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Anne-Marie Aubert, Paul Baum, and Roger Plymen

1. Introduction

This expository note will state the ABP (Aubert-Baum-Plymen) conjecture
[2, 3, 4]. The conjecture can be stated at four levels:

• K-theory of C∗ algebras
• Periodic cyclic homology of finite type algebras
• Geometric equivalence of finite type algebras
• Representation theory

The emphasis in this note will be on representation theory. The first two items
in the above list are topological, and the third item is algebraic. Validity for the
two topological items is quite plausible, and thus gives some credibility to the
representation theory version of the conjecture.

A recent result of M. Solleveld [51], when combined with results of [13, 14, 18,
19, 20, 22, 24, 31, 32, 40, 42, 43, 44, 45, 46, 48] proves a very substantial part
of the conjecture for many examples. See Section 9 below for a summary of this
development.

See Section 10 below for an indication of the apparent connection between
L-packets and ABP.

2. Bernstein Components

Let G be a reductive p-adic group. Examples are GL(n, F ),SL(n, F ) etc. where
F is a local nonarchimedean field, that is, F is a finite extension of the p-adic
numbers Qp, or the local function field Fq((x)).

Definition. A representation of G is a group homomorphism

φ : G→ AutC(V )

where V is a vector space over the complex numbers C.
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The local field F in its natural topology is a locally compact and totally dis-
connected topological field. Hence G (in its p-adic topology) is a locally compact
and totally disconnected topological group.

Definition. A representation

φ : G→ AutC(V )

of G is smooth if for every v ∈ V ,

Gv = {g ∈ G | φ(g)v = v}
is an open subgroup of G.

The smooth (or admissible) dual of G, denoted Ĝ, is the set of equivalence
classes of smooth irreducible representations of G.

Ĝ = {Smooth irreducible representations of G}/ ∼

Problem. Describe Ĝ.

Remark. A smooth representation of G is admissible if when restricted to any
compact open subgroup H of G each irreducible representation of H appears (in
the restricted representation) with at most a finite multiplicity. According to a
result of Jacquet [26] any smooth irreducible representation of G is admissible.
Thus the smooth dual Ĝ and the admissible dual (i.e. the set of equivalence classes
of smooth irreducible admissible representations of G) are the same.

Since G is locally compact we may fix a (left-invariant) Haar measure dg for
G. The Hecke algebra of G, denoted HG, is then the convolution algebra of all
locally-constant compactly-supported complex-valued functions f : G→ C.

(f + h)(g) = f(g) + h(g)

(f ∗ h)(g0) =
∫
G

f(g)h(g−1g0)dg


g ∈ G
g0 ∈ G
f ∈ HG
h ∈ HG

Definition. A representation of the Hecke algebra HG is a homomorphism of C
algebras

ψ : HG→ EndC(V )
where V is a vector space over the complex numbers C.

Definition. A representation

ψ : HG→ EndC(V )

of the Hecke algebra HG is irreducible if ψ is not the zero map and there does not
exist a vector subspace W of V such that W is preserved by the action of HG and
W is neither the zero subspace nor all of V .

Definition. A primitive ideal I in HG is the null space of an irreducible represen-
tation of HG. Note that HG itself is not a primitive ideal.

Thus whenever I is a primitive ideal inHG there is an irreducible representation
of HG, ψ : HG→ EndC(V ) such that

0 // I
� � // HG

ψ
// EndC(V )
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is an exact sequence of C algebras.

A bijection of sets (i.e. a bijection in the category of sets)

Ĝ←→ Prim(HG)

where Prim(HG) is the set of primitive ideals in HG is defined as follows. Let

φ : G→ AutC(V )

be an irreducible smooth representation of G. Consider the representation of HG
given by

f 7→
∫
G

f(g)φ(g)dg f ∈ HG

This is an irreducible representation of HG, and the bijection sends φ to its null
space.

What has been gained from this bijection?
On Prim(HG) there is a topology—the Jacobson topology. If S is a subset of

Prim(HG) then the closure S (in the Jacobson toplogy) of S is

S = {J ∈ Prim(HG) | J ⊃
⋂
I∈S

I}

Prim(HG) (with the Jacobson topology) is the disjoint union of its connected
components.

πoPrim(HG) denotes the set of connected components of Prim(HG).
πoPrim(HG) is a countable set and has no further structure.
πoPrim(HG) is also known as the Bernstein spectrum of G.
πoPrim(HG) = {(M,σ)}/ ∼ where (M,σ) is a cuspidal pair i.e. M is a Levi

factor of a parabolic subgroup P of G and σ is an irreducible super-cuspidal rep-
resentation of M . ∼ is the conjugation action of G, combined with tensoring by
unramified characters of M . Thus (M,σ) ∼ (M ′, σ′) iff there exists an unramified
character ψ : M → C− {0} of M and an element g of G, g ∈ G, with

g(M,ψ ⊗ σ) = (M ′, σ′)

The meaning of this equality is:
• gMg−1 = M ′

• g∗(ψ⊗σ) and σ′ are equivalent smooth irreducible representations of M ′.

