
Commuting Involution Graphs for 4-Dimensional
Projective Symplectic Groups

Everett, Alistaire and Rowley, Peter

2010

MIMS EPrint: 2010.67

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


Commuting Involution Graphs for 4-dimensional

Projective Symplectic Groups

Alistaire Everett and Peter Rowley

Abstract

For a group G and X a subset of G the commuting graph of G on X, denoted by C(G,X),
is the graph whose vertex set is X with x, y ∈ X joined by an edge if x 6= y and x and
y commute. If the elements in X are involutions, then C(G,X) is called a commuting
involution graph. This paper studies C(G,X) when G is a 4-dimensional projective sym-
plectic group and X a G-conjugacy class of involutions, determining the diameters and
structure of the discs of these graphs.

1 Introduction

For G a group and X a subset of G, the commuting graph of G on X, C(G, X), is the graph
whose vertex set is X with x, y ∈ X joined whenever x 6= y and xy = yx. In effect commuting
graphs first appeared in the paper of Brauer and Fowler [13], famous for containing a proof that
up to isomorphism only finitely many non-abelian simple groups can have a given centralizer
of an involution. The commuting graphs considered in [13] had X = G \ {1} - such graphs
have played an important role in recent work related to the Margulis–Platanov conjecture (see
[24]). The complement of this type of commuting graph appeared in [22] where B.H. Neumann
solved a problem posed by Erdös. Various kinds of commuting graphs have been deployed in the
study of finite groups, particularly the non-abelian simple groups. For example, the analysis and
subsequent construction by Fischer [18] of the three simple Fischer groups used the commuting
graph on the conjugacy class of 3-transpositions. While a computer-free uniqueness proof of
the Lyons simple group by Aschbacher and Segev [6] employed a commuting graph where the
vertices consisted of the 3-central subgroups of order 3. For G either a symmetric group, or
more generally a finite Coxeter group, or a projective special linear group and X a certain
conjugacy class of G, the structure of C(G, X) has been investigated at length by Bundy [14],
Bates, Bundy, Hart, Perkins and Rowley [8], [9], [10], [11] and [12]. Infinite Coxeter groups have
also been studied in Perkins [23]. A different flavour of graph (also called a commuting graph)
has been examined in Akbari, Mohammadian, Radjavi, Raja [3] and Iranmanesh, Jafarzadeh
[20]. There, for a group G, the vertex set is G \Z(G) with two distinct elements being joined if
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they commute. Recently there has been work on commuting graphs for rings (see, for example,
[1], [2]).
This paper investigates C(G, X) when G is a finite 4-dimensional projective symplectic group
and X is a G-conjugacy class of involutions. Such graphs are referred to as commuting involu-
tion graphs. From now on H will denote the symplectic group Sp(4, q), q = pa and p a prime.
Let V be the natural (symplectic) GF (q)H-module, and set G = H/Z(H). So G ∼= PSp(4, q)
and G ∼= H when p = 2. In the case when p = 2, G has three conjugacy classes of involu-
tions. Recalling that for an involution x of G, V (x) = {v ∈ V |(v, vx) = 0} these three classes
X1, X2, X3 may be described thus (see [7])

X1 = {x ∈ G
∣∣x2 = 1, dim CV (x) = 3};

X2 = {x ∈ G
∣∣x2 = 1, dim CV (x) = 2, dim V (x) = 3}; and

X3 = {x ∈ G
∣∣x2 = 1, dim CV (x) = 2, V (x) = V }.

For t ∈ Xi, we define
∆i(t) = {x ∈ Xi| d(t, x) = i}

where d is the standard distance metric on C(G, Xi). Our four main theorems are as follows.

Theorem 1.1 Suppose that p = 2 and i = 1, 3. Then C(G, Xi) is connected of diameter 2 with
the disc sizes being

|∆1(t)| = q3 − 2; and

|∆2(t)| = q3(q − 1).

Theorem 1.2 Suppose that p = 2. Then C(G, X2) is connected of diameter 4, the disc sizes
being

|∆1(t)| = q2(2q − 3);

|∆2(t)| = 2q2(q − 1)2;

|∆3(t)| = 2q3(q − 1)2; and

|∆4(t)| = q4(q − 1)2.

Turning to the case when p is odd, we have that there are two G-involution conjugacy classes
Y1 and Y2. We shall let Y1 denote the G-conjugacy class whose elements are the images of an
involution in H , and Y2 to denote the G-conjugacy class whose elements are the image of an
element of H of order 4 which square to the non-trivial element of Z(H).

Theorem 1.3 If p is odd, then C(G, Y1) is connected of diameter 2 with disc sizes

|∆1(t)| =
1

2
q(q2 − 1); and

|∆2(t)| =
1

2
(q4 − q3 + q2 + q − 2).
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Theorem 1.4 (i) If q ≡ 3 (mod 4) then C(G, Y2) is connected of diameter 3. Furthermore,

|∆1(t)| =
1

2
q(q2 + 2q − 1);

|∆2(t)| =
1

16
(q + 1)(3q5 − 2q4 + 8q3 − 30q2 + 13q − 8); and

|∆3(t)| =
1

16
(q − 1)(5q5 − 4q4 − 2q3 + 4q2 + 5q + 5).

(ii) If q ≡ 1 (mod 4) then C(G, Y2) is connected of diameter 3. Furthermore,

|∆1(t)| =
1

2
q(q2 + 1);

|∆2(t)| =
1

16
(q − 1)(3q5 − 6q4 + 32q3 − 10q2 − 27q − 8); and

|∆3(t)| =
1

16
(q − 1)(5q5 + 22q4 − 8q3 + 34q2 + 51q + 24).

Theorems 1.1 and 1.2 are established in Section 2. While in Section 3 we give a proof of
Theorem 1.3. The structure and properties of C(G, Y2), in Section 4, are a much tougher
nut to crack than the other four cases. The reason for this is that for C(G, Xi), (i = 1, 2, 3)
and C(G, Y1) the graph can be studied effectively by working in H = Sp(4, q) and looking at
certain configurations in the natural symplectic module V involving CV (x) for various x ∈ X
(X = Xi, i = 1, 2, 3 or XZ(H)/Z(H) = Y1). The key point being that, in these four cases
for x ∈ X, CV (x) is a non-trivial subspace of V whereas, for x of order 4 and squaring into
Z(H), CV (x) is trivial. If we change tack and look at G acting on the projective symplectic
space things are not much better. When q ≡ 3 (mod 4) elements of Y2 fix no projective points,
while in the case q ≡ 1 (mod 4) they fix 2q + 2 projective points. However, even in the latter
case, the fixed projective points didn’t appear to be of much assistance. It is the isomorphism
PSp(4, q) ∼= O5(5, q) that comes to our rescue. If now V is the 5-dimensional orthogonal module
and x ∈ Y2, then dim CV (x) = 3. Even so, probing C(G, Y2) turns out to be a lengthy process.

Fix t ∈ Y2. Then by Lemma 4.3, Y2 ⊆
⋃

U∈U1

CG(U) where U1 is the set of all 1-subspaces of CV (t)

and as a result, by Lemma 4.4, C(G, Y2) may be viewed as the union of commuting involution
graphs for various subgroups of G. Up to isomorphism there are three of these commuting
involution graphs (called C(G−, Y −), C(G+, Y +) and C(G0, Y 0) in Section 4). After studying
these three commuting involution graphs in Theorems 4.6, 4.8 and 4.14 it follows immediately
(Theorem 4.15) that C(G, Y2) is connected and has diameter at most 3. Using the sizes of
the discs in C(G−, Y −), C(G+, Y +) and C(G0, Y 0) we then complete the proof of Theorem 1.4.
This “patching together” of the discs is quite complicated - for example we must confront such
issues as t and x in Y2 being of distance 3 in each of the commuting involution subgraphs which
contain both t and x, yet they have distance 2 in C(G, Y2) (see Lemmas 4.29 to 4.34).
Our group theoretic notation is standard as given, for example, in [5] or [19].
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2 Structure of C(G, Xi), i = 1, 2, 3

We begin looking at G0 = Sp2n(q) where n ≥ 2, q = pa and p = 2. Let V0 denote the GF (q)G0-
symplectic module of dimension 2n and let t0 be an involution in G0 for which dim CV (t0) =
2n − 1. Put X0 = tG0

0 , the G0-conjugacy class of t0.

Theorem 2.1 C(G0, X0) is connected and has diameter 2.

Proof For x ∈ X0,
CG0

(x) ≤ StabG0
(CV0

(x))

with StabG0
(CV0

(x)) having shape q2n−1SL2n−2(q)(q−1). Set Kx = O2′(StabG0
(CV0

(x))). Then
Kx ∼ q2n−1SL2n−2(q) and CG0

(x) = Kx. Let x ∈ X0 \ {t0}. If CV0
(t0) = CV0

(x), then x ∈ Kt0

and so x ∈ ∆1(t0). Now suppose that CV0
(t0) 6= CV0

(x). Then dim(CV0
(t0) ∩ CV0

(x)) =
2n − 2. Let U be a 1-dimensional subspace of CV0

(t0) ∩ CV0
(x). Since [V0, t0] is a 1-space

and G0 acts transitively on the 1-spaces of V0, there exists y ∈ X0 such that [V0, y] = U .
So [V0, y] ≤ CV0

(t0) ∩ CV0
(x) and hence y leaves both CV0

(t0) and CV0
(x) invariant. Thus

y ∈ Kt0 ∩ Kx = CG0
(t0) ∩ CG0

(x) and so d(t0, x) ≤ 2 and we see that C(G0, X0) is connected.
Since C(G0, X0) cannot have diameter 1 (as then 〈X0〉 would be abelian), the theorem follows.

�

The remainder of this section is devoted to establishing Theorems 1.1 and 1.2. So we have
G = Sp(4, q) with q = pa and p = 2. For V , the natural GF (q) module for G, we choose the
symplectic basis {v1, v2

∣∣v3, v4} with (v1, v4) = (v2, v3) = 1. Thus the matrix defining this form
is

J =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 ,

and we may suppose that G = {A ∈ GL(4, q)
∣∣AT JA = J}. We further define

S =









1 a b c
0 1 d ad + b
0 0 1 a
0 0 0 1




∣∣∣∣∣∣∣∣
a, b, c, d ∈ GF (q)





,

Q1 =








1 a b c
0 1 0 b
0 0 1 a
0 0 0 1




∣∣∣∣∣∣∣∣
a, b, c ∈ GF (q)





and Q2 =








1 0 b c
0 1 d b
0 0 1 0
0 0 0 1




∣∣∣∣∣∣∣∣
b, c, d ∈ GF (q)





.
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Lemma 2.2 (i) S ∈ Syl2G.

(ii) S = Q1Q2 with Q#
1 ∪ Q#

2 consisting of all the involutions of S.

Proof It is straightforward to check that S is a subgroup of G. Since |G| = q4(q2 − 1)(q4 − 1)
and |S| = q4, we have part (i). Part (ii) is an easy calculation. �

The following three involutions are elements of G.

t1 =




1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1


 , t2 =




1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1


 , t3 =




1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1


 .

Lemma 2.3 (i) For i = 1, 2, 3, ti ∈ Xi.

(ii) CG(t1) ∼ q3SL(2, q) with O2(CG(t1)) = Q1 of order q3.

(iii) CG(t2) = S.

(iv) |X1| = q4 − 1.

(v) |X2| = (q2 − 1)(q4 − 1).

Proof (i) Let v = (α, β, γ, δ) ∈ V . Then vt1 = (α, β, γ, α + δ), vt2 = (α, β, α + γ, α + β + δ)
and vt3 = (α, α + β, γ, γ + δ). Hence [v, t1] = (0, 0, 0, α), [v, t2] = (0, 0, α, α + β) and [v, t3] =
(0, α, 0, γ). Consequently dim [V, t1] = 1 and dim [V, t2] = 2 = dim [V, t3]. Thus t1 ∈ X1. Now

(v, vt2) = α(α + β + δ) + β(α + γ) + γβ + δα = α2 = 0

implies that α = 0 and so dim V (t3) = 3. Therefore t2 ∈ X2. Turning to t3 we have that

(v, vt3) = α(γ + δ) + βγ + γ(α + β) + δα = 0

implies that V (t2) = V , as v is an arbitrary vector of V . Hence t3 ∈ X3, and we have (i).
(ii) By direct calculation we see that

CG(t1) =









1 b c d
0 f g h
0 k m n
0 0 0 1




∣∣∣∣∣∣∣∣

b, c, d, f, g, h, k, m, n ∈ GF (q)
gk + fm = 1
b + hk + fn = 0
c + mh + gn = 0





.

Moreover
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SL2(q) ∼= R =









1 0 0 0
0 f g 0
0 k m 0
0 0 0 1




∣∣∣∣∣∣∣∣

f, g, k, m ∈ GF (q)
fg + km = 1





≤ CG(t1).

with Q1 a normal elementary abelian subgroup of CG(t1) and |Q1| = q3. So CG(t1) = RQ1.
Thus (ii) holds.
(iii) This is a routine calculation.
From parts (ii) and (iii) |CG(t1)| = q4(q2 − 1) and |CG(t2)| = q4. Combining this with
|G| = q4(q2 − 1)(q4 − 1) yields (iv) and (v). �

Lemma 2.4 |CG(t1) ∩ X1| = q3 − 1.

