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Preface
Music has always been an important part of my life. I have listened to, studied, played and 

enjoyed different genres of music in different settings. Music is instrumental in my practice 

of yoga, meditation and chanting. In these instances, it serves as a form of expression, 

therapy and prayer. I have played the piano throughout my life, and was a viola player in a 

community orchestra for several years. In my childhood, Saturday at the Symphony was 

on my weekly schedule. Throughout my study of music, I learnt about European music 

theory and music history. Music has become one of my passions. 

Mathematics is a discipline I have always found challenging and interesting. I fully began 

to appreciate the subject in high school when I did a project about fractals. It was here that 

I saw mathematics is a beautiful, complex subject, involving far more than what we learn in 

school. The presence of mathematics is everywhere! It is in nature, we use it daily, and its 

applications reach far into other disciplines. 

While my university mathematics courses expanded my knowledge on the many different 

types of mathematics, I was failing to understand its greater significance or importance. 

We did not learn about the rich history behind the mathematics. As a result, I decided that I 

wanted to undertake a third year mathematics project to expand my knowledge and 

appreciation for this complex subject. I had a slight understanding at this stage, that 

mathematics and music were linked. I knew that mathematics has influenced music, but 

beyond that I knew little else. This project would allow me to explore this connection. 

When I started my research, I was shocked and amazed to discover how much information 

was available about the relationship between mathematics and music, and how much 

controversy and difference of opinion was involved in classifying some of these 
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relationships. I was fascinated further when I discovered the relationship between 

mathematics and music is steeped in history; I loved reading about its Ancient Greek 

origins. This connection was at least two thousand years old, and spans different cultures 

and civilizations. Studying music as a part of mathematics was once part of mathematics 

education. This made me think that it truly is an important relationship to study! I quickly 

discovered that the connection between mathematics and music is huge, with a wealth of 

information. In this project, I have simply given a snapshot on some many areas I think are 

interesting and important. I have also approached my research with a Western view; I 

have analyzed Western musicians, composers, mathematicians and ideas. Similar 

research can be done for the connection between mathematics and music from other 

cultures, but this is not the focus of this project.

The more I read and researched, the more I thought how important it is to study and 

understand how mathematics relates to other disciplines, and to bring mathematics into as 

many fields as possible. I want to eventually teach primary school (I begin my Post 

Graduate Certificate in Education in September 2010). My area of focus and interest is 

mathematics education for very young children. I think that when a child is young, they 

need to learn mathematics in new and exciting ways. Children need to be shown 

mathematics has many applications to real life, and that it can be a challenging, exciting 

and fascinating subject. With this project, if I can expand my knowledge and interest in 

mathematics, and improve my understanding of how itʼs used in a greater contest, then 

perhaps when I teach children, I can show children how exciting this subject can be. 

Perhaps I can bring music into my mathematical teaching, making the subject more 

relevant and enjoyable for those in early childhood. This project has two fold meaning for 

me: to increase my knowledge and excitement for mathematics and music education and 

study, so that eventually, I can increase the excitement of others for these two beautiful 

subjects.
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I would finally like to take this opportunity to thank Prof. Plymen for his guidance 

throughout this project. I enjoyed our discussions on this subject, and have a great deal of 
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1.0 Music and Mathematics: An Introduction to their 

Relationship
Mathematics, in some form, has been in existence since ancient civilizations. The Inca, 

Egyptians and Babylonians all used mathematics, yet it was not studied for its own sake 

until Greek Antiquity (600-300 BC) [1]. Mathematics is a vast subject that has been 

approached, used and studied in different ways and forms for hundreds of years, by 

different cultures and civilizations. It is a subject that constantly changes, and is thus 

difficult to define. In the twenty-first century, a western view of mathematics is that it is the 

abstract science of shape, space, change, number, structure and quantity [2]. 

Mathematicians seek out new patterns and new conjecture using rigorous deduction. They 

use abstract thinking, logic and reasoning to problem solve. Mathematics can be studied 

for its own pleasure, or can be applied to explain phenomena in other disciplines. 

Physicists, for example, use mathematical language to describe the natural world. 

In comparison, music is the art or science of combining vocal or instrumental (or both) 

sounds to produce beauty of form and harmony [3]. It is an intrinsic aspect of human 

existence. Like mathematics, music has been an integral aspect of cultures throughout 

history. Music is an artistic way of expressing emotions and ideas, and is often used to 

express and portray oneʼs self and identity. Different forms of music are studied, 

performed, played and listened to. 

