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Commuting Involution Graphs for 3-Dimensional
Unitary Groups

Alistaire Everett

Abstract

For a group G and X a subset of G the commuting graph of G on X, denoted by C(G, X),
is the graph whose vertex set is X with z,y € X joined by an edge if x # y and x and
y commute. If the elements in X are involutions, then C(G, X) is called a commuting
involution graph. This paper studies C(G, X)) when G is a 3-dimensional projective special
unitary group and X a G-conjugacy class of involutions, determining the diameters and
structure of the discs of these graphs.

1 Introduction

For a group G and a subset X of GG, we define the commuting graph, denoted C(G, X), to be
the graph whose vertex set is X with two distinct vertices z,y € X joined by an edge if and
only if zy = yx. Commuting graphs first came to prominence in the groundbreaking paper
of Brauer and Fowler [6], famous for containing a proof that only finitely many finite simple
groups can contain a given involution centralizer. The commuting graphs employed in this
paper had X = G \ {1} — such graphs have played a vital role in recent results relating to
the Margulis—Platanov conjecture (see [11]). When X is a conjugacy class of involutions, we
call C(G, X) a commuting involution graph. This special case demonstrated its importance in
the (mostly unpublished) work of Fischer [9], which led to the construction three new sporadic
simple groups. Aschbacher [1] also showed a necessary condition on a commuting involution
graph for the presence of a strongly embedded subgroup in G. The detailed study of commuting
involution graphs came to the fore in 2003 with the work of Bates, Bundy, Hart (née Perkins)
and Rowley, which explored commuting involution graphs for G' a symmetric group, or more
generally a finite Coxeter group; a special linear group; or a sporadic simple group ([2], [3], [4],
[5]). Recently some of the remaining sporadic simple groups were addressed in Taylor [12] and
Wright [14]. When G is a 4-dimensional projective symplectic group, the structure of C(G, X)
was determined in [8].

We continue the study of C(G, X) when G is a finite simple group of Lie type of rank 1 and X is
a G-conjugacy class of involutions. The case when G is a 2-dimensional projective special linear



group was addressed in [4]. This leaves the cases when G is a 3-dimensional projective unitary
group, a Suzuki group of characteristic 2, or a Ree group of characteristic 3. The well-known
structures of Uz(2%) and Sz(2?**!) where a € N quickly reveal the commuting involution graphs
are disconnected, where the connected components are cliques. This paper concentrates on the
3-dimensional unitary groups and from now on, we set ¢ = p® for p an odd prime and a € N.
Let H = SU;(q) and let X be the H-conjugacy class of involutions. For ¢t € X we define the
ith disc to be Ay(t) = {z € X|d(t,z) = i} where d is the standard distance metric on C(H, X).
Our main theorem is as follows.

Theorem 1.1 C(H, X) is connected of diameter 3, with disc sizes

1A (1)] = qlg — 1);
A2 (t)| = qlqg — 2)(¢* = 1); and
1As(t)] = (¢ + 1)(¢> = 1).

We remark that for G = H/Z(H) = Us(q) and X = XZ(H)/Z(H), the graphs C(H, X) and
C(G, X¢g) are isomorphic. The proof of Theorem 1.1 is constructive, determining the graph
structure as one “steps around the graph”. With an appropriately chosen ¢, Lemma 2.3 shows
that one can identify which disc a given involution x € X lies in, by inspection of its top-left
entry. It is interesting to note that the third disc is a single C'y(t)-orbit if and only if ¢ # 5
(mod 6), otherwise it splits into three C'y(t)-orbits. The collapsed adjacency diagrams of both
cases are given in [7]. Our group theoretic notation is standard, as given in [10].

q
q

2 The Structure of C(G, X)

This section gives a proof of Theorem 1.1. Let V be the unitary GF(¢*)H-module with basis
{e;} and define the unitary form on V' by (e;, e;) = 6;;. Hence the Gram matrix of this form is
the identity matrix, and H can be explicitly described as

H= {A € SLs(g?)

A'A= 13} ~ SUs(q).

For a € GF(¢?) we set @ = a?, and (a;;) = (@;;). For a matrix g, define g;; to be the (i, 7)™
entry. There is only one class of involutions in H, which we denote by X, and fix a representative

10 0
t = 0 -1 O
0 0 -1

o -1 a, bv Cad§ GF;(q2)

(ad = bo)™" | b\ Ga+cc=Dbb+dd=1

¢ d) ad — bc # 0
ab+cd=ba+dc=0

[
Lemma 2.1 (i) Cy(t) = k = GUsy(q).




