take x, y ∈ X, x 6= y and suppose x, y have a common specialization in
SpecA. Let z be the first common specialization of x, y in SpecA.

Then for each w ∈ X we have z Y w, hence there is an open quasi-compact subset
Uw of SpecA with w ∈ Uw and z 6∈ Uw. Then X ⊆

⋃
w∈X Uw and since X is quasi-

compact, there is an open quasi-compact subset U of SpecA containing X and not
containing z. Since z is the first common specialization of x, y in SpecA, x, y do
not have a common specialization in U . Now we may apply 3.1 for As if U = D(s)
or 3.2 directly. �

3.4. Proposition. Let D = E×I, where E is the Dedekind completion of an ηα-set
Y and I is Dedekind complete.
Suppose D# is a proconstructible subset of SperA for some ring A. Then there are
fα ∈ A for all α < ηα and xα, yα ∈ Y , xα < yα such that for all α < β < ηα we
have

fα(u) > fβ(u) > 0 (u ∈ D, (xβ ,⊥I) < u < (yβ ,>I)).

Proof. Let f0 = 1 and suppose xµ < xν < yν < yµ, fµ > fν > 0 on [(xν ,⊥I
), (yν ,>I)], have already been constructed for µ < ν < λ, λ < ηα. We define
xν < xλ < yλ < yν and fλ ∈ A with fν > fλ > 0 on [(xλ,⊥I), (yλ,>I)] as follows:
Pick u, v ∈ Y with xν < u < v < yν (ν < λ).

Then the set [(u,>I)+, (v,⊥I)−] ⊆ D# is open and quasi-compact and there is
some fλ ∈ A, which is > 0 on that set, and 0 on the complement of this set in D#.

Pick µ < λ. Then {fµ > fλ} ∩ D# is open and quasi-compact containing
(u,>I). Since the open quasi-compact subsets of D# are finite unions of sets of
the form [d+0 , d

−] with d0, d ∈ D there is some dµ ∈ D with (u,>I) < dµ such that
[(u,>I), d−µ ) ⊆ {fµ > fλ}. From (u,>I) < dµ we get some e ∈ E with u < eµ ≤ dµ.
Since u ∈ Y and E is the Dedekind completion of the dense set Y , there is some
uµ ∈ Y with u < uµ < dµ.

Hence fµ > fλ > 0 on [(u,>I)+, (uµ,>I)]. Since Y is an ηα-set, there is some
yλ ∈ Y with u < yλ < xµ for all µ < λ. Now choose xλ ∈ Y with u < xλ < yλ. �
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3.5. Theorem. Let D = E× I, where E is the Dedekind completion of an ηα+1-set
Y and I is a compact and connected Dedekind complete order with at least two
points, such that there is no collection of nonempty, open and disjoint subsets of I
of size ℵα. Then the completely normal spectral space D# is not homeomorphic to
any spectral subspace of the real spectrum of any ring.
The main example here is I = [0, 1] ⊆ R and α = 1.

Proof. By 3.4, there are fα ∈ A for all α < ηα such that for all α < β < ηα we have

fα(u) > fβ(u) > 0

on some interval of D of the form ((x,⊥I), (y,>I)) with x < y from Y . Since Y is
an ηα+1-set, there are x < y from Y such that for all α < β < ηα we have

fα(u) > fβ(u) > 0 (u ∈ D, (x,⊥I) < u < (y,>I)).

Pick z ∈ Y with x < z < y and let X := {z} × I. Then

fα(u) > fβ(u) > 0 (u ∈ X).

Since X is homeomorphic to I, X is compact and connected by assumption. Hence
we may apply 3.3, which gives a collection (Uα)α<ηα of open, nonempty and disjoint
subsets of X. Since X is homeomorphic to I, this contradicts our assumption on
I. �

4. Back and forth equivalence of lattices generated by closed
intervals

Let X = (X,≤) be a totally ordered set. A closed interval of X is any subset
of the form [a, b], [a,+∞), (−∞, b] or (−∞,∞) with a, b ∈ X. The boundary
points of [a, b] are defined to be a, b if a ≤ b, the only boundary point of [a,+∞) is
defined to be a (provided X has no largest element) and the only boundary point
of (−∞, b] is defined to be b (provided X has no smallest element). The empty set
and X (provided X has no smallest and no largest element) do not have boundary
points. Observe that a boundary point according to this definition is in general not
a boundary point w.r.t. the order topology of X (X might be discrete).

Let L(X) be the set of finite unions of closed intervals of X. Obviously, L(X) is
the sublattice of the powerset of X generated by the set of closed intervals.

For α ∈ L(X), a closed interval of X contained in α and maximal with this
property is called a component of α; observe again that this is in general not a
connected component of α in the sense of the order topology of X. However, it is
clear that α is the disjoint union of its components and there are only finitely many
of them.