Proof Let s be an involution in S. Then, by Lemma 2.2(ii), s ∈ Q#
1 ∪Q#

2 . Let v = (α, β, γ, δ)
be a vector in V . Assume for the moment that s ∈ Q1. Then

s =




1 a b c
0 1 0 b
0 0 1 a
0 0 0 1




where a, b, c ∈ GF (q). So vs = (α, aα+β, bβ+γ, cα+bβ +aγ+δ). Suppose that at least one of
a and b is non-zero. If v ∈ CV (s), then we have aα = bβ = cα+ bβ +aγ = 0. If, say, a 6= 0 then
this gives α = 0 and bβ + aγ = 0. Hence γ = λβ for some λ ∈ GF (q). Thus dim CV (s) = 2,
with the same conclusion if b 6= 0.
When a = b = 0 we see that dim CV (s) = 3. Therefore we conclude that

|Q1 ∩ X1| = q − 1. (2.4.1)

Now we suppose s ∈ Q2 \ Q1. Then

s =




1 0 a b
0 1 c a
0 0 1 0
0 0 0 1




where a, b, c ∈ GF (q) and c 6= 0. Here vs = (α, β, aα+ cβ +γ, bα+aβ + δ) and so, if v ∈ CV (s),
aα + cβ = bα + aβ = 0. Suppose that a = 0 and b 6= 0. Then cβ = bα = 0 which yields
α = 0 = β. Hence dim CV (s) = 2. Likewise, when a 6= 0 and b = 0 we get dim CV (s) = 2. On
the other hand, a = 0 = b gives dim CV (s) = 3.
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Now consider the case when a 6= 0 6= b and a2 + bc = 0. From aα+ cβ = 0 we obtain β = aαc−1

and so 0 = bα + aβ = bα + a2c−1α = (b+ a2c−1)α. Since a2 + bc = 0, this equation holds for all
α ∈ GF (q) and consequently dim CV (s) = 3. Similar considerations show that dimCV (s) = 2
when a 6= 0 6= b and a2 + bc 6= 0. So, to summarize, for s ∈ Q2 \ Q1, s ∈ X1 when either
a = 0 = b or a 6= 0 6= b and a2 + bc = 0. For the former, there are q − 1 such involutions (as
c 6= 0). For the latter, there are q − 1 choices for each of b and c and in each case a is uniquely
determined (as GF (q)# is cyclic of odd order), so giving (q − 1)2 involutions. Therefore

|(X1 ∩ S) \ Q1| = |X1 ∩ (Q2 \ Q1)| = q(q − 1). (2.4.2)

Since any two distinct Sylow 2-subgroups of SL(2, q) have trivial intersection and SL(2, q)
possesses q + 1 Sylow 2-subgroups, Lemma 2.3(ii) together with (2.4.1) and (2.4.2) yields that

|CG(t1) ∩ X1| = (q − 1) + q(q − 1)(q + 1)

= (q − 1)(1 + q2 + q) = q3 − 1.

This proves Lemma 2.4. �

Proof of Theorem 1.1 As is well-known – see for example [16] – G has an outer automorphism
arising from the Dynkin diagram of type C2 = B2. This outer automorphism interchanges the
two involution conjugacy classes X1 and X3 and as a consequence C(G, X1) and C(G, X3) are
isomorphic graphs. Thus we need only consider C(G, X1). From Lemma 2.4, as ∆1(t) =
(CG(t1) ∩ X1) \ {t1},

|∆1(t1)| = (q3 − 1) − 1 = q3 − 2.

By Theorem 2.1, C(G, X1) has diameter 2. Hence, by Lemma 2.3(iv),

|∆2(t1)| = |X1| − (q3 − 1) = (q4 − 1) − (q3 − 1) = q4 − q4 = q3(q − 1),

so proving Theorem 1.1.

Before moving on to prove Theorem 1.2 we need additional preparatory material. If W is
a subspace of V , then W⊥ denotes the subspace of V defined by

W⊥ = {v ∈ V | (v, w) = 0 for all w ∈ W}

and we recall that dim W + dim W⊥ = dim V = 4.
By Lemma 2.3(i),(iii) we see that CV (CG(t2)) = {(0, 0, 0, α)|α ∈ GF (q)} is 1-dimensional. For
x ∈ X2 set U1(x) = CV (CG(x)) and U2(x) = CV (x). So dim U1(x) = 1 and dim U2(x) = 2
(with the subscripts acting as a reminder). We denote the stabilizer in G of U1(t2), respectively
U2(t2), by P1, respectively P2. Then Pi ∼ q3SL2(q)(q − 1) for i = 1, 2. Also Qi = O2(Pi) with
CPi

(Qi) = Qi for i = 1, 2.
We start analyzing C(G, X2) by determining ∆1(t2). For x ∈ X2 we let ZCG(x) denote Z(CG(x))∩
X2.
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Lemma 2.5 X2 =
⋃̇

R∈Syl2G
ZR.

Proof Clearly X2 =
⋃

R∈Syl2G ZR by Lemma 2.3(iii). If ZR ∩ ZT = ∅ for R, T ∈ Syl2G, then

we have some x ∈ Z(R) ∩ Z(T ) ∩ X2 whence, using Lemma 2.3(iii), R = CG(x) = T . So the
lemma holds. �

Lemma 2.6 Let R, T ∈ Syl2G. If there exists x ∈ ZR and y ∈ ZT such that [x, y] = 1 then
[ZR, ZT ] = 1.

Proof Since xy = yx, y ∈ CG(x) = R. Hence Z(R) ≤ CG(y) = T and so [ZR, ZT ] = 1. �

Let ∆ be the building for G and C(∆) denote the chamber graph of ∆. We may view the
vertices (chambers) of C(∆) as being {NG(R)|R ∈ Syl2G} with two distinct chambers NG(R)
and NG(T ) being adjacent whenever 〈NG(R), NG(T )〉 ≤ P g

i for some g ∈ G and some i ∈ {1, 2}.
We use dC to denote the standard distance metric in C(∆) and for a chamber c put ∆C

j (c) ={
d ∈ C(∆)| dC(c, d) = j

}
. The structure of C(∆) is well-known.

Lemma 2.7 C(∆) has diameter 4 and
∣∣∆C

1(c)
∣∣ = 2q;

∣∣∆C
2(c)

∣∣ = 2q2;
∣∣∆C

3(c)
∣∣ = 2q3; and∣∣∆C

4(c)
∣∣ = q4.

Proof A straightforward calculation. �

We now introduce a graph Z whose vertex set is V (Z) = {ZR|R ∈ Syl2G} with ZR, ZT ∈ V (Z)
joined if ZR 6= ZT and [ZR, ZT ] = 1.

Lemma 2.8 The graphs Z and C(∆) are isomorphic.

Proof Define ϕ : V (Z) → V (C(∆)) by ϕ : ZR 7→ NG(R) (R ∈ Syl2G). If ϕ(ZR) = ϕ(ZT )
for R, T ∈ Syl2G, then NG(R) = NG(T ) and so R = T and then ZR = ZT . Thus ϕ is a bijec-
tion between V (Z) and V (C(∆)). Suppose NG(R) and NG(T ) are distinct, adjacent chambers
in C(∆). Without loss of generality we may assume T = S. Then NG(R), NG(S) ≤ Pi for
i ∈ {1, 2}. The structure of Pi then forces Z(R), Z(S) ≤ Qi. Since Qi is abelian, we deduce
that [ZR, ZS] = 1. So ZR and ZS are adjacent in Z. Conversely, suppose ZR and ZS are
adjacent in Z. Then [ZR, ZS] = 1 with, by Lemma 2.5, ZR ∩ ZS = ∅. Hence ZR ⊆ S and so
by Lemma 2.2(ii), ZR ⊆ Q1 ∪ Q2. Now Q1 ∩ Q2 ∩ X2 = ZS and so we must have ZR ⊆ Qi

for i ∈ {1, 2}. The structure of Pi now gives NG(R) ≤ Pi and therefore NG(R) and NG(S) are
adjacent in C(∆), which proves the lemma. �
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Proof of Theorem 1.2

Since for all x1, x2 ∈ X, [x1, x2] = 1 if and only if [ZCG(x1), ZCG(x2)] = 1 by Lemma 2.5, then
for i > 1, dC(x1, x2) = i if and only if dZ(ZCG(x1), ZCG(x2)) = i (where dZ denotes the distance
in Z). Note that if dC(x1, x2) = 1, then either ZCG(x1) = ZCG(x2) or dZ(ZCG(x1), ZCG(x2)) = 1.
Since X2 is a disjoint union of the elements of Z, then C(G, X2) is connected of diameter 4.
Now

∆1(t) =
⋃

R∈Syl2G
[ZS,ZR]=1

ZR and ∆i(t) =
⋃

R∈Syl2G

dZ (ZS ,ZR)=i

ZR, i > 1

and so |∆1(t)| = |ZS|+2q |ZS|−1. From |ZS| = (q−1)2 we get |∆1(t)| = (q−1)2+2q(q−1)2−1 =
q2(2q − 3). The remaining disc sizes are immediate from the structure of the chamber graph
C(∆).

3 Structure of C(G, Y1)

This section is devoted to the proof of Theorem 1.3. In order to investigate the disc structure
of C(G, Y1) it is advantageous for us to work in H = Sp4(q) (and so H = H/Z(H) ∼= G). We
assume that {v1, v2, v3, v4} is a hyperbolic basis for V with (v2, v1) = (v4, v3) = 1. Thus if J is
the matrix defining this form then

J =




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


 ,

and J has two diagonal blocks J0 where J0 =

(
0 −1
1 0

)
. We may suppose that for t ∈ Y1,

we have s = t where s =

(
−I2

I2

)
. Put X = sH . Then Y1 = {x|x ∈ X}. For x ∈ X, set

Nx = NH(〈x, Z(H)〉). Evidently, for x1, x2 ∈ Y1 (where x1, x2 ∈ X) x1 and x2 commute if and
only if x1 ∈ Nx2

(or equivalently x2 ∈ Nx1
). Now Ns consists of g ∈ H for which sg = s or

sg = −s. Letting g =

(
A B
C D

)
where A, B, C and D are 2 × 2 matrices over GF (q), direct

calculation reveals that either B = C = 0 or A = D = 0. Also, as g ∈ H , we must have
AT J0A = DT J0D = J0 and therefore

Ns =

{(
A

B

)
,

(
A

B

)∣∣∣∣ A, B ∈ SL2(q)

}

∼ (SL2(q) × SL2(q)) : 2

Lemma 3.1 |∆1(t)| = 1
2
q(q2 − 1).
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Proof Since X = sH consists of all the involutions in H \ Z(H), a quick calculation gives

X ∩ Ns =

{(
A

A−1

)∣∣∣∣ A ∈ SL2(q)

}
∪ {s,−s} .

Under the natural homomorphism to G, for x ∈ X x = −x, and so |∆1(t)| = 1
2
|SL2(q)| =

1
2
q(q2 − 1). �

Put E = 〈v3, v4〉. Then E⊥ = 〈v1, v2〉 and we note that CV (s) = E. Furthermore we have
that StabH(

{
E, E⊥

}
) = Ns. Put Σ =

{{
F, F⊥

}∣∣ F is a hyperbolic 2-subspace of V
}
. Now let

β ∈ GF (q) and set Uβ = 〈(1, 0, 1, 0), (0, β, 0,−β − 1)〉. Then Uβ is a hyperbolic 2-subspace of
V and so

{
Uβ, U⊥

β

}
∈ Σ. The Ns-orbit of

{
Uβ, U⊥

β

}
will be denoted by Σβ .

Lemma 3.2 Let F be a hyperbolic 2-subspace of V with F 6= E or E⊥. Then
{
F, F⊥

}
∈ Σβ

for some β ∈ GF (q). Moreover, for β ∈ GF (q), Σβ = Σ−β−1.

Proof Since F 6= E or E⊥, we may find w1 ∈ F with w1 = (α1, β1, γ1, δ1) and {α1, β1} 6=
{0} 6= {γ1, δ1}. Now Ns contains two SL2(q) subgroups for which 〈v1, v2〉 and 〈v3, v4〉 are
natural GF (q)SL2(q)-modules. Because SL2(q) acts transitively on the non-zero vectors of such
modules, we may suppose w1 = (1, 0, 1, 0). Now choose w2 ∈ F such that (w1, w2) = 1 (and so
〈w1, w2〉 = F ). Then if w2 = (α, β, γ, δ) we must have β +δ = −1 and so w2 = (α, β, γ,−β−1).
The matrices in Ns fixing w1 are

CNs
(w1) =








1
a1 1

1
a2 1


 ,




1
a1 1

1
a2 1




∣∣∣∣∣∣∣∣
a1, a2 ∈ GF (q)





.

Let g =




1
a1 1

1
a2 1


 where a1, a2 ∈ GF (q). Then wg

1 = w1.

We single out the cases β = 0 and β = −1 for special attention. If, say, β = 0, then w2 =
(α, 0, γ,−1). Hence w2 − αw1 = (0, 0, γ − α,−1) and F = 〈w1, w2 − αw1〉. Since (0, 0, γ −
α,−1)g = (0, 0, (γ − α) − a2,−1) and choosing a2 = −γ + α, we obtain Fg = U0. For β = −1
a similar argument works (using w2 − γw1 instead of w2 − αw1). So we may assume that
β 6= 0,−1. From

w2g = (α, β, γ,−β − 1) = (α + βa1, β, γ + (−β − 1)a2,−β − 1)

by a suitable choice of a1 and a2, as β 6= 0,−1, we get w2g = (0, β, 0,−β−1), whence Fg = Uβ .
Thus we have shown

{
F, F⊥

}
∈ Σβ for some β ∈ GF (q). Finally, for β ∈ GF (q), Σβ = Σ−β−1
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follows from

(0, β, 0,−β − 1)




1
1

1
1


 = (0,−β − 1, 0, β).

�

Let φ : GF (q) \ {−1} → GF (q) be defined by

φ(λ) = −(1 + (λ + 1)−2(1 − λ2))−1 (λ ∈ GF (q)).

There is a possibility that this is not well-defined should 1 + (λ+ 1)−2(1− λ2) = 0. This would
then give (λ + 1)2 + (1 − λ2) = 0 from which we infer that λ = −1. So we conclude that φ is
well-defined.

Lemma 3.3 φ is injective.

Proof Suppose φ(λ) = φ(µ) for λ, µ ∈ GF (q) \ {−1} with λ 6= µ. Hence

(1 + (λ + 1)−2(1 − λ2))−1 = (1 + (µ + 1)−2(1 − µ2))−1.

Simplifying and using the fact that q is odd gives

µ2 + µ − µλ2 − λ2 − λ + λµ2 = 0,

and then
(µ + λ)(µ − λ) + (µ − λ) + λµ(µ − λ) = 0.

