Commuting Involution Graphs for 4-Dimensional Projective Symplectic Groups

Everett, Alistaire and Rowley, Peter 2010

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

```
Reports available from: http://eprints.maths.manchester.ac.uk/
    And by contacting: The MIMS Secretary
            School of Mathematics
                            The University of Manchester
                            Manchester, M13 9PL, UK
```


Commuting Involution Graphs for 4-dimensional Projective Symplectic Groups

Alistaire Everett and Peter Rowley

Abstract

For a group G and X a subset of G the commuting graph of G on X, denoted by $\mathcal{C}(G, X)$, is the graph whose vertex set is X with $x, y \in X$ joined by an edge if $x \neq y$ and x and y commute. If the elements in X are involutions, then $\mathcal{C}(G, X)$ is called a commuting involution graph. This paper studies $\mathcal{C}(G, X)$ when G is a 4 -dimensional projective symplectic group and X a G-conjugacy class of involutions, determining the diameters and structure of the discs of these graphs.

1 Introduction

For G a group and X a subset of G, the commuting graph of G on $X, \mathcal{C}(G, X)$, is the graph whose vertex set is X with $x, y \in X$ joined whenever $x \neq y$ and $x y=y x$. In effect commuting graphs first appeared in the paper of Brauer and Fowler [13], famous for containing a proof that up to isomorphism only finitely many non-abelian simple groups can have a given centralizer of an involution. The commuting graphs considered in [13] had $X=G \backslash\{1\}$ - such graphs have played an important role in recent work related to the Margulis-Platanov conjecture (see [24]). The complement of this type of commuting graph appeared in [22] where B.H. Neumann solved a problem posed by Erdös. Various kinds of commuting graphs have been deployed in the study of finite groups, particularly the non-abelian simple groups. For example, the analysis and subsequent construction by Fischer [18] of the three simple Fischer groups used the commuting graph on the conjugacy class of 3 -transpositions. While a computer-free uniqueness proof of the Lyons simple group by Aschbacher and Segev [6] employed a commuting graph where the vertices consisted of the 3 -central subgroups of order 3. For G either a symmetric group, or more generally a finite Coxeter group, or a projective special linear group and X a certain conjugacy class of G, the structure of $\mathcal{C}(G, X)$ has been investigated at length by Bundy [14], Bates, Bundy, Hart, Perkins and Rowley [8], [9], [10], [11] and [12]. Infinite Coxeter groups have also been studied in Perkins [23]. A different flavour of graph (also called a commuting graph) has been examined in Akbari, Mohammadian, Radjavi, Raja [3] and Iranmanesh, Jafarzadeh [20]. There, for a group G, the vertex set is $G \backslash Z(G)$ with two distinct elements being joined if
they commute. Recently there has been work on commuting graphs for rings (see, for example, [1], [2]).
This paper investigates $\mathcal{C}(G, X)$ when G is a finite 4 -dimensional projective symplectic group and X is a G-conjugacy class of involutions. Such graphs are referred to as commuting involution graphs. From now on H will denote the symplectic group $S p(4, q), q=p^{a}$ and p a prime. Let V be the natural (symplectic) $G F(q) H$-module, and set $G=H / Z(H)$. So $G \cong P S p(4, q)$ and $G \cong H$ when $p=2$. In the case when $p=2, G$ has three conjugacy classes of involutions. Recalling that for an involution x of $G, V(x)=\left\{v \in V \mid\left(v, v^{x}\right)=0\right\}$ these three classes X_{1}, X_{2}, X_{3} may be described thus (see [7])

$$
\begin{aligned}
& X_{1}=\left\{x \in G \mid x^{2}=1, \operatorname{dim} C_{V}(x)=3\right\} ; \\
& X_{2}=\left\{x \in G \mid x^{2}=1, \operatorname{dim} C_{V}(x)=2, \operatorname{dim} V(x)=3\right\} ; \text { and } \\
& X_{3}=\left\{x \in G \mid x^{2}=1, \operatorname{dim} C_{V}(x)=2, V(x)=V\right\} .
\end{aligned}
$$

For $t \in X_{i}$, we define

$$
\Delta_{i}(t)=\left\{x \in X_{i} \mid d(t, x)=i\right\}
$$

where d is the standard distance metric on $\mathcal{C}\left(G, X_{i}\right)$. Our four main theorems are as follows.
Theorem 1.1 Suppose that $p=2$ and $i=1,3$. Then $\mathcal{C}\left(G, X_{i}\right)$ is connected of diameter 2 with the disc sizes being

$$
\begin{aligned}
& \left|\Delta_{1}(t)\right|=q^{3}-2 ; \text { and } \\
& \left|\Delta_{2}(t)\right|=q^{3}(q-1) .
\end{aligned}
$$

Theorem 1.2 Suppose that $p=2$. Then $\mathcal{C}\left(G, X_{2}\right)$ is connected of diameter 4 , the disc sizes being

$$
\begin{aligned}
& \left|\Delta_{1}(t)\right|=q^{2}(2 q-3) ; \\
& \left|\Delta_{2}(t)\right|=2 q^{2}(q-1)^{2} ; \\
& \left|\Delta_{3}(t)\right|=2 q^{3}(q-1)^{2} ; \text { and } \\
& \left|\Delta_{4}(t)\right|=q^{4}(q-1)^{2} .
\end{aligned}
$$

Turning to the case when p is odd, we have that there are two G-involution conjugacy classes Y_{1} and Y_{2}. We shall let Y_{1} denote the G-conjugacy class whose elements are the images of an involution in H, and Y_{2} to denote the G-conjugacy class whose elements are the image of an element of H of order 4 which square to the non-trivial element of $Z(H)$.

Theorem 1.3 If p is odd, then $\mathcal{C}\left(G, Y_{1}\right)$ is connected of diameter 2 with disc sizes

$$
\begin{aligned}
\left|\Delta_{1}(t)\right| & =\frac{1}{2} q\left(q^{2}-1\right) ; \text { and } \\
\left|\Delta_{2}(t)\right| & =\frac{1}{2}\left(q^{4}-q^{3}+q^{2}+q-2\right) .
\end{aligned}
$$

Theorem 1.4 (i) If $q \equiv 3(\bmod 4)$ then $\mathcal{C}\left(G, Y_{2}\right)$ is connected of diameter 3. Furthermore,

$$
\begin{aligned}
\left|\Delta_{1}(t)\right| & =\frac{1}{2} q\left(q^{2}+2 q-1\right) \\
\left|\Delta_{2}(t)\right| & =\frac{1}{16}(q+1)\left(3 q^{5}-2 q^{4}+8 q^{3}-30 q^{2}+13 q-8\right) ; \text { and } \\
\left|\Delta_{3}(t)\right| & =\frac{1}{16}(q-1)\left(5 q^{5}-4 q^{4}-2 q^{3}+4 q^{2}+5 q+5\right)
\end{aligned}
$$

(ii) If $q \equiv 1(\bmod 4)$ then $\mathcal{C}\left(G, Y_{2}\right)$ is connected of diameter 3. Furthermore,

$$
\begin{aligned}
& \left|\Delta_{1}(t)\right|=\frac{1}{2} q\left(q^{2}+1\right) \\
& \left|\Delta_{2}(t)\right|=\frac{1}{16}(q-1)\left(3 q^{5}-6 q^{4}+32 q^{3}-10 q^{2}-27 q-8\right) ; \text { and } \\
& \left|\Delta_{3}(t)\right|=\frac{1}{16}(q-1)\left(5 q^{5}+22 q^{4}-8 q^{3}+34 q^{2}+51 q+24\right)
\end{aligned}
$$

Theorems 1.1 and 1.2 are established in Section 2. While in Section 3 we give a proof of Theorem 1.3. The structure and properties of $\mathcal{C}\left(G, Y_{2}\right)$, in Section 4, are a much tougher nut to crack than the other four cases. The reason for this is that for $\mathcal{C}\left(G, X_{i}\right), \quad(i=1,2,3)$ and $\mathcal{C}\left(G, Y_{1}\right)$ the graph can be studied effectively by working in $H=S p(4, q)$ and looking at certain configurations in the natural symplectic module V involving $C_{V}(x)$ for various $x \in X$ $\left(X=X_{i}, i=1,2,3\right.$ or $\left.X Z(H) / Z(H)=Y_{1}\right)$. The key point being that, in these four cases for $x \in X, C_{V}(x)$ is a non-trivial subspace of V whereas, for x of order 4 and squaring into $Z(H), C_{V}(x)$ is trivial. If we change tack and look at G acting on the projective symplectic space things are not much better. When $q \equiv 3(\bmod 4)$ elements of Y_{2} fix no projective points, while in the case $q \equiv 1(\bmod 4)$ they fix $2 q+2$ projective points. However, even in the latter case, the fixed projective points didn't appear to be of much assistance. It is the isomorphism $\operatorname{PSp}(4, q) \cong O_{5}(5, q)$ that comes to our rescue. If now V is the 5 -dimensional orthogonal module and $x \in Y_{2}$, then $\operatorname{dim} C_{V}(x)=3$. Even so, probing $\mathcal{C}\left(G, Y_{2}\right)$ turns out to be a lengthy process. Fix $t \in Y_{2}$. Then by Lemma 4.3, $Y_{2} \subseteq \bigcup_{U \in \mathcal{U}_{1}} C_{G}(U)$ where \mathcal{U}_{1} is the set of all 1-subspaces of $C_{V}(t)$ and as a result, by Lemma 4.4, $\mathcal{C}\left(G, Y_{2}\right)$ may be viewed as the union of commuting involution graphs for various subgroups of G. Up to isomorphism there are three of these commuting involution graphs (called $\mathcal{C}\left(G^{-}, Y^{-}\right), \mathcal{C}\left(G^{+}, Y^{+}\right)$and $\mathcal{C}\left(G^{0}, Y^{0}\right)$ in Section 4). After studying these three commuting involution graphs in Theorems 4.6, 4.8 and 4.14 it follows immediately (Theorem 4.15) that $\mathcal{C}\left(G, Y_{2}\right)$ is connected and has diameter at most 3 . Using the sizes of the discs in $\mathcal{C}\left(G^{-}, Y^{-}\right), \mathcal{C}\left(G^{+}, Y^{+}\right)$and $\mathcal{C}\left(G^{0}, Y^{0}\right)$ we then complete the proof of Theorem 1.4. This "patching together" of the discs is quite complicated - for example we must confront such issues as t and x in Y_{2} being of distance 3 in each of the commuting involution subgraphs which contain both t and x, yet they have distance 2 in $\mathcal{C}\left(G, Y_{2}\right)$ (see Lemmas 4.29 to 4.34). Our group theoretic notation is standard as given, for example, in [5] or [19].

2 Structure of $\mathcal{C}\left(G, X_{i}\right), i=1,2,3$

We begin looking at $G_{0}=S p_{2 n}(q)$ where $n \geq 2, q=p^{a}$ and $p=2$. Let V_{0} denote the $G F(q) G_{0^{-}}$ symplectic module of dimension $2 n$ and let t_{0} be an involution in G_{0} for which $\operatorname{dim} C_{V}\left(t_{0}\right)=$ $2 n-1$. Put $X_{0}=t_{0}^{G_{0}}$, the G_{0}-conjugacy class of t_{0}.

Theorem 2.1 $\mathcal{C}\left(G_{0}, X_{0}\right)$ is connected and has diameter 2 .
Proof For $x \in X_{0}$,

$$
C_{G_{0}}(x) \leq \operatorname{Stab}_{G_{0}}\left(C_{V_{0}}(x)\right)
$$

with $\operatorname{Stab}_{G_{0}}\left(C_{V_{0}}(x)\right)$ having shape $q^{2 n-1} S L_{2 n-2}(q)(q-1)$. Set $K_{x}=O^{2^{\prime}}\left(\operatorname{Stab}_{G_{0}}\left(C_{V_{0}}(x)\right)\right)$. Then $K_{x} \sim q^{2 n-1} S L_{2 n-2}(q)$ and $C_{G_{0}}(x)=K_{x}$. Let $x \in X_{0} \backslash\left\{t_{0}\right\}$. If $C_{V_{0}}\left(t_{0}\right)=C_{V_{0}}(x)$, then $x \in K_{t_{0}}$ and so $x \in \Delta_{1}\left(t_{0}\right)$. Now suppose that $C_{V_{0}}\left(t_{0}\right) \neq C_{V_{0}}(x)$. Then $\operatorname{dim}\left(C_{V_{0}}\left(t_{0}\right) \cap C_{V_{0}}(x)\right)=$ $2 n-2$. Let U be a 1-dimensional subspace of $C_{V_{0}}\left(t_{0}\right) \cap C_{V_{0}}(x)$. Since [V_{0}, t_{0}] is a 1-space and G_{0} acts transitively on the 1 -spaces of V_{0}, there exists $y \in X_{0}$ such that $\left[V_{0}, y\right]=U$. So $\left[V_{0}, y\right] \leq C_{V_{0}}\left(t_{0}\right) \cap C_{V_{0}}(x)$ and hence y leaves both $C_{V_{0}}\left(t_{0}\right)$ and $C_{V_{0}}(x)$ invariant. Thus $y \in K_{t_{0}} \cap K_{x}=C_{G_{0}}\left(t_{0}\right) \cap C_{G_{0}}(x)$ and so $d\left(t_{0}, x\right) \leq 2$ and we see that $\mathcal{C}\left(G_{0}, X_{0}\right)$ is connected. Since $\mathcal{C}\left(G_{0}, X_{0}\right)$ cannot have diameter 1 (as then $\left\langle X_{0}\right\rangle$ would be abelian), the theorem follows.

The remainder of this section is devoted to establishing Theorems 1.1 and 1.2. So we have $G=S p(4, q)$ with $q=p^{a}$ and $p=2$. For V, the natural $G F(q)$ module for G, we choose the symplectic basis $\left\{v_{1}, v_{2} \mid v_{3}, v_{4}\right\}$ with $\left(v_{1}, v_{4}\right)=\left(v_{2}, v_{3}\right)=1$. Thus the matrix defining this form is

$$
J=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

and we may suppose that $G=\left\{A \in G L(4, q) \mid A^{T} J A=J\right\}$. We further define

$$
\begin{gathered}
S=\left\{\left.\left(\begin{array}{cccc}
1 & a & b & c \\
0 & 1 & d & a d+b \\
0 & 0 & 1 & a \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c, d \in G F(q)\right\} \\
Q_{1}=\left\{\left.\left(\begin{array}{cccc}
1 & a & b & c \\
0 & 1 & 0 & b \\
0 & 0 & 1 & a \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c \in G F(q)\right\} \text { and } Q_{2}=\left\{\left.\left(\begin{array}{cccc}
1 & 0 & b & c \\
0 & 1 & d & b \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, b, c, d \in G F(q)\right\}
\end{gathered}
$$

Lemma 2.2 (i) $S \in \operatorname{Syl}_{2} G$.
(ii) $S=Q_{1} Q_{2}$ with $Q_{1}^{\#} \cup Q_{2}^{\#}$ consisting of all the involutions of S.

Proof It is straightforward to check that S is a subgroup of G. Since $|G|=q^{4}\left(q^{2}-1\right)\left(q^{4}-1\right)$ and $|S|=q^{4}$, we have part (i). Part (ii) is an easy calculation.

The following three involutions are elements of G.

$$
t_{1}=\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), t_{2}=\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), t_{3}=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

Lemma 2.3 (i) For $i=1,2,3, t_{i} \in X_{i}$.
(ii) $C_{G}\left(t_{1}\right) \sim q^{3} S L(2, q)$ with $O_{2}\left(C_{G}\left(t_{1}\right)\right)=Q_{1}$ of order q^{3}.
(iii) $C_{G}\left(t_{2}\right)=S$.
(iv) $\left|X_{1}\right|=q^{4}-1$.
(v) $\left|X_{2}\right|=\left(q^{2}-1\right)\left(q^{4}-1\right)$.

Proof (i) Let $v=(\alpha, \beta, \gamma, \delta) \in V$. Then $v^{t_{1}}=(\alpha, \beta, \gamma, \alpha+\delta), v^{t_{2}}=(\alpha, \beta, \alpha+\gamma, \alpha+\beta+\delta)$ and $v^{t_{3}}=(\alpha, \alpha+\beta, \gamma, \gamma+\delta)$. Hence $\left[v, t_{1}\right]=(0,0,0, \alpha),\left[v, t_{2}\right]=(0,0, \alpha, \alpha+\beta)$ and $\left[v, t_{3}\right]=$ $(0, \alpha, 0, \gamma)$. Consequently $\operatorname{dim}\left[V, t_{1}\right]=1$ and $\operatorname{dim}\left[V, t_{2}\right]=2=\operatorname{dim}\left[V, t_{3}\right]$. Thus $t_{1} \in X_{1}$. Now

$$
\left(v, v^{t_{2}}\right)=\alpha(\alpha+\beta+\delta)+\beta(\alpha+\gamma)+\gamma \beta+\delta \alpha=\alpha^{2}=0
$$

implies that $\alpha=0$ and so $\operatorname{dim} V\left(t_{3}\right)=3$. Therefore $t_{2} \in X_{2}$. Turning to t_{3} we have that

$$
\left(v, v^{t_{3}}\right)=\alpha(\gamma+\delta)+\beta \gamma+\gamma(\alpha+\beta)+\delta \alpha=0
$$

implies that $V\left(t_{2}\right)=V$, as v is an arbitrary vector of V. Hence $t_{3} \in X_{3}$, and we have (i). (ii) By direct calculation we see that

$$
C_{G}\left(t_{1}\right)=\left\{\left.\left(\begin{array}{cccc}
1 & b & c & d \\
0 & f & g & h \\
0 & k & m & n \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, \begin{array}{l}
b, c, d, f, g, h, k, m, n \in G F(q) \\
g k+f m=1 \\
b+h k+f n=0 \\
c+m h+g n=0
\end{array}\right\}
$$

Moreover

$$
S L_{2}(q) \cong R=\left\{\left.\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & f & g & 0 \\
0 & k & m & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, \begin{array}{l}
f, g, k, m \in G F(q) \\
f g+k m=1
\end{array}\right\} \leq C_{G}\left(t_{1}\right)
$$

with Q_{1} a normal elementary abelian subgroup of $C_{G}\left(t_{1}\right)$ and $\left|Q_{1}\right|=q^{3}$. So $C_{G}\left(t_{1}\right)=R Q_{1}$. Thus (ii) holds.
(iii) This is a routine calculation.

From parts (ii) and (iii) $\left|C_{G}\left(t_{1}\right)\right|=q^{4}\left(q^{2}-1\right)$ and $\left|C_{G}\left(t_{2}\right)\right|=q^{4}$. Combining this with $|G|=q^{4}\left(q^{2}-1\right)\left(q^{4}-1\right)$ yields (iv) and (v).

Lemma $2.4\left|C_{G}\left(t_{1}\right) \cap X_{1}\right|=q^{3}-1$.

Proof Let s be an involution in S. Then, by Lemma 2.2(ii), $s \in Q_{1}^{\#} \cup Q_{2}^{\#}$. Let $v=(\alpha, \beta, \gamma, \delta)$ be a vector in V. Assume for the moment that $s \in Q_{1}$. Then

$$
s=\left(\begin{array}{llll}
1 & a & b & c \\
0 & 1 & 0 & b \\
0 & 0 & 1 & a \\
0 & 0 & 0 & 1
\end{array}\right)
$$

where $a, b, c \in G F(q)$. So $v^{s}=(\alpha, a \alpha+\beta, b \beta+\gamma, c \alpha+b \beta+a \gamma+\delta)$. Suppose that at least one of a and b is non-zero. If $v \in C_{V}(s)$, then we have $a \alpha=b \beta=c \alpha+b \beta+a \gamma=0$. If, say, $a \neq 0$ then this gives $\alpha=0$ and $b \beta+a \gamma=0$. Hence $\gamma=\lambda \beta$ for some $\lambda \in G F(q)$. Thus $\operatorname{dim} C_{V}(s)=2$, with the same conclusion if $b \neq 0$.
When $a=b=0$ we see that $\operatorname{dim} C_{V}(s)=3$. Therefore we conclude that

$$
\begin{equation*}
\left|Q_{1} \cap X_{1}\right|=q-1 \tag{2.4.1}
\end{equation*}
$$

Now we suppose $s \in Q_{2} \backslash Q_{1}$. Then

$$
s=\left(\begin{array}{cccc}
1 & 0 & a & b \\
0 & 1 & c & a \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

where $a, b, c \in G F(q)$ and $c \neq 0$. Here $v^{s}=(\alpha, \beta, a \alpha+c \beta+\gamma, b \alpha+a \beta+\delta)$ and so, if $v \in C_{V}(s)$, $a \alpha+c \beta=b \alpha+a \beta=0$. Suppose that $a=0$ and $b \neq 0$. Then $c \beta=b \alpha=0$ which yields $\alpha=0=\beta$. Hence $\operatorname{dim} C_{V}(s)=2$. Likewise, when $a \neq 0$ and $b=0$ we get $\operatorname{dim} C_{V}(s)=2$. On the other hand, $a=0=b$ gives $\operatorname{dim} C_{V}(s)=3$.