For α ∈ L(X), a boundary point of α is a boundary point of one of its
components. We write bd(α) for the (finite) set of boundary points of α. It is
useful to notice the following:

4.1. Observation. Let α ∈ L(X).

(i) If α = I1 ∪ ... ∪ In with closed intervals I1, ..., In of X, then bd(α) ⊆⋃n
k=1 bd(Ik).

(ii) There are n ∈ N0 and nonempty closed intervals I1, ..., In of X with α =
I1 ∪ ... ∪ In such that for each k ∈ {1, ..., n − 1} there is some x ∈ X with
Ik < x < Ik+1.
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Moreover, whenever α is represented in this form, then I1, ..., In are
precisely the components of α.

Given S ⊆ X, we define

L(X,S) := {α ∈ X | bd(α) ⊆ S}.

4.2. Remark. L(X,S) is a bounded sublattice of L(X) and for every other set
S′ ⊆ X we have S ⊆ S′ ⇐⇒ L(X,S) ⊆ L(X,S′).

Proof. By 4.1(i) it is clear that L(X,S) is a bounded sublattice of L(X). The
equivalence follows with the observation {s} ∈ L(X,S). �

Now let X,Y be totally ordered sets and let S ⊆ X, T ⊆ Y be arbitrary
sets. Suppose we are given a poset isomorphism f : S −→ T . We define a map
Ff : L(X,S) −→ L(Y, T ) as follows: For a closed interval α of X we define the
closed interval Ff (α) of Y by

Ff (α) =



∅ if α = ∅
Y if α = X

[f(s),+∞) if α = [s,+∞) and s is not the smallest element of X

(−∞, f(s)] if α = (−∞, s] and s is not the largest element of X

[f(s1), f(s2)] if s1 ≤ s2, α = [s1, s2] and s1 is not the smallest

element of X and s2 is not the largest element of X

Now we define Ff on all of L(X,S) by

Ff (α) =
⋃
{Ff (γ) | γ is a component of α}.

In the situation above, we say that the poset isomorphism f : S −→ T is faithful
if the following two conditions are satisfied:

(a) For every s ∈ S, s is the smallest or largest element of X if and only if f(s)
is the smallest or largest element of Y , respectively.

(b) For all s1, s2 ∈ S we have

s1 < s2 is a jump in X ⇐⇒ f(s1) < f(s2) is a jump in Y.

4.3. Proposition. If f is faithful, then Ff is a lattice isomorphism L(X,S) −→
L(Y, T ) and the inverse is Ff−1 . If S′ ⊆ X, T ′ ⊆ Y and f ′ : S′ −→ T ′ is another
faithful poset isomorphism, then f ′ extends f if and only if Ff ′ extends Ff .

Proof. On the level of closed intervals, the map Ff−1 is inverse to Ff , since f
satisfies condition (a) of the definition of ”faithful”. Using 4.1(ii) and because f
satisfies condition (b) of the definition of “faithful”, Ff maps a component γ of
α ∈ L(X,S) to the component F (γ) of F (α). It is then clear that Ff−1 is inverse
to Ff . Since both maps obviously are monotone, the first assertion follows.

For the equivalence, only⇐ needs a proof. However if Ff ′ extends Ff and s ∈ S
then {f(s)} = Ff ({s}) = Ff ′({s}) = {f ′(s)} and so f ′ extends f . �

Recall that a back-and-forth system of first order structures M and N (in an
arbitrary first order language) is a non-empty family (fi : Mi −→ Ni | i ∈ I) of
isomorphisms fi between substructures Mi of M and Ni of N , respectively, verifying
the following conditions:
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Forth: For all i ∈ I and a ∈ M there is j ∈ I with a ∈ Mj such that fj extends
fi; hence also Mi ⊆Mj , Ni ⊆ Nj .

Back: For all i ∈ I and b ∈ N there is j ∈ I with b ∈ Nj such that fj extends fi.

If there is a back and forth system between M and N , then M and N are called
back and forth equivalent.

If λ is a cardinal, then a back and forth system (fi : Mi −→ Ni | i ∈ I) is said
to have the λ-extension property if for all J ⊆ I of cardinality < λ such that
the family (fj : Mj −→ Nj | j ∈ J) is totally ordered by extension, there is some
i ∈ I such that fi extends fj for all j ∈ J . So trivially, every back and forth system
satisfies the ℵ0-extension property.

If there is a back and forth system of M and N that has the λ-extension property,
then M and N are called strongly λ-back and forth equivalent.

Let X and Y again be totally ordered sets and let (fi : Si −→ Ti | i ∈ I) be a back
and forth system of X and Y .