For each s ∈ πoPrim(HG), Ĝs denotes the subset of Ĝ which is mapped to the s-th
connected component of Prim(HG) under the bijection Ĝ←→ Prim(HG).

Using the bijections

Ĝ←→ Prim(HG) πoPrim(HG)←→ {(M,σ)}/ ∼

Ĝs is obtained by fixing (M,σ) and then taking the irreducible constituents of
IndGM (ψ ⊗ σ) where IndGM is (smooth) parabolic induction and ψ can be any un-
ramified character of M .

The subsets Ĝs of Ĝ are known as the Bernstein components of Ĝ. The problem
of describing Ĝ now breaks up into two problems.

Problem 1: Describe the Bernstein spectrum πoPrim(HG) = {(M,σ)}/ ∼.
Problem 2: For each s ∈ πoPrim(HG) = {(M,σ)}/ ∼, describe the Bern-

stein component Ĝs.
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In this note we shall be concerned with Problem 2. Problem 1 involves describing
the irreducible super-cuspidal representations of Levi subgroups of G. The basic
conjecture on this issue is that if M is a reductive p-adic group (e.g. M is a Levi
factor of a parabolic subgroup of G) then any irreducible super-cuspidal represen-
tation of M is obtained by smooth induction from an irreducible representation of
a subgroup of M which is compact modulo the center of M . This basic conjecture
is now known to be true to a very great extent [30] [52]. For Problem 2 the ABP
conjecture proposes that each Bernstein component Ĝs has a very simple geometric
structure.

3. Infinitesimal Character

Notation. C× denotes the (complex) affine variety C− {0}.

Definition. A complex torus is a (complex) affine variety T such that there exists
an isomorphism of affine varieties

T ∼= C× × C× × · · · × C×.

Bernstein [11] assigns to each s ∈ πoPrim(HG) a complex torus Ts and a finite
group Ws acting on Ts. Bernstein’s construction can be recalled as follows. First,
fix (M,σ). M0 denotes the subgroup of M consisting of all g ∈M such that:

whenever ϕ : M → F× is an algebraic character, ϕ(g) ∈ O×F .
Here F is the p-adic field over which G is defined, OF is the integers in F and
O×F is the invertible elements of the ring OF . Equivalently, M0 is the (closed)
normal subgroup of M generated by all the compact subgroups of M . The quo-
tient group M/M0 is discrete and is a free abelian group of finite rank. Therefore
HomZ(M/M0,C×) is a complex torus. The points of this complex torus are (by
definition) the unramified characters of M . Within this complex torus consider all
the unramified characters ϕ of M such that:

ϕ⊗ σ is equivalent (as an irrreducible smooth representation of M) to σ.

Denote this set of characters by Iσ. Iσ is a finite subgroup of HomZ(M/M0,C×) so
the quotient group HomZ(M/M0,C×)/Iσ is a complex torus, and this is Bernstein’s
torus Ts.

Ts = HomZ(M/M0,C×)/Iσ
Denote HomZ(M/M0,C×) by T ′s. Denote the quotient map T ′s → Ts by

η : T ′s −→ Ts

The Weyl group WM of M is NG(M)/M , where NG(M) is the normalizer of M in
G. Ws is the subgroup of WM consisting of all w ∈WM such that:

given w, ∃ϕw ∈ T ′s = HomZ(M/M0,C×) with ϕw ⊗ σ equivalent to w∗(σ)

(ϕw ⊗ σ is equivalent as an irrreducible smooth representation of M to w∗(σ)).
If Iσ is not the trivial one-element group, then w 7→ ϕw is not well-defined as a
map from Ws to T ′s. However, when composed with the quotient map T ′s → Ts, a
well-defined group homomorphism Ws → Ts is obtained:

Ws −→ Ts

w 7−→ η(ϕw)
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The evident conjugation action of WM on M gives an action of WM on T ′s =
HomZ(M/M0,C×). When restricted to Ws this gives an action of Ws on T ′s which

preserves Iσ and hence Ws acts on the quotient torus Ts. Note that at this point
Ws is acting as automorphisms of the algebraic group Ts. Denote this action by:

wx = w∗(x) w ∈Ws x ∈ Ts

In Bernstein’s action of Ws on Ts, w ∈Ws acts by

x 7−→ w∗(x)[η(ϕw)] x ∈ Ts

i.e. when w ∈ Ws is applied to x ∈ Ts, the result is the product (using the group
structure of Ts) of w∗(x) and η(ϕw). Hence Ws is acting as automorphisms of the
affine variety Ts — but not necessarily as automorphisms of the algebraic group Ts.
For an example where Ws is not acting as automorphisms of the algebraic group
Ts, see Section 4 of [49]. This same example is also used in [22]. Examples of this
kind cannot occur within the principal series — i.e. within the principal series Ws

does act as automorphisms of the algebraic group Ts.
Consider the quotient variety Ts/Ws. Denote the coordinate algebra of Ts by

O(Ts). Ws acts on O(Ts), and the coordinate algebra of Ts/Ws is the subalgebra
of invariant elements.