Now consider the case when $a \neq 0 \neq b$ and $a^{2}+b c=0$. From $a \alpha+c \beta=0$ we obtain $\beta=a \alpha c^{-1}$ and so $0=b \alpha+a \beta=b \alpha+a^{2} c^{-1} \alpha=\left(b+a^{2} c^{-1}\right) \alpha$. Since $a^{2}+b c=0$, this equation holds for all $\alpha \in G F(q)$ and consequently $\operatorname{dim} C_{V}(s)=3$. Similar considerations show that $\operatorname{dim} C_{V}(s)=2$ when $a \neq 0 \neq b$ and $a^{2}+b c \neq 0$. So, to summarize, for $s \in Q_{2} \backslash Q_{1}, s \in X_{1}$ when either $a=0=b$ or $a \neq 0 \neq b$ and $a^{2}+b c=0$. For the former, there are $q-1$ such involutions (as $c \neq 0)$. For the latter, there are $q-1$ choices for each of b and c and in each case a is uniquely determined (as $G F(q)^{\#}$ is cyclic of odd order), so giving $(q-1)^{2}$ involutions. Therefore

$$
\begin{equation*}
\left|\left(X_{1} \cap S\right) \backslash Q_{1}\right|=\left|X_{1} \cap\left(Q_{2} \backslash Q_{1}\right)\right|=q(q-1) . \tag{2.4.2}
\end{equation*}
$$

Since any two distinct Sylow 2-subgroups of $S L(2, q)$ have trivial intersection and $S L(2, q)$ possesses $q+1$ Sylow 2-subgroups, Lemma 2.3(ii) together with (2.4.1) and (2.4.2) yields that

$$
\begin{aligned}
\left|C_{G}\left(t_{1}\right) \cap X_{1}\right| & =(q-1)+q(q-1)(q+1) \\
& =(q-1)\left(1+q^{2}+q\right)=q^{3}-1 .
\end{aligned}
$$

This proves Lemma 2.4.
Proof of Theorem 1.1 As is well-known - see for example [16] - G has an outer automorphism arising from the Dynkin diagram of type $C_{2}=B_{2}$. This outer automorphism interchanges the two involution conjugacy classes X_{1} and X_{3} and as a consequence $\mathcal{C}\left(G, X_{1}\right)$ and $\mathcal{C}\left(G, X_{3}\right)$ are isomorphic graphs. Thus we need only consider $\mathcal{C}\left(G, X_{1}\right)$. From Lemma 2.4, as $\Delta_{1}(t)=$ $\left(C_{G}\left(t_{1}\right) \cap X_{1}\right) \backslash\left\{t_{1}\right\}$,

$$
\left|\Delta_{1}\left(t_{1}\right)\right|=\left(q^{3}-1\right)-1=q^{3}-2 .
$$

By Theorem 2.1, $\mathcal{C}\left(G, X_{1}\right)$ has diameter 2. Hence, by Lemma 2.3(iv),

$$
\left|\Delta_{2}\left(t_{1}\right)\right|=\left|X_{1}\right|-\left(q^{3}-1\right)=\left(q^{4}-1\right)-\left(q^{3}-1\right)=q^{4}-q^{4}=q^{3}(q-1),
$$

so proving Theorem 1.1.
Before moving on to prove Theorem 1.2 we need additional preparatory material. If W is a subspace of V, then W^{\perp} denotes the subspace of V defined by

$$
W^{\perp}=\{v \in V \mid(v, w)=0 \text { for all } w \in W\}
$$

and we recall that $\operatorname{dim} W+\operatorname{dim} W^{\perp}=\operatorname{dim} V=4$.
By Lemma 2.3(i),(iii) we see that $C_{V}\left(C_{G}\left(t_{2}\right)\right)=\{(0,0,0, \alpha) \mid \alpha \in G F(q)\}$ is 1-dimensional. For $x \in X_{2}$ set $U_{1}(x)=C_{V}\left(C_{G}(x)\right)$ and $U_{2}(x)=C_{V}(x)$. So $\operatorname{dim} U_{1}(x)=1$ and $\operatorname{dim} U_{2}(x)=2$ (with the subscripts acting as a reminder). We denote the stabilizer in G of $U_{1}\left(t_{2}\right)$, respectively $U_{2}\left(t_{2}\right)$, by P_{1}, respectively P_{2}. Then $P_{i} \sim q^{3} S L_{2}(q)(q-1)$ for $i=1,2$. Also $Q_{i}=O_{2}\left(P_{i}\right)$ with $C_{P_{i}}\left(Q_{i}\right)=Q_{i}$ for $i=1,2$.
We start analyzing $\mathcal{C}\left(G, X_{2}\right)$ by determining $\Delta_{1}\left(t_{2}\right)$. For $x \in X_{2}$ we let $Z_{C_{G}(x)}$ denote $Z\left(C_{G}(x)\right) \cap$ X_{2}.

Lemma 2.5 $X_{2}=\bigcup_{R \in \mathrm{Syl}_{2} G} Z_{R}$.
Proof Clearly $X_{2}=\bigcup_{R \in \operatorname{Syl}_{2} G} Z_{R}$ by Lemma 2.3(iii). If $Z_{R} \cap Z_{T}=\varnothing$ for $R, T \in \operatorname{Syl}_{2} G$, then we have some $x \in Z(R) \cap Z(T) \cap X_{2}$ whence, using Lemma 2.3(iii), $R=C_{G}(x)=T$. So the lemma holds.

Lemma 2.6 Let $R, T \in \operatorname{Syl}_{2} G$. If there exists $x \in Z_{R}$ and $y \in Z_{T}$ such that $[x, y]=1$ then $\left[Z_{R}, Z_{T}\right]=1$.

Proof Since $x y=y x, y \in C_{G}(x)=R$. Hence $Z(R) \leq C_{G}(y)=T$ and so $\left[Z_{R}, Z_{T}\right]=1$.
Let Δ be the building for G and $\mathcal{C}(\Delta)$ denote the chamber graph of Δ. We may view the vertices (chambers) of $\mathcal{C}(\Delta)$ as being $\left\{N_{G}(R) \mid R \in \operatorname{Syl}_{2} G\right\}$ with two distinct chambers $N_{G}(R)$ and $N_{G}(T)$ being adjacent whenever $\left\langle N_{G}(R), N_{G}(T)\right\rangle \leq P_{i}^{g}$ for some $g \in G$ and some $i \in\{1,2\}$. We use $d^{\mathcal{C}}$ to denote the standard distance metric in $\mathcal{C}(\Delta)$ and for a chamber c put $\Delta_{j}^{\mathcal{C}}(c)=$ $\left\{d \in \mathcal{C}(\Delta) \mid d^{\mathcal{C}}(c, d)=j\right\}$. The structure of $\mathcal{C}(\Delta)$ is well-known.

Lemma $2.7 \mathcal{C}(\Delta)$ has diameter 4 and $\left|\Delta_{1}^{\mathcal{C}}(c)\right|=2 q ;\left|\Delta_{2}^{\mathcal{C}}(c)\right|=2 q^{2} ;\left|\Delta_{3}^{\mathcal{C}}(c)\right|=2 q^{3} ;$ and $\left|\Delta_{4}^{\mathcal{C}}(c)\right|=q^{4}$.

Proof A straightforward calculation.
We now introduce a graph \mathcal{Z} whose vertex set is $V(\mathcal{Z})=\left\{Z_{R} \mid R \in \operatorname{Syl}_{2} G\right\}$ with $Z_{R}, Z_{T} \in V(\mathcal{Z})$ joined if $Z_{R} \neq Z_{T}$ and $\left[Z_{R}, Z_{T}\right]=1$.

Lemma 2.8 The graphs \mathcal{Z} and $\mathcal{C}(\Delta)$ are isomorphic.
Proof Define $\varphi: V(\mathcal{Z}) \rightarrow V(\mathcal{C}(\Delta))$ by $\varphi: Z_{R} \mapsto N_{G}(R) \quad\left(R \in \operatorname{Syl}_{2} G\right)$. If $\varphi\left(Z_{R}\right)=\varphi\left(Z_{T}\right)$ for $R, T \in \operatorname{Syl}_{2} G$, then $N_{G}(R)=N_{G}(T)$ and so $R=T$ and then $Z_{R}=Z_{T}$. Thus φ is a bijection between $V(\mathcal{Z})$ and $V(\mathcal{C}(\Delta))$. Suppose $N_{G}(R)$ and $N_{G}(T)$ are distinct, adjacent chambers in $\mathcal{C}(\Delta)$. Without loss of generality we may assume $T=S$. Then $N_{G}(R), N_{G}(S) \leq P_{i}$ for $i \in\{1,2\}$. The structure of P_{i} then forces $Z(R), Z(S) \leq Q_{i}$. Since Q_{i} is abelian, we deduce that $\left[Z_{R}, Z_{S}\right]=1$. So Z_{R} and Z_{S} are adjacent in \mathcal{Z}. Conversely, suppose Z_{R} and Z_{S} are adjacent in \mathcal{Z}. Then $\left[Z_{R}, Z_{S}\right]=1$ with, by Lemma 2.5, $Z_{R} \cap Z_{S}=\varnothing$. Hence $Z_{R} \subseteq S$ and so by Lemma 2.2(ii), $Z_{R} \subseteq Q_{1} \cup Q_{2}$. Now $Q_{1} \cap Q_{2} \cap X_{2}=Z_{S}$ and so we must have $Z_{R} \subseteq Q_{i}$ for $i \in\{1,2\}$. The structure of P_{i} now gives $N_{G}(R) \leq P_{i}$ and therefore $N_{G}(R)$ and $N_{G}(S)$ are adjacent in $\mathcal{C}(\Delta)$, which proves the lemma.

Proof of Theorem 1.2

Since for all $x_{1}, x_{2} \in X,\left[x_{1}, x_{2}\right]=1$ if and only if $\left[Z_{C_{G}\left(x_{1}\right)}, Z_{C_{G}\left(x_{2}\right)}\right]=1$ by Lemma 2.5 , then for $i>1, d^{\mathcal{C}}\left(x_{1}, x_{2}\right)=i$ if and only if $d^{\mathcal{Z}}\left(Z_{C_{G}\left(x_{1}\right)}, Z_{C_{G}\left(x_{2}\right)}\right)=i$ (where $d^{\mathcal{Z}}$ denotes the distance in $\mathcal{Z})$. Note that if $d^{\mathcal{C}}\left(x_{1}, x_{2}\right)=1$, then either $Z_{C_{G}\left(x_{1}\right)}=Z_{C_{G}\left(x_{2}\right)}$ or $d^{\mathcal{Z}}\left(Z_{C_{G}\left(x_{1}\right)}, Z_{C_{G}\left(x_{2}\right)}\right)=1$. Since X_{2} is a disjoint union of the elements of \mathcal{Z}, then $\mathcal{C}\left(G, X_{2}\right)$ is connected of diameter 4. Now

$$
\Delta_{1}(t)=\bigcup_{\substack{R \in \mathrm{Syl}_{2} G \\\left[Z_{S}, Z_{R}\right]=1}} Z_{R} \quad \text { and } \quad \Delta_{i}(t)=\bigcup_{\substack{R \in \mathrm{Syl}_{2} G \\ d^{Z}\left(Z_{S}, Z_{R}\right)=i}} Z_{R}, \quad i>1
$$

and so $\left|\Delta_{1}(t)\right|=\left|Z_{S}\right|+2 q\left|Z_{S}\right|-1$. From $\left|Z_{S}\right|=(q-1)^{2}$ we get $\left|\Delta_{1}(t)\right|=(q-1)^{2}+2 q(q-1)^{2}-1=$ $q^{2}(2 q-3)$. The remaining disc sizes are immediate from the structure of the chamber graph $\mathcal{C}(\Delta)$.

3 Structure of $\mathcal{C}\left(G, Y_{1}\right)$

This section is devoted to the proof of Theorem 1.3. In order to investigate the disc structure of $\mathcal{C}\left(G, Y_{1}\right)$ it is advantageous for us to work in $H=S p_{4}(q)$ (and so $\left.\bar{H}=H / Z(H) \cong G\right)$. We assume that $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a hyperbolic basis for V with $\left(v_{2}, v_{1}\right)=\left(v_{4}, v_{3}\right)=1$. Thus if J is the matrix defining this form then

$$
J=\left(\begin{array}{rrrr}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

and J has two diagonal blocks J_{0} where $J_{0}=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$. We may suppose that for $t \in Y_{1}$, we have $\bar{s}=t$ where $s=\left(\begin{array}{l|l}-I_{2} & \\ \hline & I_{2}\end{array}\right)$. Put $X=s^{H}$. Then $Y_{1}=\{\bar{x} \mid x \in X\}$. For $x \in X$, set $N_{x}=N_{H}(\langle x, Z(H)\rangle)$. Evidently, for $\overline{x_{1}}, \overline{x_{2}} \in Y_{1}$ (where $\left.x_{1}, x_{2} \in X\right) \overline{x_{1}}$ and $\overline{x_{2}}$ commute if and only if $x_{1} \in N_{x_{2}}$ (or equivalently $x_{2} \in N_{x_{1}}$). Now N_{s} consists of $g \in H$ for which $s^{g}=s$ or $s^{g}=-s$. Letting $g=\left(\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right)$ where A, B, C and D are 2×2 matrices over $G F(q)$, direct calculation reveals that either $B=C=0$ or $A=D=0$. Also, as $g \in H$, we must have $A^{T} J_{0} A=D^{T} J_{0} D=J_{0}$ and therefore

$$
\begin{aligned}
N_{s} & =\left\{\left(\begin{array}{l|l}
A & \\
\hline & B
\end{array}\right),\left(\left.\begin{array}{l|l}
& A \\
\hline B &)
\end{array} \right\rvert\, A, B \in S L_{2}(q)\right\}\right. \\
& \sim\left(S L_{2}(q) \times S L_{2}(q)\right): 2
\end{aligned}
$$

Lemma 3.1 $\left|\Delta_{1}(t)\right|=\frac{1}{2} q\left(q^{2}-1\right)$.

Proof Since $X=s^{H}$ consists of all the involutions in $H \backslash Z(H)$, a quick calculation gives

$$
X \cap N_{s}=\left\{\left.\left(\begin{array}{c|c}
& A \\
\hline A^{-1} &
\end{array}\right) \right\rvert\, A \in S L_{2}(q)\right\} \cup\{s,-s\} .
$$

Under the natural homomorphism to G, for $x \in X \bar{x}=\overline{-x}$, and so $\left|\Delta_{1}(t)\right|=\frac{1}{2}\left|S L_{2}(q)\right|=$ $\frac{1}{2} q\left(q^{2}-1\right)$.

Put $E=\left\langle v_{3}, v_{4}\right\rangle$. Then $E^{\perp}=\left\langle v_{1}, v_{2}\right\rangle$ and we note that $C_{V}(s)=E$. Furthermore we have that $\operatorname{Stab}_{H}\left(\left\{E, E^{\perp}\right\}\right)=N_{s}$. Put $\Sigma=\left\{\left\{F, F^{\perp}\right\} \mid F\right.$ is a hyperbolic 2-subspace of $\left.V\right\}$. Now let $\beta \in G F(q)$ and set $U_{\beta}=\langle(1,0,1,0),(0, \beta, 0,-\beta-1)\rangle$. Then U_{β} is a hyperbolic 2-subspace of V and so $\left\{U_{\beta}, U_{\beta}^{\perp}\right\} \in \Sigma$. The N_{s}-orbit of $\left\{U_{\beta}, U_{\beta}^{\perp}\right\}$ will be denoted by Σ_{β}.

Lemma 3.2 Let F be a hyperbolic 2-subspace of V with $F \neq E$ or E^{\perp}. Then $\left\{F, F^{\perp}\right\} \in \Sigma_{\beta}$ for some $\beta \in G F(q)$. Moreover, for $\beta \in G F(q), \Sigma_{\beta}=\Sigma_{-\beta-1}$.

Proof Since $F \neq E$ or E^{\perp}, we may find $w_{1} \in F$ with $w_{1}=\left(\alpha_{1}, \beta_{1}, \gamma_{1}, \delta_{1}\right)$ and $\left\{\alpha_{1}, \beta_{1}\right\} \neq$ $\{0\} \neq\left\{\gamma_{1}, \delta_{1}\right\}$. Now N_{s} contains two $S L_{2}(q)$ subgroups for which $\left\langle v_{1}, v_{2}\right\rangle$ and $\left\langle v_{3}, v_{4}\right\rangle$ are natural $G F(q) S L_{2}(q)$-modules. Because $S L_{2}(q)$ acts transitively on the non-zero vectors of such modules, we may suppose $w_{1}=(1,0,1,0)$. Now choose $w_{2} \in F$ such that $\left(w_{1}, w_{2}\right)=1$ (and so $\left.\left\langle w_{1}, w_{2}\right\rangle=F\right)$. Then if $w_{2}=(\alpha, \beta, \gamma, \delta)$ we must have $\beta+\delta=-1$ and so $w_{2}=(\alpha, \beta, \gamma,-\beta-1)$. The matrices in N_{s} fixing w_{1} are

$$
C_{N_{s}}\left(w_{1}\right)=\left\{\left(\begin{array}{cc|c}
1 & & \\
a_{1} & 1 & \\
\hline & & 1 \\
& & a_{2}
\end{array}\right), \left.\left(\begin{array}{c|cc}
& 1 & \\
& & \\
& a_{1} & 1 \\
\hline 1 & & \\
a_{2} & 1 &
\end{array}\right) \right\rvert\, a_{1}, a_{2} \in G F(q)\right\} .
$$

Let $g=\left(\begin{array}{cc|c}1 & & \\ a_{1} & 1 & \\ \hline & & 1 \\ & & a_{2}\end{array}\right) . \begin{aligned} & 1\end{aligned}$ where $a_{1}, a_{2} \in G F(q)$. Then $w_{1}^{g}=w_{1}$.
We single out the cases $\beta=0$ and $\beta=-1$ for special attention. If, say, $\beta=0$, then $w_{2}=$ $(\alpha, 0, \gamma,-1)$. Hence $w_{2}-\alpha w_{1}=(0,0, \gamma-\alpha,-1)$ and $F=\left\langle w_{1}, w_{2}-\alpha w_{1}\right\rangle$. Since $(0,0, \gamma-$ $\alpha,-1) g=\left(0,0,(\gamma-\alpha)-a_{2},-1\right)$ and choosing $a_{2}=-\gamma+\alpha$, we obtain $F g=U_{0}$. For $\beta=-1$ a similar argument works (using $w_{2}-\gamma w_{1}$ instead of $w_{2}-\alpha w_{1}$). So we may assume that $\beta \neq 0,-1$. From

$$
w_{2} g=(\alpha, \beta, \gamma,-\beta-1)=\left(\alpha+\beta a_{1}, \beta, \gamma+(-\beta-1) a_{2},-\beta-1\right)
$$

by a suitable choice of a_{1} and a_{2}, as $\beta \neq 0,-1$, we get $w_{2} g=(0, \beta, 0,-\beta-1)$, whence $F g=U_{\beta}$. Thus we have shown $\left\{F, F^{\perp}\right\} \in \Sigma_{\beta}$ for some $\beta \in G F(q)$. Finally, for $\beta \in G F(q), \Sigma_{\beta}=\Sigma_{-\beta-1}$
follows from

$$
(0, \beta, 0,-\beta-1)\left(\begin{array}{ll|ll}
& & 1 & \\
& & & 1 \\
\hline 1 & & & \\
& 1 & &
\end{array}\right)=(0,-\beta-1,0, \beta)
$$

Let $\phi: G F(q) \backslash\{-1\} \rightarrow G F(q)$ be defined by

$$
\phi(\lambda)=-\left(1+(\lambda+1)^{-2}\left(1-\lambda^{2}\right)\right)^{-1} \quad(\lambda \in G F(q))
$$

There is a possibility that this is not well-defined should $1+(\lambda+1)^{-2}\left(1-\lambda^{2}\right)=0$. This would then give $(\lambda+1)^{2}+\left(1-\lambda^{2}\right)=0$ from which we infer that $\lambda=-1$. So we conclude that ϕ is well-defined.

Lemma 3.3ϕ is injective.

Proof Suppose $\phi(\lambda)=\phi(\mu)$ for $\lambda, \mu \in G F(q) \backslash\{-1\}$ with $\lambda \neq \mu$. Hence

$$
\left(1+(\lambda+1)^{-2}\left(1-\lambda^{2}\right)\right)^{-1}=\left(1+(\mu+1)^{-2}\left(1-\mu^{2}\right)\right)^{-1}
$$

Simplifying and using the fact that q is odd gives

$$
\mu^{2}+\mu-\mu \lambda^{2}-\lambda^{2}-\lambda+\lambda \mu^{2}=0
$$

and then

$$
(\mu+\lambda)(\mu-\lambda)+(\mu-\lambda)+\lambda \mu(\mu-\lambda)=0 .
$$

Hence $(\mu-\lambda)(\mu+\lambda+1+\lambda \mu)=0$. Since $\mu \neq \lambda$, we get $\mu+\lambda+1+\lambda \mu=0$ from which we deduce that either $\lambda=-1$ or $\mu=-1$, a contradiction. So the lemma holds.