Hence (µ − λ)(µ + λ + 1 + λµ) = 0. Since µ 6= λ, we get µ + λ + 1 + λµ = 0 from which we
deduce that either λ = −1 or µ = −1, a contradiction. So the lemma holds. �

Proof of Theorem 1.3

We first show that Diam C(G, Y1) = 2. So let x ∈ X be such that x /∈ {t} ∪ ∆1(t). Now{
CV (x), CV (x)⊥

}
∈ Σ as CV (x) 6= E or E⊥ (otherwise x ∈ {s,−s} and then x = t).

Hence
{
CV (x), CV (x)⊥

}
∈ Σµ for some µ ∈ GF (q) by Lemma 3.2. Let y =

(
I2

I2

)
∈

X ∩ Ns. Then y ∈ ∆1(t). Our aim is to choose an xλ ∈ Ny ∩ X (so xλ ∈ ∆1(y)) for
which

{
CV (xλ), CV (xλ)

⊥
}

∈ Σµ. Since Σµ is an Ns-orbit, there exists h ∈ Ns such that{
CV (xλ), CV (xλ)

⊥
}h

=
{
CV (x), CV (x)⊥

}
. As a consequence either x = xh

λ or x−1h
λ and there-

fore x = xλ
h, whence d(t, x) ≤ 2.

We first look at the case when µ = −2−1. Then µ = −µ − 1 and hence

U−2−1 = 〈(1, 0, 1, 0), (0, 1, 0, 1)〉 .
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Observing that U−2−1 = CV (y), we see that for µ = −2−1, x ∈ ∆1(y), which we are not
concerned with here. So we may assume µ 6= −2−1.

Let xλ =

(
λI2 −B
B −λI2

)
where λ ∈ GF (q)\{0} and such that B has zero trace and determinant

1 − λ2. So xλ ∈ X ∩ Ny. We now move onto the case when µ = 0 (or equivalently µ = −1).

Here we take λ = 1 and B =

(
2 −2
2 −2

)
, noting that B satisfies the conditions to ensure that

x1 ∈ ∆1(y). Let v = (α, β, γ, δ) ∈ V . Then v ∈ CV (x1) precisely when

2γ + 2δ = 0; − 2γ − 2δ = 0;

−2α − 2β − γ = γ; 2α + 2β − δ = δ;

and thus the only conditions we get are γ = −β − α and α + β = δ. Thus

CV (x1) = {(α, β,−α − β, α + β)}

= 〈(1, 0,−1, 1), (0, 1,−1, 1)〉 .

It is straightforward to check that
{
CV (x1), CV (x1)

⊥
}
∈ Σ0. Therefore we may also assume

that µ 6= 0,−1. Choosing B =

(
λ λ−1

−λ −λ

)
we see that the requisite conditions are satisfied.

Take v = (α, β, γ, δ) ∈ V and calculating vxλ gives the relations

(λ − 1)α + γλ − δλ = 0; (λ − 1)β + γλ−1 − δλ = 0;

−λα + λβ − (λ + 1)γ = 0; − λ−1α + λβ − (λ + 1)δ = 0;

which, after rearranging gives

α = λ(λ − 1)−1(δ − γ); β = λ(λ − 1)−1δ − λ−1(λ − 1)−1γ;

γ = λ(λ + 1)−1(β − α); δ = λ(λ + 1)−1α − λ−1(λ + 1)−1α;

and note that the relations for γ and δ are satisfied after substitution for α and β. Hence

CV (xλ) =
{(

α, β, λ(λ + 1)−1(β − α), λ(λ + 1)−1β − λ−1(λ + 1)−1α
)}

=
〈(

1, 0,−λ(λ + 1)−1,−λ−1(λ + 1)−1
)
,
(
0, 1, λ(λ + 1)−1, λ(λ + 1)−1

)〉
. (3.3.1)

We want to determine which Ns-orbit, Σβ , that CV (xλ) lies in. Our representative, Uβ, for Σβ

has w1 = (1, 0, 1, 0) as one component of the hyperbolic pair, so we need an element of Ns to
send the first generator in (3.3.1) to w1. We need to find conditions on C, D ∈ SL2(q) such
that

(
1, 0,−λ(λ + 1)−1,−λ−1(λ + 1)−1

)(
C

D

)
= (1, 0, 1, 0)
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and so without loss of generality we can take C = I2. This reduces to solving

(
−λ(λ + 1)−1,−λ−1(λ + 1)−1

)(
d1 d2

d3 d4

)
= (1, 0)

and after multiplying out, we get that d3 = −(d1 + 1)λ2 − λ and d4 = −d2λ
2. Since D has

determinant 1, we find that d2 = λ−1(λ + 1)−1 and so d4 = −λ(λ + 1)−1. Without loss of
generality, by taking d1 = 1 we have that

D =

(
1 λ−1(λ + 1)−1

−2λ2 − λ −λ(λ + 1)−1

)

and a quick check shows that the first generator in (3.3.1) is mapped to w1. Using the same
matrix, by multiplying on the right of the second generator in (3.3.1), we get

(
0, 1, λ(λ + 1)−1, λ(λ + 1)−1

)(
I2

D

)
=

(
∗, 1, ∗, (λ + 1)−2(1 − λ2)

)
= u′

and 〈w1, u
′〉 is a hyperbolic 2-subspace conjugate to some Uβ . Recall that for a fixed β ∈ GF (q),

Ns is transitive on {(α, β, γ,−β − 1)|α, γ ∈ GF (q)}. Hence, we need only find the hyperbolic
pair representing such a conjugate of Uβ, to determine β. This is found by requiring that some
multiple of u′ has inner product 1 with w1, that is

β · 1 = −1 − β
(
(λ + 1)−2(1 − λ2)

)

for some β ∈ GF (q). By expanding, we get that β = − (1 + (λ + 1)−2(1 − λ2))
−1

and so
CV (xλ) ∈ Σβ . By Lemma 3.3, φ : λ 7→ −(1 + (λ + 1)−2(1 − λ2))−1 is an injective map
from GF (q) \ {−1} into GF (q). Since µ 6= −2−1, µ 6= −µ − 1 and therefore there exists
λ ∈ GF (q) \ {−1} such that φ(λ) = µ or −µ − 1. Bearing in mind that Uµ = U−µ−1 by
Lemma 3.2, we conclude that

{
CV (xλ), CV (xλ)

⊥
}
∈ Σµ. Consequently we have proved that

Diam C(G, Y1) = 2.

From |G| = q4

2
(q2 − 1)(q4 − 1) and |CG(t)| = q2(q2 − 1)2 we see that |Y1| = q2

2
(q2 + 1). Using

Lemma 3.1 then gives

|∆2(t)| =
1

2
(q4 − q3 + q2 + q − 2),

which completes the proof of Theorem 1.3.

4 Structure of C(G, Y2)

In this section we present a proof of Theorem 1.4. The uncovering of the disc structures of
C(G, Y2) will be a long haul. As discussed in Section 1, it will be advantageous for us to use
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the well known isomorphism that PSp4(q) ∼= O5(q) (see Corollary 12.32 of [26]). So we take
G = O5(q) and from now on V will denote the 5-dimensional GF (q) orthogonal module for
G. Thus the elements of G are 5 × 5 orthogonal matrices with respect to the orthogonal form
( , ) which have spinor norm a square in GF (q). We may assume that the Gram matrix with
respect to ( , ) is

J =




0 1
1 0

0 0 1
0 −2 0
1 0 0




.

Let

t =




I2

0 0 1
0 −1 0
1 0 0


 .

Then t ∈ G and Y2 = tG. Let δ = ±1 where q ≡ δ (mod 4).

Lemma 4.1 (i) dim(CV (t)) = 3.

(ii) CV (t)⊥ = [V, t] is a 2-subspace of V of δ-type.

(iii) V = CV (t) ⊥ CV (t)⊥.

Proof An easy calculation. �

Put Lt = CG(t) ∩ CG([V, t]).

Lemma 4.2 (i) Let x ∈ Y2. Then t = x if and only if CV (t) = CV (x).

(ii) CG(t) = StabG(CV (t)) ∼ (L2(q) ×
q−δ

2
).22.

(iii) Lt acts faithfully on CV (t) and Lt
∼= L2(q).

Proof

(i) Suppose CV (x) = CV (t). Then, using Lemma 4.1 (ii), [V, x] = CV (x)⊥ = CV (t)⊥ = [V, t].
Hence by Lemma 4.1(iii), tx acts trivially on V and thus tx = 1. Therefore t = x and (i) holds.

(ii) Plainly CG(t) ≤ StabG(CV (t)), and if g ∈ StabG(CV (t)), then CV (t) = CV (t)g = CV (tg).
Hence, and tg ∈ Y2, t = tg by part (i). So g ∈ CG(t) and thus CG(t) = StabG(CV (t)). That
StabG(CV (t)) ∼ (L2(q) ×

q−δ

2
).22 can be read off from Proposition 4.1.6 of [21].
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(iii) For any g ∈ CG(t), we have [V, t]g = CV (t)⊥g = CV (tg)⊥ = CV (t)⊥ = [V, t] and so
CG(t) ≤ StabG[V, t]. If any element in Lt acts trivially on CV (t), then it would act trivially
on V and thus be the identity. Hence Lt acts faithfully on CV (t). Let v ∈ CV (t) and by
Lemma 4.1(iii), we have [V, t] ≤ 〈v〉⊥. Hence 〈v〉⊥ = [V, t] ⊕ W where W ≤ CV (t). But since
dim(〈v〉⊥) = 4, we have dim(W ) = 2 and so CV (t) � 〈v〉⊥. Therefore for all u ∈ CV (t),
(v, u) = 0 if and only if v = 0 and thus ( , ) is non-degenerate on restriction to CV (t). Hence
we have Lt →֒ GO(CV (t)) ∼ GO3(q) as Lt fixes [V, t] pointwise, by definition. Since Lt ≤ G
and acts as determinant 1 on [V, t], then it must act as determinant 1 on CV (t). In addition, as
Lt fixes [V, t] pointwise, when the elements of Lt are decomposed as products of refections, the
vectors reflected will lie in CV (t). Since the spinor norm of the elements of Lt are a square in
GF (q) and the vectors reflected lie in CV (t), then the spinor norm doesn’t change on restriction
to CV (t). Hence, Lt ∼ O3(q) ∼ L2(q) proving (iii).

�

Let Ui denote the set of i-dimensional subspaces of CV (t), i = 1, 2. In proving Theorem 1.4,
our divide and conquer strategy is based on the following observation.

Lemma 4.3 Y2 ⊆
⋃

U∈U1∪U2

CG(U).

Proof Let x ∈ Y2\{t} and set U = CV (t)∩CV (x). By Lemmas 4.1(i) and 4.2(i), U ∈ U1∪U2.
Since t, x ∈ CG(U), we have Lemma 4.3. �

The three cases we must chase down are presaged by our next result.

Lemma 4.4 (i) Let U0 be an isotropic 1-subspace of CV (t). Then CG(U0) ∼ q3 : L2(q).

(ii) Let Uε be a 1-subspace of CV (t), such that U⊥
ε ∩ CV (t) is a 2-space of ε-type (ε = ±1).

Then

CG(Uε) ∼

{
SL2(q) ◦ SL2(q)) δ = ε
L2(q

2) δ = −ε.

Proof Let U0 be an isotropic 1-subspace of CV (t). From Proposition 4.1.20 of [21], we know
that StabG(U0) ∼ C0 : (C1 × C2) 〈r〉 where C1 acts as scalars on U0, r a reflection of U0 and
C0 ∼ q3, C2 ∼ L2(q) fixing U0 pointwise. Hence CG(U0) ∼ q3 : L2(q), so proving (i).
If δ = 1, then [V, t] is a 2-subspace of V of +-type, and hence U⊥

+ = (U⊥
+ ∩ CV (t)) ⊥ [V, t]

is a 4-subspace of +-type. Similarly, U⊥
− = (U⊥

− ∩ CV (t)) ⊥ [V, t] is a 4-space of −-type. If
δ = −1, then [V, t] is a 2-subspace of V of −-type, and the results for when δ = 1 interchange.
Let W+ and W− be 4-subspaces of V of + and −-type respectively, such that W⊥

+ and W⊥
−
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are 1-subspaces of CV (t), observing that StabG(W±) = StabG(W⊥
± ). From Proposition 4.1.6 of

[21], we have

StabG(W+) ∼ C+ 〈s+〉

StabG(W−) ∼ C− 〈s−〉

where C+ ∼ SL2(q) ◦ SL2(q) fixes W⊥
+ pointwise, C− ∼ L2(q

2) fixes W⊥
− pointwise and s+, s−

are reflections of W⊥
+ and W⊥

− respectively. This proves (ii) and hence the lemma. �

Lemma 4.5 (i) Let U0 be a 2-subspace of CV (t) such that U⊥
0 ∩CV (t) is an isotropic 1-space.

Then CG(U0) ∼= q2 : q−δ

2
.

(ii) Let Uε be a 2-subspace of CV (t) of ε-type (ε = ±1). Then CG(Uε) ∼ L2(q).

Proof See Propositions 4.1.6 and 4.1.20 of [21]. �

Define the following subsets of Ui, i = 1, 2.

U+
1 = {U ∈ U1|CG(U) ∼ SL2(q) ◦ SL2(q)}

U−
1 =

{
U ∈ U1|CG(U) ∼ L2(q

2)
}

U0
1 =

{
U ∈ U1|CG(U) ∼ q3 : L2(q)

}

U+
2 = {U ∈ U2|U is of +-type}

U−
2 = {U ∈ U2|U is of −-type}

U0
2 =

{
U ∈ U2

∣∣∣∣CG(U) ∼ q2 :
q − δ

2

}
.