Music theory is a beautiful subject that has been studied for thousands of years. Music 

theory is simply the study of how music works and the properties of music. It may include 

the analysis of any statement, belief or conception of or about music. Often music theorists 

will study the language and notation of music. They seek to identify patterns and structures 

found in composers techniques, across or within genres, and of historical periods. 
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Comparing the basic general definitions of mathematics and music implies that they are 

two very distinct disciplines. Mathematics is a scientific study, full of order, countability and 

calculability. Music, on the other hand, is thought to be artistic and expressive. The study 

of these two disciplines, though seemingly different, however, are linked and have been for 

over two thousand years. Music itself is indeed very mathematical, and mathematics is 

inherent to many basic ideas in music theory. Music theorists, like experts in other 

disciplines, use mathematics to develop, express and communicate their ideas.  

Mathematics can describe many phenomena and concepts in music. Mathematics 

explains how strings vibrate at certain frequencies, and sound waves are used to describe 

these mathematical frequencies. Instruments are mathematical; cellos have a particular 

shape to resonate with their strings in a mathematical fashion. Modern technology used to 

make recordings on a compact disc (CD) or a digital video disc (DVD) also rely on 

mathematics. The relationship between mathematics and music is complex and constantly  

expanding, as illustrated by these examples. 

This report aims to give an overview of this intricate relationship between mathematics and 

music by examining its different aspects. The history of the study of mathematics and 

music is intertwined, so it is only natural to begin this report by briefly outlining this 

relationship. Questions and problems arising in music theory have often been solved by 

investigations into mathematics and physics throughout history. The second section will 

discuss some of the mathematics of sound and music. Conversely, mathematical ideas 

and language have often directly influenced concepts of music theory. There are many 

examples of composers who use mathematical techniques throughout their work. The 

mathematical techniques of Olivier Messiaenʼs “musical language” will be discussed in the 

third section. The fourth section will discuss how music often has a religious connotation 
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and message, and religious composers often use music to express their ideas and beliefs. 

This idea will be supported with an analysis of the work of Bach and the techniques of 

Messiaen. Finally, the report will conclude with analysis of an argument by an American 

academic Jim Henle who analyze artistic aspects of mathematics, a subject traditionally 

deemed to be a science. He presents an argument to explain mathematicians fascination 

with music by claiming the two subjects are profoundly similar
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2.0 Historical Connections Between Mathematics and Music
This section briefly explains the historical connection between mathematics and music. 

The two disciplines have been interlinked throughout history since Ancient Greek 

academics began their theoretical study; since antiquity, mathematicians have often been 

music theorists. The fascination that mathematicians have with music will then be 

discussed.

2 . 1  M U S I C  T H E O R I S T S  A N D  M A T H E M A T I C I A N S :  A R E  

T H E Y  O N E  I N  T H E  S A M E ?

For about a millennium, from 600 BC, Ancient Greece was one of the worldʼs leading 

civilizations. The ideas and knowledge produced at this time have had a lasting influence 

on modern western civilizations. The “Golden Age” in Greek antiquity was approximately 

450 BC, and much of what constitutes western culture today began its invention then [1]. 

Brilliant Greek academics contributed a wealth of knowledge about music, philosophy, 

biology, chemistry, physics, architecture and many other disciplines. 

With the Ancient Greeks came the dawn of serious mathematics. Before their time, 

mathematics was a craft [1]. It was studied and used to solve everyday problems. For 

example, farmers might implement mathematical tools to help them lay their fields in the 

most economical way possible. In Greek antiquity, mathematics became an art. It was 

studied purely for the sake of knowledge and enjoyment [1]. Philosophers and 

mathematicians questioned the fundamental ideas of mathematics. 
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Figure 1: Pythagoreans, followers of an Ancient Greek religion which worships numbers 

celebrate the early morning sunrise in a painting by Fyodor Bronnikoy.  

Pythagoras, Plato and Aristotle were three very clever academics, and very influential 

figures when detailing the historic connection between mathematics and music [4]. 

Pythagoras was born in the Classical Greek period (approximately 600 BC to 300 BC) 

when Greece was made of individual city-states. A dictator governed the island on which 

he lived, so he fled to Italy. It was there that he founded a religion (often called a cult) of 

mathematics. Pythagoreans, the followers of his religion, believed mathematical structures 

were mystical. They had elaborate rituals and rules based on mathematical ideas. To the 

followers, the numbers 1, 2, 3 and 4 were divine and sacred. They believed reality was 

constructed out of these numbers and 1, 2, 3 and 4 were deemed the building blocks of 

life [1]. Pythagoras was instrumental in the origin of mathematics as purely a theoretical 

science. In fact, the theories and results that were developed by Pythagoreans were not 

intended for practical use or for applications. It was forbidden for members of the 

Pythagorean school of thought to even earn money from teaching mathematics [1]. 