Proof of Theorem 1.3

We first show that $\operatorname{Diam} \mathcal{C}\left(G, Y_{1}\right)=2$. So let $x \in X$ be such that $x \notin\{t\} \cup \Delta_{1}(t)$. Now $\left\{C_{V}(x), C_{V}(x)^{\perp}\right\} \in \Sigma$ as $C_{V}(x) \neq E$ or E^{\perp} (otherwise $x \in\{s,-s\}$ and then $\bar{x}=t$). Hence $\left\{C_{V}(x), C_{V}(x)^{\perp}\right\} \in \Sigma_{\mu}$ for some $\mu \in G F(q)$ by Lemma 3.2. Let $y=\binom{I_{2}}{I_{2}} \in$ $X \cap N_{s}$. Then $\bar{y} \in \Delta_{1}(t)$. Our aim is to choose an $x_{\lambda} \in N_{y} \cap X$ (so $\overline{x_{\lambda}} \in \Delta_{1}(\bar{y})$) for which $\left\{C_{V}\left(x_{\lambda}\right), C_{V}\left(x_{\lambda}\right)^{\perp}\right\} \in \Sigma_{\mu}$. Since Σ_{μ} is an N_{s}-orbit, there exists $h \in N_{s}$ such that $\left\{C_{V}\left(x_{\lambda}\right), C_{V}\left(x_{\lambda}\right)^{\perp}\right\}^{h}=\left\{C_{V}(x), C_{V}(x)^{\perp}\right\}$. As a consequence either $x=x_{\lambda}^{h}$ or $x_{\lambda}^{-1 h}$ and therefore $\bar{x}={\overline{x_{\lambda}}}^{\bar{h}}$, whence $d(t, \bar{x}) \leq 2$.
We first look at the case when $\mu=-2^{-1}$. Then $\mu=-\mu-1$ and hence

$$
U_{-2^{-1}}=\langle(1,0,1,0),(0,1,0,1)\rangle
$$

Observing that $U_{-2^{-1}}=C_{V}(y)$, we see that for $\mu=-2^{-1}, \bar{x} \in \Delta_{1}(y)$, which we are not concerned with here. So we may assume $\mu \neq-2^{-1}$.
Let $x_{\lambda}=\left(\begin{array}{c|c}\lambda I_{2} & -B \\ \hline B & -\lambda I_{2}\end{array}\right)$ where $\lambda \in G F(q) \backslash\{0\}$ and such that B has zero trace and determinant $1-\lambda^{2}$. So $x_{\lambda} \in X \cap N_{y}$. We now move onto the case when $\mu=0$ (or equivalently $\mu=-1$). Here we take $\lambda=1$ and $B=\left(\begin{array}{ll}2 & -2 \\ 2 & -2\end{array}\right)$, noting that B satisfies the conditions to ensure that $\overline{x_{1}} \in \Delta_{1}(\bar{y})$. Let $v=(\alpha, \beta, \gamma, \delta) \in V$. Then $v \in C_{V}\left(x_{1}\right)$ precisely when

$$
\begin{aligned}
2 \gamma+2 \delta & =0 ; & -2 \gamma-2 \delta=0 \\
-2 \alpha-2 \beta-\gamma & =\gamma ; & 2 \alpha+2 \beta-\delta=\delta
\end{aligned}
$$

and thus the only conditions we get are $\gamma=-\beta-\alpha$ and $\alpha+\beta=\delta$. Thus

$$
\begin{aligned}
C_{V}\left(x_{1}\right) & =\{(\alpha, \beta,-\alpha-\beta, \alpha+\beta)\} \\
& =\langle(1,0,-1,1),(0,1,-1,1)\rangle .
\end{aligned}
$$

It is straightforward to check that $\left\{C_{V}\left(x_{1}\right), C_{V}\left(x_{1}\right)^{\perp}\right\} \in \Sigma_{0}$. Therefore we may also assume that $\mu \neq 0,-1$. Choosing $B=\left(\begin{array}{cc}\lambda & \lambda^{-1} \\ -\lambda & -\lambda\end{array}\right)$ we see that the requisite conditions are satisfied. Take $v=(\alpha, \beta, \gamma, \delta) \in V$ and calculating $v^{x_{\lambda}}$ gives the relations

$$
\begin{aligned}
& (\lambda-1) \alpha+\gamma \lambda-\delta \lambda=0 ; \quad(\lambda-1) \beta+\gamma \lambda^{-1}-\delta \lambda=0 ; \\
& -\lambda \alpha+\lambda \beta-(\lambda+1) \gamma=0 ; \quad-\lambda^{-1} \alpha+\lambda \beta-(\lambda+1) \delta=0 ;
\end{aligned}
$$

which, after rearranging gives

$$
\begin{array}{ll}
\alpha=\lambda(\lambda-1)^{-1}(\delta-\gamma) ; \quad \beta=\lambda(\lambda-1)^{-1} \delta-\lambda^{-1}(\lambda-1)^{-1} \gamma ; \\
\gamma=\lambda(\lambda+1)^{-1}(\beta-\alpha) ; \quad \delta=\lambda(\lambda+1)^{-1} \alpha-\lambda^{-1}(\lambda+1)^{-1} \alpha ;
\end{array}
$$

and note that the relations for γ and δ are satisfied after substitution for α and β. Hence

$$
\begin{align*}
C_{V}\left(x_{\lambda}\right) & =\left\{\left(\alpha, \beta, \lambda(\lambda+1)^{-1}(\beta-\alpha), \lambda(\lambda+1)^{-1} \beta-\lambda^{-1}(\lambda+1)^{-1} \alpha\right)\right\} \\
& =\left\langle\left(1,0,-\lambda(\lambda+1)^{-1},-\lambda^{-1}(\lambda+1)^{-1}\right),\left(0,1, \lambda(\lambda+1)^{-1}, \lambda(\lambda+1)^{-1}\right)\right\rangle . \tag{3.3.1}
\end{align*}
$$

We want to determine which N_{s}-orbit, Σ_{β}, that $C_{V}\left(x_{\lambda}\right)$ lies in. Our representative, U_{β}, for Σ_{β} has $w_{1}=(1,0,1,0)$ as one component of the hyperbolic pair, so we need an element of N_{s} to send the first generator in (3.3.1) to w_{1}. We need to find conditions on $C, D \in S L_{2}(q)$ such that

$$
\left(1,0,-\lambda(\lambda+1)^{-1},-\lambda^{-1}(\lambda+1)^{-1}\right)\left(\begin{array}{l|l}
C & \\
\hline & D
\end{array}\right)=(1,0,1,0)
$$

and so without loss of generality we can take $C=I_{2}$. This reduces to solving

$$
\left(-\lambda(\lambda+1)^{-1},-\lambda^{-1}(\lambda+1)^{-1}\right)\left(\begin{array}{ll}
d_{1} & d_{2} \\
d_{3} & d_{4}
\end{array}\right)=(1,0)
$$

and after multiplying out, we get that $d_{3}=-\left(d_{1}+1\right) \lambda^{2}-\lambda$ and $d_{4}=-d_{2} \lambda^{2}$. Since D has determinant 1 , we find that $d_{2}=\lambda^{-1}(\lambda+1)^{-1}$ and so $d_{4}=-\lambda(\lambda+1)^{-1}$. Without loss of generality, by taking $d_{1}=1$ we have that

$$
D=\left(\begin{array}{cc}
1 & \lambda^{-1}(\lambda+1)^{-1} \\
-2 \lambda^{2}-\lambda & -\lambda(\lambda+1)^{-1}
\end{array}\right)
$$

and a quick check shows that the first generator in (3.3.1) is mapped to w_{1}. Using the same matrix, by multiplying on the right of the second generator in (3.3.1), we get

$$
\left(0,1, \lambda(\lambda+1)^{-1}, \lambda(\lambda+1)^{-1}\right)\left(\begin{array}{c|c}
I_{2} & \\
\hline & D
\end{array}\right)=\left(*, 1, *,(\lambda+1)^{-2}\left(1-\lambda^{2}\right)\right)=u^{\prime}
$$

and $\left\langle w_{1}, u^{\prime}\right\rangle$ is a hyperbolic 2-subspace conjugate to some U_{β}. Recall that for a fixed $\beta \in G F(q)$, N_{s} is transitive on $\{(\alpha, \beta, \gamma,-\beta-1) \mid \alpha, \gamma \in G F(q)\}$. Hence, we need only find the hyperbolic pair representing such a conjugate of U_{β}, to determine β. This is found by requiring that some multiple of u^{\prime} has inner product 1 with w_{1}, that is

$$
\beta \cdot 1=-1-\beta\left((\lambda+1)^{-2}\left(1-\lambda^{2}\right)\right)
$$

for some $\beta \in G F(q)$. By expanding, we get that $\beta=-\left(1+(\lambda+1)^{-2}\left(1-\lambda^{2}\right)\right)^{-1}$ and so $C_{V}\left(x_{\lambda}\right) \in \Sigma_{\beta}$. By Lemma 3.3, $\phi: \lambda \mapsto-\left(1+(\lambda+1)^{-2}\left(1-\lambda^{2}\right)\right)^{-1}$ is an injective map from $G F(q) \backslash\{-1\}$ into $G F(q)$. Since $\mu \neq-2^{-1}, \mu \neq-\mu-1$ and therefore there exists $\lambda \in G F(q) \backslash\{-1\}$ such that $\phi(\lambda)=\mu$ or $-\mu-1$. Bearing in mind that $U_{\mu}=U_{-\mu-1}$ by Lemma 3.2, we conclude that $\left\{C_{V}\left(x_{\lambda}\right), C_{V}\left(x_{\lambda}\right)^{\perp}\right\} \in \Sigma_{\mu}$. Consequently we have proved that Diam $\mathcal{C}\left(G, Y_{1}\right)=2$.
From $|G|=\frac{q^{4}}{2}\left(q^{2}-1\right)\left(q^{4}-1\right)$ and $\left|C_{G}(t)\right|=q^{2}\left(q^{2}-1\right)^{2}$ we see that $\left|Y_{1}\right|=\frac{q^{2}}{2}\left(q^{2}+1\right)$. Using Lemma 3.1 then gives

$$
\left|\Delta_{2}(t)\right|=\frac{1}{2}\left(q^{4}-q^{3}+q^{2}+q-2\right),
$$

which completes the proof of Theorem 1.3.

4 Structure of $\mathcal{C}\left(G, Y_{2}\right)$

In this section we present a proof of Theorem 1.4. The uncovering of the disc structures of $\mathcal{C}\left(G, Y_{2}\right)$ will be a long haul. As discussed in Section 1, it will be advantageous for us to use
the well known isomorphism that $P S p_{4}(q) \cong O_{5}(q)$ (see Corollary 12.32 of [26]). So we take $G=O_{5}(q)$ and from now on V will denote the 5-dimensional $G F(q)$ orthogonal module for G. Thus the elements of G are 5×5 orthogonal matrices with respect to the orthogonal form $($,$) which have spinor norm a square in G F(q)$. We may assume that the Gram matrix with respect to (,) is

$$
J=\left(\begin{array}{ll|rrr}
0 & 1 & & & \\
1 & 0 & & & \\
\hline & & 0 & 0 & 1 \\
& & 0 & -2 & 0 \\
& & 1 & 0 & 0
\end{array}\right) .
$$

Let

$$
t=\left(\begin{array}{r|rrr}
I_{2} & & & \\
\hline & 0 & 0 & 1 \\
& 0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

Then $t \in G$ and $Y_{2}=t^{G}$. Let $\delta= \pm 1$ where $q \equiv \delta(\bmod 4)$.
Lemma 4.1 (i) $\operatorname{dim}\left(C_{V}(t)\right)=3$.
(ii) $C_{V}(t)^{\perp}=[V, t]$ is a 2-subspace of V of δ-type.
(iii) $V=C_{V}(t) \perp C_{V}(t)^{\perp}$.

Proof An easy calculation.
Put $L_{t}=C_{G}(t) \cap C_{G}([V, t])$.
Lemma 4.2 (i) Let $x \in Y_{2}$. Then $t=x$ if and only if $C_{V}(t)=C_{V}(x)$.
(ii) $C_{G}(t)=\operatorname{Stab}_{G}\left(C_{V}(t)\right) \sim\left(L_{2}(q) \times \frac{q-\delta}{2}\right) .2^{2}$.
(iii) L_{t} acts faithfully on $C_{V}(t)$ and $L_{t} \cong L_{2}(q)$.

Proof

(i) Suppose $C_{V}(x)=C_{V}(t)$. Then, using Lemma 4.1 (ii), $[V, x]=C_{V}(x)^{\perp}=C_{V}(t)^{\perp}=[V, t]$. Hence by Lemma 4.1(iii), $t x$ acts trivially on V and thus $t x=1$. Therefore $t=x$ and (i) holds.
(ii) Plainly $C_{G}(t) \leq \operatorname{Stab}_{G}\left(C_{V}(t)\right)$, and if $g \in \operatorname{Stab}_{G}\left(C_{V}(t)\right)$, then $C_{V}(t)=C_{V}(t)^{g}=C_{V}\left(t^{g}\right)$. Hence, and $t^{g} \in Y_{2}, t=t^{g}$ by part (i). So $g \in C_{G}(t)$ and thus $C_{G}(t)=\operatorname{Stab}_{G}\left(C_{V}(t)\right)$. That $\operatorname{Stab}_{G}\left(C_{V}(t)\right) \sim\left(L_{2}(q) \times \frac{q-\delta}{2}\right) .2^{2}$ can be read off from Proposition 4.1.6 of [21].
(iii) For any $g \in C_{G}(t)$, we have $[V, t]^{g}=C_{V}(t)^{\perp g}=C_{V}\left(t^{g}\right)^{\perp}=C_{V}(t)^{\perp}=[V, t]$ and so $C_{G}(t) \leq \operatorname{Stab}_{G}[V, t]$. If any element in L_{t} acts trivially on $C_{V}(t)$, then it would act trivially on V and thus be the identity. Hence L_{t} acts faithfully on $C_{V}(t)$. Let $v \in C_{V}(t)$ and by Lemma 4.1(iii), we have $[V, t] \leq\langle v\rangle^{\perp}$. Hence $\langle v\rangle^{\perp}=[V, t] \oplus W$ where $W \leq C_{V}(t)$. But since $\operatorname{dim}\left(\langle v\rangle^{\perp}\right)=4$, we have $\operatorname{dim}(W)=2$ and so $C_{V}(t) \nsubseteq\langle v\rangle^{\perp}$. Therefore for all $u \in C_{V}(t)$, $(v, u)=0$ if and only if $v=0$ and thus (,) is non-degenerate on restriction to $C_{V}(t)$. Hence we have $L_{t} \hookrightarrow G O\left(C_{V}(t)\right) \sim G O_{3}(q)$ as L_{t} fixes $[V, t]$ pointwise, by definition. Since $L_{t} \leq G$ and acts as determinant 1 on $[V, t]$, then it must act as determinant 1 on $C_{V}(t)$. In addition, as L_{t} fixes [V, t] pointwise, when the elements of L_{t} are decomposed as products of refections, the vectors reflected will lie in $C_{V}(t)$. Since the spinor norm of the elements of L_{t} are a square in $G F(q)$ and the vectors reflected lie in $C_{V}(t)$, then the spinor norm doesn't change on restriction to $C_{V}(t)$. Hence, $L_{t} \sim O_{3}(q) \sim L_{2}(q)$ proving (iii).

Let \mathcal{U}_{i} denote the set of i-dimensional subspaces of $C_{V}(t), i=1,2$. In proving Theorem 1.4, our divide and conquer strategy is based on the following observation.
Lemma 4.3 $Y_{2} \subseteq \bigcup_{U \in \mathcal{U}_{1} \cup \mathcal{U}_{2}} C_{G}(U)$.
Proof Let $x \in Y_{2} \backslash\{t\}$ and set $U=C_{V}(t) \cap C_{V}(x)$. By Lemmas 4.1(i) and 4.2(i), $U \in \mathcal{U}_{1} \cup \mathcal{U}_{2}$. Since $t, x \in C_{G}(U)$, we have Lemma 4.3.

The three cases we must chase down are presaged by our next result.
Lemma 4.4 (i) Let U_{0} be an isotropic 1-subspace of $C_{V}(t)$. Then $C_{G}\left(U_{0}\right) \sim q^{3}: L_{2}(q)$.
(ii) Let U_{ε} be a 1-subspace of $C_{V}(t)$, such that $U_{\varepsilon}^{\perp} \cap C_{V}(t)$ is a 2-space of ε-type $(\varepsilon= \pm 1)$. Then

$$
C_{G}\left(U_{\varepsilon}\right) \sim\left\{\begin{array}{lr}
\left.S L_{2}(q) \circ S L_{2}(q)\right) & \delta=\varepsilon \\
L_{2}\left(q^{2}\right) & \delta=-\varepsilon .
\end{array}\right.
$$

Proof Let U_{0} be an isotropic 1-subspace of $C_{V}(t)$. From Proposition 4.1.20 of [21], we know that $\operatorname{Stab}_{G}\left(U_{0}\right) \sim C_{0}:\left(C_{1} \times C_{2}\right)\langle r\rangle$ where C_{1} acts as scalars on U_{0}, r a reflection of U_{0} and $C_{0} \sim q^{3}, C_{2} \sim L_{2}(q)$ fixing U_{0} pointwise. Hence $C_{G}\left(U_{0}\right) \sim q^{3}: L_{2}(q)$, so proving (i).
If $\delta=1$, then [$V, t]$ is a 2-subspace of V of + -type, and hence $U_{+}^{\perp}=\left(U_{+}^{\perp} \cap C_{V}(t)\right) \perp[V, t]$ is a 4-subspace of + -type. Similarly, $U_{-}^{\perp}=\left(U_{-}^{\perp} \cap C_{V}(t)\right) \perp[V, t]$ is a 4 -space of --type. If $\delta=-1$, then $[V, t]$ is a 2 -subspace of V of --type, and the results for when $\delta=1$ interchange. Let W_{+}and W_{-}be 4 -subspaces of V of + and --type respectively, such that W_{+}^{\perp} and W_{-}^{\perp}
are 1-subspaces of $C_{V}(t)$, observing that $\operatorname{Stab}_{G}\left(W_{ \pm}\right)=\operatorname{Stab}_{G}\left(W_{ \pm}^{\perp}\right)$. From Proposition 4.1.6 of [21], we have

$$
\begin{aligned}
& \operatorname{Stab}_{G}\left(W_{+}\right) \sim C_{+}\left\langle s_{+}\right\rangle \\
& \operatorname{Stab}_{G}\left(W_{-}\right) \sim C_{-}\left\langle s_{-}\right\rangle
\end{aligned}
$$

where $C_{+} \sim S L_{2}(q) \circ S L_{2}(q)$ fixes W_{+}^{\perp} pointwise, $C_{-} \sim L_{2}\left(q^{2}\right)$ fixes W_{-}^{\perp} pointwise and s_{+}, s_{-} are reflections of W_{+}^{\perp} and W_{-}^{\perp} respectively. This proves (ii) and hence the lemma.

Lemma 4.5 (i) Let U_{0} be a 2-subspace of $C_{V}(t)$ such that $U_{0}^{\perp} \cap C_{V}(t)$ is an isotropic 1-space. Then $C_{G}\left(U_{0}\right) \cong q^{2}: \frac{q-\delta}{2}$.
(ii) Let U_{ε} be a 2-subspace of $C_{V}(t)$ of ε-type $(\varepsilon= \pm 1)$. Then $C_{G}\left(U_{\varepsilon}\right) \sim L_{2}(q)$.

Proof See Propositions 4.1.6 and 4.1.20 of [21].
Define the following subsets of $\mathcal{U}_{i}, i=1,2$.

$$
\begin{aligned}
\mathcal{U}_{1}^{+} & =\left\{U \in \mathcal{U}_{1} \mid C_{G}(U) \sim S L_{2}(q) \circ S L_{2}(q)\right\} \\
\mathcal{U}_{1}^{-} & =\left\{U \in \mathcal{U}_{1} \mid C_{G}(U) \sim L_{2}\left(q^{2}\right)\right\} \\
\mathcal{U}_{1}^{0} & =\left\{U \in \mathcal{U}_{1} \mid C_{G}(U) \sim q^{3}: L_{2}(q)\right\} \\
\mathcal{U}_{2}^{+} & =\left\{U \in \mathcal{U}_{2} \mid U \text { is of +-type }\right\} \\
\mathcal{U}_{2}^{-} & =\left\{U \in \mathcal{U}_{2} \mid U \text { is of --type }\right\} \\
\mathcal{U}_{2}^{0} & =\left\{U \in \mathcal{U}_{2} \mid C_{G}(U) \sim q^{2}: \frac{q-\delta}{2}\right\}
\end{aligned}
$$

In the notation of Lemma 4.4, \mathcal{U}_{1}^{+}is the case $\delta=\varepsilon$ while \mathcal{U}_{1}^{-}is when $\delta=-\varepsilon$. Note by Lemmas 4.4 and 4.5 that $\mathcal{U}_{i}=\mathcal{U}_{i}^{0} \cup \mathcal{U}_{i}^{+} \cup \mathcal{U}_{i}^{-}, i=1,2$. We now study $C_{G}(U) \cap Y_{2}$ for $U \in \mathcal{U}_{1}$. By Lemma 4.4 there are three possibilities for the structure of $C_{G}(U)$. First we look at the case $U \in \mathcal{U}_{1}^{-}$, and set $G^{-}=C_{G}(U)$. Then $G^{-} \cong L_{2}\left(q^{2}\right)$ by definition of \mathcal{U}_{1}^{-}. Define $\Delta_{i}^{-}(t)=\left\{x \in G^{-} \cap Y_{2} \mid d^{-}(t, x)=i\right\}$ where $i \in \mathbb{N}$ and d^{-}is the distance metric on the commuting graph $\mathcal{C}\left(G^{-}, G^{-} \cap Y_{2}\right)$.

Theorem 4.6 If $q \neq 3$ then $\mathcal{C}\left(G^{-}, G^{-} \cap Y_{2}\right)$ is connected of diameter 3 with

$$
\begin{aligned}
& \left|\Delta_{1}^{-}(t)\right|=\frac{1}{2}\left(q^{2}-1\right) \\
& \left|\Delta_{2}^{-}(t)\right|=\frac{1}{4}\left(q^{2}-1\right)\left(q^{2}-5\right) ; \text { and } \\
& \left|\Delta_{3}^{-}(t)\right|=\frac{1}{4}\left(q^{2}-1\right)\left(q^{2}+7\right)
\end{aligned}
$$

Proof Since $q^{2} \equiv 1(\bmod 4)$ and $q \neq 3$ implies $q^{2}>13$, this follows from Theorem 1.1(iii) of [10].