In the notation of Lemma 4.4, U+
1 is the case δ = ε while U−

1 is when δ = −ε. Note by
Lemmas 4.4 and 4.5 that Ui = U0

i ∪ U+
i ∪ U−

i , i = 1, 2. We now study CG(U) ∩ Y2 for
U ∈ U1. By Lemma 4.4 there are three possibilities for the structure of CG(U). First we
look at the case U ∈ U−

1 , and set G− = CG(U). Then G− ∼= L2(q
2) by definition of U−

1 .
Define ∆−

i (t) = {x ∈ G− ∩ Y2| d
−(t, x) = i} where i ∈ N and d− is the distance metric on the

commuting graph C(G−, G− ∩ Y2).

Theorem 4.6 If q 6= 3 then C(G−, G− ∩ Y2) is connected of diameter 3 with

∣∣∆−
1 (t)

∣∣ =
1

2
(q2 − 1);

∣∣∆−
2 (t)

∣∣ =
1

4
(q2 − 1)(q2 − 5); and

∣∣∆−
3 (t)

∣∣ =
1

4
(q2 − 1)(q2 + 7).
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Proof Since q2 ≡ 1 (mod 4) and q 6= 3 implies q2 > 13, this follows from Theorem 1.1(iii) of
[10]. �

We move on to analyze G+ = CG(U) where U ∈ U+
1 . Hence, by definition of U+

1 , G+ ∼ L1 ◦L2

where L1 ∼ SL2(q) ∼ L2 (with the central product identifying Z(L1) and Z(L2)). Set Y + =
G+ ∩ Y2. We begin by describing Y +.

Lemma 4.7 Y + = {x1x2|xi ∈ Li and xi has order 4, i = 1, 2}.

Proof Apart from the central involution z of G+, all other involutions of G+ are of the form
g1g2 where gi ∈ Li (i = 1, 2) has order 4. Since all involutions in Li/Z(G+) are conjugate, it
quickly follows that {g1g2| gi ∈ Li and gi has order 4, i = 1, 2} is a G+-conjugacy class. Now
z acts as −1 on U⊥ and thus dim CV (z) = 1. Therefore t 6= z whence, as t ∈ G+, the lemma
holds. �

Let d+ denote the distance metric on the commuting graph C(G+, Y +) and, for i ∈ N, ∆+
i (t) =

{x ∈ Y +| d+(t, x) = i}.

Theorem 4.8 Assume that q /∈ {3, 5, 9, 13}. Then C(G+, Y +) is connected of diameter 3 with

∣∣∆+
1 (t)

∣∣ =
1

2
(q − δ)2 + 1;

∣∣∆+
2 (t)

∣∣ =
1

8
(q − δ)3(q − 4 − δ) + (q − δ)(q − 2 − δ); and

∣∣∆+
3 (t)

∣∣ =
3

8
q4 +

1

2
(1 + 3δ)q3 −

1

4
(7 + 6δ)q2 +

7

2
(1 + δ)q −

1

8
(29 + 20δ).

Proof Let G+ = G+/Z(G+) (= L1 × L2). Note that for x1x2 ∈ Y +, x−1
1 x2 = x1x

−1
2 and

x1x2 = x−1
1 x−1

2 and so the inverse image of x1x2 contains two elements of Y +. Let d(i) denote the

distance metric on the commuting graph of Li and ∆
(i)
j (xi) the jth disc of xi in the commuting

graph of Li. By Lemma 4.7, t = t1t2 where, for i = 1, 2, ti ∈ Li has order 4. Let x = x1x2 ∈ Y +

with x 6= t. Then tx = xt if and only if tx has order 2. So, bearing in mind that Y + ∪ {z}
(where 〈z〉 = Z(G+)) are all the involutions of G+, we have that tx = xt if and only if one of

the following holds:- x1 = t1, x2 = t−1
2 ; x1 = t−1

1 , x2 = t2; x1 ∈ ∆
(1)
1 (t1) and x2 ∈ ∆

(2)
1 (t2). Thus

∆+
1 (t) =

{
x1x2

∣∣∣xi ∈ ∆
(i)
1 (ti), i = 1, 2

}
∪

{
t1t

−1
2

}
. (4.8.1)

Hence, using [10],

∣∣∆+
1 (t)

∣∣ = 2

(
1

2
(q − δ)

)2

+ 1 =
1

2
(q − δ)2 + 1. (4.8.2)
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Next we examine ∆+
2 (t). Let x ∈ Y +. Assume that x = x1t2 or x1t

−1
2 where x1 ∈ ∆

(1)
1 (t1).

Then x ∈ ∆+
1 (t1t

−1
2 ) (recall t1t

−1
2 = t−1

1 t2) which implies, by (4.8.1), that x ∈ ∆+
2 (t). If x = t1x2

or t−1
1 x2 where x2 ∈ ∆

(2)
1 (t2), we similarly get x ∈ ∆+

2 (t). Therefore

{
x1x2

∣∣∣x1 ∈ ∆
(1)
1 (t1), x2 = t2

}
∪

{
x1x2

∣∣∣x2 ∈ ∆
(2)
1 (t2), x1 = t1

}
⊆ ∆+

2 (t). (4.8.3)

Now suppose x = x1x2 where x1 ∈ ∆
(1)
2 (t1) and x2 ∈ ∆

(2)
1 (t2). So there exists y1 ∈ L1 such that

(t1, y1, x1) is a path of length 2 in the commuting graph for L1. Then (t = t1t2, y1x
−1
2 , x1x2 = x)

is a path of length 2 in C(G+, Y +). Thus, by (4.8.1), x ∈ ∆+
2 (t). If, on the other hand,

x1 ∈ ∆
(1)
1 (t1) and x2 ∈ ∆

(2)
2 (t2) we obtain the same conclusion. Should we have x1 ∈ ∆

(1)
2 (t1)

and x2 ∈ ∆
(2)
2 (t2), similar arguments also give x ∈ ∆+

2 (t). So

{
x1x2

∣∣∣x1 ∈ ∆
(1)
2 (t1), x2 ∈ ∆

(2)
1 (t2)

}
∪

{
x1x2

∣∣∣x1 ∈ ∆
(1)
1 (t1), x2 ∈ ∆

(2)
2 (t2)

}

∪
{
x1x2

∣∣∣x1 ∈ ∆
(1)
2 (t1), x2 ∈ ∆

(2)
2 (t2)

}
⊆ ∆+

2 (t). (4.8.4)

Since x = x1x2 ∈ ∆+
2 (t) implies d(i)(ti, xi) ≤ 2 for i = 1, 2, ∆+

2 (t) is the union of the two sets
in (4.8.3) and (4.8.4). Thus, employing [10],

∣∣∆+
2 (t)

∣∣ =
1

8
(q − δ)3(q − 4 − δ) + (q − δ)(q − 2 − δ). (4.8.5)

Now, as q /∈ {3, 5, 9, 13}, by [10] the commuting graph for Li is connected of diameter 3.
Arguing as above we deduce that C(G+, Y +) is also connected with diameter 3. Because

|Y +| = 2
∣∣∣t1L1

∣∣∣
∣∣∣t2L2

∣∣∣ = 1
2
q2(q + δ)2, combining (4.8.2) and (4.8.5) we may determine

∣∣∆+
3 (t)

∣∣ to

be as stated, so completing the proof of Theorem 4.8. �

Finally we look at CG(U) where U ∈ U0
1 . This will prove to be trickier than the other two

cases. Put G0 = CG(U). So G0 ∼ q3 : L2(q). We require an explicit description of G0 which
we now give. Let Q = {(α, β, γ)|α, β, γ ∈ GF (q)} and

L =








a2 2ab b2

ac ad + bc bd
c2 2cd d2




∣∣∣∣∣∣
a, b, c, d ∈ GF (q)

ad − bc = 1



 .

with L acting on Q by right multiplication. Then Q ∼ q3 and L ∼ L2(q). Since Q is the
3-dimensional GF (q)L-module (see the description on page 15 of [4]), G0 ∼= Q ⋊ L. We
will identify this semidirect product with G0, writing G0 = QL. Any g ∈ G0 has a unique
expression g = gQgL where gQ ∈ Q and gL ∈ L - in what follows we use such subscripts to
describe this expression. Set Y 0 = G0 ∩ Y2, let d0 denote the distance metric and ∆0

i (t) the
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ith disc of the commuting graph C(G0, Y 0). In determining the discs of C(G0, Y 0) we make
use of the commuting involution graph of L ∼= L2(q) (as given in [10]). So we shall use dL

to denote the distance metric on C(L, L ∩ Y 0) and for x ∈ L ∩ Y 0 and i ∈ N, ∆L
i (x) ={

y ∈ L ∩ Y 0| dL(x, y) = i
}
. It is straightforward to check that

L ∩ Y 0 =








a2 2ab b2

ac bc − a2 −ab
c2 −2ac a2




∣∣∣∣∣∣
a, b, c ∈ GF (q)
a2 + b2 = −1





and, as G0 has one conjugacy class of involutions, Y 0 = {xQxL|xL ∈ L ∩ Y 0 and xL inverts xQ}.
Without loss of generality, we take

t = tL =




0 0 1
0 −1 0
1 0 0




and, up until Theorem 4.14, we will assume that q /∈ {3, 5, 9, 13}. Thus the diameter of
C(L, L ∩ Y 0) is 3.

Lemma 4.9 (i) Qt ∩ Y 0 = {(α, β,−α)t|α, β ∈ GF (q)} and |Qt ∩ Y 0| = q2.

(ii) Qt ∩ ∆0
1(t) = ∅.

Proof A straightforward calculation. �

Lemma 4.10 We have

∆0
1(t) =



x

∣∣∣∣∣∣
xQ = (α, 0, α), xL =




a2 2ab b2

ab b2 − a2 −ab
b2 −2ab a2


 , a2 + b2 = −1



 ,

and |∆0
1(t)| = 1

2
q(q − δ).

Proof Let x, y ∈ Y 0. If [x, y] = 1 then clearly [xL, yL] = 1. From [10] we have

∆L
1 (t) =








a2 2ab b2

ab b2 − a2 −ab
b2 −2ab a2




∣∣∣∣∣∣
a2 + b2 = −1



 .

If xQ = (α, β, γ) and xL ∈ ∆L
1 (t) then [t, x] = 1 implies α = γ and β = 0. Moreover, every

x = (α, 0, α)xL, where xL ∈ ∆L
1 (t), is in Y 0. Hence, ∆0

1(t) is as described above. By [10], for
any involution xL ∈ L we have

∣∣∆L
1 (xL)

∣∣ = 1
2
(q − δ) and there are q possible values that α can

take for a fixed such xL, proving the lemma. �

Lemma 4.11 Let x ∈ Y 0 with xL ∈ ∆L
1 (t). If x /∈ ∆0

1(t), then x ∈ ∆0
2(t).
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Proof Suppose x ∈ Y 0 where xQ = (α, β, γ) and

xL =




a2 2ab b2

ab b2 − a2 −ab
b2 −2ab a2



 .

Then xL inverts xQ if and only if

a2α + 2abβ + b2γ = −α

abα + (b2 − a2)β − abγ = −β (4.11.1)

b2α − 2abβ + a2γ = −γ.

Suppose first that δ = −1. Then, since −1 is not square in GF (q), we must have a, b 6= 0.
Rearranging the first equation gives α = 2ab−1β + γ and (4.11.1) remains consistent. Note
that when β = 0, we have α = γ and so x ∈ ∆0

1(t). So assume β 6= 0. Let y ∈ ∆0
1(t) where

yQ = (ab−1β + γ, 0, ab−1β + γ) and

yL =




b2 −2ab a2

−ab a2 − b2 ab
a2 2ab b2


 .

It is a routine calculation to show that [x, y] = 1, proving the lemma for δ = −1. Now assume
δ = 1. If a, b 6= 0 then the argument from the previous case still holds, so assume first that
a = 0, and hence b is the unique element in GF (q) that squares to −1. Then (4.11.1) simplifies
to α = γ, and so xQ = (α, β, α). Let z ∈ ∆0

1(t) where zQ = (α, 0, α) and

zL =



−1 0 0

0 1 0
0 0 −1


 .

An easy calculation shows that [x, z] = 1. Similarly, assuming b = 0 then a is the unique
element of GF (q) squaring to −1 and (4.11.1) simplifies to β = 0. Then xQ = (α, 0, γ) and if
w ∈ ∆0

1(t) where wQ = (2−1(α + γ), 0, 2−1(α + γ)) and

wL =




0 0 −1
0 −1 0

−1 0 0





then an easy check shows that [x, w] = 1, proving the lemma for δ = 1. �

Lemma 4.12 We have Qt ∩ Y 0 ⊆ {t} ∪ ∆0
2(t) ∪ ∆0

3(t). Moreover,

∣∣Qt ∩ ∆0
2(t)

∣∣ =
1

2
(q2 − (1 + δ)q + δ); and

∣∣Qt ∩ ∆0
3(t)

∣∣ =
1

2
(q2 + (1 + δ)q − (2 + δ)).
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Proof If x ∈ Qt ∩ Y 0 and x 6= t then xQ = (α, β,−α) and x /∈ ∆0
1(t) by Lemma 4.9. Let

y ∈ ∆0
1(t) where yQ = (γ, 0, γ) and

yL =




a2 2ab b2

ab b2 − a2 −ab
b2 −2ab a2




with a2 + b2 = −1. Then [x, y] = 1 if and only if −a2α = abβ and −b2β = abα.
Assume first that δ = −1. Since −1 is not square in GF (q), we have a, b 6= 0 and so α = −a−1bβ.
Hence if y ∈ Qt is such that yQ = (−a−1bβ, β, a−1bβ), then y ∈ ∆0

2(t). By looking at ∆L
1 (t), we

see there are q+1 ordered pairs (a, b) that satisfy a2 +b2 = −1. However, if (a, b) 6= (c, d) where
a2 + b2 = c2 + d2 = −1 and a−1b = c−1d, then an easy calculation shows that (c, d) = (−a,−b).
Hence there are 1

2
(q +1) distinct values of a−1b satisfying the relevant conditions. If β = 0 then

x = t and if β 6= 0 there are 1
2
(q2 − 1) elements in Qt ∩ ∆0

2(t).
Assume now that δ = 1. If a, b 6= 0 then the arguments of the previous case still hold, with
the exception that there are now q − 1 ordered pairs (a, b) that satisfy a2 + b2 = −1. However,
as a, b 6= 0 we exclude the pairs (±i, 0) and (0,±i) where i is the unique element of GF (q)
squaring to −1. Hence there are q − 5 ordered pairs (a, b) satisfying a2 + b2 = −1, a, b 6= 0 and
thus 1

2
(q − 5) distinct values of a−1b. Hence there are 1

2
(q − 5)(q − 1) elements z ∈ Qt ∩ ∆0

2(t)
such that zQ = (−a−1bβ, β, a−1bβ) where β 6= 0 (note that if β = 0, then z = t). Suppose
a = 0, then b 6= 0 and so β = 0. Hence xQ = (α, 0,−α) and all such x lie in ∆0

2(t) if α 6= 0.
Similarly, if b = 0 then a 6= 0 and xQ = (0, β, 0) where β 6= 0 and all such x lie in ∆0

2(t).
Therefore, |Qt ∩ ∆0

2(t)| = 1
2
(q − 5)(q − 1) + 2(q − 1) = 1

2
(q − 1)2 as required.