O(Ts/Ws) = O(Ts)Ws

Define a surjective map πs mapping Ĝs onto Ts/Ws

Ĝs

πs

��

Ts/Ws

by:

given ζ ∈ Ĝs select ϕ ∈ T ′s such that ζ is an irreducible constituent of IndGM (ϕ⊗ σ).

Then set πs(ζ) = η(ϕ).

This map πs is referred to as the infinitesimal character or the central character.
In Bernstein’s work Ĝs is a set (i.e. is only a set) so πs

Ĝs

πs

��

Ts/Ws

is a map of sets.
πs is surjective, finite-to-one and generically one-to-one; generically one-to-one

means that there is a sub-variety Rs of Ts/Ws such that the pre-image of each
point in Ts/Ws−Rs consists of just one point. Rs is the subvariety of reducibility,
i.e. Rs is given by those unramified twists of σ such that there is reducibility when
parabolically induced to G.

Remark. Let ∆s be the maximal compact subgroup of Ts. As above, the Bernstein
action of w ∈Ws on Ts is given by:

x 7−→ w∗(x)[θ(ϕw)] x ∈ Ts.
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This implies that ∆s is preserved by the action.

4. Extended Quotient

Let Γ be a finite group acting on an affine variety X as automorphisms of the
affine variety

Γ×X → X.

The quotient variety X/Γ is obtained by collapsing each orbit to a point. More
precisely, recall (e.g. see [21]) that the category of affine varieties over C is equivalent
to the opposite of the category of commutative unital finitely generated nilpotent-
free C algebras.(

affine C varieties

)
∼

(
commutative unital finitely generated

nilpotent−free C algebras

)op

The functor which gives the equivalence assigns to an affine variety X its coordinate
algebra O(X). With X,Γ as above, Γ acts on O(X) and the coordinate algebra of
X/Γ is the subalgebra of invariant elements

O(X/Γ) = O(X)Γ

This determines X/Γ as an affine variety.
For x ∈ X, Γx denotes the stabilizer group of x:

Γx = {γ ∈ Γ | γx = x}.

c(Γx) denotes the set of conjugacy classes of Γx. The extended quotient is obtained
by replacing the orbit of x by c(Γx). This is done as follows:

Set X̃ = {(γ, x) ∈ Γ ×X | γx = x} ⊂ Γ ×X. X̃ is an affine variety and is a
sub-variety of Γ ×X. The coordinate algebra of X̃ is O(Γ ×X)/I where I is the
ideal in O(Γ ×X) consisting of all f ∈ O(Γ ×X) such that f(γ, x) = 0 whenever
γx = x.

O(X̃) = O(Γ×X)/I
Γ acts on X̃:

Γ× X̃ → X̃ α(γ, x) = (αγα−1, αx), α ∈ Γ, (γ, x) ∈ X̃.

The extended quotient, denoted X//Γ, is X̃/Γ. Thus the extended quotient
X//Γ is the ordinary quotient for the action of Γ on X̃. Γ acts on O(X̃) and the
coordinate algebra of X//Γ is the subalgebra of invariant elements.

O(X//Γ) = O(X̃)Γ

The projection X̃ → X, (γ, x) 7→ x passes to quotient spaces to give a morphism
of affine varieties

ρ : X//Γ→ X/Γ.

This map will be referred to as the projection of the extended quotient onto the
ordinary quotient.

The inclusion

X ↪→ X̃

x 7→ (e, x) e = identity element of Γ
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passes to quotient spaces to give an inclusion X/Γ ↪→ X//Γ. This will be referred
to as the inclusion of the ordinary quotient in the extended quotient. Using this
inclusion, X//Γ−X/Γ denotes X//Γ with X/Γ removed.

5. ABP Conjecture Part 1

As above, G is a reductive p-adic group and s is a point in the Bernstein
spectrum of G.

Consider the two maps indicated by vertical arrows:

Ts//Ws

ρs

��

Ĝs

πs

��

and

Ts/Ws Ts/Ws

πs is the infinitesimal character and ρs is the projection of the extended quotient
on the ordinary quotient. In practice, Ts//Ws and ρs are much easier to calculate
than Ĝs and πs.

The maps ρs and πs are conceptually quite different; nevertheless, we conjecture
that one can pass from one to the other, via a simple algebraic correction, and, in
so doing, predict the number of inequivalent irreducible constituents in a given
parabolically induced representation of G. The precise conjecture (ABP Part 1)
consists of two statements.

Conjecture.

(1) The infinitesimal character

πs : Ĝs → Ts/Ws

is one-to-one if and only if the action of Ws on Ts is free.
(2) There exists a bijection

µs : Ts//Ws ←→ Ĝs

with the following five properties:
Notation for Property 1:

s ∈ πoPrim(HG)
Within the smooth dual Ĝ have the tempered dual Ĝtempered.
Ĝtempered = {smooth tempered irreducible representations of G}/ ∼
∆s = maximal compact subgroup of Ts.
∆s is a compact torus. The action of Ws on Ts preserves the maximal
compact subgroup ∆s , so can form the compact orbifold ∆s//Ws.