We move on to analyze $G^{+}=C_{G}(U)$ where $U \in \mathcal{U}_{1}^{+}$. Hence, by definition of $\mathcal{U}_{1}^{+}, G^{+} \sim L_{1} \circ L_{2}$ where $L_{1} \sim S L_{2}(q) \sim L_{2}$ (with the central product identifying $Z\left(L_{1}\right)$ and $Z\left(L_{2}\right)$). Set $Y^{+}=$ $G^{+} \cap Y_{2}$. We begin by describing Y^{+}.

Lemma 4.7 $Y^{+}=\left\{x_{1} x_{2} \mid x_{i} \in L_{i}\right.$ and x_{i} has order 4, $\left.i=1,2\right\}$.

Proof Apart from the central involution z of G^{+}, all other involutions of G^{+}are of the form $g_{1} g_{2}$ where $g_{i} \in L_{i}(i=1,2)$ has order 4 . Since all involutions in $L_{i} / Z\left(G^{+}\right)$are conjugate, it quickly follows that $\left\{g_{1} g_{2} \mid g_{i} \in L_{i}\right.$ and g_{i} has order $\left.4, i=1,2\right\}$ is a G^{+}-conjugacy class. Now z acts as -1 on U^{\perp} and thus $\operatorname{dim} C_{V}(z)=1$. Therefore $t \neq z$ whence, as $t \in G^{+}$, the lemma holds.

Let d^{+}denote the distance metric on the commuting graph $\mathcal{C}\left(G^{+}, Y^{+}\right)$and, for $i \in \mathbb{N}, \Delta_{i}^{+}(t)=$ $\left\{x \in Y^{+} \mid d^{+}(t, x)=i\right\}$.

Theorem 4.8 Assume that $q \notin\{3,5,9,13\}$. Then $\mathcal{C}\left(G^{+}, Y^{+}\right)$is connected of diameter 3 with

$$
\begin{aligned}
\left|\Delta_{1}^{+}(t)\right| & =\frac{1}{2}(q-\delta)^{2}+1 \\
\left|\Delta_{2}^{+}(t)\right| & =\frac{1}{8}(q-\delta)^{3}(q-4-\delta)+(q-\delta)(q-2-\delta) ; \text { and } \\
\left|\Delta_{3}^{+}(t)\right| & =\frac{3}{8} q^{4}+\frac{1}{2}(1+3 \delta) q^{3}-\frac{1}{4}(7+6 \delta) q^{2}+\frac{7}{2}(1+\delta) q-\frac{1}{8}(29+20 \delta)
\end{aligned}
$$

Proof Let $\overline{G^{+}}=G^{+} / Z\left(G^{+}\right)\left(=\overline{L_{1}} \times \overline{L_{2}}\right)$. Note that for $x_{1} x_{2} \in Y^{+}, x_{1}^{-1} x_{2}=x_{1} x_{2}^{-1}$ and $x_{1} x_{2}=x_{1}^{-1} x_{2}^{-1}$ and so the inverse image of $\overline{x_{1} x_{2}}$ contains two elements of Y^{+}. Let $d^{(i)}$ denote the distance metric on the commuting graph of $\overline{L_{i}}$ and $\Delta_{j}^{(i)}\left(\overline{x_{i}}\right)$ the $j^{\text {th }}$ disc of $\overline{x_{i}}$ in the commuting graph of $\overline{L_{i}}$. By Lemma 4.7, $t=t_{1} t_{2}$ where, for $i=1,2, t_{i} \in L_{i}$ has order 4. Let $x=x_{1} x_{2} \in Y^{+}$ with $x \neq t$. Then $t x=x t$ if and only if $t x$ has order 2. So, bearing in mind that $Y^{+} \cup\{z\}$ (where $\langle z\rangle=Z\left(G^{+}\right)$) are all the involutions of G^{+}, we have that $t x=x t$ if and only if one of the following holds:- $x_{1}=t_{1}, x_{2}=t_{2}^{-1} ; x_{1}=t_{1}^{-1}, x_{2}=t_{2} ; \overline{x_{1}} \in \Delta_{1}^{(1)}\left(\overline{t_{1}}\right)$ and $\overline{x_{2}} \in \Delta_{1}^{(2)}\left(\overline{t_{2}}\right)$. Thus

$$
\begin{equation*}
\Delta_{1}^{+}(t)=\left\{x_{1} x_{2} \mid \overline{x_{i}} \in \Delta_{1}^{(i)}\left(\overline{t_{i}}\right), i=1,2\right\} \cup\left\{t_{1} t_{2}^{-1}\right\} \tag{4.8.1}
\end{equation*}
$$

Hence, using [10],

$$
\begin{equation*}
\left|\Delta_{1}^{+}(t)\right|=2\left(\frac{1}{2}(q-\delta)\right)^{2}+1=\frac{1}{2}(q-\delta)^{2}+1 \tag{4.8.2}
\end{equation*}
$$

Next we examine $\Delta_{2}^{+}(t)$. Let $x \in Y^{+}$. Assume that $x=x_{1} t_{2}$ or $x_{1} t_{2}^{-1}$ where $\overline{x_{1}} \in \Delta_{1}^{(1)}\left(\overline{t_{1}}\right)$. Then $x \in \Delta_{1}^{+}\left(t_{1} t_{2}^{-1}\right)$ (recall $t_{1} t_{2}^{-1}=t_{1}^{-1} t_{2}$) which implies, by (4.8.1), that $x \in \Delta_{2}^{+}(t)$. If $x=t_{1} x_{2}$ or $t_{1}^{-1} x_{2}$ where $\overline{x_{2}} \in \Delta_{1}^{(2)}\left(\overline{t_{2}}\right)$, we similarly get $x \in \Delta_{2}^{+}(t)$. Therefore

$$
\begin{equation*}
\left\{x_{1} x_{2} \mid \overline{x_{1}} \in \Delta_{1}^{(1)}\left(\overline{t_{1}}\right), \overline{x_{2}}=\overline{t_{2}}\right\} \cup\left\{x_{1} x_{2} \mid \overline{x_{2}} \in \Delta_{1}^{(2)}\left(\overline{t_{2}}\right), \overline{x_{1}}=\overline{t_{1}}\right\} \subseteq \Delta_{2}^{+}(t) \tag{4.8.3}
\end{equation*}
$$

Now suppose $x=x_{1} x_{2}$ where $\overline{x_{1}} \in \Delta_{2}^{(1)}\left(\overline{t_{1}}\right)$ and $\overline{x_{2}} \in \Delta_{1}^{(2)}\left(\overline{t_{2}}\right)$. So there exists $\overline{y_{1}} \in \overline{L_{1}}$ such that $\left(\overline{t_{1}}, \overline{y_{1}}, \overline{x_{1}}\right)$ is a path of length 2 in the commuting graph for $\overline{L_{1}}$. Then $\left(t=t_{1} t_{2}, y_{1} x_{2}^{-1}, x_{1} x_{2}=x\right)$ is a path of length 2 in $\mathcal{C}\left(G^{+}, Y^{+}\right)$. Thus, by (4.8.1), $x \in \Delta_{2}^{+}(t)$. If, on the other hand, $\overline{x_{1}} \in \Delta_{1}^{(1)}\left(\overline{t_{1}}\right)$ and $\overline{x_{2}} \in \Delta_{2}^{(2)}\left(\overline{t_{2}}\right)$ we obtain the same conclusion. Should we have $\overline{x_{1}} \in \Delta_{2}^{(1)}\left(\overline{t_{1}}\right)$ and $\overline{x_{2}} \in \Delta_{2}^{(2)}\left(\overline{t_{2}}\right)$, similar arguments also give $x \in \Delta_{2}^{+}(t)$. So

$$
\begin{align*}
&\left\{x_{1} x_{2} \mid \overline{x_{1}} \in \Delta_{2}^{(1)}\left(\overline{t_{1}}\right), \overline{x_{2}} \in \Delta_{1}^{(2)}\left(\overline{t_{2}}\right)\right\} \cup\left\{x_{1} x_{2} \mid \overline{x_{1}} \in \Delta_{1}^{(1)}\left(\overline{t_{1}}\right), \overline{x_{2}} \in \Delta_{2}^{(2)}\left(\overline{t_{2}}\right)\right\} \\
& \cup\left\{x_{1} x_{2} \mid \overline{x_{1}} \in \Delta_{2}^{(1)}\left(\overline{t_{1}}\right), \overline{x_{2}} \in \Delta_{2}^{(2)}\left(\overline{t_{2}}\right)\right\} \subseteq \Delta_{2}^{+}(t) . \tag{4.8.4}
\end{align*}
$$

Since $x=x_{1} x_{2} \in \Delta_{2}^{+}(t)$ implies $d^{(i)}\left(\overline{t_{i}}, \overline{x_{i}}\right) \leq 2$ for $i=1,2, \Delta_{2}^{+}(t)$ is the union of the two sets in (4.8.3) and (4.8.4). Thus, employing [10],

$$
\begin{equation*}
\left|\Delta_{2}^{+}(t)\right|=\frac{1}{8}(q-\delta)^{3}(q-4-\delta)+(q-\delta)(q-2-\delta) \tag{4.8.5}
\end{equation*}
$$

Now, as $q \notin\{3,5,9,13\}$, by [10] the commuting graph for $\overline{L_{i}}$ is connected of diameter 3. Arguing as above we deduce that $\mathcal{C}\left(G^{+}, Y^{+}\right)$is also connected with diameter 3. Because $\left|Y^{+}\right|=2\left|\overline{\bar{t}_{1}} \overline{\overline{L_{1}}}\right|\left|\overline{\bar{t}_{2}}\right|=\frac{1}{2} q^{2}(q+\delta)^{2}$, combining (4.8.2) and (4.8.5) we may determine $\left|\Delta_{3}^{+}(t)\right|$ to be as stated, so completing the proof of Theorem 4.8.

Finally we look at $C_{G}(U)$ where $U \in \mathcal{U}_{1}^{0}$. This will prove to be trickier than the other two cases. Put $G^{0}=C_{G}(U)$. So $G^{0} \sim q^{3}: L_{2}(q)$. We require an explicit description of G^{0} which we now give. Let $Q=\{(\alpha, \beta, \gamma) \mid \alpha, \beta, \gamma \in G F(q)\}$ and

$$
L=\left\{\left.\left(\begin{array}{ccc}
a^{2} & 2 a b & b^{2} \\
a c & a d+b c & b d \\
c^{2} & 2 c d & d^{2}
\end{array}\right) \right\rvert\, \begin{array}{c}
a, b, c, d \in G F(q) \\
a d-b c=1
\end{array}\right\} .
$$

with L acting on Q by right multiplication. Then $Q \sim q^{3}$ and $L \sim L_{2}(q)$. Since Q is the 3-dimensional $G F(q) L$-module (see the description on page 15 of [4]), $G^{0} \cong Q \rtimes L$. We will identify this semidirect product with G^{0}, writing $G^{0}=Q L$. Any $g \in G^{0}$ has a unique expression $g=g_{Q} g_{L}$ where $g_{Q} \in Q$ and $g_{L} \in L$ - in what follows we use such subscripts to describe this expression. Set $Y^{0}=G^{0} \cap Y_{2}$, let d^{0} denote the distance metric and $\Delta_{i}^{0}(t)$ the
$i^{\text {th }}$ disc of the commuting graph $\mathcal{C}\left(G^{0}, Y^{0}\right)$. In determining the discs of $\mathcal{C}\left(G^{0}, Y^{0}\right)$ we make use of the commuting involution graph of $L \cong L_{2}(q)$ (as given in [10]). So we shall use d^{L} to denote the distance metric on $\mathcal{C}\left(L, L \cap Y^{0}\right)$ and for $x \in L \cap Y^{0}$ and $i \in \mathbb{N}, \Delta_{i}^{L}(x)=$ $\left\{y \in L \cap Y^{0} \mid d^{L}(x, y)=i\right\}$. It is straightforward to check that

$$
L \cap Y^{0}=\left\{\left.\left(\begin{array}{ccc}
a^{2} & 2 a b & b^{2} \\
a c & b c-a^{2} & -a b \\
c^{2} & -2 a c & a^{2}
\end{array}\right) \right\rvert\, \begin{array}{c}
a, b, c \in G F(q) \\
a^{2}+b^{2}=-1
\end{array}\right\}
$$

and, as G^{0} has one conjugacy class of involutions, $Y^{0}=\left\{x_{Q} x_{L} \mid x_{L} \in L \cap Y^{0}\right.$ and x_{L} inverts $\left.x_{Q}\right\}$. Without loss of generality, we take

$$
t=t_{L}=\left(\begin{array}{rrr}
0 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

and, up until Theorem 4.14, we will assume that $q \notin\{3,5,9,13\}$. Thus the diameter of $\mathcal{C}\left(L, L \cap Y^{0}\right)$ is 3.
Lemma 4.9 (i) $Q t \cap Y^{0}=\{(\alpha, \beta,-\alpha) t \mid \alpha, \beta \in G F(q)\}$ and $\left|Q t \cap Y^{0}\right|=q^{2}$.
(ii) $Q t \cap \Delta_{1}^{0}(t)=\varnothing$.

Proof A straightforward calculation.

Lemma 4.10 We have

$$
\Delta_{1}^{0}(t)=\left\{x \mid x_{Q}=(\alpha, 0, \alpha), x_{L}=\left(\begin{array}{ccc}
a^{2} & 2 a b & b^{2} \\
a b & b^{2}-a^{2} & -a b \\
b^{2} & -2 a b & a^{2}
\end{array}\right), a^{2}+b^{2}=-1\right\}
$$

and $\left|\Delta_{1}^{0}(t)\right|=\frac{1}{2} q(q-\delta)$.
Proof Let $x, y \in Y^{0}$. If $[x, y]=1$ then clearly $\left[x_{L}, y_{L}\right]=1$. From [10] we have

$$
\Delta_{1}^{L}(t)=\left\{\left.\left(\begin{array}{ccc}
a^{2} & 2 a b & b^{2} \\
a b & b^{2}-a^{2} & -a b \\
b^{2} & -2 a b & a^{2}
\end{array}\right) \right\rvert\, a^{2}+b^{2}=-1\right\}
$$

If $x_{Q}=(\alpha, \beta, \gamma)$ and $x_{L} \in \Delta_{1}^{L}(t)$ then $[t, x]=1$ implies $\alpha=\gamma$ and $\beta=0$. Moreover, every $x=(\alpha, 0, \alpha) x_{L}$, where $x_{L} \in \Delta_{1}^{L}(t)$, is in Y^{0}. Hence, $\Delta_{1}^{0}(t)$ is as described above. By [10], for any involution $x_{L} \in L$ we have $\left|\Delta_{1}^{L}\left(x_{L}\right)\right|=\frac{1}{2}(q-\delta)$ and there are q possible values that α can take for a fixed such x_{L}, proving the lemma.

Lemma 4.11 Let $x \in Y^{0}$ with $x_{L} \in \Delta_{1}^{L}(t)$. If $x \notin \Delta_{1}^{0}(t)$, then $x \in \Delta_{2}^{0}(t)$.

Proof Suppose $x \in Y^{0}$ where $x_{Q}=(\alpha, \beta, \gamma)$ and

$$
x_{L}=\left(\begin{array}{ccc}
a^{2} & 2 a b & b^{2} \\
a b & b^{2}-a^{2} & -a b \\
b^{2} & -2 a b & a^{2}
\end{array}\right) .
$$

Then x_{L} inverts x_{Q} if and only if

$$
\begin{align*}
a^{2} \alpha+2 a b \beta+b^{2} \gamma & =-\alpha \\
a b \alpha+\left(b^{2}-a^{2}\right) \beta-a b \gamma & =-\beta \tag{4.11.1}\\
b^{2} \alpha-2 a b \beta+a^{2} \gamma & =-\gamma .
\end{align*}
$$

Suppose first that $\delta=-1$. Then, since -1 is not square in $G F(q)$, we must have $a, b \neq 0$. Rearranging the first equation gives $\alpha=2 a b^{-1} \beta+\gamma$ and (4.11.1) remains consistent. Note that when $\beta=0$, we have $\alpha=\gamma$ and so $x \in \Delta_{1}^{0}(t)$. So assume $\beta \neq 0$. Let $y \in \Delta_{1}^{0}(t)$ where $y_{Q}=\left(a b^{-1} \beta+\gamma, 0, a b^{-1} \beta+\gamma\right)$ and

$$
y_{L}=\left(\begin{array}{ccc}
b^{2} & -2 a b & a^{2} \\
-a b & a^{2}-b^{2} & a b \\
a^{2} & 2 a b & b^{2}
\end{array}\right) .
$$

It is a routine calculation to show that $[x, y]=1$, proving the lemma for $\delta=-1$. Now assume $\delta=1$. If $a, b \neq 0$ then the argument from the previous case still holds, so assume first that $a=0$, and hence b is the unique element in $G F(q)$ that squares to -1 . Then (4.11.1) simplifies to $\alpha=\gamma$, and so $x_{Q}=(\alpha, \beta, \alpha)$. Let $z \in \Delta_{1}^{0}(t)$ where $z_{Q}=(\alpha, 0, \alpha)$ and

$$
z_{L}=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

An easy calculation shows that $[x, z]=1$. Similarly, assuming $b=0$ then a is the unique element of $G F(q)$ squaring to -1 and (4.11.1) simplifies to $\beta=0$. Then $x_{Q}=(\alpha, 0, \gamma)$ and if $w \in \Delta_{1}^{0}(t)$ where $w_{Q}=\left(2^{-1}(\alpha+\gamma), 0,2^{-1}(\alpha+\gamma)\right)$ and

$$
w_{L}=\left(\begin{array}{rrr}
0 & 0 & -1 \\
0 & -1 & 0 \\
-1 & 0 & 0
\end{array}\right)
$$

then an easy check shows that $[x, w]=1$, proving the lemma for $\delta=1$.

Lemma 4.12 We have $Q t \cap Y^{0} \subseteq\{t\} \cup \Delta_{2}^{0}(t) \cup \Delta_{3}^{0}(t)$. Moreover,

$$
\begin{aligned}
\left|Q t \cap \Delta_{2}^{0}(t)\right| & =\frac{1}{2}\left(q^{2}-(1+\delta) q+\delta\right) ; \text { and } \\
\left|Q t \cap \Delta_{3}^{0}(t)\right| & =\frac{1}{2}\left(q^{2}+(1+\delta) q-(2+\delta)\right) .
\end{aligned}
$$

Proof If $x \in Q t \cap Y^{0}$ and $x \neq t$ then $x_{Q}=(\alpha, \beta,-\alpha)$ and $x \notin \Delta_{1}^{0}(t)$ by Lemma 4.9. Let $y \in \Delta_{1}^{0}(t)$ where $y_{Q}=(\gamma, 0, \gamma)$ and

$$
y_{L}=\left(\begin{array}{ccc}
a^{2} & 2 a b & b^{2} \\
a b & b^{2}-a^{2} & -a b \\
b^{2} & -2 a b & a^{2}
\end{array}\right)
$$

with $a^{2}+b^{2}=-1$. Then $[x, y]=1$ if and only if $-a^{2} \alpha=a b \beta$ and $-b^{2} \beta=a b \alpha$.
Assume first that $\delta=-1$. Since -1 is not square in $G F(q)$, we have $a, b \neq 0$ and so $\alpha=-a^{-1} b \beta$. Hence if $y \in Q t$ is such that $y_{Q}=\left(-a^{-1} b \beta, \beta, a^{-1} b \beta\right)$, then $y \in \Delta_{2}^{0}(t)$. By looking at $\Delta_{1}^{L}(t)$, we see there are $q+1$ ordered pairs (a, b) that satisfy $a^{2}+b^{2}=-1$. However, if $(a, b) \neq(c, d)$ where $a^{2}+b^{2}=c^{2}+d^{2}=-1$ and $a^{-1} b=c^{-1} d$, then an easy calculation shows that $(c, d)=(-a,-b)$. Hence there are $\frac{1}{2}(q+1)$ distinct values of $a^{-1} b$ satisfying the relevant conditions. If $\beta=0$ then $x=t$ and if $\beta \neq 0$ there are $\frac{1}{2}\left(q^{2}-1\right)$ elements in $Q t \cap \Delta_{2}^{0}(t)$.
Assume now that $\delta=1$. If $a, b \neq 0$ then the arguments of the previous case still hold, with the exception that there are now $q-1$ ordered pairs (a, b) that satisfy $a^{2}+b^{2}=-1$. However, as $a, b \neq 0$ we exclude the pairs $(\pm i, 0)$ and $(0, \pm i)$ where i is the unique element of $G F(q)$ squaring to -1 . Hence there are $q-5$ ordered pairs (a, b) satisfying $a^{2}+b^{2}=-1, a, b \neq 0$ and thus $\frac{1}{2}(q-5)$ distinct values of $a^{-1} b$. Hence there are $\frac{1}{2}(q-5)(q-1)$ elements $z \in Q t \cap \Delta_{2}^{0}(t)$ such that $z_{Q}=\left(-a^{-1} b \beta, \beta, a^{-1} b \beta\right)$ where $\beta \neq 0$ (note that if $\beta=0$, then $z=t$). Suppose $a=0$, then $b \neq 0$ and so $\beta=0$. Hence $x_{Q}=(\alpha, 0,-\alpha)$ and all such x lie in $\Delta_{2}^{0}(t)$ if $\alpha \neq 0$. Similarly, if $b=0$ then $a \neq 0$ and $x_{Q}=(0, \beta, 0)$ where $\beta \neq 0$ and all such x lie in $\Delta_{2}^{0}(t)$. Therefore, $\left|Q t \cap \Delta_{2}^{0}(t)\right|=\frac{1}{2}(q-5)(q-1)+2(q-1)=\frac{1}{2}(q-1)^{2}$ as required.
Hence it suffices to show that these remaining involutions all lie in $\Delta_{3}^{0}(t)$. Let $w \in Q t$ be such that $w_{Q}=(\gamma, \varepsilon,-\gamma)$. Choose $s \in Y^{0}$ such that $s_{Q}=\left(a b \varepsilon-b^{2} \gamma, a b \gamma-a^{2} \varepsilon, b^{2} \gamma-a b \varepsilon\right)$ with $a b \gamma \neq a^{2} \varepsilon$ and

$$
s_{L}=\left(\begin{array}{ccc}
b^{2} & -2 a b & a^{2} \\
-a b & a^{2}-b^{2} & a b \\
a^{2} & 2 a b & b^{2}
\end{array}\right),
$$

with $a^{2}+b^{2}=-1$. It is an easy check to show that $s \in \Delta_{2}^{0}(t)$, and moreover $[w, s]=1$. This accounts for the remaining involutions in $Q t$, thus proving the lemma.