Hence it suffices to show that these remaining involutions all lie in ∆0
3(t). Let w ∈ Qt be such

that wQ = (γ, ε,−γ). Choose s ∈ Y 0 such that sQ = (abε − b2γ, abγ − a2ε, b2γ − abε) with
abγ 6= a2ε and

sL =




b2 −2ab a2

−ab a2 − b2 ab
a2 2ab b2


 ,

with a2 + b2 = −1. It is an easy check to show that s ∈ ∆0
2(t), and moreover [w, s] = 1. This

accounts for the remaining involutions in Qt, thus proving the lemma. �

Lemma 4.13 Suppose x ∈ Y 0 with xL ∈ ∆L
2 (t). Then x ∈ ∆0

2(t).

Proof It can be shown (see Remark 2.3 of [10], noting the result holds for any odd q) that
for a fixed a, b ∈ GF (q) such that a2 + b2 = −1,

CL







a2 2ab b2

ab b2 − a2 −ab
b2 −2ab a2





 =









c2 2cd d2

ce de − c2 −cd
e2 −2ce c2




∣∣∣∣∣∣
c2 + de = −1

b(e + d) = −2ac




 .
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Let y ∈ Y 0 be such that yQ = (α, β, γ) and

yL =




c2 2cd d2

ce de − c2 −cd
e2 −2ce c2


 ∈ ∆L

2 (t).

So there exists a, b ∈ GF (q) such that a2 + b2 = −1 and b(e + d) = −2ac with d 6= e. Since yL

inverts yQ, we have

c2α + 2cdβ + d2γ = −α

ceα + (de − c2)β − cdγ = −β (4.13.1)

e2α − 2ceβ + c2γ = −γ.

Assume first that δ = −1. Since −1 is not square in GF (q), then d, e 6= 0 and any a, b ∈ GF (q)
such that b(d + e) = −2ac and a2 + b2 = −1 must also be non-zero. Moreover, if c = 0 then
d = −e−1 and b(d − d−1) = 0 implying that d = −1. But then yL = t /∈ ∆L

2 (t), so c 6= 0. The
system (4.13.1) now simplifies to α = 2ce−1β +de−1γ. Let x ∈ ∆0

1(t) be such that xQ = (ε, 0, ε)
and

xL =




a2 2ab b2

ab b2 − a2 −ab
b2 −2ab a2




where ε = −abc−1e−1(γ+(d−e)−1(2c+a−1be−ab−1e−(ab)−1e)β). Using the PolynomialAlgebra
command in Magma [15] we verify that [x, y] = 1 and so y ∈ ∆0

2(t).
Assume now that δ = 1. Let a, b ∈ GF (q) be such that a2 + b2 = −1 and b(d + e) = −2ac.
Suppose c, d, e 6= 0 and d 6= −e. Then b(d + e) = −2ac 6= 0 and so a, b 6= 0. The argu-
ment for the case when δ = −1 then holds. Suppose then c, d, e 6= 0 and d = −e. Then
b(d + e) = −2ac = 0 and since c 6= 0 we must have a = 0 and b2 = −1. The system (4.13.1)
then becomes α = 2ce−1β − γ. If x ∈ ∆0

1(t) is such that xQ = (−c−1e−1β, 0,−c−1e−1β) and

xL =




0 0 −1
0 −1 0

−1 0 0




then a routine check shows that [x, y] = 1.
Now assume c 6= 0 and d = 0. Since yL ∈ ∆L

2 (t), we must have e 6= 0 and so c2 = −1. The
system (4.13.1) becomes α = 2ce−1β and using Magma [15] we deduce that if x ∈ ∆0

1(t) where
xQ = (ε, 0, ε),

xL =




a2 2ab b2

ab b2 − a2 −ab
b2 −2ab a2




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and ε = (ce−1(1− a2)− ab)β − 2−1b2γ, then [x, y] = 1. Similarly, if c 6= 0 and e = 0, then d 6= 0
and c2 = −1. The system (4.13.1) becomes β = 2−1cdγ and [15] will verify that if x ∈ ∆0

1(t)
where xQ = (ε, 0, ε),

xL =




a2 2ab b2

ab b2 − a2 −ab
b2 −2ab a2




and ε = 2−1(γ − b2α + abcdγ − a2γ), then [x, y] = 1.
Finally, if c = 0 then d = −e−1 and so a2 = −1 and b = 0 satisfies the relevant conditions.
Note that if d = ±1 then yL = t, so we may assume d 6= ±1. The system (4.13.1) becomes
α = d2γ, so if x ∈ ∆0

1(t) where xQ = (2d2γ(1 − d2)−1, 0, 2d2γ(1 − d2)−1) and

xL =




−1 0 0

0 1 0
0 0 −1





then a routine check again shows that [x, y] = 1. Therefore, for all y ∈ Y 0 such that yL ∈ ∆L
2 (t),

there exists x ∈ ∆L
1 (t) such that [x, y] = 1, so proving the lemma. �

Theorem 4.14 If q /∈ {3, 5, 9, 13}, then C(G0, Y 0) is connected of diameter 3, with disc sizes

∣∣∆0
1(t)

∣∣ =
1

2
q(q − δ);

∣∣∆0
2(t)

∣∣ =
1

4
(q4 − (2δ + 2)q3 + (1 + 2δ)q2 − 2q + 2δ); and

∣∣∆0
3(t)

∣∣ =
1

4
(q4 + 2(1 + 2δ)q3 − (3 + 2δ)q2 + 2(1 + δ)q − 2(2 + δ)).

Proof It is known that C(L, L ∩ Y 0) has diameter 3. Hence, for any hi ∈ ∆L
i (t), there exists

hi±1 ∈ ∆L
i±1(t) that commutes with hi, i = 1, 2. Therefore for any x ∈ Y 0 where xL ∈ ∆L

i (t),
there exists y ∈ Y 0 with yL ∈ ∆L

i±1(t) and such that [x, y] = 1. Since any z ∈ Y 0 where
zL ∈ ∆L

3 (t) must commute with some w ∈ Y 0 with wL ∈ ∆L
2 (t) (which lies in ∆0

2(t) by Lemma
4.13), z ∈ ∆0

3(t). This finally covers all possible involutions in Y 0 and so the diameter of
C(G0, Y 0) is 3. Now for each xL ∈ L∩ Y 0, |QxL ∩ Y 0| = q2 by Lemma 4.9, and therefore there
are 1

2
q2(q−δ) involutions y ∈ Y 0 such that yL ∈ ∆L

1 (t). From Lemma 4.10, |∆0
1(t)| = 1

2
q(q−δ).

Therefore
∣∣∣∣∣∣

⋃

xL∈∆L
1
(t)

QxL ∩ ∆0
2(t)

∣∣∣∣∣∣
=

1

2
q2(q − δ) −

1

2
q(q − δ) =

1

2
q(q − 1)(q − δ).
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There are q2
∣∣∆L

2 (t)
∣∣ involutions z ∈ Y 0 such that zL ∈ ∆L

2 (t), which is known to be 1
4
q2(q −

δ)(q − 4 − δ) (see [10]). Also, by Lemma 4.12, |Qt ∩ ∆0
2(t)| = 1

2
(q2 − (1 + δ)q − δ). Hence

∣∣∆0
2(t)

∣∣ =
∣∣Qt ∩ ∆0

2(t)
∣∣ +

∣∣∣∣∣∣

⋃

xL∈∆L
1
(t)

QxL ∩ ∆0
2(t)

∣∣∣∣∣∣
+ q2

∣∣∆L
2 (t)

∣∣

=
1

4
(q4 − (2δ + 2)q3 + (1 + 2δ)q2 − 2q + 2δ).

Finally, there are |Y 0| = q2 |L ∩ Y 0| = 1
2
q3(q + δ) involutions in G0 and therefore

∣∣∆0
3(t)

∣∣ =
∣∣Y 0

∣∣ −
∣∣∆0

2(t)
∣∣ −

∣∣∆0
1(t)

∣∣ − 1

=
1

4
(q4 + 2(1 + 2δ)q3 − (3 + 2δ)q2 + 2(1 + δ)q − 2(2 + δ))

which proves Theorem 4.14. �

Theorem 4.15 C(G, Y2) is connected of diameter at most 3.

Proof For q ≤ 13, this is easily checked using Magma [15], so assume q > 13. Combining
Lemma 4.3 with Theorems 4.6, 4.8 and 4.14 yields the theorem. �

We now focus on finding the disc sizes of C(G, Y2). First, we need the following four lemmas.

Lemma 4.16 The sets U+
1 , U−

1 and U0
1 are single CG(t)-orbits. Moreover,

∣∣U0
1

∣∣ = q + 1;
∣∣U+

1

∣∣ =
1

2
q(q + δ); and

∣∣U−
1

∣∣ =
1

2
q(q − δ).

Proof Since CG(t) acts orthogonally on CV (t), the first statement is immediate. Recall
the Gram matrix J for V with respect to ( , ) and the basis {vi}. Observe that CV (t) =
{(α, β, γ, 0, γ)|α, β, γ ∈ GF (q)} and so a basis for CV (t) is {v1, v2, v3 + v5}. Let v = (α, β, γ, 0, γ)
be a non-zero vector in CV (t) and so (v, v) = 2αβ + 2γ2.
Suppose v is isotropic, so CG(〈v〉) ∼ q3 : L2(q) and (v, v) = 2αβ + 2γ2 = 0. If γ = 0, then
αβ = 0 and so either α = 0 or β = 0 (but not both as v 6= 0). Hence there are 2(q − 1) such
vectors with γ = 0. If γ 6= 0, then α = −β−1γ2 and there are (q − 1)2 such vectors satisfying
this. Hence there are 2(q − 1) + (q − 1)2 = (q − 1)(q + 1) non-zero isotropic vectors contained
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in CV (t) and thus q + 1 isotropic 1-subspaces of CV (t).
Suppose now v is CG(t)-conjugate to v3+v5, which is non-isotropic. Note that 〈v3 + v5〉

⊥∩CV (t)
is a 2-subspace of V of +-type. If δ = 1, then by Lemma 4.1(ii), 〈v3 + v5〉

⊥ is a 4-subspace
of V of +-type and so CG(〈v3 + v5〉) ∼ SL2(q) ◦ SL2(q). While δ = −1 gives that 〈v3 + v5〉

⊥

is a 4-subspace of V of −-type and so CG(〈v3 + v5〉) ∼ L2(q
2). A quick check shows that

(v3 +v5, v3 +v5) = 2 and so (v, v) = 2αβ +2γ2 = 2λ2 for some λ ∈ GF (q)∗. Thus, αβ +γ2 = λ2

for some λ ∈ GF (q)∗. If γ = 0, then α = β−1λ2 and so there are q − 1 such vectors that satisfy
this. If γ = ±λ, then αβ = 0 and so for both values of γ, there are 2(q − 1) + 1 vectors that
satisfy this. Finally, if γ ∈ GF (q) \ {0, λ,−λ}, then αβ = 1 − γ2 6= 0 and so α = β−1(1 − γ2).
There are (q − 1)(q − 3) such vectors that satisfy this. Hence for any given λ, there exist
(q − 1) + 4(q − 1) + 2 + (q − 1)(q − 3) = q(q + 1) vectors that satisfy αβ + γ2 = λ2. Since there
are 1

2
(q − 1) squares in GF (q), there are q(q + 1)(q − 1) vectors that are CG(t)-conjugate to

v3 + v5 and hence 1
2
(q + 1) 1-subspaces of CV (t) that are CG(t)-conjugate to v3 + v5.

This leaves the remaining orbit U−
1 . Recall there are q2+q+1 subspaces of CV (t1) of dimension

1, and hence the size of the remaining orbit is q2 + q + 1 − (q + 1) − 1
2
q(q + 1) = 1

2
q(q − 1), so

proving the lemma. �

Corollary 4.17 The sets U+
2 , U−

2 and U0
2 are single CG(t)-orbits. Moreover,

∣∣U0
2

∣∣ = q + 1;
∣∣U+

2

∣∣ =
1

2
q(q + 1); and

∣∣U−
2

∣∣ =
1

2
q(q − 1).

Proof Since CV (t) is 3-dimensional, U⊥ ∩ CV (t) ∈ U1 for any U ∈ U2, and so the result is
immediate by Lemma 4.16. �

Lemma 4.18 Let U, U ′ ∈ U2 be such that U 6= U ′. Then CG(U) ∩ CG(U ′) ∩ Y2 = {t}.

Proof Suppose x ∈ CG(U)∩CG(U ′)∩Y2. Since U 6= U ′ and x fixes each 2-subspace pointwise,
U + U ′ = CV (t) and so x fixes CV (t) pointwise. That is to say, CV (x) = CV (t) and so t = x by
Lemma 4.2(i). �

Lemma 4.19 Let U0 ∈ U0
2 , and G0 = QL, Y 0 be as defined in the discussion prior to Lemma

4.9. Let ρ : CG(U⊥
0 ∩ CV (t)) → G0 be an isomorphism such that

tρ =




0 0 1
0 −1 0
1 0 0


 .
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Then CG(U0) is totally disconnected and (CG(U0) ∩ Y2)
ρ = Qt ∩ Y 0.