Property 1 of the bijection µs

• The bijection µs : Ts//Ws ←→ Ĝs maps
∆s//Ws onto Ĝs ∩ Ĝtempered
∆s//Ws ←→ Ĝs ∩ Ĝtempered

Property 2 of the bijection µs
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• For many s the diagram

Ts//Ws

ρs

��

µs // Ĝs

πs

��

Ts/Ws
I

// Ts/Ws

does not commute. (I = the identity map of Ts/Ws.)
Property 3 of the bijection µs

• In the possibly non-commutative diagram

Ts//Ws

ρs

��

µs // Ĝs

πs

��

Ts/Ws
I

// Ts/Ws

the bijection µs : Ts//Ws −→ Ĝs is continuous where Ts//Ws has the
Zariski topology and Ĝs has the Jacobson topology

AND the composition

πs ◦ µs : Ts//Ws −→ Ts/Ws

is a morphism of algebraic varieties.
Property 4 of the bijection µs

• For each s ∈ πoPrim(HG) there is an algebraic family

θτ : Ts//Ws −→ Ts/Ws

of finite morphisms of algebraic varieties, with τ ∈ C×, such that

θ1 = ρs, θ√q = πs ◦ µs, and θ√q(Ts//Ws − Ts/Ws) = Rs.

Here q is the order of the residue field of the p-adic field F over which
G is defined and Rs ⊂ Ts/Ws is the sub-variety of reducibility.

Property 5 of the bijection µs (Correcting cocharacters)
• Fix s ∈ πoPrim(HG). For each irreducible component c of the affine va-

riety Ts//Ws there is a cocharacter (i.e. a homomorphism of algebraic
groups)

hc : C× −→ Ts

such that
θτ (w, t) = λ(hc(τ) · t)

for all (w, t) ∈ c.
λ : Ts −→ Ts/Ws is the quotient map from Ts to Ts/Ws.
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Remark. The equality
θτ (w, t) = λ(hc(τ) · t)

is to be interpreted thus:
Let Z1, Z2, . . . , Zr be the irreducible components of the affine variety Ts//Ws and
let h1, h2, . . . , hr be the cocharacters as in the statement of Property 5. Let

νs : T̃s −→ Ts//Ws

be the quotient map.
Then irreducible components X1, X2, . . . , Xr of the affine variety T̃s can be chosen
with

• νs(Xj) = Zj for j = 1, 2, . . . , r
• For each τ ∈ C×, the map mτ : Xj → Ts/Ws which is the composition

Xj −→ Ts −→ Ts/Ws

(w, t) 7−→ hj(τ)t 7−→ λ(hj(τ)t)
makes the diagram

Xj

mτ

��

νs // Zj

θτ

��

Ts/Ws
I

// Ts/Ws

commutative.
Note that hj(τ)t is the product in the algebraic group Ts of hj(τ) and t.

Remark. The conjecture asserts that to calculate

πs : Ĝs −→ Ts/Ws

two steps suffice:
• Step 1: Calculate ρs : Ts//Ws −→ Ts/Ws.
• Step 2: Determine the correcting cocharacters.

6. Where are the correcting cocharacters coming from?

In this section, G is a split reductive group defined over F . G∨ denotes the
Langlands dual group of G (a complex Lie group with root datum dual to that
of G, for instance GL(n, F )∨ = GL(n,C), SL(n, F )∨ = PGL(n,C), PGL(n, F )∨ =
SL(n, F )). WF is the Weil group attached to F .
By a “Langlands parameter” for G we mean a homomorphism of topological groups

WF × SL(2,C) −→ G∨.

such that:
• When restricted to SL(2,C) the homomorphism of topological groups is

algebraic.
• When restricted to WF , the homomorphism of topological groups maps

the Frobenius element of WF to a semi-simple element of G∨ (see [33;
p. 278], [47]).
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Remark. For an earlier definition of Langlands parameter based on the Weil-
Deligne group see [15; § 8.2] and [12; Ch. 11]. The WF × SL(2,C) definition is
better suited to connecting ABP and local Langlands.

The correcting co-characters of Property 5 above seem to be produced by the
SL(2,C) part of the Langlands parameters— i.e. the standard maximal torus of
SL(2,C) identifies with C×:

ζ ←→
[
ζ 0
0 ζ−1

]
, ζ ∈ C×

Using this identification, when a Langlands parameter is restricted to the maximal
torus of SL(2,C), a cocharacter of G∨

C× −→G∨

is obtained, and in examples all the correcting cocharacters arise this way.

Example (The Iwahori-spherical component of GL(2, F )). Let G = GL(2, F ).

• Ĝs = {Smooth irreducible representations of GL(2, F ) having a non-zero
Iwahori fixed vector}.