Lemma 4.13 Suppose $x \in Y^{0}$ with $x_{L} \in \Delta_{2}^{L}(t)$. Then $x \in \Delta_{2}^{0}(t)$.

Proof It can be shown (see Remark 2.3 of [10], noting the result holds for any odd q) that for a fixed $a, b \in G F(q)$ such that $a^{2}+b^{2}=-1$,

$$
C_{L}\left(\left(\begin{array}{ccc}
a^{2} & 2 a b & b^{2} \\
a b & b^{2}-a^{2} & -a b \\
b^{2} & -2 a b & a^{2}
\end{array}\right)\right)=\left\{\left.\left(\begin{array}{ccc}
c^{2} & 2 c d & d^{2} \\
c e & d e-c^{2} & -c d \\
e^{2} & -2 c e & c^{2}
\end{array}\right) \right\rvert\, \begin{array}{c}
c^{2}+d e=-1 \\
b(e+d)=-2 a c
\end{array}\right\} .
$$

Let $y \in Y^{0}$ be such that $y_{Q}=(\alpha, \beta, \gamma)$ and

$$
y_{L}=\left(\begin{array}{ccc}
c^{2} & 2 c d & d^{2} \\
c e & d e-c^{2} & -c d \\
e^{2} & -2 c e & c^{2}
\end{array}\right) \in \Delta_{2}^{L}(t)
$$

So there exists $a, b \in G F(q)$ such that $a^{2}+b^{2}=-1$ and $b(e+d)=-2 a c$ with $d \neq e$. Since y_{L} inverts y_{Q}, we have

$$
\begin{align*}
c^{2} \alpha+2 c d \beta+d^{2} \gamma & =-\alpha \\
c e \alpha+\left(d e-c^{2}\right) \beta-c d \gamma & =-\beta \tag{4.13.1}\\
e^{2} \alpha-2 c e \beta+c^{2} \gamma & =-\gamma .
\end{align*}
$$

Assume first that $\delta=-1$. Since -1 is not square in $G F(q)$, then $d, e \neq 0$ and any $a, b \in G F(q)$ such that $b(d+e)=-2 a c$ and $a^{2}+b^{2}=-1$ must also be non-zero. Moreover, if $c=0$ then $d=-e^{-1}$ and $b\left(d-d^{-1}\right)=0$ implying that $d=-1$. But then $y_{L}=t \notin \Delta_{2}^{L}(t)$, so $c \neq 0$. The system (4.13.1) now simplifies to $\alpha=2 c e^{-1} \beta+d e^{-1} \gamma$. Let $x \in \Delta_{1}^{0}(t)$ be such that $x_{Q}=(\varepsilon, 0, \varepsilon)$ and

$$
x_{L}=\left(\begin{array}{ccc}
a^{2} & 2 a b & b^{2} \\
a b & b^{2}-a^{2} & -a b \\
b^{2} & -2 a b & a^{2}
\end{array}\right)
$$

where $\varepsilon=-a b c^{-1} e^{-1}\left(\gamma+(d-e)^{-1}\left(2 c+a^{-1} b e-a b^{-1} e-(a b)^{-1} e\right) \beta\right)$. Using the PolynomialAlgebra command in Magma [15] we verify that $[x, y]=1$ and so $y \in \Delta_{2}^{0}(t)$.
Assume now that $\delta=1$. Let $a, b \in G F(q)$ be such that $a^{2}+b^{2}=-1$ and $b(d+e)=-2 a c$. Suppose $c, d, e \neq 0$ and $d \neq-e$. Then $b(d+e)=-2 a c \neq 0$ and so $a, b \neq 0$. The argument for the case when $\delta=-1$ then holds. Suppose then $c, d, e \neq 0$ and $d=-e$. Then $b(d+e)=-2 a c=0$ and since $c \neq 0$ we must have $a=0$ and $b^{2}=-1$. The system (4.13.1) then becomes $\alpha=2 c e^{-1} \beta-\gamma$. If $x \in \Delta_{1}^{0}(t)$ is such that $x_{Q}=\left(-c^{-1} e^{-1} \beta, 0,-c^{-1} e^{-1} \beta\right)$ and

$$
x_{L}=\left(\begin{array}{rrr}
0 & 0 & -1 \\
0 & -1 & 0 \\
-1 & 0 & 0
\end{array}\right)
$$

then a routine check shows that $[x, y]=1$.
Now assume $c \neq 0$ and $d=0$. Since $y_{L} \in \Delta_{2}^{L}(t)$, we must have $e \neq 0$ and so $c^{2}=-1$. The system (4.13.1) becomes $\alpha=2 c e^{-1} \beta$ and using Magma [15] we deduce that if $x \in \Delta_{1}^{0}(t)$ where $x_{Q}=(\varepsilon, 0, \varepsilon)$,

$$
x_{L}=\left(\begin{array}{ccc}
a^{2} & 2 a b & b^{2} \\
a b & b^{2}-a^{2} & -a b \\
b^{2} & -2 a b & a^{2}
\end{array}\right)
$$

and $\varepsilon=\left(c e^{-1}\left(1-a^{2}\right)-a b\right) \beta-2^{-1} b^{2} \gamma$, then $[x, y]=1$. Similarly, if $c \neq 0$ and $e=0$, then $d \neq 0$ and $c^{2}=-1$. The system (4.13.1) becomes $\beta=2^{-1} c d \gamma$ and [15] will verify that if $x \in \Delta_{1}^{0}(t)$ where $x_{Q}=(\varepsilon, 0, \varepsilon)$,

$$
x_{L}=\left(\begin{array}{ccc}
a^{2} & 2 a b & b^{2} \\
a b & b^{2}-a^{2} & -a b \\
b^{2} & -2 a b & a^{2}
\end{array}\right)
$$

and $\varepsilon=2^{-1}\left(\gamma-b^{2} \alpha+a b c d \gamma-a^{2} \gamma\right)$, then $[x, y]=1$.
Finally, if $c=0$ then $d=-e^{-1}$ and so $a^{2}=-1$ and $b=0$ satisfies the relevant conditions. Note that if $d= \pm 1$ then $y_{L}=t$, so we may assume $d \neq \pm 1$. The system (4.13.1) becomes $\alpha=d^{2} \gamma$, so if $x \in \Delta_{1}^{0}(t)$ where $x_{Q}=\left(2 d^{2} \gamma\left(1-d^{2}\right)^{-1}, 0,2 d^{2} \gamma\left(1-d^{2}\right)^{-1}\right)$ and

$$
x_{L}=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

then a routine check again shows that $[x, y]=1$. Therefore, for all $y \in Y^{0}$ such that $y_{L} \in \Delta_{2}^{L}(t)$, there exists $x \in \Delta_{1}^{L}(t)$ such that $[x, y]=1$, so proving the lemma.

Theorem 4.14 If $q \notin\{3,5,9,13\}$, then $\mathcal{C}\left(G^{0}, Y^{0}\right)$ is connected of diameter 3, with disc sizes

$$
\begin{aligned}
& \left|\Delta_{1}^{0}(t)\right|=\frac{1}{2} q(q-\delta) \\
& \left|\Delta_{2}^{0}(t)\right|=\frac{1}{4}\left(q^{4}-(2 \delta+2) q^{3}+(1+2 \delta) q^{2}-2 q+2 \delta\right) ; \text { and } \\
& \left|\Delta_{3}^{0}(t)\right|=\frac{1}{4}\left(q^{4}+2(1+2 \delta) q^{3}-(3+2 \delta) q^{2}+2(1+\delta) q-2(2+\delta)\right) .
\end{aligned}
$$

Proof It is known that $\mathcal{C}\left(L, L \cap Y^{0}\right)$ has diameter 3. Hence, for any $h_{i} \in \Delta_{i}^{L}(t)$, there exists $h_{i \pm 1} \in \Delta_{i \pm 1}^{L}(t)$ that commutes with $h_{i}, i=1,2$. Therefore for any $x \in Y^{0}$ where $x_{L} \in \Delta_{i}^{L}(t)$, there exists $y \in Y^{0}$ with $y_{L} \in \Delta_{i \pm 1}^{L}(t)$ and such that $[x, y]=1$. Since any $z \in Y^{0}$ where $z_{L} \in \Delta_{3}^{L}(t)$ must commute with some $w \in Y^{0}$ with $w_{L} \in \Delta_{2}^{L}(t)$ (which lies in $\Delta_{2}^{0}(t)$ by Lemma 4.13), $z \in \Delta_{3}^{0}(t)$. This finally covers all possible involutions in Y^{0} and so the diameter of $\mathcal{C}\left(G^{0}, Y^{0}\right)$ is 3 . Now for each $x_{L} \in L \cap Y^{0},\left|Q x_{L} \cap Y^{0}\right|=q^{2}$ by Lemma 4.9, and therefore there are $\frac{1}{2} q^{2}(q-\delta)$ involutions $y \in Y^{0}$ such that $y_{L} \in \Delta_{1}^{L}(t)$. From Lemma 4.10, $\left|\Delta_{1}^{0}(t)\right|=\frac{1}{2} q(q-\delta)$. Therefore

$$
\left|\bigcup_{x_{L} \in \Delta_{1}^{L}(t)} Q x_{L} \cap \Delta_{2}^{0}(t)\right|=\frac{1}{2} q^{2}(q-\delta)-\frac{1}{2} q(q-\delta)=\frac{1}{2} q(q-1)(q-\delta) .
$$

There are $q^{2}\left|\Delta_{2}^{L}(t)\right|$ involutions $z \in Y^{0}$ such that $z_{L} \in \Delta_{2}^{L}(t)$, which is known to be $\frac{1}{4} q^{2}(q-$ $\delta)(q-4-\delta)$ (see [10]). Also, by Lemma 4.12, $\left|Q t \cap \Delta_{2}^{0}(t)\right|=\frac{1}{2}\left(q^{2}-(1+\delta) q-\delta\right)$. Hence

$$
\begin{aligned}
\left|\Delta_{2}^{0}(t)\right| & =\left|Q t \cap \Delta_{2}^{0}(t)\right|+\left|\bigcup_{x_{L} \in \Delta_{1}^{L}(t)} Q x_{L} \cap \Delta_{2}^{0}(t)\right|+q^{2}\left|\Delta_{2}^{L}(t)\right| \\
& =\frac{1}{4}\left(q^{4}-(2 \delta+2) q^{3}+(1+2 \delta) q^{2}-2 q+2 \delta\right) .
\end{aligned}
$$

Finally, there are $\left|Y^{0}\right|=q^{2}\left|L \cap Y^{0}\right|=\frac{1}{2} q^{3}(q+\delta)$ involutions in G^{0} and therefore

$$
\begin{aligned}
\left|\Delta_{3}^{0}(t)\right| & =\left|Y^{0}\right|-\left|\Delta_{2}^{0}(t)\right|-\left|\Delta_{1}^{0}(t)\right|-1 \\
& =\frac{1}{4}\left(q^{4}+2(1+2 \delta) q^{3}-(3+2 \delta) q^{2}+2(1+\delta) q-2(2+\delta)\right)
\end{aligned}
$$

which proves Theorem 4.14.

Theorem $4.15 \mathcal{C}\left(G, Y_{2}\right)$ is connected of diameter at most 3.
Proof For $q \leq 13$, this is easily checked using Magma [15], so assume $q>13$. Combining Lemma 4.3 with Theorems 4.6, 4.8 and 4.14 yields the theorem.

We now focus on finding the disc sizes of $\mathcal{C}\left(G, Y_{2}\right)$. First, we need the following four lemmas.
Lemma 4.16 The sets $\mathcal{U}_{1}^{+}, \mathcal{U}_{1}^{-}$and \mathcal{U}_{1}^{0} are single $C_{G}(t)$-orbits. Moreover,

$$
\begin{aligned}
\left|\mathcal{U}_{1}^{0}\right| & =q+1 ; \\
\left|\mathcal{U}_{1}^{+}\right| & =\frac{1}{2} q(q+\delta) ; \text { and } \\
\left|\mathcal{U}_{1}^{-}\right| & =\frac{1}{2} q(q-\delta) .
\end{aligned}
$$

Proof Since $C_{G}(t)$ acts orthogonally on $C_{V}(t)$, the first statement is immediate. Recall the Gram matrix J for V with respect to (,) and the basis $\left\{v_{i}\right\}$. Observe that $C_{V}(t)=$ $\{(\alpha, \beta, \gamma, 0, \gamma) \mid \alpha, \beta, \gamma \in G F(q)\}$ and so a basis for $C_{V}(t)$ is $\left\{v_{1}, v_{2}, v_{3}+v_{5}\right\}$. Let $v=(\alpha, \beta, \gamma, 0, \gamma)$ be a non-zero vector in $C_{V}(t)$ and so $(v, v)=2 \alpha \beta+2 \gamma^{2}$.
Suppose v is isotropic, so $C_{G}(\langle v\rangle) \sim q^{3}: L_{2}(q)$ and $(v, v)=2 \alpha \beta+2 \gamma^{2}=0$. If $\gamma=0$, then $\alpha \beta=0$ and so either $\alpha=0$ or $\beta=0$ (but not both as $v \neq 0$). Hence there are $2(q-1)$ such vectors with $\gamma=0$. If $\gamma \neq 0$, then $\alpha=-\beta^{-1} \gamma^{2}$ and there are $(q-1)^{2}$ such vectors satisfying this. Hence there are $2(q-1)+(q-1)^{2}=(q-1)(q+1)$ non-zero isotropic vectors contained
in $C_{V}(t)$ and thus $q+1$ isotropic 1-subspaces of $C_{V}(t)$.
Suppose now v is $C_{G}(t)$-conjugate to $v_{3}+v_{5}$, which is non-isotropic. Note that $\left\langle v_{3}+v_{5}\right\rangle^{\perp} \cap C_{V}(t)$ is a 2 -subspace of V of + -type. If $\delta=1$, then by Lemma 4.1(ii), $\left\langle v_{3}+v_{5}\right\rangle^{\perp}$ is a 4 -subspace of V of + -type and so $C_{G}\left(\left\langle v_{3}+v_{5}\right\rangle\right) \sim S L_{2}(q) \circ S L_{2}(q)$. While $\delta=-1$ gives that $\left\langle v_{3}+v_{5}\right\rangle^{\perp}$ is a 4 -subspace of V of --type and so $C_{G}\left(\left\langle v_{3}+v_{5}\right\rangle\right) \sim L_{2}\left(q^{2}\right)$. A quick check shows that $\left(v_{3}+v_{5}, v_{3}+v_{5}\right)=2$ and so $(v, v)=2 \alpha \beta+2 \gamma^{2}=2 \lambda^{2}$ for some $\lambda \in G F(q)^{*}$. Thus, $\alpha \beta+\gamma^{2}=\lambda^{2}$ for some $\lambda \in G F(q)^{*}$. If $\gamma=0$, then $\alpha=\beta^{-1} \lambda^{2}$ and so there are $q-1$ such vectors that satisfy this. If $\gamma= \pm \lambda$, then $\alpha \beta=0$ and so for both values of γ, there are $2(q-1)+1$ vectors that satisfy this. Finally, if $\gamma \in G F(q) \backslash\{0, \lambda,-\lambda\}$, then $\alpha \beta=1-\gamma^{2} \neq 0$ and so $\alpha=\beta^{-1}\left(1-\gamma^{2}\right)$. There are $(q-1)(q-3)$ such vectors that satisfy this. Hence for any given λ, there exist $(q-1)+4(q-1)+2+(q-1)(q-3)=q(q+1)$ vectors that satisfy $\alpha \beta+\gamma^{2}=\lambda^{2}$. Since there are $\frac{1}{2}(q-1)$ squares in $G F(q)$, there are $q(q+1)(q-1)$ vectors that are $C_{G}(t)$-conjugate to $v_{3}+v_{5}$ and hence $\frac{1}{2}(q+1) 1$-subspaces of $C_{V}(t)$ that are $C_{G}(t)$-conjugate to $v_{3}+v_{5}$.
This leaves the remaining orbit \mathcal{U}_{1}^{-}. Recall there are $q^{2}+q+1$ subspaces of $C_{V}\left(t_{1}\right)$ of dimension 1 , and hence the size of the remaining orbit is $q^{2}+q+1-(q+1)-\frac{1}{2} q(q+1)=\frac{1}{2} q(q-1)$, so proving the lemma.

Corollary 4.17 The sets $\mathcal{U}_{2}^{+}, \mathcal{U}_{2}^{-}$and \mathcal{U}_{2}^{0} are single $C_{G}(t)$-orbits. Moreover,

$$
\begin{aligned}
\left|\mathcal{U}_{2}^{0}\right| & =q+1 ; \\
\left|\mathcal{U}_{2}^{+}\right| & =\frac{1}{2} q(q+1) ; \text { and } \\
\left|\mathcal{U}_{2}^{-}\right| & =\frac{1}{2} q(q-1) .
\end{aligned}
$$

Proof Since $C_{V}(t)$ is 3-dimensional, $U^{\perp} \cap C_{V}(t) \in \mathcal{U}_{1}$ for any $U \in \mathcal{U}_{2}$, and so the result is immediate by Lemma 4.16.

Lemma 4.18 Let $U, U^{\prime} \in \mathcal{U}_{2}$ be such that $U \neq U^{\prime}$. Then $C_{G}(U) \cap C_{G}\left(U^{\prime}\right) \cap Y_{2}=\{t\}$.
Proof Suppose $x \in C_{G}(U) \cap C_{G}\left(U^{\prime}\right) \cap Y_{2}$. Since $U \neq U^{\prime}$ and x fixes each 2-subspace pointwise, $U+U^{\prime}=C_{V}(t)$ and so x fixes $C_{V}(t)$ pointwise. That is to say, $C_{V}(x)=C_{V}(t)$ and so $t=x$ by Lemma 4.2(i).

Lemma 4.19 Let $U_{0} \in \mathcal{U}_{2}^{0}$, and $G^{0}=Q L, Y^{0}$ be as defined in the discussion prior to Lemma 4.9. Let $\rho: C_{G}\left(U_{0}^{\perp} \cap C_{V}(t)\right) \rightarrow G^{0}$ be an isomorphism such that

$$
t^{\rho}=\left(\begin{array}{rrr}
0 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

Then $C_{G}\left(U_{0}\right)$ is totally disconnected and $\left(C_{G}\left(U_{0}\right) \cap Y_{2}\right)^{\rho}=Q t \cap Y^{0}$.
Proof Since $U_{0}^{\perp} \cap C_{V}(t)$ is isotropic, it must lie inside of U_{0} and so $C_{G}\left(U_{0}\right) \leq C_{G}\left(U_{0}^{\perp} \cap C_{V}(t)\right)$. As t fixes U_{0} pointwise, $t^{\rho} \in\left(C_{G}\left(U_{0}\right)\right)^{\rho} \sim q^{2}: \frac{q-\delta}{2}$ by Lemma 4.5(i). The subgroup of L with shape $\frac{q-\delta}{2}$ contains one single involution which must necessarily be t^{ρ}. For all $x \in Y^{0}$, we have $x_{L}^{2}=1$ and x_{L} inverts x_{Q}, so $\left(C_{G}\left(U_{0}\right) \cap Y_{2}\right)^{\rho} \subseteq Q t \cap Y^{0}$. By comparing the orders of both sides, we get equality. By Lemma $4.9(\mathrm{ii}) C_{G}\left(U_{0}\right) \cap C_{G}(t) \cap Y_{2}=\{t\}$, hence $C_{G}\left(U_{0}\right)$ is totally disconnected.