(ii) | X = ¢*(¢* — ¢+ 1).
(i) |21 ()] = q(g = 1).
() If v € Ay(t), then |Ay(t) N Ay(z)| = 1.

Cy(t) = { M@ ‘ Ae GU2(q)} >~ GUy(q)
proving (i).

Part (ii) follows from the fact that |H| = ¢*(¢*> + 1)(¢* — 1) and |GUx(q)| = q(q + 1)(¢* — 1).

Proof Clearly

-1
Let x = det A 1) € Cr(t) N X. Using a result of Wall [13], there are two classes of
involutions in GUs(q), represented by —I5 and _01 (1)) If A= —1I,, then x = t. Assume then

that A is the latter choice, giving A, (t) = 2!, By a routine calculation as in part (i), it is
easy to see that

A
o) = { (M) |4 € ctato}.
and so
a 0 0 ~
Cy({t,z))=<S 10 b 0 a,b€ GF(¢%), aa =bb=1
0 0 (ab)™!
with |Cr((t,z))| = (¢ + 1)>. Hence |A(t)| = ‘Clgfét;g)l = ¢q(q — 1), proving (iii), while (iv)
follows immediately from the structure of C((t,x)). O
-1 0 O
Henceforth, weset = | 0 —1 0] € Ay(t).
0 0 1

(iii) For each a € GF(q) \{£1}, there are g+ 1 elements g of Aa(t) N Ay () such that g1 = a.



Proof By an analogous method to that in Lemma 2.1(i), it is clear that
Ay(x) = c —a a,b,c € GF(¢%), a®> +bc =1

Let

for a,b,c € GF(¢?), and h € Cy(t). Now (h~'gh)1, = hijahi; = a and so any C(t)-conjugate
elements have the same top-left entry, so proving (i).

If b =0 then a®> +bc = a®> = 1 and so a = +1. But then @a = 1 and thus éc = 0 implying
¢ = 0. Similarly, if ¢ = 0 then b = 0. If @ = 41, then 1 4+ bc = 1 and so bc = 0. Hence,
either b = 0 or ¢ = 0 implying both are 0. However, a = 1 implies y = ¢, and a = —1 implies
y € Aq(t). Therefore if a = £1, then g ¢ As(t). In particular, if a # +1 then g € Ay(t), since
d(t,x) = 1 and [g,z] = 1. Suppose now a # £1, so b,c¢ # 0. Then by Lemma 2.1(i), we have
@a+cc = aa+bb =1 and @b = ac. Therefore Ga+cc = a*cb~' +cc =1 and so a®b~' 4+ ¢ = ¢ L.
It follows that bc™' = a? + bc = 1 and hence b = ¢. However, this yields @ = a, implying
a € GF(q) \ {£1}, proving (ii).

By combining parts (i) and (ii), Ay(z) N Aq(t) is partitioned into Cg((t,x))-orbits, with the
action of Cy({t,x)) leaving the diagonal entries unchanged. Since a # +1, bb # 0 and
bb — (1 4+ a?) = 0. Since there are ¢ + 1 solutions in GF(¢?) to the equation z%"' = X for
any fixed A\ € GF(q), there are ¢ + 1 values of b that satisfy this equation. Therefore z is
centralised by ¢ + 1 involutions sharing a common top-left entry, proving (iii). 0

Lemma 2.3 There are exactly (¢ —2) Cy(t)-orbits in Aq(t).

Proof By Lemma 2.2(i), there are at least (¢ — 2) Cg(t)-orbits in Ay(t). It suffices to prove
that any two matrices commuting with x that share a common top-left entry are Cy((t, z))-
conjugate. Let g € Ay(t) N Ay(z), and a € GF(q) \ {£1} be fixed such that g;; = a and set
g2 = b. By Lemma 2.2, the diagonal entries of g remain unchanged under conjugation by

Cu((t,z)). Let

10
h=1[0 8 0 |ecuta)
00

where 33 = 1. Then

( a b
hlgh= 5" —a
\ -1/




Clearly b0 takes q + 1 different values for the ¢ + 1 different values of 3. However, since there
are only g + 1 possible values for b, all such values are covered. That is to say, all matrices of
the form

€ Ay(t)NAL(x), a# %1, bb=1—a®

lie in the same Cy ((t, x)) orbit, and thus are all C'y (t)-conjugate. Therefore, all involutions that
centralise x sharing a common top-left entry are C'y(t)-conjugate and so the lemma follows. [J

Lemma 2.4 |As(t)] = q(¢*> — 1)(q — 2).