Throughout history, numbers have always been the building block of mathematics [2]. 
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Plato was a Pythagorean who lived after the Golden Age of Ancient Greece. Plato believed 

that mathematics was the core of education [1]. He founded the first university in Greece, 

the Academy. Mathematics was so central to the curriculum, that above the doors of the 

university, the words “Let no man enter through these doors if ignorant of geometry” were 

written [1]. From antiquity, many famous Greek mathematicians attended Platoʼs 

university. 

 Figure 2: A fresco from 1509 by Raphael depicting the School of Athens. Aristotle (right) 

gestures down to the earth, representing his belief in knowledge through empirical 

observation and experience. He holds a book of ethics in his hand. Plato (left) gestures to 

the heavens, representing his belief in the Forms. 
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Aristotle, the teacher of Alexander the Great, is an example of a famous student of Plato. 

Aristotle was a man of great genius and the father of his own school. He studied every 

subject possible at the time. His writings had vast subject matter, including music, physics, 

poetry, theatre, logic, rhetoric, government, politics, ethics and zoology. Together with Plato 

and Socrates (Platoʼs teacher), Aristotle was one of the most important founding figures in 

western philosophy. He was one of the first to create a comprehensive system detailing 

ideas of morality, philosophy, aesthetics, logic, science, politics and metaphysics [2]. 

A natural question now arises: why are these ancient figures so important in understanding 

the relationship between mathematics and music? The answer is simple. It was these 

early Greek teachers and their schools of thought (the schools of Pythagoras, Plato, and 

Aristotle) who not only began to study mathematics and music, but considered music to be 

a part of mathematics [4]. Ancient Greek mathematics education was comprised of four 

sections: number theory, geometry, music and astronomy; this division of mathematics into 

four sub-topics is called a quadrivium [4]. Itʼs been previously stated that the ideas and 

works of the Ancient Greeks were influential and had had a lasting effect throughout 

history. Those of music and mathematics were no different. The four way division of 

mathematics, which detailed music should be studied as part of mathematics, lasted until 

the end of the middle ages (approximately 1500 AD) in European culture [4].
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Figure 3: A mosaic from Pompeii detailing a scene at Platoʼs Academy.

The Renaissance (meaning rebirth), a period from about the fourteenth to seventeenth 

centuries, began in Florence in the late middle ages and spread throughout Europe. The 

Renaissance was a cultural movement, characterized by the resurgence of learning based 

on classical sources, and a gradual but widespread educational reform. Education became 

heavily focused rediscovering Ancient Greek classical writing about cultural knowledge 

and literature [1]. Music was no longer studied as a field of mathematics. Instead, 

theoretical music became an independent field, yet strong links with mathematics were 

maintained [4]. 

It is interesting to note that during and after the Renaissance, musicians were music 

theorists, not performers. Music research and teaching were occupations considered more 

prestigious than music composing or performing [4]. This contrasts earlier times in history. 

Pythagoras, for example, was a geometer, number theorist and musicologist, but also a 

performer who played many different instruments.
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In the seventeenth and eighteenth centuries, several of the most prominent and significant 

mathematicians were also music theorists [4]. René Descartes, for example, had many 

mathematical achievements include creating the field of analytic geometry, and developing 

Cartesian geometry. His first book, Compendium Musicale (1618) was about music theory 

[4]. Marin Mersenne, a mathematician, philosopher and music theorist is often called the 

father of acoustics. He authored several treaties on music, including Harmonicorum Libri 

(1635) and Traité de lʼHarmonie Universelle (1636) [4]. Mersenne also corresponded on 

the subject with many other important mathematicians including Descartes, Isaac 

Beekman and Constantijn Huygens [4]. 

Figure 4: René Descartes, a brilliant mathematician.

S. Shah, 7177223

MATH30000! 14



John Wallis, an English mathematician in the fifteenth and sixteenth centuries, published 

editions of the works of Ancient Greeks and other academics, especially those about 

music and mathematics [4]. His works include fundamental works of Ptolemy (2 AD), of 

Porhyrius (3 AD), and of Bryennius who was a fourteenth century Byzantine musicologist 

[4]. Leonhard Euler was the preeminent mathematician of the eighteenth century and one 

of the greatest mathematicians of all time. While he contributed greatly to the field of 

mathematics, he also was a music theorist. In 1731, Euler published Tentamen Novae 

Theoriae Musicae Excertissimis Harmoniae Princiliis Dilucide Expositae [4]. In 1752, Jean 

dʼAlembert published works on music including Eléments de Musique Théorique et 

Pratique Suivant les Principes de M. Rameau and in 1754, Réflexions sur la Musique [4]. 