Lemma $4.20\left|\Delta_{1}(t)\right|=\frac{1}{2} q\left(q^{2}+(1-\delta) q+\delta\right)$.
Proof Clearly, $x \in \Delta_{1}(t)$ if and only if $x \in \Delta_{1}(t) \cap C_{G}(U)$ for $U=C_{V}(t) \cap C_{V}(x)$, so

$$
\Delta_{1}(t)=\bigcup_{U \in \mathcal{U}_{1} \cup \mathcal{U}_{2}}\left(\Delta_{1}(t) \cap C_{G}(U)\right) .
$$

If $W, W^{\prime} \in \mathcal{U}_{1}$ with $W \neq W^{\prime}$, then $W \oplus W^{\prime} \in \mathcal{U}_{2}$ and if $y \in C_{G}(W) \cap C_{G}\left(W^{\prime}\right)$ then $y \in$ $C_{G}\left(W \oplus W^{\prime}\right)$ and hence $y \in C_{G}\left(W^{\prime \prime}\right)$ for any 1-subspace $W^{\prime \prime}$ of $W \oplus W^{\prime}$. Since there are $q+1$ subspaces of $W^{\prime \prime}$ of dimension 1 , any such y will lie in exactly $q+1$ such $C_{G}(U)$ for $U \in \mathcal{U}_{1}$. Together with $C_{G}\left(W^{\prime \prime}\right)$ and Lemma 4.18,

$$
\left|\Delta_{1}(t)\right|=\sum_{U \in \mathcal{U}_{1}}\left|\Delta_{1}(t) \cap C_{G}(U)\right|-q \sum_{U \in \mathcal{U}_{2}}\left|\Delta_{1}\left(t_{1}\right) \cap C_{G}(U)\right| .
$$

Combining Lemmas 4.16, 4.19 and Corollary 4.17 with Theorems 4.6, 4.8, 4.14 and [10], we have

$$
\begin{aligned}
\left|\Delta_{1}(t)\right|= & \frac{1}{2} q(q+1)(q-\delta)+\frac{1}{2} q(q+\delta)\left[\frac{1}{2}(q-\delta)^{2}+1\right]+\frac{1}{4} q(q-\delta)\left(q^{2}-1\right) \\
& \quad-\frac{1}{2} q(q-\delta)\left[\frac{1}{2} q(q+1)+\frac{1}{2} q(q-1)\right] \\
= & \frac{1}{2} q\left(q^{2}+(1-\delta) q+\delta\right)
\end{aligned}
$$

as required.
We now consider the second disc $\Delta_{2}(t)$. Here, we must be careful as elements that are distance 2 from t in some subgroup $C_{G}(U)$ may not be distance 2 from t in another subgroup $C_{G}\left(U^{\prime}\right)$. Moreover, there may be elements that are distance 3 from t in every such subgroup centralizing
an element of \mathcal{U}_{1}, but actually are distance 2 from t in G. We introduce the following notation. Let $\Delta_{2}^{K}(t)$ be the second disc in the commuting involution graph $\mathcal{C}\left(K, K \cap Y_{2}\right)$ and

$$
\Gamma_{i}(K)=\left\{x \in \Delta_{2}^{K}(t) \mid \operatorname{dim} C_{V}(\langle t, x\rangle)=i\right\}
$$

for $K=C_{G}(U), U \in \mathcal{U}_{1} \cup \mathcal{U}_{2}$. Clearly, $\Delta_{2}(t)=\Gamma_{1}(G) \dot{\cup} \Gamma_{2}(G)$. A full list of cases with corresponding notation is found in Table 1. Also we use the following notation: for any $U \leq$ $C_{V}(t)$, define $\mathcal{U}_{i}(U)$ to be the totality of i-dimensional subspaces of U and $\mathcal{W}_{i}(U)$ to be the totality of i-dimensional subspaces of $C_{V}(t)$ containing U. Note that $\mathcal{U}_{i}=\mathcal{U}_{i}\left(C_{V}(t)\right)$.

Lemma 4.21 (i) If $W \in \mathcal{U}_{2}^{0}$, then $\left|\mathcal{U}_{1}^{0} \cap \mathcal{U}_{1}(W)\right|=1$ and $\left|\mathcal{U}_{1}^{+} \cap \mathcal{U}_{1}(W)\right|=q$.
(ii) If $W \in \mathcal{U}_{2}^{+}$, then $\left|\mathcal{U}_{1}^{0} \cap \mathcal{U}_{1}(W)\right|=2$ and $\left|\mathcal{U}_{1}^{+} \cap \mathcal{U}_{1}(W)\right|=\left|\mathcal{U}_{1}^{-} \cap \mathcal{U}_{1}(W)\right|=\frac{q-1}{2}$.
(iii) If $W \in \mathcal{U}_{2}^{-}$, then $\left|\mathcal{U}_{1}^{+} \cap \mathcal{U}_{1}(W)\right|=\left|\mathcal{U}_{1}^{-} \cap \mathcal{U}_{1}(W)\right|=\frac{q+1}{2}$.

Proof Recall the Gram matrix J, with respect to the ordered basis $\left\{v_{i}\right\}, i=1, \ldots, 5$. Suppose $W^{\perp} \cap C_{V}(t)=U_{0} \in \mathcal{U}_{1}^{0}$. Without loss of generality, choose $W=\left\langle v_{1}, v_{3}+v_{5}\right\rangle$. Clearly $\left\langle v_{1}\right\rangle \in \mathcal{U}_{1}^{0}$, and $\left\langle v_{3}+v_{5}\right\rangle^{\perp} \cap C_{V}(t) \in \mathcal{U}_{2}^{+}$. Since

$$
\left(v_{1}+\lambda\left(v_{3}+v_{5}\right), v_{1}+\lambda\left(v_{3}+v_{5}\right)\right)=\lambda^{2}\left(v_{3}+v_{5}\right)
$$

$v_{1}+\lambda\left(v_{3}+v_{5}\right)$ lies in the same $C_{G}(t)$-orbit as $v_{3}+v_{5}$ and so $\left\langle v_{1}+\lambda\left(v_{3}+v_{5}\right)\right\rangle^{\perp} \cap C_{V}(t) \in \mathcal{U}_{2}^{+}$, proving (i).
Suppose now $W \in \mathcal{U}_{2}^{+}$. Without loss of generality, choose $W=\left\langle v_{1}, v_{2}\right\rangle$. Clearly $\left\langle v_{1}\right\rangle,\left\langle v_{2}\right\rangle \in \mathcal{U}_{1}^{0}$. Let $U_{\lambda}=v_{1}+\lambda v_{2}$ for $\lambda \neq 0$ and note that $\left(v_{1}+\lambda v_{2}, v_{1}+\lambda v_{2}\right)=2 \lambda=\mu \neq 0$. Since the type of U_{λ}^{\perp} is determined by whether μ is a square or a non-square in $G F(q)$, and there are $\frac{q-1}{2}$ of each, it is clear that there exist $\frac{q-1}{2}$ such U_{λ} for which U_{λ}^{\perp} is of +-type, and similarly for --type, proving (ii).
Finally suppose $W \in \mathcal{U}_{2}^{-}$, so for all $v \in W,(v, v) \neq 0$. The simple orthogonal group on W is cyclic of order $\frac{q+1}{2}$ and acts on the 1 -subspaces of W in exactly two orbits with representatives $\left\langle u_{1}\right\rangle$ and $\left\langle u_{2}\right\rangle$ where $\left(u_{1}, u_{1}\right)$ is a square and $\left(u_{2}, u_{2}\right)$ is a non-square in $G F(q)$. Since $\left|\mathcal{U}_{1}(W)\right|=q+1$, both orbits must be of size $\frac{q+1}{2}$. This proves (iii) and hence the lemma follows.

Corollary 4.22 Let $U \in \mathcal{U}_{1}$. Then,
(i) $\left|\mathcal{W}_{2}(U)\right|=q+1$
(ii) If $U \in \mathcal{U}_{1}^{0}$, then $\left|\mathcal{U}_{2}^{0} \cap \mathcal{W}_{2}(U)\right|=1$ and $\left|\mathcal{U}_{2}^{+} \cap \mathcal{W}_{2}(U)\right|=q$.
(iii) If $U \in \mathcal{U}_{1}^{\delta}$, then $\left|\mathcal{U}_{2}^{0} \cap \mathcal{W}_{2}(U)\right|=2$ and $\left|\mathcal{U}_{2}^{+} \cap \mathcal{W}_{2}(U)\right|=\left|\mathcal{U}_{2}^{-} \cap \mathcal{W}_{2}(U)\right|=\frac{q-1}{2}$.
(iv) If $U \in \mathcal{U}_{2}^{-\delta}$, then $\left|\mathcal{U}_{2}^{+} \cap \mathcal{W}_{2}(U)\right|=\left|\mathcal{U}_{2}^{-} \cap \mathcal{W}_{2}(U)\right|=\frac{q+1}{2}$.

Case	Configuration	Properties	Description as Set
1		$\begin{gathered} x \in \Delta_{2}^{C_{G}\left(U_{1}\right)}(t) \\ U_{1}=C_{V}(\langle t, x\rangle) \in \mathcal{U}_{1} \end{gathered}$	$\bigcup_{U \in \mathcal{U}_{1}} \Gamma_{1}\left(C_{G}(U)\right)$
2		$\begin{gathered} x \in \Delta_{2}^{C_{G}\left(U_{1} \oplus U_{2}\right)}(t) \\ U_{1} \oplus U_{2}=C_{V}(\langle t, x\rangle) \\ U_{i} \in \mathcal{U}_{1} \end{gathered}$	$\bigcup_{W \in \mathcal{U}_{2}} \Gamma_{2}\left(C_{G}(W)\right)$
3		$\begin{gathered} x \in \Delta_{2}^{C_{G}\left(U_{2}\right)}(t) \\ \text { for some } U_{2} \leq C_{V}(\langle t, x\rangle) \\ x \notin \Delta_{2}^{C_{G}\left(U_{1} \oplus U_{2}\right)}(t) \\ U_{1} \oplus U_{2}=C_{V}(\langle t, x\rangle) \\ U_{i} \in \mathcal{U}_{1} \end{gathered}$	$\bigcup_{U \in \mathcal{U}_{1}} \Gamma_{2}\left(C_{G}(U)\right) \backslash \bigcup_{W \in \mathcal{U}_{2}} \Gamma_{2}\left(C_{G}(W)\right)$
4		$\begin{gathered} x \in \Delta_{2}^{G}(t) \\ x \notin \Delta_{2}^{C_{G}\left(U_{1}\right)}(t) \\ U_{1}=C_{V}(\langle t, x\rangle) \in \mathcal{U}_{1} \end{gathered}$	$\Gamma_{1}(G) \backslash \bigcup_{U \in \mathcal{U}_{1}} \Gamma_{1}\left(C_{G}(U)\right)$
5		$\begin{gathered} x \in \Delta_{2}^{G}(t) \\ x \notin \Delta_{2}^{C_{G}\left(U_{i}\right)}(t) \\ \text { for any } U_{i} \leq C_{V}(\langle t, x\rangle) \\ U_{1} \oplus U_{2}=C_{V}(\langle t, x\rangle) \\ U_{i} \in \mathcal{U}_{1} \end{gathered}$	$\Gamma_{2}(G) \backslash \bigcup_{U \in \mathcal{U}_{1}} \Gamma_{2}\left(C_{G}(U)\right)$

Table 1: List of cases in $\Delta_{2}(t)$

Proof Let $U \leq W \leq C_{V}(t)$. Then $W^{\perp} \cap C_{V}(t) \leq U^{\perp} \cap C_{V}(t) \leq C_{V}(t)$. The result follows from Lemma 4.21.

Lemma 4.23 Let $U \in \mathcal{U}_{1}^{0}$ and $W \in \mathcal{U}_{2}^{+} \cap \mathcal{W}_{2}(U)$. If $x \in Y_{2} \cap C_{G}(W)$ is such that $d^{C_{G}(W)}(t, x)=$ 3 , then $d^{C_{G}(U)}(t, x)=3$. Moreover,

$$
\left|\Gamma_{1}\left(C_{G}(U)\right)\right|= \begin{cases}\frac{1}{4} q(q-3)(q-1)^{2} & q \equiv 1 \quad(\bmod 4) \\ \frac{1}{4} q(q-1)^{2}(q+1) & q \equiv-1 \quad(\bmod 4)\end{cases}
$$

Proof Recall that $C_{G}(U)=Q L \sim G^{0}$ where G^{0} is defined as in the discussion prior to Lemma 4.9. By conjugacy, we may assume $L=C_{G}(W)$. Now $C_{G}(U) \cap C_{G}(t)=Q_{0} C_{L}(t) \sim q: \operatorname{Dih}(q-\delta)$ where $Q_{0} \leq Q$ is elementary abelian of order q. Let $x \in Q_{0} C_{L}(t) \cap Y_{2}$, so $x_{L}^{2}=1$ and x_{L} inverts x_{Q}. Clearly, $x_{L}^{x_{Q}}=x_{L} x_{Q}^{2} \notin L$ since Q_{0} is of odd order. Hence, $C_{L}(t)$ is selfnormalizing in $Q_{0} C_{L}(t)$ and thus there are q distinct conjugates of $C_{L}(t)$ in $Q_{0} C_{L}(t)$. Let $g \in Q_{0} C_{L}(t) \backslash C_{L}(t)$, so $C_{L}(t)^{g} \neq C_{L}(t)$. Now $\left[C_{L}(t), t\right]=\left[C_{L}(t)^{g}, t\right]=1$ and so $\left\langle C_{L}(t), C_{L}(t)^{g}\right\rangle$ centralizes t. If $C_{L}(t), C_{L}(t)^{g} \leq L^{h}$ for some $h \in Q L$, then $\left\langle C_{L}(t), C_{L}(t)^{g}\right\rangle \leq L^{h}$. However, $C_{L}(t) \supsetneqq\left\langle C_{L}(t), C_{L}(t)^{g}\right\rangle \leq C_{L}(t)$, a contradiction. Hence every conjugate of $C_{L}(t)$ lies in a different conjugate of L and so there are q distinct $Q_{0} C_{L}(t)$-conjugates of L. Therefore, $\mathcal{U}_{2}^{+} \cap \mathcal{W}_{2}(U)$ is contained in the same $C_{G}(U) \cap C_{G}(t)$-orbit, and $\left|U_{2}^{+} \cap \mathcal{W}_{2}(U)\right|=q$ by Corollary 4.22. There are exactly q +-type 2 -subspaces of $C_{V}(t)$ containing U, all of which lie in the same $C_{G}(U) \cap C_{G}(t)$ orbit.
Let $x \in C_{G}(W) \cap Y_{2}$ be such that $d^{C_{G}(W)}(t, x)=3$. Suppose $W^{g} \in \mathcal{U}_{2}^{+} \cap \mathcal{W}_{2}(U)$ for some $g \in C_{G}(U) \cap C_{G}(t), W \neq W^{g}$. If $d^{C_{G}(U)}(t, x)=2$ then $d^{C_{G}(U)}\left(t^{g}, x^{g}\right)=d^{C_{G}(U)}\left(t, x^{g}\right)=2$, and $d^{C_{G}(W)}(t, x)=d^{C_{G}\left(W^{\prime}\right)}\left(t, x^{g}\right)=3$. Hence it suffices to prove the lemma for $C_{G}(W)$. By Theorem 4.14, any involution distance 3 away from t in L is necessarily distance 3 away from t in $C_{G}(U)$, proving the first statement.
Let $W_{0} \in \mathcal{U}_{2}^{0} \cap \mathcal{W}_{2}(U)$, so $C_{G}\left(W_{0}\right) \sim q^{2}: \frac{q-\delta}{2}$. By Lemma 4.19, $\Delta_{2}^{C_{G}(U)}(t) \cap C_{G}\left(W_{0}\right)=$ $Q t \cap \Delta_{2}^{C_{G}(U)}(t)$. Let $W_{i}, i=1, \ldots, q$ be the subspaces in $\mathcal{U}_{2}^{+} \cap \mathcal{W}_{2}(U)$. From Lemma 4.18, $C_{G}\left(W_{i}\right) \cap C_{G}\left(W_{j}\right) \cap Y_{2}=\{t\}$ if and only if $i=j$. Using Corollary 4.22(i) with [10], we have

$$
\begin{equation*}
\left|\bigcup_{i=1}^{q} \Delta_{2}^{C_{G}\left(W_{i}\right)}(t)\right|=\frac{1}{4} q(q-\delta)(q-4-\delta) \tag{4.23.1}
\end{equation*}
$$

Combining Lemma 4.12 with (4.23.1),

$$
\begin{align*}
\left|\Gamma_{2}\left(C_{G}(U)\right)\right| & =\left|\bigcup_{i=1}^{q} \Delta_{2}^{C_{G}\left(W_{i}\right)}(t)\right|+\left|\Delta_{2}^{C_{G}(U)}(t) \cap C_{G}\left(W_{0}\right)\right| \\
& =\frac{1}{4}\left(q^{3}-2(1+\delta) q^{2}+(2 \delta-1) q+2 \delta\right) . \tag{4.23.2}
\end{align*}
$$

Together, (4.23.2) and Theorem 4.14 give

$$
\begin{aligned}
\left|\Gamma_{1}\left(C_{G}(U)\right)\right| & =\left|\Delta_{2}^{C_{G}(U)}(t)\right|-\left|\Gamma_{2}\left(C_{G}(U)\right)\right| \\
& =\frac{1}{4} q\left(q^{3}-(2 \delta+3) q^{2}+(4 \delta+3) q-2 \delta-1\right)
\end{aligned}
$$

as required.

Lemma 4.24 Let $t, x \in L_{2}(q)$. Then $d^{L_{2}(q)}(t, x) \leq 2$ if and only if the order of $t x$ divides $\frac{1}{2}(q-\delta)$.

Proof See Lemma 2.11 of [10].

Lemma 4.25 Let $U \in \mathcal{U}_{1}^{+}$, and $W \in\left(\mathcal{U}_{2}^{+} \cup \mathcal{U}_{2}^{-}\right) \cap \mathcal{W}_{2}(U)$.
(i) If $\delta=1$ and $W_{0} \in \mathcal{U}_{2}^{0} \cap \mathcal{W}_{2}(U)$, then $Y_{2} \cap C_{G}\left(W_{0}\right) \backslash\{t\} \subseteq \Delta_{3}^{C_{G}(U)}(t)$.
(ii) If $x \in Y_{2} \cap C_{G}(W)$ is such that $d^{C_{G}(W)}(t, x)=3$, then $d^{C_{G}(U)}(t, x)=3$ and

$$
\left|\Gamma_{1}\left(C_{G}(U)\right)\right|= \begin{cases}\frac{1}{8}(q-1)(q-3)\left(q^{2}-6 q+13\right) & q \equiv 1 \quad(\bmod 4) \\ \frac{1}{8}\left(q^{2}-1\right)\left(q^{2}-2 q+5\right) & q \equiv-1 \quad(\bmod 4)\end{cases}
$$

Proof Recall that $C_{G}(U) \sim G^{+} \sim L_{1} \circ L_{2}$ for $L_{1} \sim S L_{2}(q) \sim L_{2}$. Suppose $y \in C_{G}(W)$ is such that $d^{C_{G}(W)}(t, y)=3$. Since $C_{G}(W) \sim L_{2}(q)$ is simple, then $y=g g^{\varphi}$ for some $g \in L_{1}$ and $\varphi: L_{1} \rightarrow L_{2}$. Since $t \in C_{G}(W)$, write $t=s s^{\varphi}$ for some $s \in L_{1}$. Then $d^{L_{1}}(s, g)=3$, so $d^{C_{G}(U)}(t, y)=3$ by Theorem 4.8, and thus

$$
\begin{equation*}
\Delta_{3}^{C_{G}(W)}(t) \subseteq \Delta_{3}^{C_{G}(U)}(t) \quad \text { for all } W \in\left(\mathcal{U}_{2}^{+} \cup \mathcal{U}_{2}^{-}\right) \cap \mathcal{W}_{2}(U) \tag{4.25.1}
\end{equation*}
$$

If $\delta=-1$, then $\mathcal{U}_{2}^{0} \cap \mathcal{W}_{2}(U)=\varnothing$ by Corollary 4.22. If $\delta=1$, there exists $W_{0} \in \mathcal{U}_{2}^{0} \cap \mathcal{W}_{2}(U)$. Recall that $W_{0}^{\perp} \cap C_{V}(t) \in \mathcal{U}_{1}^{0}$ so $C_{G}\left(W_{0}\right) \leq C_{G}\left(W_{0}^{\perp} \cap C_{V}(t)\right) \sim G^{0}=Q L$. By Lemma 4.19, if $x \in C_{G}\left(W_{0}\right) \cap Y_{2}$ then $x=x_{Q} t$ and x_{Q} is inverted by t and has order p. Since x_{Q} also lies in $C_{G}(U)$, we can write $x_{Q}=h h^{\varphi}$ for some $h \in L_{1}$. Now $x_{Q}^{-1}=h^{-1} h^{-1 \varphi}$ and so $x_{Q}^{t}=x_{Q}^{s s^{\varphi}}=h^{s}\left(h^{\varphi}\right)^{s^{\varphi}}=h^{-1} h^{-1 \varphi}$. Therefore, $h^{s}=h^{-1}$ and $h^{\varphi s^{\varphi}}=h^{-1 \varphi}$. Moreover, $x=x_{Q} t=(h s)(h s)^{\varphi}$ where $h s \in L_{1}$ is an element of order 4 squaring to the non-trivial element of $Z\left(L_{1}\right)$, and $h=(h s) s$ has order p. By Lemma 4.24 and [10], $d^{L_{1}}(h s, s)=3$ and so $d^{C_{G}(U)}\left(t, x_{Q} t\right)=3$ by Theorem 4.8. Therefore,

$$
\begin{equation*}
C_{G}\left(W_{0}\right) \cap \Delta_{2}^{C_{G}(U)}(t)=\varnothing \quad \text { for all } W_{0} \in \mathcal{U}_{2}^{0} \cap \mathcal{W}_{2}(U) \tag{4.25.2}
\end{equation*}
$$

Hence combining (4.25.1) with Lemma 4.21, [10] and, if $\delta=1$, (4.25.2) we get

$$
\left|\bigcup_{U \leq W} \Delta_{2}^{C_{G}(W)}(t)\right|=\left|\Gamma_{2}\left(C_{G}(U)\right)\right|=\frac{1}{4}(q-\delta)^{2}(q-4-\delta)
$$

This, together with Theorem 4.8 yields

$$
\begin{aligned}
\left|\Gamma_{1}\left(C_{G}(U)\right)\right| & =\left|\Delta_{2}^{C_{G}(U)}(t)\right|-\left|\Gamma_{2}\left(C_{G}(U)\right)\right| \\
& =\frac{1}{8}(q-1)(q-1-2 \delta)\left(q^{2}-(4+2 \delta) q+9+4 \delta\right)
\end{aligned}
$$

which proves the lemma.