Proof Let

for a # £1 and 3 = 1 — o? fixed. Then

—a af b —a =5 0
gh=|-8 —aa —ba and hg=|aB —aa —b
0 —b a 0 —ba a

If [g,h] = 1 then aB = —3 and b3 = 0 imply @ = —1 and b = 0, since 3 # 0. There-
fore, ¢ = x and thus h commutes with a single element of A;(f). Since A;(t) is a single
Cy(t)-orbit, and combining Lemmas 2.1(iii) and 2.2(iii), all C'y(t)-orbits in Ay(¢) have length
q(g — 1)(g+ 1) = q(¢*> — 1). Hence |Ay(t)| = q(¢*> — 1)(q — 2), since Ay(¢) is a partition of
C'y(t)-orbits. O

For each o € GF(q) \ {£1}, define AJ(t) to be the Cy(t)-orbit in Ay(t) consisting of matrices
with top-left entry @ € GF(q) \ {£1}. By Lemmas 2.1(i) and 2.2(iii), A3(¢) can be written
explicitly as

a aDp bD3 (a Z) € GUs(q)
A2t) =1 | dBD? (—ada+bc)D™' bdDY(1— a) ¢

— D =ad — bc
_ Ap-2 1y _ _ -1 e
8D acD ' (a—1)  (beaw — ad)D G3=1—a2

(2.1)

Lemma 2.5 Suppose




and
aDé bDé

y
h=| désD™% (—ady+bc)D™' bdD7'(1—~) | € AJ(t)
—c6D™%2  acD7'(y—1) (bey —ad)D7?

satisfy the conditions of (2.1). If [g,h] = 1 then
(i) d = aBB~'6"16D?;

(ii) if bc # 0 then a = —(1 + a)(1 — )" '3-16D~" and b = 2DB~ (1 — )~ 1By — aadD)c*
and

(iii) if b= c =0 then vy = aadD.

Proof Recall that since o,y # +1, we have 3,9 # 0. Direct calculation shows that

ay + BdéD™? aaDS + BD(be — ady) abD§ + 3bdD1(1 — )
gh=|By—adéD™? paDé — aD ' (bc — ady) BbDS — abdD™(1 — )
c6 D2 (1 —v)acD™! —DY(bey — ad)

and

ay + BaD§ By — aaDd —bDo
hg = | addD~2 + 3D~ (bc — ady) PdéD~? — a(bc — ady)D™'  —bdD~'(1 — )
—acdD72 4 B(y — 1)acD™' —cB6D2 —acD'a(y —1) —D7(bey — ad)

Now if [g,h] = 1 then we have the following relations from the (1,1), (1,2), (1,3) and (3,1)
entries respectively:

ay 4+ dBSD? = ary + aB0D;
aadD + DY (be — ady) = By — aad D;
badD + bdBD (1 — ) = —bSD; and
—cadD? +acBD (v —1) = 6D 72

The relations from the other entries are all equivalent to the four shown above. It is now a
routine calculation to deduce parts (i)-(iii) from these relations. O

Lemma 2.6 Let y, € A3(t) for some o € GF(q) \ {£1}. Then |A1(ya) N AZ* ()| = 1.



Proof Without loss of generality, choose y, such that [y,,x] = 1, so (yo)11 = « and set
(Ya)i12 = B. Let y_o € A;%(t) be as in (2.1) for suitable a,b,c,d € GF(¢*). We remark

that if & = 0, we denote this element y; to distinguish it from yo. Assuming [V Ya) = 1,
we apply Lemma 2.5 by setting @« = —~, and note that 5 = §§. Suppose that b,c # 0,
then a and b are as in Lemma 2.5(ii). Since o = —v, we have a = —D7!3-1§, giving b =

2DB7Y(1 — 4)Y(By — 37160y)c!. However, By — 3~160y = B(y — B~137'65y) = 0 since
B-157166 = 1. This yields b = 0, contradicting our original assumption. Hence b = ¢ = 0,
giving a as in Lemma 2.5(iii) and thus adaD = —fBa. Hence either a =0 or a = —36 ' D~

If o # 0, then aD = —36~! and dD~2? = —35~! showing that

—Q _525—1
Yoo = | =201 Q@ .
-1/
If « =~ = 0, then both yy and y) commute with x, where (y9)12 = 8 and (y{)12 = d. If yo
and y{ commute, then an easy calculation shows that § = £4. Since yy # ¥y, we must have
0 =—p.