• Ts = {unramified characters of the maximal torus of GL(2, F ) = C× × C×.
• Ws = the Weyl group of GL(2, F ) = Z/2Z.
• 0 6= γ ∈ Z/2Z γ(ζ1, ζ2) = (ζ2, ζ1) (ζ1, ζ2) ∈ C× × C×

The extended quotient (C××C×)//(Z/2Z) is the disjoint union of the ordinary
quotient (C× × C×)/(Z/2Z) and C×. The ordinary quotient (C× × C×)/(Z/2Z)
consists of unordered pairs of non-zero complex numbers. Such an unordered pair
will be denoted {ζ1, ζ2}. The projection of the extended quotient onto the ordinary
quotient is the identity map when restricted to the copy of the ordinary quotient
contained in the extended quotient— and when restricted to C× maps ζ to {ζ, ζ}.
Hence the picture for the projection of the extended quotient onto the ordinary
quotient is:

(C× × C×)/(Z/2Z)

ζ1 = ζ2

{ζ1, ζ2} such that

In this picture the ambient variety is the ordinary quotient (C× × C×)/(Z/2Z).
The locus of points in the ordinary quotient whose pre-image consists of more than
one point is {ζ1, ζ2} such that ζ1 = ζ2. This locus is a sub-variety indicated by the
slanted line.

For the bijection µs composed with the infinitesimal character, the picture is:
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(C× × C×)/(Z/2Z)

(C× × C×)//(Z/2Z) = (C× × C×)/(Z/2Z)
⊔

C×

{ζ1ζ−1
2 , ζ2ζ

−1
1 } = {q, q−1}

{ζ1, ζ2} such that

In this picture the ambient variety is the ordinary quotient (C× × C×)/(Z/2Z).
The locus of points in the ordinary quotient whose pre-image consists of more than
one point is {ζ1, ζ2} such that {ζ1ζ−1

2 , ζ2ζ
−1
1 } = {q, q−1}, where q is the order of

the residue field of F . This locus is a sub-variety indicated by the slanted line. On
the copy of the ordinary quotient contained within the extended quotient, the map
is the identity map. On C× the map is

ζ 7−→ {q1/2ζ, q−1/2ζ}

The correcting cocharacter C× −→ C× × C× is τ 7→ (τ, τ−1)

Projection of the
extended quotient on the
ordinary quotient

Infinitesimal
character

The picture for ρs is obtained by taking the picture for πs and setting q = 1.

7. Interaction with Baum-Connes and Local Langlands

ABP can be viewed as providing a link between LL (local Langlands conjecture)
and BC (Baum-Connes conjecture).
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Baum-Connes

ABP

Local Langlands

This picture is intended to make the point that LL and BC taken by themselves do
not appear to have much interaction — but ABP interacts with both LL and BC.
LL together with a precise determination of the L-packets should imply validity for
ABP. See [5]. Does ABP imply LL? This is unclear at the present time. See [5].

As indicated above, the correcting cocharacters of ABP appear to be coming
from the SL(2,C) part of Langlands parameters. Thus ABP interacts with LL.
An intriguing question is ”In the ABP view of Ĝ, what are the L-packets?”. See
section 10 below for a possible answer to this question.

For a reductive p-adic group G, BC [7] asserts that the Baum-Connes map

KG
j (βG) −→ Kj(C∗rG) j = 0, 1

is an isomorphism of abelian groups. KG
j (βG) is the Kasparov equivariant K-

homology of the (extended) affine Bruhat-Tits building βG of G.

KG
j (βG) := KKj

G(C0(βG),C) j = 0, 1

C∗rG is the reduced C∗ algebra of G. This is the C∗ algebra obtained by completing
HG via the (left) regular representation of G. K∗(C∗rG) is the K-theory— in the
sense of C∗ algebra K-theory— of C∗rG. The Hecke algebra HG of G decomposes
(canonically) into a direct sum of two-sided ideals:

H(G) =
⊕

s∈πoPrim(HG)

Is

Passing to the C∗ algebra completion yields a direct sum decomposition—in the
sense of C∗ algebras—

C∗rG =
⊕

s∈πoPrim(HG)

Is

and this gives a direct sum decomposition of K∗C∗rG

KjC
∗
rG =

⊕
s∈πoPrim(HG)

Kj(Is) j = 0, 1

ABP at the level of C∗algebra K-theory is:

Conjecture. Let G be a reductive p-adic group. Then for each s ∈ πoPrim(HG)

Kj(Is) = Kj
Ws

(∆s) j = 0, 1

Here Kj
Ws

(∆s) is Atiyah-Hirzebruch-Segal topological equivariant K-theory [1]
for the finite group Ws acting on the compact Hausdorff space ∆s. Note that the
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group structure of ∆s is not being used. Applying the Chern character [8] gives a
map

Kj
Ws

(∆s) −→
⊕
l

Hj+2l(∆s//Ws; C)

which becomes an isomorphism when Kj
Ws

(∆s) is tensored with C. Hence ABP at
the level of C∗ algebra K-theory gives a much finer and more precise formula for
K∗C

∗
rG than BC alone provides. For an explicitly computed example see [27].

Theorem 1 (V. Lafforgue [34]). Baum-Connes is valid for any reductive p-adic
group G.

Theorem 2 ([25, 23, 35]). Local Langlands is valid for GL(n, F ).

Theorem 3 ([2, 16, 17]). ABP is valid for GL(n, F ).