Lemma 4.26 Let $U \in \mathcal{U}_{1}^{-}$, and $W \in\left(\mathcal{U}_{2}^{+} \cup \mathcal{U}_{2}^{-}\right) \cap \mathcal{W}_{2}(U)$.
(i) If $\delta=-1$ and $W_{0} \in \mathcal{U}_{2}^{0} \cap \mathcal{W}_{2}(U)$, then $Y_{2} \cap C_{G}\left(W_{0}\right) \backslash\{t\} \subseteq \Delta_{3}^{C_{G}(U)}(t)$.
(ii) We have

$$
\left|\Gamma_{2}\left(C_{G}(U)\right) \backslash \bigcup_{W \in \mathcal{W}_{2}(U)}^{\dot{\int}} \Gamma_{2}\left(C_{G}(W)\right)\right|=\frac{1}{4}(q-2+\delta)\left(q^{2}-1\right)
$$

and $\left|\Gamma_{1}\left(C_{G}(U)\right)\right|=\frac{1}{4}(q-1)^{3}(q+1)$.
Proof First assume $\delta=-1$, and consider $C_{G}\left(W_{0}\right)$. By Lemma 4.19, every involution in $C_{G}\left(W_{0}\right)$ can be written as $x t$ where x has order p. But $(x t) t=x$ has order p, which does not divide $\frac{1}{2}\left(q^{2}-1\right)$, and hence $d^{C_{G}(U)}(x t, t)=3$. In other words, $Y_{2} \cap C_{G}\left(W_{0}\right) \backslash\{t\} \subseteq \Delta_{3}^{C_{G}(U)}(t)$, so proving (i).
Consider then $C_{G}(W) \sim L_{2}(q)$. We utilize the character table of $L_{2}(q)$ from Chapter 38 of [17] (see also Schur [25]). Recall that $L_{2}(q)$ contains one conjugacy class of involutions, and two conjugacy classes of elements of order p. The remaining conjugacy classes partition into two cases: those whose order divides $\frac{1}{2}(q-1)$ and those whose order divides $\frac{1}{2}(q+1)$. Let C be a conjugacy class of elements in $C_{G}(W)$ and define $X_{C}=\left\{x \in Y_{2} \cap C_{G}(W) \mid t x \in C\right\}$. It is a well-known character theoretic result (see, for example, Theorem 4.2.12 of [19]) that

$$
\begin{equation*}
\left|X_{C}\right|=\frac{|C|}{\left|C_{G}(t)\right|} \sum_{\substack{\chi \\ \text { Irreducible }}} \frac{\chi(x)|\chi(t)|^{2}}{\chi(1)} \tag{4.26.1}
\end{equation*}
$$

and all X_{C} are pairwise disjoint. Let $x \in Y_{2} \cap C_{G}(W)$. If the order of $t x$ divides $\frac{1}{2}\left(q^{2}-1\right)$ but not $\frac{1}{2}(q-\delta)$ then it must necessarily divide $\frac{1}{2}(q+\delta)$. Hence, if C is a conjugacy class
of elements of order dividing $\frac{q+\delta}{2}$, then any $y \in X_{C}$ has the property that $d^{C_{G}(W)}(t, y)=3$ but $d^{C_{G}(U)}(t, y)=2$, by Lemma 4.24. Recall that $\Gamma_{2}\left(C_{G}(U)\right) \backslash \bigcup_{W \in \mathcal{W}_{2}(U)} \Gamma_{2}\left(C_{G}(W)\right)$ is the set consisting of all such involutions. Therefore, it suffices to calculate the sizes of all such relevant X_{C}. We use \mathcal{F} to denote to be the set of all conjugacy classes of elements with order dividing $\frac{q+\delta}{2}$.
By [17], we see that for any $C \in \mathcal{F},|C|=q(q-\delta)$ and so for any $x \in C,\left|C_{C_{G}(W)}(x)\right|=(q-\delta)$. Hence (4.26.1) and [17] gives $\left|X_{C}\right|=q-\delta$. Now if $\delta=1$, then $|\mathcal{F}|=\frac{q-1}{4}$ by [17]. If $\delta=-1$, then $|\mathcal{F}|=\frac{q-3}{4}$. Since $\left|\Delta_{3}^{C_{G}(W)}(t) \cap \Delta_{2}^{C_{G}(U)}\right|=\left|X_{C}\right||\mathcal{F}|$, and by Corollary 4.22, $\left|\mathcal{W}_{2}(U) \cap\left(\mathcal{U}_{2}^{+} \cup \mathcal{U}_{2}^{-}\right)\right|=q+\delta$, we obtain

$$
\begin{aligned}
\left|\Gamma_{2}\left(C_{G}(U)\right) \backslash \bigcup_{W \in \mathcal{W}_{2}(U)} \Gamma_{2}\left(C_{G}(W)\right)\right| & =\left|\mathcal{W}_{2}(U) \cap\left(\mathcal{U}_{2}^{+} \cup \mathcal{U}_{2}^{-}\right)\right|\left|X_{C}\right||\mathcal{F}| \\
& =\left\{\begin{array}{lll}
\frac{1}{4}(q-1)\left(q^{2}-1\right) & q \equiv 1 & (\bmod 4) \\
\frac{1}{4}(q-3)\left(q^{2}-1\right) & q \equiv-1 & (\bmod 4)
\end{array}\right.
\end{aligned}
$$

which proves the first part of (ii). We now prove the last part of (ii). Recall that

$$
\left|\bigcup_{W \in \mathcal{W}_{2}(U)} \Gamma_{2}\left(C_{G}(W)\right)\right|=(q+\delta)\left|\Delta_{2}^{C_{G}(W)}(t)\right|=\frac{1}{4}\left(q^{2}-1\right)(q-4-\delta)
$$

by [10] and Corollary 4.22. Together with the above statement, we have

$$
\begin{aligned}
\left|\Gamma_{2}\left(C_{G}(U)\right)\right| & =\left|\bigcup_{W \in \mathcal{W}_{2}(U)} \Gamma_{2}\left(C_{G}(W)\right)\right|+\left|\Gamma_{2}\left(C_{G}(U)\right) \backslash \bigcup_{W \in \mathcal{W}_{2}(U)} \Gamma_{2}\left(C_{G}(W)\right)\right| \\
& =\frac{1}{4}\left(q^{2}-1\right)(q-4-\delta)+\frac{1}{4}\left(q^{2}-1\right)(q-2+\delta) \\
& =\frac{1}{2}\left(q^{2}-1\right)(q-3)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left|\Gamma_{1}\left(C_{G}(U)\right)\right| & =\left|\Delta_{2}^{C_{G}(U)}(t)\right|-\left|\Gamma_{2}\left(C_{G}(U)\right)\right| \\
& =\frac{1}{4}(q-1)^{3}(q+1),
\end{aligned}
$$

and Lemma 4.26 holds.
Lemma $4.27\left|\bigcup_{U \in \mathcal{U}_{1}} \Gamma_{1}\left(C_{G}(U)\right)\right|= \begin{cases}\frac{1}{16} q\left(q^{2}-1\right)\left(3 q^{3}-11 q^{2}+21 q-29\right) & q \equiv 1(\bmod 4) \\ \frac{1}{16} q\left(q^{2}-1\right)(q-1)\left(3 q^{2}+2 q+7\right) & q \equiv-1(\bmod 4) .\end{cases}$

Proof Since $\mathcal{U}_{1}=\mathcal{U}_{1}^{0} \dot{\cup} \mathcal{U}_{1}^{+} \dot{\cup} \mathcal{U}_{1}^{-}$, with each orbit size given in Lemma 4.16, the result follows immediately from Lemmas 4.23, 4.25 and 4.26.

Recall the list of cases in Table 1. The next lemma concerns Cases 2 and 3, in other words, $\bigcup_{U \in \mathcal{U}_{1}} \Gamma_{2}\left(C_{G}(U)\right)$.

Lemma $4.28\left|\bigcup_{U \in \mathcal{U}_{1}} \Gamma_{2}\left(C_{G}(U)\right)\right|=\frac{1}{2}(q-\delta)\left(q^{3}-2 q^{2}-1\right)$.
Proof By Lemmas 4.12 and 4.19, for any $W_{0} \in \mathcal{U}_{2}^{0}$ we have $\left|\Delta_{2}^{C_{G}(U)}(t) \cap C_{G}\left(W_{0}\right)\right|=\frac{1}{2}(q-$ 1) $(q-\delta)$ for some $U \in \mathcal{U}_{1}\left(W_{0}\right)$. Additionally, for any $W \in\left(\mathcal{U}_{2}^{+} \dot{\cup} \mathcal{U}_{2}^{-}\right)$we have

$$
\begin{aligned}
\left|\Delta_{2}^{C_{G}(U)}(t) \cap C_{G}(W)\right| & =\left|\Delta_{2}^{C_{G}(W)}\right|+\left|\Delta_{3}^{C_{G}(W)}(t) \cap \Delta_{2}^{C_{G}(U)}(t)\right| \\
& =\frac{1}{2}(q-\delta)(q-3)
\end{aligned}
$$

for some $U \in \mathcal{U}_{1}(W)$, by [10] and Lemma 4.26. Since $\mathcal{U}_{2}=\mathcal{U}_{2}^{0} \dot{\cup} \mathcal{U}_{2}^{+} \dot{\cup} \mathcal{U}_{2}^{-}$, with the orbit sizes given in Corollary 4.17, this covers every involution in $\bigcup_{U \in \mathcal{U}_{1}} \Gamma_{2}\left(C_{G}(U)\right)$, and the lemma follows.

We now concern ourselves with the final two cases. These concern involutions that are distance 3 from t in every $C_{G}(U)$ that they appear in, but actually are distance 2 from t in G. Recall that for any involution $y \in Y_{2}, C_{G}(y)=\operatorname{Stab}_{G} C_{V}(y)=L_{y} K_{y}$ where $L_{y}=C_{G}(y) \cap C_{G}([V, y]) \sim L_{2}(q)$ and $\left|K_{y}\right|=2(q-\delta)$. Also note that $L_{y} \unlhd C_{G}(y)$ acts faithfully on $C_{V}(y)$, and $\operatorname{Syl}_{p} C_{G}(y)=\operatorname{Syl}_{p} L_{y}$. The following three lemmas concern Case 5.

Lemma 4.29 Let $W \in \mathcal{U}_{2}^{0} \cup \mathcal{U}_{2}^{-\delta}$ and $x \in C_{G}(W)$ be such that $d^{C_{G}(U)}(t, x)=3$ for all $U \in$ $\mathcal{U}_{1}(W)$. Then $d(t, x)=3$.

Proof If $W \in \mathcal{U}_{2}^{0}$, then any involution in $C_{G}(W)$ can be written as $x=x_{Q} t$ where $x_{Q}=x t$ has order p. If $W \in \mathcal{U}_{2}^{-\delta}$, then, from Lemma 4.26, any involution $x \in C_{G}(W)$ such that $t x$ has order dividing $\frac{1}{2}\left(q^{2}-1\right)$ must be distance 2 from t in $C_{G}(U)$ for some $U \in \mathcal{U}_{1}(W)$. Hence, any x satisfying the hypothesis must have the property that the order of $t x$ is p.
Let $W \in \mathcal{U}_{2}^{0} \cup \mathcal{U}_{2}^{-\delta}$ and suppose $d(t, x)=2$, then there exists $y \in Y_{2}$ such that $t, x \in C_{G}(y)=$ $L_{y} K_{y}$. Since $t x$ has order $p, t x \in L_{y}$ and so $t x \in C_{G}([V, y])$. As L_{y} acts faithfully on $C_{V}(y)$, any element of order p must fix a 1-subspace of $C_{V}(y)$, say U_{y}. Therefore, $t x \in C_{G}\left(U_{y} \oplus[V, y]\right)$. But $t x \in C_{G}(W+[V, y])$ and since $[V, y] \in \mathcal{U}_{2}^{\delta}$, we have $W \neq[V, y]$. Set $W+[V, y]=U_{y} \oplus[V, y]$.

Suppose $U_{y} \leq W$. Then $t, x, y \in C_{G}\left(U_{y}\right)$ and so $d^{C_{G}\left(U_{y}\right)}(t, x)=2$, contradicting our assumption. Hence $U_{y} \not \leq W$ and so $U_{y}=\left\langle u_{1}+u_{2}\right\rangle$ for $u_{1} \in W \backslash[V, y]$ and $u_{2} \in[V, y]$. Since $y \in C_{G}(y)$, $\left(u_{1}+u_{2}\right)^{y}=u_{1}+u_{2}$. However, $\left(u_{1}+u_{2}\right)^{y}=u_{1}^{y}+u_{2}^{y}=u_{1}^{y}-u_{2}$ and so $u_{2}=-2^{-1} u_{1}+2^{-1} u_{1}^{y}$. Thus $u_{1}+u_{2}=2^{-1}\left(u_{1}+u_{1}^{y}\right)$ and so $U_{y}=\left\langle u_{1}+u_{1}^{y}\right\rangle$. Recall that $t, x \in C_{G}(y)$ and $u_{1} \in W \backslash[V, y]$, so $u_{1}^{t}=u_{1}^{x}=u_{1}$. Hence $u_{1}+u_{1}^{y}$ is centralized by both t and x and so $U_{y} \leq W=C_{V}(\langle t, x\rangle)$, a contradiction. Therefore, $d(t, x) \neq 2$ and the lemma holds.

Lemma 4.30 Let $W \in \mathcal{U}_{2}^{\delta}$. Then $\Delta_{3}^{C_{G}(W)}(t) \subseteq \Delta_{2}(t)$. In particular,

$$
\left|\Gamma_{2}(G) \backslash \bigcup_{U \in \mathcal{U}_{1}} \Gamma_{2}\left(C_{G}(U)\right)\right|=\left\{\begin{array}{lll}
q\left(q^{2}-1\right) & q \equiv 1 & (\bmod 4) \\
0 & q \equiv-1 & (\bmod 4)
\end{array}\right.
$$

Proof We deal first with the case when $\delta=-1$. From Lemma 4.26, the number of involutions distance 3 from t in $C_{G}(W)$ that are actually distance 2 from t in some $U \in \mathcal{U}_{1}(W)$ is $\frac{1}{4}(q+1)(q-3)=\left|\Delta_{3}^{C_{G}(W)}(t)\right|$. That is to say all elements in $\Delta_{3}^{C_{G}(W)}(t)$ are distance 2 from t in $C_{G}(U)$ for some $U \in \mathcal{U}_{2}(W)$. This occurs for every such $W \in \mathcal{U}_{2}^{\delta}$ and so $\Gamma_{2}(G)=\bigcup_{U \in \mathcal{U}_{1}} \Gamma_{2}\left(C_{G}(U)\right)$.
Assume now that $\delta=1$. As before, any element x in $\Gamma_{2}(G) \backslash \bigcup_{U \in \mathcal{U}_{1}} \Gamma_{2}\left(C_{G}(U)\right)$ must have the property that the order of $t x$ is p. Suppose $d(t, x)=2$, and so there exists $y \in Y_{2}$ such that $t, x \in C_{G}(y)$. If $W \neq[V, y]$ then the argument from Lemma 4.29 holds and results in a contradiction. So we must have $W=[V, y]$. Since $\operatorname{Stab}_{G} C_{V}(y)=\operatorname{Stab}_{G}[V, y]=C_{G}(y)$, $C_{G}([V, y]) \leq C_{G}(y)$ and so any element in $C_{G}([V, y])=C_{G}(W)$ centralizes y. In particular, $\Delta_{3}^{C_{G}(W)}(t) \subseteq \Delta_{2}(t)$, establishing the first statement. By Lemma 4.26, the number of involutions distance 3 from t in $C_{G}(W)$ that are actually distance 2 from t in some $U \in \mathcal{U}_{1}(W)$ is $\frac{1}{4}(q-1)^{2}$. By $[10],\left|\Delta_{3}^{C_{G}(W)}(t)\right|=\frac{1}{4}(q-1)(q+7)$ and so by subtracting the two, there are $2(q-1)$ involutions in $\Delta_{3}^{C_{G}(W)}(t)$ that are distance 3 from t in $C_{G}(U)$ for all $U \in \mathcal{U}_{1}(W)$, but are actually distance 2 from t in $\mathcal{C}\left(G, Y_{2}\right)$. Since $\left|\mathcal{U}_{2}^{\delta}\right|=\frac{1}{2} q(q+\delta)$ by Corollary 4.17, the lemma follows.

Finally we turn to Case $4, \Gamma_{1}(G) \backslash \bigcup_{U \in \mathcal{U}_{1}} \Gamma_{1}\left(C_{G}(U)\right)$.
Lemma 4.31 Let $U \in \mathcal{U}_{1}^{-} \cup \mathcal{U}_{1}^{0}$ and $x \in C_{G}(U)$ be such that $C_{V}(\langle t, x\rangle)=U$ and $d^{C_{G}(U)}(t, x)=$ 3. Then $d(t, x)=3$.

Proof Assume first that $U \in \mathcal{U}_{1}^{-}$. By Lemma 4.24, $t x$ has order p or divides $\frac{1}{2}\left(q^{2}+1\right)$. Suppose $d(t, x)=2$, then there exists $y \in Y_{2}$ such that $t, x \in C_{G}(y)$. Since $\frac{1}{2}\left(q^{2}+1\right)$ is coprime to $\left|C_{G}(y)\right|=q\left(q^{2}-1\right)(q-\delta), t x$ must have order p. Indeed, clearly $\frac{1}{2}\left(q^{2}+1\right)$ is coprime to both q and $q^{2}-1$, and any factor dividing $q-\delta$ must divide $q^{2}-1$ and so $\frac{1}{2}\left(q^{2}+1\right)$ is coprime to
$q-\delta$. Since $t x$ has order p, then $t x \in L_{y}$.
Assume now that $U \in \mathcal{U}_{1}^{0}$. Let x be an involution in $C_{G}(U)=Q L \sim G^{0}$ as defined in the discussion prior to Lemma 4.9. Then $t x \in Q t x_{L}$ which has order n dividing $\frac{1}{2}(q+\delta)$ in $Q L / L$. Therefore, $\left(Q t x_{L}\right)^{n} \in Q$ and so $(t x)^{n}$ has order p. Therefore, $t x$ has order dividing $\frac{1}{2} q(q+\delta)$. Suppose $d(t, x)=2$. Then there exists $y \in Y_{2}$ such that $t, x \in C_{G}(y)$. By the structure of $C_{G}(y) \sim\left(L_{2}(q) \times \frac{q-\delta}{2}\right): 2^{2}$, the order of $t x$ forces $t x \in L_{y}$.
We may now assume $U \in \mathcal{U}_{1}^{-} \cup \mathcal{U}_{1}^{0}$, so $t x \in L_{y}=C_{G}([V, y])$ and hence $t x \in C_{G}(U+[V, y])$. Suppose $U \not \approx[V, y]$, then $t x \in C_{G}(U \oplus[V, y])$ Also, $t x \in C_{G}\left(U_{y} \oplus[V, y]\right)$ for some $U_{y} \leq C_{V}(y)$. However, if $U=U_{y}$ then $t, x, y \in C_{G}(U)$ and $d^{C_{G}(U)}(t, x)=2$. While $U_{y} \neq U$ results in a contradiction using an analogous argument from Lemma 4.29. Hence $U \leq[V, y]$.
As $t, x \in C_{G}(y)=\operatorname{Stab}_{G}([V, y]), t x \in L_{y}=C_{G}([V, y])$ and $[V, y]=U \perp U^{\prime}$ where $U^{\prime}=$ $U^{\perp} \cap[V, y]$. Then for $u \in[V, y]$ we have $u^{t x}=u$ and so $u^{t}=u^{x}$. In particular, if $u \in U^{\prime}$ then $u^{t}=u^{x}=-u$. Hence $[V, y]=U \perp([V, t] \cap[V, x])$. If $C_{V}(\langle t, y\rangle)$ is 1-dimensional, then $C_{V}(y)=C_{V}(\langle t, y\rangle) \perp[V, t]$ since t stabilizes $C_{V}(y)$. However, then $[V, t] \oplus([V, t] \cap[V, x])$ is 3 -dimensional, a contradiction. A similar argument holds for $C_{V}(\langle x, y\rangle)$. Therefore both $C_{V}(\langle t, y\rangle)$ and $C_{V}(\langle x, y\rangle)$ are 2-dimensional. But since $\operatorname{dim} C_{V}(y)=3$, this means $C_{V}(\langle t, y\rangle)$ and $C_{V}(\langle x, y\rangle)$ intersect non-trivially, that is $C_{V}(\langle t, x, y\rangle) \neq 0$, contradicting our assumption. Therefore, $d(t, x) \neq 2$, and consequently $d(t, x)=3$.

The final case when $U \in \mathcal{U}_{1}^{+}$is slightly trickier. Recall the definition of Y_{1}. For any $z \in Y_{1}$, we have $C_{G}(z) \sim S L_{2}(q) \circ S L_{2}(q): 2$ and $C_{V}(z)$ is 1-dimensional. We choose z such that $t \in C_{G}(z)$ and $C_{V}(z)=U$, and return to work in the setting of $S p(4, q) /\left\langle-I_{4}\right\rangle=G^{\tau} \sim G$. We denote the image of any subgroup $K \leq G$ by K^{τ}. Choose

$$
z=\left(\begin{array}{l|l}
-I_{2} & \\
& I_{2}
\end{array}\right) \in G^{\tau}
$$

and note that $C_{G^{\tau}}(z) \sim C_{G}(U): 2$. Hence,

$$
C_{G}(U) \sim\left\{\left.\left(\begin{array}{c|c}
A & \\
\hline & B
\end{array}\right) \right\rvert\, A, B \in S L_{2}(q)\right\} /\left\langle-I_{4}\right\rangle=C_{G}(U)^{\tau}
$$

Let t^{τ} be the image of t in G^{τ}. We start with a preliminary lemma concerning the commuting involution graph $\mathcal{C}\left(L_{2}(q), X\right)$ where X is the sole conjugacy class of involutions. Denote by $L \sim L_{2}(q)$ and $\widehat{L} \sim P G L_{2}(q)$.