Hence in both cases, y, commutes with a single element of A “(¢). O

Lemma 2.7 Let y, € AS(t). Then |A1(ya) NAJ ()] =q+ 1 for a # —7.

Proof Asin Lemma 2.6, choose y, such that [y,,z] = 1 with (y,)11 = o and set (y,)12 = 5.
Let y, € AJ(t) be as in (2.1) for suitable a,b,c¢,d € GF(¢*). For brevity we remark that if
a = v, then y, and y, will denote different elements. Assume [y,,y,] = 1, so the relevant
relations from Lemma 2.5 hold for fixed «, 3,7, 0 satisfying a, v € GF(q) \ {£1}, B8 =1—a?
and 06 =1 —~2.
Suppose b = ¢ = 0, so Lemma 2.5(iii) holds. Since f # 0 and if « = 0, then v = 0,
contradicting the assumption that a # —v. Hence a = 3ya 16 'D~!. Using Lemma 2.5(i),
we get d = 36— 1D?*ya~" and so ad = 53616 "'~?a~2D. Combining the expressions for 54, 66
and D, we get

(v =) (@ — o) =1,
giving 72 = o2 resulting in v = +a. Since a # —~, we must have o = 7. But then aDJ = 3
and so Yy, = yo. Therefore, we may assume b, ¢ # 0.
By a long but routine check, substitutions of 33, 7y and the relations in Lemma 2.5 show that
ad — bc = D holds. These relations also clearly show that a,b,c and d are all non-zero. Hence
by Lemma 2.1(i), we have ab = —¢d and so ¢c = —abed ', and there are g + 1 values of ¢ that
satisfy this equation.
It now suffices to check that the remaining conditions of Lemma 2.1(i) hold. Since o,y € GF(q),
we have (1 —a)(1 —a)™' = (1 —~)(1 —v)~! = 1. Together with the relations already deter-

mined, we have @a + ¢c = aa — ad 'bc = D-1D~'. However DD = 1, so the conditions of

7



Lemma 2.1(i) hold. By considering @a + cc, we get a similar result for bb + dd. Hence there is
only one possible value of each of a and d, there are (¢+1) different values of ¢ with b depending
on ¢, proving the lemma. 0
As a consequence, we have the following.

Corollary 2.8 Let y € Aqg(t). Then |A1(y) N As(t)| =q+ 1.

Proof Since the valency of the graph is ¢(¢ — 1), Lemmas 2.6 and 2.7 give Corollary 2.8. [J

For the remainder of this paper, denote

0o 1 0
y= 1 0 0| cAdr)
0 0 —1
and define
1 -2 7
2y = | —2 1 -],
v =y =3
for 77 = —4. An easy check shows that [z,,y] = 1, 2,7 = 2z, and 2, is an involution, hence

zy € X and d(t, z,) < 3. However, since t is the sole element with top-left entry 1 that is at
most distance 2 from ¢, we have d(¢, z,) > 3 and thus equality.

Lemma 2.9 A (y) N A3(t) = {z,|7v € GF(¢*), 77+ 4 = 0}.

Proof There are ¢ + 1 values of v and z, centralises y for all such 7. By Corollary 2.8,
|A1(y) N As(t)] = g + 1, and so the lemma follows. O

Fix v and let g € Cy(t) be of the form as described in Lemma 2.1(i) for suitable a,b,¢,d €
GF(q*). Then
D' 2a+cy —2b+dy
zg=|—-2D"' a-7c b—dy
vD™t  —~ya—3c —by—3d
and
D' —2D' D'y
9gzy = | —2a+by a—by —ay—3b
—2c+dy c—dy —cy—3d



If [z, g] = 1, then we equate the entries to get conditional relations. From the (2,2) entries, we
see that b = ¢yy~!. This, combined with the (2,3) entry, gives d = a + 4cy~!. The (3,1) entry
shows that ¢ = —271(D~! — d)v, and so d = 2D~! — a. Hence

b=-2"(a—D7)7;
c=-2"a—-D1")y; and
d=2D"—a

for a € GF(¢?). A routine check shows these relations are sufficient for [z,,g] = 1. These
relations, together with the conditions of Lemma 2.1(i) and DD = 1, give

aD-1+aD™ ' =2. (2.2)

Clearly, the number of possible such a is [Cu((t, 2,))|. Since D = ad — be, we get D* = 1.
Therefore DD = D? = 1 which has a non-trivial solution if and only if ¢ = 5 (mod 6).