Let Fi := Ffi in the notation introduced before 4.3. Since (fi : Si −→ Ti | i ∈ I)
is a back and forth system of X and Y , it is clear that every fi is faithful. By 4.3,

Fi : L(X,Si) −→ L(Y, Ti)

is a lattice isomorphism and we claim that (Fi : L(X,Si) −→ L(Y, Ti) | i ∈ I) is a
back and forth system of L(X) and L(Y ).

By 4.2 we already know that L(X,Si) and L(Y, Ti) are sublattices of L(X), L(Y )
respectively. By symmetry we then only need to check the “Forth” condition. Let
i ∈ I and α ∈ L(X). Then bd(α) is finite and by applying the “Forth” condition
of the system (fi : Si −→ Ti | i ∈ I) finitely many times, there is some j ∈ I such
that bd(α) ⊆ Sj . By 4.1(ii), α ∈ L(X,Sj) and as fj extends fi, also Fj extends Fi.

Thus we know that (Fi : L(X,Si) −→ L(Y, Ti) | i ∈ I) is a back and forth system
of L(X) and L(Y ).

Now suppose (fi : Si −→ Ti | i ∈ I) is a back and forth system of X and Y that
has the λ-extension property for some cardinal λ.

Then also (Fi : L(X,Si) −→ L(Y, Ti) | i ∈ I) has the λ-extension property. To
see this, it is enough to recall that Fi extends Fj if and only if fi extends fj (cf.
4.3).

4.4. Theorem. [Di, Thm 5.3.7,p.316 and the notation before Thm. 5.3.2]
If M,N are elementary equivalent, λ-saturated, first order structures, then they are
strongly λ-back and forth equivalent.

Moreover, strongly λ-back and forth equivalent structures are elementary equiv-
alent in the infinitary language L∞λ. �

4.5. Scholium. Let λ be a cardinal and let X,Y be λ-saturated totally ordered sets.
Suppose X and Y are elementary equivalent (for example if X and Y are densely
ordered with endpoints). Then the lattices L(X) and L(Y ) are strongly λ - back
and forth equivalent.

Moreover L(X) and L(Y ) are elementary equivalent in the infinitary language
L∞λ.

Proof. By 4.4, X and Y are strongly λ - back and forth equivalent. We have shown
in this section that in this case, also the lattices L(X) and L(Y ) are strongly λ -
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back and forth equivalent. By 4.4 again, L(X) and L(Y ) are elementary equivalent
in the infinitary language L∞λ. �

5. Main Theorem

5.1. Theorem. For every cardinal λ, there are bounded distributive lattices L and
L′, such that

(i) The lattices L and L′ are strongly λ-back and forth equivalent; in particular,
they are elementary equivalent in the infinitary language L∞λ.

(ii) L = K(C) for some spectral space C that is not homeomorphic to any
proconstructible subset of any real spectrum of a ring.

(iii) L′ = K(SperA) for some ring A.

Proof.
Definition of L′ and A:

We choose a λ-saturated real closed field R. Let A be the ring of continuous
semi-algebraic functions [0, 1] −→ R, where [0, 1] is the unit interval in R and define
L′ = K(SperA).

Definition of L and C:
Let I be a densely totally ordered, λ-saturated set. Let κ ≥ λ be such that there

is no collection of nonempty, open and disjoint subsets of I of size κ. Let Y be a
κ+-saturated linear order. Now define L = K((Y × I)#) (recall that Y , I denote
the Dedekind completions of Y , I respectively).

(i). We show that L ∼= L(Y × I), L′ ∼= L([0, 1]) and verify the assumptions of 4.5
for Y × I and [0, 1]:

• Since I and Y are λ-saturated, also the Dedekind completions Y and I are
λ-saturated. Thus, Y × I is λ-saturated, too.
• By 2.11 we have L ∼= L(Y × I).
• Since R is λ-saturated, the totally ordered set [0, 1] is λ-saturated, too.
• It is well known that L′ is naturally homeomorphic to the lattice L([0, 1])

of finite unions of closed intervals from [0, 1], thus L′ ∼= L([0, 1]).
• Both [0, 1] and Y × I are densely ordered sets with endpoints, so they are

elementary equivalent.

Hence all assumptions of 4.5 are satisfied and we obtain (i) from 4.5.

(ii) holds by 3.5 applied to Y , I and the choice of C.

(iii) holds by definition of L′. �

A possible answer to the question on the determination of the topological type of
real spectra can thus not be formulated in terms of infinitary first order languages;
at least not in an obvious way.

An interesting alteration of the question is the following: Is every spectral sub-
space of the real spectrum of a ring A itself the real spectrum of a ring B? More
importantly, can we even construct B in a natural way out of A and the given set?
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