Proof Since U⊥
0 ∩CV (t) is isotropic, it must lie inside of U0 and so CG(U0) ≤ CG(U⊥

0 ∩CV (t)).
As t fixes U0 pointwise, tρ ∈ (CG(U0))

ρ ∼ q2 : q−δ

2
by Lemma 4.5(i). The subgroup of L with

shape q−δ

2
contains one single involution which must necessarily be tρ. For all x ∈ Y 0, we have

x2
L = 1 and xL inverts xQ, so (CG(U0) ∩ Y2)

ρ ⊆ Qt ∩ Y 0. By comparing the orders of both
sides, we get equality. By Lemma 4.9(ii) CG(U0) ∩ CG(t) ∩ Y2 = {t}, hence CG(U0) is totally
disconnected. �

Lemma 4.20 |∆1(t)| = 1
2
q(q2 + (1 − δ)q + δ).

Proof Clearly, x ∈ ∆1(t) if and only if x ∈ ∆1(t) ∩ CG(U) for U = CV (t) ∩ CV (x), so

∆1(t) =
⋃

U∈U1∪U2

(∆1(t) ∩ CG(U)).

If W, W ′ ∈ U1 with W 6= W ′, then W ⊕ W ′ ∈ U2 and if y ∈ CG(W ) ∩ CG(W ′) then y ∈
CG(W ⊕W ′) and hence y ∈ CG(W ′′) for any 1-subspace W ′′ of W ⊕W ′. Since there are q + 1
subspaces of W ′′ of dimension 1, any such y will lie in exactly q + 1 such CG(U) for U ∈ U1.
Together with CG(W ′′) and Lemma 4.18,

|∆1(t)| =
∑

U∈U1

|∆1(t) ∩ CG(U)| − q
∑

U∈U2

|∆1(t1) ∩ CG(U)| .

Combining Lemmas 4.16, 4.19 and Corollary 4.17 with Theorems 4.6, 4.8, 4.14 and [10], we
have

|∆1(t)| =
1

2
q(q + 1)(q − δ) +

1

2
q(q + δ)

[
1

2
(q − δ)2 + 1

]
+

1

4
q(q − δ)(q2 − 1)

−
1

2
q(q − δ)

[
1

2
q(q + 1) +

1

2
q(q − 1)

]

=
1

2
q(q2 + (1 − δ)q + δ)

as required. �

We now consider the second disc ∆2(t). Here, we must be careful as elements that are distance
2 from t in some subgroup CG(U) may not be distance 2 from t in another subgroup CG(U ′).
Moreover, there may be elements that are distance 3 from t in every such subgroup centralizing
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an element of U1, but actually are distance 2 from t in G. We introduce the following notation.
Let ∆K

2 (t) be the second disc in the commuting involution graph C(K, K ∩ Y2) and

Γi(K) =
{

x ∈ ∆K
2 (t)

∣∣ dim CV (〈t, x〉) = i
}

for K = CG(U), U ∈ U1 ∪ U2. Clearly, ∆2(t) = Γ1(G)∪̇Γ2(G). A full list of cases with
corresponding notation is found in Table 1. Also we use the following notation: for any U ≤
CV (t), define Ui(U) to be the totality of i-dimensional subspaces of U and Wi(U) to be the
totality of i-dimensional subspaces of CV (t) containing U . Note that Ui = Ui(CV (t)).

Lemma 4.21 (i) If W ∈ U0
2 , then |U0

1 ∩ U1(W )| = 1 and
∣∣U+

1 ∩ U1(W )
∣∣ = q.

(ii) If W ∈ U+
2 , then |U0

1 ∩ U1(W )| = 2 and
∣∣U+

1 ∩ U1(W )
∣∣ =

∣∣U−
1 ∩ U1(W )

∣∣ = q−1
2

.

(iii) If W ∈ U−
2 , then

∣∣U+
1 ∩ U1(W )

∣∣ =
∣∣U−

1 ∩ U1(W )
∣∣ = q+1

2
.

Proof Recall the Gram matrix J , with respect to the ordered basis {vi}, i = 1, . . . , 5. Suppose
W⊥∩CV (t) = U0 ∈ U0

1 . Without loss of generality, choose W = 〈v1, v3 + v5〉. Clearly 〈v1〉 ∈ U0
1 ,

and 〈v3 + v5〉
⊥ ∩ CV (t) ∈ U+

2 . Since

(v1 + λ(v3 + v5), v1 + λ(v3 + v5)) = λ2(v3 + v5),

v1 + λ(v3 + v5) lies in the same CG(t)-orbit as v3 + v5 and so 〈v1 + λ(v3 + v5)〉
⊥ ∩ CV (t) ∈ U+

2 ,
proving (i).
Suppose now W ∈ U+

2 . Without loss of generality, choose W = 〈v1, v2〉. Clearly 〈v1〉 , 〈v2〉 ∈ U0
1 .

Let Uλ = v1 + λv2 for λ 6= 0 and note that (v1 + λv2, v1 + λv2) = 2λ = µ 6= 0. Since the type of
U⊥

λ is determined by whether µ is a square or a non-square in GF (q), and there are q−1
2

of each,

it is clear that there exist q−1
2

such Uλ for which U⊥
λ is of +-type, and similarly for −-type,

proving (ii).
Finally suppose W ∈ U−

2 , so for all v ∈ W , (v, v) 6= 0. The simple orthogonal group on W
is cyclic of order q+1

2
and acts on the 1-subspaces of W in exactly two orbits with represen-

tatives 〈u1〉 and 〈u2〉 where (u1, u1) is a square and (u2, u2) is a non-square in GF (q). Since
|U1(W )| = q+1, both orbits must be of size q+1

2
. This proves (iii) and hence the lemma follows.

�

Corollary 4.22 Let U ∈ U1. Then,

(i) |W2(U)| = q + 1

(ii) If U ∈ U0
1 , then |U0

2 ∩W2(U)| = 1 and
∣∣U+

2 ∩W2(U)
∣∣ = q.

(iii) If U ∈ U δ
1 , then |U0

2 ∩W2(U)| = 2 and
∣∣U+

2 ∩W2(U)
∣∣ =

∣∣U−
2 ∩W2(U)

∣∣ = q−1
2

.

(iv) If U ∈ U−δ
2 , then

∣∣U+
2 ∩W2(U)

∣∣ =
∣∣U−

2 ∩W2(U)
∣∣ = q+1

2
.
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Case Configuration Properties Description as Set

1 x ∈ ∆
CG(U1)
2 (t)

U1 = CV (〈t, x〉) ∈ U1

⋃̇

U∈U1

Γ1(CG(U))

2
x ∈ ∆

CG(U1⊕U2)
2 (t)

U1 ⊕ U2 = CV (〈t, x〉)
Ui ∈ U1

⋃̇

W∈U2

Γ2(CG(W ))

3

x ∈ ∆
CG(U2)
2 (t)

for some U2 ≤ CV (〈t, x〉)

x /∈ ∆
CG(U1⊕U2)
2 (t)

U1 ⊕ U2 = CV (〈t, x〉)
Ui ∈ U1

⋃

U∈U1

Γ2(CG(U)) \
⋃̇

W∈U2

Γ2(CG(W ))

4

x ∈ ∆G
2 (t)

x /∈ ∆
CG(U1)
2 (t)

U1 = CV (〈t, x〉) ∈ U1

Γ1(G) \
⋃̇

U∈U1

Γ1(CG(U))

5

x ∈ ∆G
2 (t)

x /∈ ∆
CG(Ui)
2 (t)

for any Ui ≤ CV (〈t, x〉)
U1 ⊕ U2 = CV (〈t, x〉)

Ui ∈ U1

Γ2(G) \
⋃

U∈U1

Γ2(CG(U))

Table 1: List of cases in ∆2(t)
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Proof Let U ≤ W ≤ CV (t). Then W⊥ ∩ CV (t) ≤ U⊥ ∩ CV (t) ≤ CV (t). The result follows
from Lemma 4.21. �

Lemma 4.23 Let U ∈ U0
1 and W ∈ U+

2 ∩W2(U). If x ∈ Y2∩CG(W ) is such that dCG(W )(t, x) =
3, then dCG(U)(t, x) = 3. Moreover,

|Γ1(CG(U))| =

{
1
4
q(q − 3)(q − 1)2 q ≡ 1 (mod 4)

1
4
q(q − 1)2(q + 1) q ≡ −1 (mod 4).

Proof Recall that CG(U) = QL ∼ G0 where G0 is defined as in the discussion prior to Lemma
4.9. By conjugacy, we may assume L = CG(W ). Now CG(U)∩CG(t) = Q0CL(t) ∼ q : Dih(q−δ)
where Q0 ≤ Q is elementary abelian of order q. Let x ∈ Q0CL(t) ∩ Y2, so x2

L = 1 and
xL inverts xQ. Clearly, x

xQ

L = xLx2
Q /∈ L since Q0 is of odd order. Hence, CL(t) is self-

normalizing in Q0CL(t) and thus there are q distinct conjugates of CL(t) in Q0CL(t). Let
g ∈ Q0CL(t) \ CL(t), so CL(t)g 6= CL(t). Now [CL(t), t] = [CL(t)g, t] = 1 and so 〈CL(t), CL(t)g〉
centralizes t. If CL(t), CL(t)g ≤ Lh for some h ∈ QL, then 〈CL(t), CL(t)g〉 ≤ Lh. However,
CL(t) � 〈CL(t), CL(t)g〉 ≤ CL(t), a contradiction. Hence every conjugate of CL(t) lies in
a different conjugate of L and so there are q distinct Q0CL(t)-conjugates of L. Therefore,
U+

2 ∩W2(U) is contained in the same CG(U)∩CG(t)-orbit, and
∣∣U+

2 ∩W2(U)
∣∣ = q by Corollary

4.22. There are exactly q +-type 2-subspaces of CV (t) containing U , all of which lie in the same
CG(U) ∩ CG(t) orbit.
Let x ∈ CG(W ) ∩ Y2 be such that dCG(W )(t, x) = 3. Suppose W g ∈ U+

2 ∩ W2(U) for some
g ∈ CG(U) ∩ CG(t), W 6= W g. If dCG(U)(t, x) = 2 then dCG(U)(tg, xg) = dCG(U)(t, xg) = 2,
and dCG(W )(t, x) = dCG(W ′)(t, xg) = 3. Hence it suffices to prove the lemma for CG(W ). By
Theorem 4.14, any involution distance 3 away from t in L is necessarily distance 3 away from
t in CG(U), proving the first statement.

Let W0 ∈ U0
2 ∩ W2(U), so CG(W0) ∼ q2 : q−δ

2
. By Lemma 4.19, ∆

CG(U)
2 (t) ∩ CG(W0) =

Qt ∩ ∆
CG(U)
2 (t). Let Wi, i = 1, . . . , q be the subspaces in U+

2 ∩ W2(U). From Lemma 4.18,
CG(Wi) ∩ CG(Wj) ∩ Y2 = {t} if and only if i = j. Using Corollary 4.22(i) with [10], we have

∣∣∣∣∣

q⋃

i=1

∆
CG(Wi)
2 (t)

∣∣∣∣∣ =
1

4
q(q − δ)(q − 4 − δ). (4.23.1)

Combining Lemma 4.12 with (4.23.1),

|Γ2(CG(U))| =

∣∣∣∣∣

q⋃

i=1

∆
CG(Wi)
2 (t)

∣∣∣∣∣ +
∣∣∣∆CG(U)

2 (t) ∩ CG(W0)
∣∣∣

=
1

4
(q3 − 2(1 + δ)q2 + (2δ − 1)q + 2δ). (4.23.2)
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Together, (4.23.2) and Theorem 4.14 give

|Γ1(CG(U))| =
∣∣∣∆CG(U)

2 (t)
∣∣∣ − |Γ2(CG(U))|

=
1

4
q(q3 − (2δ + 3)q2 + (4δ + 3)q − 2δ − 1)

as required. �

Lemma 4.24 Let t, x ∈ L2(q). Then dL2(q)(t, x) ≤ 2 if and only if the order of tx divides
1
2
(q − δ).

Proof See Lemma 2.11 of [10]. �

Lemma 4.25 Let U ∈ U+
1 , and W ∈ (U+

2 ∪ U−
2 ) ∩W2(U).

(i) If δ = 1 and W0 ∈ U0
2 ∩W2(U), then Y2 ∩ CG(W0) \ {t} ⊆ ∆

CG(U)
3 (t).

(ii) If x ∈ Y2 ∩ CG(W ) is such that dCG(W )(t, x) = 3, then dCG(U)(t, x) = 3 and

|Γ1(CG(U))| =

{
1
8
(q − 1)(q − 3)(q2 − 6q + 13) q ≡ 1 (mod 4)

1
8
(q2 − 1)(q2 − 2q + 5) q ≡ −1 (mod 4).