Lemma 2.10 If ¢ # 5 (mod 6), then |Cy({t,2,))| = q. Moreover, C(H,X) is connected of
diameter 3 and |As(t)| = (¢ +1)(¢* — 1).

Proof Since ¢ #5 (mod 6), from (2.2) we have D = 1 and @+a—2 = 0. There are ¢ distinct
values of a satisfying this, so |C'y((t, z,))| = ¢. Denote the Cy(t)-orbit containing z, by AJ(t).

Hence, o0
et
250 = 1, =)

Combining Lemmas 2.1(ii)-(iii) and 2.4, we have

=g+ 1)~ 1).

X\ (U A1) U Ax(B))] = [A3(1)] -

Hence C(H, X) is connected of diameter 3, and AJ(t) = As(t) as required. O

Remark Since Aj(t) is a single Cy(t)-orbit and the valency of the graph is ¢(¢ — 1), for
w € Ag(t) we have |A;(w) N Asz(t)| = ¢g. This proves Theorem 1.1 when ¢ # 5 (mod 6).
We now turn our attention to the remaining case, when ¢ =5 (mod 6).

Lemma 2.11 Suppose ¢ =5 (mod 6).
1 [Cullt, 25))] = 34
2. There are ezactly three Cyy(t)-orbits in As(t), each of length (g + 1)(¢* — 1).

3. C(H,X) is connected of diameter 3 and |As(t)| = (¢ + 1)(¢*> — 1).



Proof From (2.2), we have DD = D3 = 1 and since ¢ = 5 (mod 6), there are three possible

values for D. Since aD~'+aD~! —2 = (aD~')+aD~! —2 = 0 then for each value of D, there
are g such values of aD~!. Hence there are 3¢ values of aD~! in total, proving (i).
Fix ~, and let AJ(¢) be the Cy(t)-orbit containing z,. We have

Cr(t)| 1 2
A = =7 = e+ (¢ —1). (2.3)
’ 1Cu((t,z))| 3
E
Let h = A u| € Cy(t) where E = A1 — po. Then
o T
1 E(Fyo — 2)\) E(—2p+17)
hlzoh= | —E7221 + py) Ay — o7 +4po)E~1 +1 (=372 + iy + 4ur) B~

E7220+X\y)  (=My+ 0y —4\o)E™Y  (Auy — o7 +4po)E =3

Suppose h™'z h = z; € Az(t) N Ay(y) for some § # . Hence (h™'2,h)9 = =2 = (b7 12, k)12
gives T = E?2—27 pyand A = 2750+ E~L. Since E = A\t —po, we have 2750 E? -2 1 yyE~1 =
0 and so p =y loE®. Rewriting 7, we get 7 = E? — 27150 E3. To summarise,

A=2""N0 + E7Y;
w="y toE?; and
T=F?—2"'50F3.

Using these relations and 7y = —4, a simple check shows that (h™'2,h)2 = 1 and (h™'z,h)33 =
—3 hold, and (h~'z,h)3; = E~3y = §. Easy substitutions and checks show that (h™'z,h)3s =
—(h™'2,h)3, and (h=1z,h)13 = (h~'z,h)3. Since 06 = —4, we have E3E® = 1. In particular,
E3is a (¢+ 1)™ root of unity. There are g+ 1 such roots and only a third of them are cubes in
GF(¢*)*. Hence there are only (¢ + 1) such values of § = E~%y. Therefore, we can pick 71,72
and 73 such that 7;y; = —4 where the z,, are not pairwise C'y(t)-conjugate. Hence there are at
least 3 orbits in As(t), and by (2.3) they all have length $(g+ 1)(¢*> — 1). But (as in the proof
of Lemma 2.10), | X \ ({t} UA;(t) UAs(t))| = (¢ + 1)(¢*> — 1) and so this proves (ii), and (iii)
follows immediately. O

This now completes the proof of Theorem 1.1.
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