8. Where is the bijection µs : Ts//Ws ←→ Ĝs coming from? (ABP Part 2)

Notation. If X is a (complex) affine variety, O(X) denotes the co-ordinate algebra
of X.

As above, the Hecke algebra of G decomposes (canonically) into a direct sum
of two-sided ideals:

H(G) =
⊕

s∈πoPrim(HG)

Is

Each ideal Is is canonically Morita equivalent to a unital finite-type ks-algebra
where

ks = O(Ts/W s)
This unital finite-type ks-algebra will be denoted H(G)s. The set of (isomorphism
classes of) simpleH(G)s modules (equivalently, the set of primitive ideals inH(G)s)
is canonically in bijection with Ĝs.

Prim(H(G)s)←→ Ĝs

Fix an affine variety X and consider the category of all finite-type k-algebras, where
k = O(X). These k-algebras are required to be of finite-type (i.e. are required to
be finitely generated as k-modules), but are not required to be unital. In [3] the
authors of this note introduced an equivalence relation called geometric equivalence
for such algebras. This equivalence relation is a weakening of Morita equivalence— if
two unital finite-type k-algebras are Morita equivalent, then they are geometrically
equivalent. A detailed exposition of geometric equivalence will be given in [6]. If
A1 and A2 are two finite-type k-algebras which are geometrically equivalent, then
there is an isomorphism of periodic cyclic homology [9, 10]

HP∗(A1) ∼= HP∗(A2)

and a bijection of sets
Prim(A1)←→ Prim(A2).

Part 2 of the ABP conjecture is the assertion that:

Conjecture.

• The finite-type O(Ts/Ws)-algebras H(G)s and O(Ts//Ws) are geometri-
cally equivalent.
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• HPj(H(G)s) =
⊕
l

Hj+2l(Ts//Ws; C)

• A bijection µs : Ts//Ws ←→ Ĝs having properties 1–5 listed above can be
constructed by choosing a suitable geometric equivalence between H(G)s

and O(Ts//Ws).

9. Recent Developments

Maarten Solleveld [51] has recently proved a result which implies validity for
Part 1 of the ABP Conjecture as stated in section 5 whenever H(G)s is Morita
equivalent(as a ks-algebra) to an extended affine Hecke algebra, perhaps with un-
equal parameters. For Part 2 of ABP Solleveld does prove the isomorphism of
periodic cyclic homology

HPj(H(G)s) =
⊕
l

Hj+2l(Ts//Ws; C).

Although he does not prove that H(G)s is geometrically equivalent to O(Ts//Ws),
he does obtain a result of this kind for appropriate topological completions ofH(G)s

and O(Ts//Ws).
The unital finite-type ks-algebraH(G)s has been proved to be Morita equivalent

(as a ks-algebra) to an extended affine Hecke algebra in the following cases:

• G split, s the Iwahori-spherical component [14];
• G split (some restriction on the residual characteristic of F ), s in the

principal series [48];
• G arbitrary, σ of level 0 [42, 43, 46, 40].
• G = GLn(F ), s arbitrary, and SLn(F ), many s - from the work of Bushnell

and Kutzko on types [18, 19, 20] and Goldberg and Roche [22].
• G = SOn(F ), G = Sp2n(F ) or G an inner form of GLn, s arbitrary, see

[24], see also Kim [31, 32].
• G = GSp4(F ) or G = U(2, 1), s arbitrary [44, 45, 13];

One of these cases is the Iwahori component. This raises the question of recon-
ciling ABP with the Kazhdan-Lusztig parametrization of the Iwahori component.
This reconciliation will be given in [5]. More generally, the reconciliation with
Reeder’s result [47] on the principal series will also be given in [5]. For Reeder, G
is assumed to be split and to have connected center (in the Zariski topology).

Detailed calculations which verify ABP completely for the principal series of
the p-adic group G2 (p 6= 2, 3, 5) will appear in [4].

10. L-packets

In this section we give our proposed answer to the question ”In the ABP view
of Ĝ, what are the L-packets?”. This answer is based on calculations of examples —
and on the connection between cells (in the appropriate extended Coxeter group)
and correcting cocharacters described in the appendix below. The main point is
that in the list of correcting cocharacters h1, h2, . . . , hr (one for each irreducible
component of the affine variety Ts//Ws) there may be repetitions, i.e. it might
happen that for some i, j with 1 ≤ i < j ≤ r, hi = hj , and these repetitions give
rise to L-packets.
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So (as in the statement of ABP above) assume that s ∈ πoPrim(HG) has been
fixed. Let

µs : Ts//Ws −→ Ĝs

be the bijection of ABP, and let h1, h2, . . . , hr be the correcting cocharacters. As
in section 5 above, for j = 1, 2, . . . , r consider the commutative diagram

Xj

mτ

��

νs // Zj

θτ

��

Ts/Ws
I

// Ts/Ws

For each τ ∈ C× there is then the map of affine varieties

θτ : Ts//Ws −→ Ts/Ws

Conjecture. Two points (w, t) and (w′, t′) in Ts//Ws have

µs(w, t) and µs(w′, t′) in the same L−packet
if and only

hi = hj where (w, t) ∈ Zi and (w′, t′) ∈ Zj
and

For all τ ∈ C×, θτ (w, t) = θτ (w′, t′)

Remark. An L-packet can have non-empty intersection with more than one Bern-
stein component of Ĝ. This conjecture does not address that issue. The conjecture
only describes the intersections of L-packets with Ĝs once s ∈ πoPrim(HG) has
been fixed.