Proof Recall that CG(U) ∼ G+ ∼ L1 ◦ L2 for L1 ∼ SL2(q) ∼ L2. Suppose y ∈ CG(W ) is
such that dCG(W )(t, y) = 3. Since CG(W ) ∼ L2(q) is simple, then y = ggϕ for some g ∈ L1

and ϕ : L1 → L2. Since t ∈ CG(W ), write t = ssϕ for some s ∈ L1. Then dL1(s, g) = 3, so
dCG(U)(t, y) = 3 by Theorem 4.8, and thus

∆
CG(W )
3 (t) ⊆ ∆

CG(U)
3 (t) for all W ∈ (U+

2 ∪ U−
2 ) ∩W2(U). (4.25.1)

If δ = −1, then U0
2 ∩W2(U) = ∅ by Corollary 4.22. If δ = 1, there exists W0 ∈ U0

2 ∩W2(U).
Recall that W⊥

0 ∩ CV (t) ∈ U0
1 so CG(W0) ≤ CG(W⊥

0 ∩ CV (t)) ∼ G0 = QL. By Lemma
4.19, if x ∈ CG(W0) ∩ Y2 then x = xQt and xQ is inverted by t and has order p. Since
xQ also lies in CG(U), we can write xQ = hhϕ for some h ∈ L1. Now x−1

Q = h−1h−1ϕ and

so xt
Q = xssϕ

Q = hs(hϕ)sϕ

= h−1h−1ϕ. Therefore, hs = h−1 and hϕsϕ

= h−1ϕ. Moreover,
x = xQt = (hs)(hs)ϕ where hs ∈ L1 is an element of order 4 squaring to the non-trivial
element of Z(L1), and h = (hs)s has order p. By Lemma 4.24 and [10], dL1(hs, s) = 3 and so
dCG(U)(t, xQt) = 3 by Theorem 4.8. Therefore,

CG(W0) ∩ ∆
CG(U)
2 (t) = ∅ for all W0 ∈ U0

2 ∩W2(U). (4.25.2)
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Hence combining (4.25.1) with Lemma 4.21, [10] and, if δ = 1, (4.25.2) we get

∣∣∣∣∣
⋃

U≤W

∆
CG(W )
2 (t)

∣∣∣∣∣ = |Γ2(CG(U))| =
1

4
(q − δ)2(q − 4 − δ).

This, together with Theorem 4.8 yields

|Γ1(CG(U))| =
∣∣∣∆CG(U)

2 (t)
∣∣∣ − |Γ2(CG(U))|

=
1

8
(q − 1)(q − 1 − 2δ)(q2 − (4 + 2δ)q + 9 + 4δ),

which proves the lemma. �

Lemma 4.26 Let U ∈ U−
1 , and W ∈ (U+

2 ∪ U−
2 ) ∩W2(U).

(i) If δ = −1 and W0 ∈ U0
2 ∩W2(U), then Y2 ∩ CG(W0) \ {t} ⊆ ∆

CG(U)
3 (t).

(ii) We have ∣∣∣∣∣∣
Γ2(CG(U)) \

⋃̇

W∈W2(U)

Γ2(CG(W ))

∣∣∣∣∣∣
=

1

4
(q − 2 + δ)(q2 − 1)

and |Γ1(CG(U))| = 1
4
(q − 1)3(q + 1).

Proof First assume δ = −1, and consider CG(W0). By Lemma 4.19, every involution in
CG(W0) can be written as xt where x has order p. But (xt)t = x has order p, which does not

divide 1
2
(q2 − 1), and hence dCG(U)(xt, t) = 3. In other words, Y2 ∩ CG(W0) \ {t} ⊆ ∆

CG(U)
3 (t),

so proving (i).
Consider then CG(W ) ∼ L2(q). We utilize the character table of L2(q) from Chapter 38 of [17]
(see also Schur [25]). Recall that L2(q) contains one conjugacy class of involutions, and two
conjugacy classes of elements of order p. The remaining conjugacy classes partition into two
cases: those whose order divides 1

2
(q − 1) and those whose order divides 1

2
(q + 1). Let C be

a conjugacy class of elements in CG(W ) and define XC = {x ∈ Y2 ∩ CG(W )| tx ∈ C}. It is a
well-known character theoretic result (see, for example, Theorem 4.2.12 of [19]) that

|XC | =
|C|

|CG(t)|

∑

χ
Irreducible

χ(x) |χ(t)|2

χ(1)
(4.26.1)

and all XC are pairwise disjoint. Let x ∈ Y2 ∩ CG(W ). If the order of tx divides 1
2
(q2 − 1)

but not 1
2
(q − δ) then it must necessarily divide 1

2
(q + δ). Hence, if C is a conjugacy class
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of elements of order dividing q+δ

2
, then any y ∈ XC has the property that dCG(W )(t, y) = 3

but dCG(U)(t, y) = 2, by Lemma 4.24. Recall that Γ2(CG(U)) \
⋃̇

W∈W2(U)

Γ2(CG(W )) is the set

consisting of all such involutions. Therefore, it suffices to calculate the sizes of all such relevant
XC . We use F to denote to be the set of all conjugacy classes of elements with order dividing
q+δ

2
.

By [17], we see that for any C ∈ F , |C| = q(q− δ) and so for any x ∈ C,
∣∣CCG(W )(x)

∣∣ = (q− δ).

Hence (4.26.1) and [17] gives |XC | = q − δ. Now if δ = 1, then |F| = q−1
4

by [17]. If

δ = −1, then |F| = q−3
4

. Since
∣∣∣∆CG(W )

3 (t) ∩ ∆
CG(U)
2

∣∣∣ = |XC | |F|, and by Corollary 4.22,
∣∣W2(U) ∩ (U+

2 ∪ U−
2 )

∣∣ = q + δ, we obtain
∣∣∣∣∣∣
Γ2(CG(U)) \

⋃̇

W∈W2(U)

Γ2(CG(W ))

∣∣∣∣∣∣
=

∣∣W2(U) ∩ (U+
2 ∪ U−

2 )
∣∣ |XC | |F|

=

{
1
4
(q − 1)(q2 − 1) q ≡ 1 (mod 4)

1
4
(q − 3)(q2 − 1) q ≡ −1 (mod 4)

which proves the first part of (ii). We now prove the last part of (ii). Recall that
∣∣∣∣∣∣

⋃̇

W∈W2(U)

Γ2(CG(W ))

∣∣∣∣∣∣
= (q + δ)

∣∣∣∆CG(W )
2 (t)

∣∣∣ =
1

4
(q2 − 1)(q − 4 − δ)

by [10] and Corollary 4.22. Together with the above statement, we have

|Γ2(CG(U))| =

∣∣∣∣∣∣

⋃̇

W∈W2(U)

Γ2(CG(W ))

∣∣∣∣∣∣
+

∣∣∣∣∣∣
Γ2(CG(U)) \

⋃̇

W∈W2(U)

Γ2(CG(W ))

∣∣∣∣∣∣

=
1

4
(q2 − 1)(q − 4 − δ) +

1

4
(q2 − 1)(q − 2 + δ)

=
1

2
(q2 − 1)(q − 3).

Hence

|Γ1(CG(U))| =
∣∣∣∆CG(U)

2 (t)
∣∣∣ − |Γ2(CG(U))|

=
1

4
(q − 1)3(q + 1),

and Lemma 4.26 holds. �

Lemma 4.27

∣∣∣∣∣
⋃̇

U∈U1

Γ1(CG(U))

∣∣∣∣∣ =

{
1
16

q(q2 − 1)(3q3 − 11q2 + 21q − 29) q ≡ 1 (mod 4)
1
16

q(q2 − 1)(q − 1)(3q2 + 2q + 7) q ≡ −1 (mod 4).
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Proof Since U1 = U0
1 ∪̇U

+
1 ∪̇U−

1 , with each orbit size given in Lemma 4.16, the result follows
immediately from Lemmas 4.23, 4.25 and 4.26. �

Recall the list of cases in Table 1. The next lemma concerns Cases 2 and 3, in other words,⋃

U∈U1

Γ2(CG(U)).

Lemma 4.28

∣∣∣∣∣
⋃

U∈U1

Γ2(CG(U))

∣∣∣∣∣ = 1
2
(q − δ)(q3 − 2q2 − 1).

Proof By Lemmas 4.12 and 4.19, for any W0 ∈ U0
2 we have

∣∣∣∆CG(U)
2 (t) ∩ CG(W0)

∣∣∣ = 1
2
(q −

1)(q − δ) for some U ∈ U1(W0). Additionally, for any W ∈ (U+
2 ∪̇U−

2 ) we have

∣∣∣∆CG(U)
2 (t) ∩ CG(W )

∣∣∣ =
∣∣∣∆CG(W )

2

∣∣∣ +
∣∣∣∆CG(W )

3 (t) ∩ ∆
CG(U)
2 (t)

∣∣∣

=
1

2
(q − δ)(q − 3),

for some U ∈ U1(W ), by [10] and Lemma 4.26. Since U2 = U0
2 ∪̇U

+
2 ∪̇U−

2 , with the orbit sizes
given in Corollary 4.17, this covers every involution in

⋃
U∈U1

Γ2(CG(U)), and the lemma fol-
lows. �

We now concern ourselves with the final two cases. These concern involutions that are distance
3 from t in every CG(U) that they appear in, but actually are distance 2 from t in G. Recall that
for any involution y ∈ Y2, CG(y) = StabGCV (y) = LyKy where Ly = CG(y)∩CG([V, y]) ∼ L2(q)
and |Ky| = 2(q−δ). Also note that LyECG(y) acts faithfully on CV (y), and SylpCG(y) = SylpLy.
The following three lemmas concern Case 5.

Lemma 4.29 Let W ∈ U0
2 ∪ U−δ

2 and x ∈ CG(W ) be such that dCG(U)(t, x) = 3 for all U ∈
U1(W ). Then d(t, x) = 3.

Proof If W ∈ U0
2 , then any involution in CG(W ) can be written as x = xQt where xQ = xt

has order p. If W ∈ U−δ
2 , then, from Lemma 4.26, any involution x ∈ CG(W ) such that tx has

order dividing 1
2
(q2 − 1) must be distance 2 from t in CG(U) for some U ∈ U1(W ). Hence, any

x satisfying the hypothesis must have the property that the order of tx is p.
Let W ∈ U0

2 ∪ U−δ
2 and suppose d(t, x) = 2, then there exists y ∈ Y2 such that t, x ∈ CG(y) =

LyKy. Since tx has order p, tx ∈ Ly and so tx ∈ CG([V, y]). As Ly acts faithfully on CV (y),
any element of order p must fix a 1-subspace of CV (y), say Uy. Therefore, tx ∈ CG(Uy ⊕ [V, y]).
But tx ∈ CG(W +[V, y]) and since [V, y] ∈ U δ

2 , we have W 6= [V, y]. Set W +[V, y] = Uy ⊕ [V, y].
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Suppose Uy ≤ W . Then t, x, y ∈ CG(Uy) and so dCG(Uy)(t, x) = 2, contradicting our assump-
tion. Hence Uy � W and so Uy = 〈u1 + u2〉 for u1 ∈ W \ [V, y] and u2 ∈ [V, y]. Since y ∈ CG(y),
(u1+u2)

y = u1+u2. However, (u1+u2)
y = uy

1 +uy
2 = uy

1−u2 and so u2 = −2−1u1+2−1uy
1. Thus

u1 + u2 = 2−1(u1 + uy
1) and so Uy = 〈u1 + uy

1〉. Recall that t, x ∈ CG(y) and u1 ∈ W \ [V, y],
so ut

1 = ux
1 = u1. Hence u1 + uy

1 is centralized by both t and x and so Uy ≤ W = CV (〈t, x〉), a
contradiction. Therefore, d(t, x) 6= 2 and the lemma holds. �

Lemma 4.30 Let W ∈ U δ
2 . Then ∆

CG(W )
3 (t) ⊆ ∆2(t). In particular,

∣∣∣∣∣Γ2(G) \
⋃

U∈U1

Γ2(CG(U))

∣∣∣∣∣ =

{
q(q2 − 1) q ≡ 1 (mod 4)
0 q ≡ −1 (mod 4).

Proof We deal first with the case when δ = −1. From Lemma 4.26, the number of involu-
tions distance 3 from t in CG(W ) that are actually distance 2 from t in some U ∈ U1(W )

is 1
4
(q + 1)(q − 3) =

∣∣∣∆CG(W )
3 (t)

∣∣∣. That is to say all elements in ∆
CG(W )
3 (t) are distance

2 from t in CG(U) for some U ∈ U2(W ). This occurs for every such W ∈ U δ
2 and so

Γ2(G) =
⋃

U∈U1
Γ2(CG(U)).

Assume now that δ = 1. As before, any element x in Γ2(G) \
⋃

U∈U1
Γ2(CG(U)) must have

the property that the order of tx is p. Suppose d(t, x) = 2, and so there exists y ∈ Y2 such
that t, x ∈ CG(y). If W 6= [V, y] then the argument from Lemma 4.29 holds and results in
a contradiction. So we must have W = [V, y]. Since StabGCV (y) = StabG[V, y] = CG(y),
CG([V, y]) ≤ CG(y) and so any element in CG([V, y]) = CG(W ) centralizes y. In particular,

∆
CG(W )
3 (t) ⊆ ∆2(t), establishing the first statement. By Lemma 4.26, the number of involu-

tions distance 3 from t in CG(W ) that are actually distance 2 from t in some U ∈ U1(W ) is
1
4
(q−1)2. By [10],

∣∣∣∆CG(W )
3 (t)

∣∣∣ = 1
4
(q−1)(q+7) and so by subtracting the two, there are 2(q−1)

involutions in ∆
CG(W )
3 (t) that are distance 3 from t in CG(U) for all U ∈ U1(W ), but are actu-

ally distance 2 from t in C(G, Y2). Since
∣∣U δ

2

∣∣ = 1
2
q(q+δ) by Corollary 4.17, the lemma follows. �

Finally we turn to Case 4, Γ1(G) \
⋃̇

U∈U1

Γ1(CG(U)).

Lemma 4.31 Let U ∈ U−
1 ∪U0

1 and x ∈ CG(U) be such that CV (〈t, x〉) = U and dCG(U)(t, x) =
3. Then d(t, x) = 3.

Proof Assume first that U ∈ U−
1 . By Lemma 4.24, tx has order p or divides 1

2
(q2 + 1). Sup-

pose d(t, x) = 2, then there exists y ∈ Y2 such that t, x ∈ CG(y). Since 1
2
(q2 + 1) is coprime to

|CG(y)| = q(q2 − 1)(q − δ), tx must have order p. Indeed, clearly 1
2
(q2 + 1) is coprime to both

q and q2 − 1, and any factor dividing q − δ must divide q2 − 1 and so 1
2
(q2 + 1) is coprime to
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q − δ. Since tx has order p, then tx ∈ Ly.
Assume now that U ∈ U0

1 . Let x be an involution in CG(U) = QL ∼ G0 as defined in the
discussion prior to Lemma 4.9. Then tx ∈ QtxL which has order n dividing 1

2
(q + δ) in QL/L.