Lemma 4.32 Let x be an involution in L. Then $\Delta_{3}^{L}(x)$ splits into $\frac{1}{4}(q+2+5 \delta) C_{L}(x)$-orbits of length $q-\delta$. Moreover, every $C_{L}(x)$-orbit in $\Delta_{3}^{L}(x)$ is $C_{\widehat{L}}(x)$-invariant.

Proof Assume first that $\delta=-1$. Choose $x=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$ and let $x_{\lambda}=\left(\begin{array}{cc}0 & \lambda \\ -\lambda^{-1} & 0\end{array}\right)$ for some $\lambda \in G F(q) \backslash\{ \pm 1\}$. There are two possibilities for an element of $C_{L}(x)$:

$$
g_{1}=\left(\begin{array}{rr}
a_{1} & a_{2} \\
-a_{2} & a_{1}
\end{array}\right), \quad g_{2}=\left(\begin{array}{rr}
b_{1} & b_{2} \\
b_{2} & -b_{1}
\end{array}\right) .
$$

By direct calculation, if $g_{1}^{-1} x_{\lambda} g_{1}=x_{\mu}$ for some $\lambda, \mu \in G F(q) \backslash\{ \pm 1\}$ then $\left(-\lambda^{-1}+\lambda\right) a_{1} a_{2}=0$. Note that since $\lambda \neq \pm 1$, then $\lambda \neq \lambda^{-1}$. If $a_{1}=0$ then $a_{2}^{2}=1$, and so $\mu=\lambda^{-1}$. On the other hand, if $a_{2}=0$ then $a_{1}^{2}=1$ and so $\mu=\lambda$. Note that in the case of g_{2}, neither b_{1} or b_{2} can be 0 and so $g_{2}^{-1} x_{\lambda} g_{2}=x_{\mu}$ requires $x y\left(\lambda-\lambda^{-1}\right)=0$, a contradiction. Hence for $\lambda, \mu \in G F(q) \backslash\{ \pm 1\}$, x_{λ} and x_{μ} lie in different $C_{L}(x)$ orbits if and only if $\mu \notin\left\{\lambda, \lambda^{-1}\right\}$. As we work modulo $\left\langle-I_{4}\right\rangle$, there are at least $\frac{1}{4}(q-3) C_{L}(x)$-orbits in $\Delta_{3}^{L}(x)$. However for any $\lambda \neq \pm 1, C_{L}\left(x, x_{\lambda}\right)=1$ and so, each $C_{L}(x)$-orbit containing an x_{λ} is of length $q+1$. But $\left|\Delta_{3}^{L}(x)\right|=\frac{1}{4}(q-3)(q+1)$ and so all involutions in $\Delta_{3}^{L}(x)$ are accounted for. Hence the first statement holds for $\delta=-1$, and each $C_{L}(x)$-orbit has representative x_{λ} for some $\lambda \neq \pm 1$. Let

$$
e=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \in \widehat{L} \backslash L
$$

and note that $C_{\widehat{L}}(x)=\langle e\rangle C_{L}(x)$, and an easy check shows $\left[e, x_{\lambda}\right]=1$ for all $\lambda \neq \pm 1$. Let $y \in \Delta_{3}^{L}(x)$, then $y=x_{\lambda}^{s}$ for some $s \in C_{L}(x)$. Let $g=e r \in C_{\widehat{L}}(x)$ for some $r \in C_{L}(x)$. Then $y^{g}=x_{\lambda}^{s^{e} r}$ and since $C_{L}(x) \unlhd C_{\widehat{L}}(x), s^{e} r \in C_{L}(x)$. That is, every $C_{L}(x)$-orbit in $\Delta_{3}^{L}(x)$ is $C_{\widehat{L}}(x)$ invariant.
Assume now that $\delta=1$. Choose $x=\left(\begin{array}{rr}i & 0 \\ 0 & -i\end{array}\right)$ where $i^{2}=-1$ and let $y=\left(\begin{array}{cc}\sigma & \mu \tau \\ \tau & \sigma\end{array}\right)$ for some $\sigma, \mu, \tau \in G F(q), \sigma \neq 0$ and μ a non-square in $G F(q)$. By [10], $y \in \Delta_{3}^{L}(x)$. There are two possibilities for an element of $C_{L}(x)$:

$$
g_{1}=\left(\begin{array}{cc}
a^{-1} & 0 \\
0 & a
\end{array}\right), \quad g_{2}=\left(\begin{array}{cc}
0 & b \\
-b^{-1} & 0
\end{array}\right)
$$

By direct calculation, if $g_{1}^{-1} y g_{1}=y$ then $a=1$. Note that $g_{2}^{-1} y g_{2} \neq y$ as $\pm b^{2} \neq \mu$ for any non-square μ. Hence $C_{L}(\langle x, y\rangle)=1$. Since y was arbitrary, each $C_{L}(x)$-orbit has length $q-1$. Now $\left|\Delta_{3}^{L}(x)\right|=\frac{1}{4}(q+7)(q-1)$ and so the first statement holds for $\delta=1$. Let

$$
e_{\nu}=\left(\begin{array}{ll}
0 & \nu \\
1 & 0
\end{array}\right) \in \widehat{L} \backslash L
$$

and note that $C_{\widehat{L}}(x)=\left\langle e_{\nu}\right\rangle C_{L}(x)$ for any non-square ν. It is easy to check that $y^{e_{\mu}}=y$. Let $g=e_{\mu} r \in C_{\widehat{L}}(x)$ for some $r \in C_{L}(x)$. Then $y^{g}=y^{e_{\mu} r}=y^{r}$ and since y was arbitrary and $r \in C_{L}(x)$, every $C_{L}(x)$-orbit in $\Delta_{3}^{L}(x)$ is $C_{\widehat{L}}(x)$-invariant.

Lemma 4.33 $\left|\Delta_{3}^{C_{G}(U)}(t) \cap \Gamma_{1}(G)\right|=\frac{1}{4}(q-\delta)^{2}(q+2+5 \delta)$.

Proof We first work in the setting of G^{τ}. Choose

$$
t^{\tau}=\left(\begin{array}{rr|rr}
0 & -1 & & \\
1 & 0 & & \\
\hline & & 0 & -1 \\
& & 1 & 0
\end{array}\right)=\left(\begin{array}{l|l}
J_{0} & \\
\hline & J_{0}
\end{array}\right)
$$

By direct calculation, it is easily seen that

$$
C_{G^{\tau}}\left(t^{\tau}\right) \subseteq\left\{\left.\left(\begin{array}{l|l}
A_{1} & A_{2} \\
\hline A_{3} & A_{4}
\end{array}\right) \right\rvert\, A_{i}^{-1} J_{0} A_{i}=J_{0} \quad\left(\bmod \left\langle-I_{4}\right\rangle\right)\right\}
$$

and any involution $y \in C_{G^{\tau}}\left(t^{\tau}\right)$ has the additional properties that

$$
\begin{array}{ll}
& \operatorname{det} A_{1}+\operatorname{det} A_{3}=\operatorname{det} A_{2}+\operatorname{det} A_{4}=1 \\
\text { and } & A_{1}^{2}+A_{2} A_{3}=A_{3} A_{2}+A_{4}^{2}=-I_{2} . \tag{4.33.1}
\end{array}
$$

Recall that if $x \in C_{G}(U)^{\tau}$ then $x=\left(\begin{array}{r|r}A & \\ \hline & B\end{array}\right)$ for some $A, B \in S L_{2}(q)$ and by Theorem 4.8, $x \in \Delta_{3}^{C_{G}(U)^{\tau}}\left(t^{\tau}\right)$ if and only if A, B are involutions in L and either $d^{L}\left(A, J_{0}\right)=3$ or $d^{L}\left(B, J_{0}\right)=3$. So without loss of generality, set $A=B_{i}$ where $d^{L}\left(B_{i}, J_{0}\right)=i$ and choose $B \in \Delta_{3}^{L}\left(J_{0}\right)$.
If $x \in \Delta_{2}^{G^{\tau}}\left(t^{\tau}\right)$ then there exists $y=\left(\begin{array}{c|c}A_{1} & A_{2} \\ \hline A_{3} & A_{4}\end{array}\right) \in C_{G^{\tau}}\left(t^{\tau}\right)$ such that $y^{2}=1$ and $[x, y]=1$. Suppose $\operatorname{det} A_{2}=0$. Then $\operatorname{det} A_{4}=1$ by (4.33.1), and so $A_{4} \in C_{L}\left(J_{0}\right)$. As $[x, y]=1$, $\left[A_{4}, B\right]=1$. However $C_{L}\left(\left\langle J_{0}, B\right\rangle\right)=1$, by Lemma 4.32 and so $A_{4}= \pm I_{2}$. But then $A_{3} A_{2}=-2 I_{2}$ by (4.33.1), which is impossible as $\operatorname{det} A_{2}=0$. An analogous argument holds for $\operatorname{det} A_{3}$. Hence $\operatorname{det} A_{2}$, $\operatorname{det} A_{3} \neq 0$. Since $[x, y]=1, B_{i} A_{2} B= \pm A_{2}$ and so B_{i} and B must be $C_{\widehat{L}}\left(J_{0}\right)$-conjugate. In other words, if B_{i} and B are not $C_{\widehat{L}}\left(J_{0}\right)$-conjugate, then $[x, y] \neq 1$. By Lemma 4.32, every $C_{L}\left(J_{0}\right)$ orbit is an $C_{\widehat{L}}\left(J_{0}\right)$-orbit and so if $[x, y]=1$ then B_{i} and B must be $C_{L}\left(J_{0}\right)$-conjugate. Assume then B_{i} and B are $C_{L}\left(J_{0}\right)$-conjugate and let $A \in C_{L}\left(J_{0}\right)$ be such that $B_{i}^{A}=B$. Hence if $y_{A}=\left(\begin{array}{c|c} & A \\ \hline-A^{-1} & \end{array}\right) \in C_{G^{\tau}}\left(t^{\tau}\right)$, then $\left[y_{A}, x\right]=1$ and so $d^{G^{\tau}}\left(t^{\tau}, x\right)=2$. By Lemma 4.32, each $C_{L}\left(J_{0}\right)$-orbit of $\Delta_{3}^{L}\left(J_{0}\right)$ is of length $q-\delta$, and there are $\frac{1}{4}(q+2+5 \delta)$ such orbits. Moreover, for any involution $x_{0} \in C_{G}(U)^{\tau}$ conjugate to $t^{\tau}, z x_{0}$ is also an involution in $C_{G}(U)^{\tau}$ conjugate to t^{τ} which has not been accounted for. Therefore, the number of involutions in $\Delta_{3}^{C_{G}(U)^{\tau}}\left(t^{\tau}\right)$ that are actually distance 2 from t^{τ} in G^{τ} is $\frac{1}{2}(q-\delta)^{2}(q+2+5 \delta)$.
We now return to the setting of G, and first assume that $\delta=-1$ and so by Corollary $4.22(\mathrm{i})$, $\left|\mathcal{W}_{2}(U)\right|=q+1$, and for every $W \in \mathcal{W}_{2}(U), C_{G}(W) \sim L_{2}(q)$. For each W, there exists $U_{W} \in \mathcal{U}_{1}^{+}$such that $C_{G}(W) \leq C_{G}\left(U_{W}\right) \sim L_{2}\left(q^{2}\right)$ by Lemma 4.21, and $\Delta_{3}^{C_{G}(W)}(t) \subseteq \Delta_{2}^{C_{G}\left(U_{W}\right)}(t)$ by Lemma 4.30. Hence, there are $\frac{1}{4}(q+1)^{2}(q-3)$ involutions already counted (from Case 3)
and the remaining involutions do not fix a 2-subspace of $C_{V}(t)$. Therefore

$$
\begin{aligned}
\left|\Delta_{3}^{C_{G}(U)}(t) \cap \Gamma_{1}(G)\right| & =\frac{1}{2}(q+1)^{2}(q-3)-\frac{1}{2}(q+1)^{2}(q-3) \\
& =\frac{1}{4}(q+1)^{2}(q-3),
\end{aligned}
$$

as required. Now assume that $\delta=1$ and so by Corollary 4.22. For each W, there exists $U_{W} \in \mathcal{U}_{1}^{-}$ such that $C_{G}(W) \leq C_{G}\left(U_{W}\right) \sim L_{2}\left(q^{2}\right)$ by Lemma 4.21 and $\left|\Delta_{3}^{C_{G}(W)}(t) \cap \Delta_{2}^{C_{G}\left(U_{W}\right)}(t)\right|=\frac{1}{4}(q-1)^{2}$ by Lemma 4.26. Since $\left|\mathcal{W}_{2}(U) \cap\left(\mathcal{U}_{1}^{+} \cup \mathcal{U}_{1}^{-}\right)\right|=q-1$ by Corollary 4.22 (iii), this accounts for $\frac{1}{4}(q-1)^{3}$ involutions. Suppose now $W_{0} \in \mathcal{W}_{2}(U) \cap \mathcal{U}_{2}^{0}$. By Lemma 4.21, there exists $U_{0} \in \mathcal{U}_{1}^{0}$ such that $C_{G}\left(W_{0}\right) \leq C_{G}\left(U_{0}\right)$. From Lemmas 4.12 and 4.19, $\left|C_{G}(W) \cap \Delta_{2}^{C_{G}\left(U_{0}\right)}(t)\right| \frac{1}{2}(q-1)^{2}$. Since $\left|\mathcal{W}_{2}(U) \cap \mathcal{U}_{2}^{0}\right|=2$ by Corollary 4.22 (iii), this yields a further $(q-1)^{2}$ involutions. Finally, if $W \in \mathcal{U}_{2}^{+}$, then by Lemma 4.30, $\Delta_{3}^{C_{G}(W)}(t) \subseteq \Delta_{2}(t)$ and there are $2(q-1)$ involutions in $\Delta_{3}^{C_{G}(W)}(t)$ not already enumerated. Now $\left|\mathcal{U}_{2}^{+} \cap \mathcal{W}_{2}(U)\right|=\frac{1}{2}(q-1)$ by Corollary $4.22(\mathrm{iii})$, and this yields another $(q-1)^{2}$ involutions. Hence, there are $\frac{1}{4}(q-3)^{2}+2(q-1)^{2}=\frac{1}{4}(q-1)^{2}(q+7)$ involutions already counted (from Cases 3 and 5) and the remaining involutions do not fix a 2-subspace of $C_{V}(t)$. Consequently

$$
\begin{aligned}
\left|\Delta_{3}^{C_{G}(U)}(t) \cap \Gamma_{1}(G)\right| & =\frac{1}{2}(q-1)^{2}(q+7)-\frac{1}{2}(q-1)^{2}(q+7) \\
& =\frac{1}{4}(q-1)^{2}(q+7),
\end{aligned}
$$

as required.

Corollary $4.34\left|\Gamma_{1}(G) \backslash \bigcup_{U \in \mathcal{U}_{1}} \Gamma_{1}\left(C_{G}(U)\right)\right|=\frac{1}{8} q(q-\delta)\left(q^{2}-1\right)(q+2+5 \delta)$.
Proof Since $\left|\mathcal{U}_{1}^{+}\right|=\frac{1}{2} q(q+\delta)$, the result holds by Lemmas 4.32 and 4.33.

Lemma 4.35 If $q \equiv 3(\bmod 4)$, then
(i) $\left|\Delta_{2}(t)\right|=\frac{1}{16}(q+1)\left(3 q^{5}-2 q^{4}+8 q^{3}-30 q^{2}+13 q-8\right)$; and
(ii) $\left|\Delta_{3}(t)\right|=\frac{1}{16}(q-1)\left(5 q^{5}-4 q^{4}-2 q^{3}+4 q^{2}+5 q+5\right)$.

If $q \equiv 1(\bmod 4)$, then
(iii) $\left|\Delta_{2}(t)\right|=\frac{1}{16}(q-1)\left(3 q^{5}-6 q^{4}+32 q^{3}-10 q^{2}-27 q-8\right)$; and
(iv) $\left|\Delta_{3}(t)\right|=\frac{1}{16}(q-1)\left(5 q^{5}+22 q^{4}-8 q^{3}+34 q^{2}+51 q+24\right)$.

Proof The cases listed in Table 1 are disjoint. Hence $\left|\Delta_{2}(t)\right|$ is determined by summing the values calculated in Lemmas 4.27, 4.28, 4.30 and 4.34. By Theorem 4.15, $\mathcal{C}\left(G, Y_{2}\right)$ has diameter 3 and so $\left|\Delta_{3}(t)\right|=\left|Y_{2}\right|-\left|\Delta_{1}(t)\right|-\left|\Delta_{2}(t)\right|$. Since $|G|=\frac{1}{2} q^{4}\left(q^{2}-1\right)\left(q^{4}-1\right)$ and $\left|C_{G}(t)\right|=q\left(q^{2}-1\right)(q-\delta),\left|Y_{2}\right|=\frac{1}{2} q^{3}(q+\delta)\left(q^{2}+1\right)$. Together with Lemma 4.20, this proves the lemma.

Together, Theorem 4.15 and Lemmas 4.20 and 4.35 complete the proof of Theorem 1.4.

References

[1] Abdollahi, A. Commuting graphs of full matrix rings over finite fields. Linear Algebra Appl. 428 (2008), no. 11-12, 2947-2954.
[2] Akbari, S.; Raja, P. Commuting graphs of some subsets in simple rings. Linear Algebra Appl. 416 (2006), no. 2-3, 1038-1047.
[3] Akbari, S.; Mohammadian, A.; Radjavi, H.; Raja, P. On the diameters of commuting graphs. Linear Algebra Appl. 418 (2006), no. 1, 161-176.
[4] Alperin, J. L. Local representation theory. Modular representations as an introduction to the local representation theory of finite groups. Cambridge Studies in Advanced Mathematics, 11. Cambridge University Press, Cambridge, 1986.
[5] Aschbacher, M. Finite group theory. Second edition. Cambridge Studies in Advanced Mathematics, 10. Cambridge University Press, Cambridge, 2000.
[6] Aschbacher, M.; Segev, Y. The uniqueness of groups of Lyons type. J. Amer. Math. Soc. 5 (1992), no. 1, 75-98.
[7] Aschbacher, M.; Seitz, G.M. Involutions in Chevalley Groups over Fields of Even Order. Nagoya Math.J. 63 (1976), 1-91 .
[8] Bates, C.; Bundy, D.; Perkins, S.; Rowley, P. Commuting involution graphs for symmetric groups. J. Algebra 266 (2003), no. 1, 133-153.
[9] Bates, C.; Bundy, D.; Perkins, S.; Rowley, P. Commuting involution graphs for finite Coxeter groups. J. Group Theory 6 (2003), no. 4, 461-476.
[10] Bates, C.; Bundy, D.; Perkins, S.; Rowley, P. Commuting involution graphs in special linear groups. Comm. Algebra 32 (2004), no. 11, 4179-4196.
[11] Bates, C.; Bundy, D.; Hart, S.; Rowley, P. Commuting involution graphs for sporadic simple groups. J. Algebra 316 (2007), no. 2, 849-868.
[12] Bates, C.; Bundy, D.; Hart, S.; Rowley, P. A note on commuting graphs for symmetric groups. Electron. J. Combin. 16 (2009), no. 1, Research Paper 6, 13 pp.
[13] Brauer, R.; Fowler, K. A. On groups of even order. Ann. of Math. (2) 62 (1955), 565-583.
[14] Bundy, D. The connectivity of commuting graphs. J. Combin. Theory Ser. A 113 (2006), no. 6, 995-1007.
[15] Cannon, J.J.; Playoust C. An Introduction to Algebraic Programming with Magma [draft], Springer-Verlag (1997).
[16] Carter, R.W. Simple Groups and Simple Lie Algebras, J. Lond. Math. Soc. Volume 40 (1965), 193-240.
[17] Dornhoff, L. Group representation theory. Part A: Ordinary representation theory. Pure and Applied Mathematics, 7. Marcel Dekker, Inc., New York, 1971. vii+pp. 1-254.
[18] Fischer, B. Finite groups generated by 3-transpositions. University of Warwick Lecture Notes, 1969.
[19] Gorenstein, D. Finite groups. Second edition. Chelsea Publishing Co., New York, 1980.
[20] Iranmanesh, A.; Jafarzadeh, A. On the commuting graph associated with the symmetric and alternating groups. J. Algebra Appl. 7 (2008), no. 1, 129-146.
[21] Kleidman, P.; Liebeck, M. The Subgroup Structure of the Finite Classical Groups. London Mathematical Society Lecture Note Series 129.
[22] Neumann, B. H. A problem of Paul Erdös on groups. J. Austral. Math. Soc. Ser. A 21 (1976), no. 4, 467-472.
[23] Perkins, S. Commuting involution graphs for \widetilde{A}_{n}. Arch. Math. (Basel) 86 (2006), no. 1, 16-25.
[24] Rapinchuk, A.S.; Segev, Y.; Seitz, G.M. Finite quotients of the multiplicative group of a finite dimensional division algebra are solvable. J. Amer. Math. Soc. 15 (2002), no. 4, 929-978 (electronic).
[25] Schur, I. Untersuchungen über die Darstellungen der endlichen Gruppen durch gebrochene lineare Substitutionen. J. Reine Angew. Math. 132 (1907), 85-137.
[26] Taylor, D.E. The geometry of the classical groups. Sigma Series in Pure Mathematics, 9. Heldermann Verlag, Berlin, 1992.