The following appendix indicates how repetitions can occur among correcting
cocharacters.

11. Appendix

By extended Coxeter group we will mean below a semidirect product of a Cox-
eter group by a finite abelian group. The finite abelian group is assumed to act
as automorphisms of the Coxeter system. We give below a construction which in
many examples assigns to a Bernstein component an extended (infinite) Coxeter
group. In this setting (in examples) a significant simplification is achieved in the
correcting cocharacters because the cocharacters are indexed by the cells of the
associated extended Coxeter group. In particular, this reveals repetitions among
the cocharacters. So, if the conjecture of the preceding section is valid, this creates
L-packets.

The group Ws admits the structure of a finite extended Coxeter group.
Let AM denote the identity component of the center of M and let ΦM denote

the set of roots of AM . For each α ∈ ΦM , we write Uα for the corresponding root
group and set Gα := 〈M,Uα, U−α〉. Then Gα = G−α is a reductive group. It has
two parabolic subgroups with Levi component M , Pα = MUα and P−α = MU−α.
Let ψ be an unramified character of M . By normalized parabolic induction from
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Pα and P−α, we obtain the representations IndGαPα (ψ⊗σ) and IndGαP−α(ψ⊗σ). These
are related by standard intertwining operators

J−α,α : IndGαPα (ψ⊗σ)→ IndGαP−α(ψ⊗σ) and Jα,−α : IndGαP−α(ψ⊗σ)→ IndGαPα (ψ⊗σ).

There is a rational function jα(ψ, σ) on the complex torus T̃s such that

Jα,−α ◦ J−α,α = jα(ψ, σ) id

(and jα(ψ, σ) = j−α(ψ, σ)).
Let

Φs := {α ∈ ΦM : j(ψ, σ) has a pole} .
The set Φs is a root system. It is preserved by Ws. Let W 0

s denote the finite Weyl
group associated to Φs. Fix a positive system Φ+

s in Φs and set

Cs :=
{
w ∈Ws : w(Φ+

s ) ⊂ Φ+
s

}
.

Then the group Ws is the semi-direct product

Ws = W 0
s o Cs.

Hence Ws occurs to be a finite extended Coxeter group.

An extended (infinite) Coxeter group attached to s.
Set

Ms :=
⋂
ϕ∈Iσ

Ker(ϕ) and Λs := Ms/M
0.

The group Λs is free abelian of the same rank as M/M0. Conjugation by Ws

preserves Ms. There is therefore an induced action of Ws on Λs. Now Λs is
isomorphic to the group of characters X(Ts) of the complex torus Ts.

Then we set
W̃s := X(Ts) oWs.

We have
W̃s ' (X(Ts) oW 0

s ) o Cs.

In many examples the group X(Ts) o W 0
s is an affine Weyl group. Hence W̃s in

many examples is an extended Coxeter group.

A weight function attached to s

Let M∨ denote the identity component of the Langlands dual group of M , let
α ∈ ΦM , and let rα denote the adjoint representation of M∨ on the Lie algebra
of U∨α . We are assuming here that σ is generic so that the corresponding local
L-functions L(s, σ, rα) are defined by Shahidi. Then the definition of Φs can be
rephrased as follows (thanks to a formula by Shahidi for jα(ψ, σ) [50]):

Φs = {α ∈ ΦM : L(s, σ, rα) 6= 1} .

For each α ∈ ΦM , we denote by qα the degree of the L-function L(s, σ, rα), that
is, qα is the degree of P (T ) where P (T ) is the polynomial such that L(s, σ, rα) =
P (q−s)−1. We have qwα = qα for all w ∈Ws. From this we define a weight function
qs : ΦM → N by

qs(α) := qα α ∈ ΦM .

The collection of two-sided cells attached to s
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In the case when the function qs is constant, we will attach to s the collection
of all the two-sided cells of the group W̃s as originally defined by Lusztig in [36],
[37].

In the general case, Lusztig stated in [41] (and proved in several cases) a list of
conjectures, and, assuming their validity, defined partitions of any extended Coxeter
group equipped with a weight function as above into left cells, right cells and two-
sided cells, which extend the theory previously developped by Kazhdan and him in
the case of “equal parameters” (that is, when qs is constant). Hence we can attach
(at least conjecturally) a collection of two-sided cells to (W̃s,qs). We will denote
this collection by Cell(W̃s,qs).

It is part of ABP Conjecture that each cocharacter should be attached to a
two-sided cell of (W̃s,qs). This part of ABP Conjecture is proved for principal
series of G2 (when p 6= 2, 3, 5) in [4].