Therefore, (QtxL)n ∈ Q and so (tx)n has order p. Therefore, tx has order dividing 1
2
q(q + δ).

Suppose d(t, x) = 2. Then there exists y ∈ Y2 such that t, x ∈ CG(y). By the structure of
CG(y) ∼ (L2(q) ×

q−δ

2
) : 22, the order of tx forces tx ∈ Ly.

We may now assume U ∈ U−
1 ∪ U0

1 , so tx ∈ Ly = CG([V, y]) and hence tx ∈ CG(U + [V, y]).
Suppose U � [V, y], then tx ∈ CG(U ⊕ [V, y]) Also, tx ∈ CG(Uy ⊕ [V, y]) for some Uy ≤ CV (y).
However, if U = Uy then t, x, y ∈ CG(U) and dCG(U)(t, x) = 2. While Uy 6= U results in a
contradiction using an analogous argument from Lemma 4.29. Hence U ≤ [V, y].
As t, x ∈ CG(y) = StabG([V, y]), tx ∈ Ly = CG([V, y]) and [V, y] = U ⊥ U ′ where U ′ =
U⊥ ∩ [V, y]. Then for u ∈ [V, y] we have utx = u and so ut = ux. In particular, if u ∈ U ′

then ut = ux = −u. Hence [V, y] = U ⊥ ([V, t] ∩ [V, x]). If CV (〈t, y〉) is 1-dimensional, then
CV (y) = CV (〈t, y〉) ⊥ [V, t] since t stabilizes CV (y). However, then [V, t] ⊕ ([V, t] ∩ [V, x])
is 3-dimensional, a contradiction. A similar argument holds for CV (〈x, y〉). Therefore both
CV (〈t, y〉) and CV (〈x, y〉) are 2-dimensional. But since dim CV (y) = 3, this means CV (〈t, y〉)
and CV (〈x, y〉) intersect non-trivially, that is CV (〈t, x, y〉) 6= 0, contradicting our assumption.
Therefore, d(t, x) 6= 2, and consequently d(t, x) = 3. �

The final case when U ∈ U+
1 is slightly trickier. Recall the definition of Y1. For any z ∈ Y1, we

have CG(z) ∼ SL2(q)◦SL2(q) : 2 and CV (z) is 1-dimensional. We choose z such that t ∈ CG(z)
and CV (z) = U , and return to work in the setting of Sp(4, q)/ 〈−I4〉 = Gτ ∼ G. We denote the
image of any subgroup K ≤ G by Kτ . Choose

z =

(
−I2

I2

)
∈ Gτ

and note that CGτ (z) ∼ CG(U) : 2. Hence,

CG(U) ∼

{(
A

B

)∣∣∣∣A, B ∈ SL2(q)

}
/ 〈−I4〉 = CG(U)τ .

Let tτ be the image of t in Gτ . We start with a preliminary lemma concerning the commuting
involution graph C(L2(q), X) where X is the sole conjugacy class of involutions. Denote by

L ∼ L2(q) and L̂ ∼ PGL2(q).

Lemma 4.32 Let x be an involution in L. Then ∆L
3 (x) splits into 1

4
(q + 2 + 5δ) CL(x)-orbits

of length q − δ. Moreover, every CL(x)-orbit in ∆L
3 (x) is CbL(x)-invariant.
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Proof Assume first that δ = −1. Choose x =

(
0 −1
1 0

)
and let xλ =

(
0 λ

−λ−1 0

)
for some

λ ∈ GF (q) \ {±1}. There are two possibilities for an element of CL(x):

g1 =

(
a1 a2

−a2 a1

)
, g2 =

(
b1 b2

b2 −b1

)
.

By direct calculation, if g−1
1 xλg1 = xµ for some λ, µ ∈ GF (q) \ {±1} then (−λ−1 + λ)a1a2 = 0.

Note that since λ 6= ±1, then λ 6= λ−1. If a1 = 0 then a2
2 = 1, and so µ = λ−1. On the other

hand, if a2 = 0 then a2
1 = 1 and so µ = λ. Note that in the case of g2, neither b1 or b2 can be 0

and so g−1
2 xλg2 = xµ requires xy(λ−λ−1) = 0, a contradiction. Hence for λ, µ ∈ GF (q)\{±1},

xλ and xµ lie in different CL(x) orbits if and only if µ /∈ {λ, λ−1}. As we work modulo 〈−I4〉,
there are at least 1

4
(q − 3) CL(x)-orbits in ∆L

3 (x). However for any λ 6= ±1, CL(x, xλ) = 1 and
so, each CL(x)-orbit containing an xλ is of length q + 1. But

∣∣∆L
3 (x)

∣∣ = 1
4
(q − 3)(q + 1) and

so all involutions in ∆L
3 (x) are accounted for. Hence the first statement holds for δ = −1, and

each CL(x)-orbit has representative xλ for some λ 6= ±1. Let

e =

(
1 0
0 −1

)
∈ L̂ \ L

and note that CbL(x) = 〈e〉CL(x), and an easy check shows [e, xλ] = 1 for all λ 6= ±1. Let
y ∈ ∆L

3 (x), then y = xs
λ for some s ∈ CL(x). Let g = er ∈ CbL

(x) for some r ∈ CL(x). Then
yg = xser

λ and since CL(x) E CbL(x), ser ∈ CL(x). That is, every CL(x)-orbit in ∆L
3 (x) is CbL(x)-

invariant.

Assume now that δ = 1. Choose x =

(
i 0
0 −i

)
where i2 = −1 and let y =

(
σ µτ
τ σ

)
for some

σ, µ, τ ∈ GF (q), σ 6= 0 and µ a non-square in GF (q). By [10], y ∈ ∆L
3 (x). There are two

possibilities for an element of CL(x):

g1 =

(
a−1 0
0 a

)
, g2 =

(
0 b

−b−1 0

)
.

By direct calculation, if g−1
1 yg1 = y then a = 1. Note that g−1

2 yg2 6= y as ±b2 6= µ for any
non-square µ. Hence CL(〈x, y〉) = 1. Since y was arbitrary, each CL(x)-orbit has length q − 1.
Now

∣∣∆L
3 (x)

∣∣ = 1
4
(q + 7)(q − 1) and so the first statement holds for δ = 1. Let

eν =

(
0 ν
1 0

)
∈ L̂ \ L

and note that CbL
(x) = 〈eν〉CL(x) for any non-square ν. It is easy to check that yeµ = y. Let

g = eµr ∈ CbL(x) for some r ∈ CL(x). Then yg = yeµr = yr and since y was arbitrary and
r ∈ CL(x), every CL(x)-orbit in ∆L

3 (x) is CbL(x)-invariant. �

Lemma 4.33

∣∣∣∆CG(U)
3 (t) ∩ Γ1(G)

∣∣∣ = 1
4
(q − δ)2(q + 2 + 5δ).
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Proof We first work in the setting of Gτ . Choose

tτ =




0 −1
1 0

0 −1
1 0


 =

(
J0

J0

)
.

By direct calculation, it is easily seen that

CGτ (tτ ) ⊆

{(
A1 A2

A3 A4

)∣∣∣∣ A−1
i J0Ai = J0 (mod 〈−I4〉)

}

and any involution y ∈ CGτ (tτ ) has the additional properties that

det A1 + det A3 = det A2 + det A4 = 1
and A2

1 + A2A3 = A3A2 + A2
4 = −I2.

(4.33.1)

Recall that if x ∈ CG(U)τ then x =

(
A

B

)
for some A, B ∈ SL2(q) and by Theorem

4.8, x ∈ ∆
CG(U)τ

3 (tτ ) if and only if A, B are involutions in L and either dL(A, J0) = 3 or
dL(B, J0) = 3. So without loss of generality, set A = Bi where dL(Bi, J0) = i and choose
B ∈ ∆L

3 (J0).

If x ∈ ∆Gτ

2 (tτ ) then there exists y =

(
A1 A2

A3 A4

)
∈ CGτ (tτ ) such that y2 = 1 and [x, y] = 1.

Suppose det A2 = 0. Then det A4 = 1 by (4.33.1), and so A4 ∈ CL(J0). As [x, y] = 1,
[A4, B] = 1. However CL(〈J0, B〉) = 1, by Lemma 4.32 and so A4 = ±I2. But then A3A2 = −2I2

by (4.33.1), which is impossible as det A2 = 0. An analogous argument holds for det A3. Hence
det A2, det A3 6= 0. Since [x, y] = 1, BiA2B = ±A2 and so Bi and B must be CbL(J0)-conjugate.
In other words, if Bi and B are not CbL

(J0)-conjugate, then [x, y] 6= 1. By Lemma 4.32, every
CL(J0) orbit is an CbL(J0)-orbit and so if [x, y] = 1 then Bi and B must be CL(J0)-conjugate.
Assume then Bi and B are CL(J0)-conjugate and let A ∈ CL(J0) be such that BA

i = B. Hence

if yA =

(
A

−A−1

)
∈ CGτ (tτ ), then [yA, x] = 1 and so dGτ

(tτ , x) = 2. By Lemma 4.32, each

CL(J0)-orbit of ∆L
3 (J0) is of length q− δ, and there are 1

4
(q +2+5δ) such orbits. Moreover, for

any involution x0 ∈ CG(U)τ conjugate to tτ , zx0 is also an involution in CG(U)τ conjugate to

tτ which has not been accounted for. Therefore, the number of involutions in ∆
CG(U)τ

3 (tτ ) that
are actually distance 2 from tτ in Gτ is 1

2
(q − δ)2(q + 2 + 5δ).

We now return to the setting of G, and first assume that δ = −1 and so by Corollary 4.22(i),
|W2(U)| = q + 1, and for every W ∈ W2(U), CG(W ) ∼ L2(q). For each W , there exists

UW ∈ U+
1 such that CG(W ) ≤ CG(UW ) ∼ L2(q

2) by Lemma 4.21, and ∆
CG(W )
3 (t) ⊆ ∆

CG(UW )
2 (t)

by Lemma 4.30. Hence, there are 1
4
(q + 1)2(q − 3) involutions already counted (from Case 3)
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and the remaining involutions do not fix a 2-subspace of CV (t). Therefore

∣∣∣∆CG(U)
3 (t) ∩ Γ1(G)

∣∣∣ =
1

2
(q + 1)2(q − 3) −

1

2
(q + 1)2(q − 3)

=
1

4
(q + 1)2(q − 3),

as required. Now assume that δ = 1 and so by Corollary 4.22. For each W , there exists UW ∈ U−
1

such that CG(W ) ≤ CG(UW ) ∼ L2(q
2) by Lemma 4.21 and

∣∣∣∆CG(W )
3 (t) ∩ ∆

CG(UW )
2 (t)

∣∣∣ = 1
4
(q−1)2

by Lemma 4.26. Since
∣∣W2(U) ∩ (U+

1 ∪ U−
1 )

∣∣ = q − 1 by Corollary 4.22(iii), this accounts for
1
4
(q − 1)3 involutions. Suppose now W0 ∈ W2(U) ∩ U0

2 . By Lemma 4.21, there exists U0 ∈ U0
1

such that CG(W0) ≤ CG(U0). From Lemmas 4.12 and 4.19,
∣∣∣CG(W ) ∩ ∆

CG(U0)
2 (t)

∣∣∣ 1
2
(q − 1)2.

Since |W2(U) ∩ U0
2 | = 2 by Corollary 4.22(iii), this yields a further (q−1)2 involutions. Finally,

if W ∈ U+
2 , then by Lemma 4.30, ∆

CG(W )
3 (t) ⊆ ∆2(t) and there are 2(q − 1) involutions in

∆
CG(W )
3 (t) not already enumerated. Now

∣∣U+
2 ∩W2(U)

∣∣ = 1
2
(q − 1) by Corollary 4.22(iii), and

this yields another (q−1)2 involutions. Hence, there are 1
4
(q−3)2 +2(q−1)2 = 1

4
(q−1)2(q +7)

involutions already counted (from Cases 3 and 5) and the remaining involutions do not fix a
2-subspace of CV (t). Consequently

∣∣∣∆CG(U)
3 (t) ∩ Γ1(G)

∣∣∣ =
1

2
(q − 1)2(q + 7) −

1

2
(q − 1)2(q + 7)

=
1

4
(q − 1)2(q + 7),

as required. �

Corollary 4.34

∣∣∣∣∣Γ1(G) \
⋃̇

U∈U1

Γ1(CG(U))

∣∣∣∣∣ = 1
8
q(q − δ)(q2 − 1)(q + 2 + 5δ).

Proof Since
∣∣U+

1

∣∣ = 1
2
q(q + δ), the result holds by Lemmas 4.32 and 4.33. �

Lemma 4.35 If q ≡ 3 (mod 4), then

(i) |∆2(t)| = 1
16

(q + 1)(3q5 − 2q4 + 8q3 − 30q2 + 13q − 8); and

(ii) |∆3(t)| = 1
16

(q − 1)(5q5 − 4q4 − 2q3 + 4q2 + 5q + 5).

If q ≡ 1 (mod 4), then

(iii) |∆2(t)| = 1
16

(q − 1)(3q5 − 6q4 + 32q3 − 10q2 − 27q − 8); and

(iv) |∆3(t)| = 1
16

(q − 1)(5q5 + 22q4 − 8q3 + 34q2 + 51q + 24).
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Proof The cases listed in Table 1 are disjoint. Hence |∆2(t)| is determined by summing
the values calculated in Lemmas 4.27, 4.28, 4.30 and 4.34. By Theorem 4.15, C(G, Y2) has
diameter 3 and so |∆3(t)| = |Y2| − |∆1(t)| − |∆2(t)|. Since |G| = 1

2
q4(q2 − 1)(q4 − 1) and

|CG(t)| = q(q2 − 1)(q − δ), |Y2| = 1
2
q3(q + δ)(q2 + 1). Together with Lemma 4.20, this proves

the lemma. �

Together, Theorem 4.15 and Lemmas 4.20 and 4.35 complete the proof of Theorem 1.4.
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