More precisely, for each Bernstein component s attached to a principal series
of G2, the weight function qs is the constant function, and there is a decomposition
of the extended quotient

Ts//Ws =
⊔

c∈Cell(fWs,qs)

(Ts//Ws)c,

such that each (Ts//Ws)c is a union of irreducible components c of the affine variety
Ts//Ws and

hc = hc′ for all c, c′ ⊂ (Ts//Ws)c.
Moreover, the partition can be chosen so that the following property holds:

Ts/Ws ⊂ (Ts//Ws)c0 ,

where c0 denotes the lowest two-sided cell in W̃s in the natural partial ordering on
Cell(W̃s,qs). Note the inclusion above is not an equality in general.

Where is the geometric equivalence H(G)s � O(Ts//Ws) coming from?
Let J s denote the Lusztig asymptotic algebra attached to the group (W̃s,qs)

(in case the weight function qs is constant, J s is defined in [38; §1.3], in general,
the definition of J s is given in [41] up to a list of conjectural properties). The
algebra J s admits a canonical decomposition into finitely many two-sided ideals

J s =
⊕

c∈Cell(fWs,qs)

J s
c .

One can provide J s (and also each J s
c ) with a structure of ks-module algebra (see

[3; § 9]). Then Js is a finite-type ks algebra.
It is also part of ABP Conjecture that the conjectural geometric equivalence

H(G)s � O(Ts//Ws) comes from the combination of the following two geometric
equivalences:

H(G)s � J s and J s � O(Ts//Ws).
The first geometric equivalence is proved for G arbitrary, s the Iwahori compo-

nent in [9, 10], and G split (with mild restriction on the residual characteristic) in
the principal series case, by combining [9, 10] with [48].

The second geometric equivalence is proved for G = GL(n, F ), s arbitrary in
[16] [17], for G = SL(2, F ), s arbitrary in [3; § 7], for G = G2, principal series case
in [4], for G = PGL(n, F ), s the Iwahori component in [3; § 12], for G = SO(5, F ),
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s the Iwahori component in [3; § 13], for G = SO(4, F ), s the Iwahori component
in [4; § 8].

Geometric equivalence respects direct sums. For G = G2, principal series case,
and for G = SO(4, F ), s the Iwahori component, the second geometric equivalence
comes from a finite collection of geometric equivalences:

J s
c � O(Ts//Ws)c, for any c ∈ Cell(W̃s,qs).

Beyond the p-adic world.
Thanks to the work of Solleveld [51], the ABP Conjecture (at least Part 1) still

makes sense (and is partly proved) even if there is no p-adic group in the picture.
In the situation considered by Solleveld, no field F is given. He is working with
an (extended) Hecke algebra with parameters — which essentially means that the
weight function qs is here replaced by a more general parameter function

q : Φ∨nr → R>0,

where R = (X,Φ, X∨,Φ∨) is a root datum, Φ a reduced root system, and Φ∨nr the
non-reduced root system:

Φ∨nr := Φ ∪ {2α : α∨ ∈ X∨}.
The function q is assumed to be W0-invariant, with W0 the Weyl group of R.
Solleved extends in [51] the previous notion of cocharacters to this setting, and
states (and to a great extent proves) a version of the ABP conjecture in the context
of extended Hecke algebras with parameters. His work includes in particular the
case of exotic Kazhdan-Lusztig parameters as defined in [28].
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Birkhäuser, 2003.

[13] L. Blasco, C. Blondel, Algèbres de Hecke et séries principales généralisées de
Sp4(F ), Proc. London Math. Soc. (3) 85 (2002), 659–685.

[14] A. Borel, Admissible representations of a semisimple group over a local field
with vectors fixed under an Iwahori subgroup, Inv. Math. 35 (1976), 233–259.

[15] A. Borel, Automorphic L-functions, PSPM 33 (1979) 27–61.
[16] J. Brodzki, R.J. Plymen, Geometry of th smooth dual of GL(n), C.R. Acad.

Sci. Paris, Ser. I, 331 (2000) 213 –218.
[17] J. Brodzki, R.J. Plymen, Complex structure on the smooth dual of GL(n),

Documenta Math. 7 (2002) 91 –112.
[18] C.J. Bushnell, P.C. Kutzko, The admissible dual of GL(n) via compact open

subgroups, Ann. Math. Study 129, Princeton Univ. Press 1993.
[19] C.J. Bushnell, P.C. Kutzko, Semisimple types in GLn, Comp. Math. 119

(1999), 53–97.
[20] C.J. Bushnell, P.C. Kutzko, Smooth representations of reductive p-adic groups:

Structure theory via types, Proc. London Math. Soc. 77 (1998), 582–634.
[21] D.Eisenbud, Commutative Algebra with a view Toward Algebraic Geometry,

Springer, 1995.
[22] D. Goldberg, A. Roche, Hecke algebras and SLn-types, Proc. London Math.

Soc. (3) 90 (2005), no. 1, 87–131.
[23] M. Harris, R. Taylor, Geometry and cohomology of simple Shimura varieties,

Annals of Math. Studies 151 (2001).
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