DʼAlembert was a French mathematician, physicist and philosopher who was instrumental 

in studying wave equations [4].

2 . 2  W H Y  A R E  M A T H E M A T I C I A N S  S O  F A S C I N A T E D  B Y  

M U S I C  T H E O R Y ?

Mathematicians fascination with music theory are explained clearly and precisely by Jean 

Philippe Rameau in Traité de lʼHarmonie Réduite à ses Principes Naturels (1722). Some 

musicologists and academics argue that Rameau was the greatest French music theorist 

of the eighteenth century [4]. Rameau said:
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“Music is a science which must have determined rules. These rules must be 

drawn from a principle which should be evident, and this principle cannot be 

known without the help of mathematics. I must confess that in spite of all the 

experience I have acquired in music by practicing it for a fairly long period, it is 

nevertheless only with the help of mathematics that my ideas became 

disentangled and that light has succeeded to a certain darkness of which I was 

not aware before.” 1 [4]

Figure 5: The title page of Rameauʼs work Traité de lʼHarmonie 
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avouer que, nonobstant toute lʼexpérience que je pouvais mʼêtre acquise dans la musique pour lʼavour 
pratiquée pendant une assez longue suite de temps, ce nʼest cependant que par le secours de 
mathématiques que mes idées se sont débrouillées, et que la lumière y a succédé à une certaine obscurité 
dont je ne mʼapercevais pas auparavant.”



Mathematicians have been attracted to the study of music theory since the Ancient 

Greeks, because music theory and composition require an abstract way of thinking and 

contemplation [4],[5]. This method of thinking is similar to that required for pure 

mathematical thought [4],[5]. Milton Babbitt, a composer who also taught mathematics and 

music theory at Princeton University, wrote that “a musical theory should be statable as 

connected set of axions, definitions and theorems, the proofs of which are derived by 

means of an appropriate logic” [4].

Those who create music use symbolic language as well as a rich system of notation, 

including diagrams [4]. In the case of European music, from the eleventh century, the 

diagrams used in music are similar to mathematical graphs of discrete functions in two-

dimensional Cartesian coordinates [5]. The x-axis represents time, while the y-axis 

represents pitch. See Figure 6. 

Figure 6: A musical graph. The time that has elapsed as the music is played is 

represented by the x-axis. The pitch of the notes are given by the y-axis, with extra 

information being provided by the key signature. The notes themselves represent the 

coordinates. 

The Cartesian graph used to represent music was used by music theorists before they 

were introduced into geometry [4]. In fact, many musical scores of twentieth century 

musicians have many forms that are similar to mathematical diagrams. 

x = time

y 
= 

pi
tc

h
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At the beginning of a piece of music, after the clef is marked, the time signature is marked 

by a fraction on the music staff [5]. Common time signatures include 2/4, 3/4, 4/4. and 6/8. 

The denominator of the fraction, is the unit of measure, and used to denote pulse. The 

numerator indicates the number of these units or their equivalent included in the division of 

a measure2. Groups of stressed and relaxed pulses in music are called meters. The meter 

is also given in the numerator of the time signature [5]. Common meters are 2, 3, 4, 6, 9, 

12 which denote the number of beats or pulses in the measure [5]. For example, take the 

time signature 3/4. Each measure is equivalent to three (information from the numerator) 

quarter notes (information from the denominator). The count in each measure would be: 1, 

2, 3. The 1 is the stressed pulse, while the 2 and 3 are relaxed. The time signature 3/4 is 

common in waltzes [5]. 

Besides abstract language and notation, mathematics concepts such as symmetry, 

periodicity, proportion, discreteness, and continuity make up a piece of music [4]. Numbers 

are also very instrumental, and influence the length of a musical interval, rhythm, duration, 

tempo and several other notations [4]. The two fields have been studied in such unison, 

that musical words have been applied to mathematics. For example, harmonic is a word 

that is used throughout mathematics (harmonic series, harmonic analysis), yet its origin is 

in music theory [4]. 

Itʼs been discussed that throughout history, mathematicians have long been fascinated 

with music theory. This concept will be further developed in the final section of this report, 

which suggest mathematics is, like music, a form of art.
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3.0 The Mathematics of Music
Questions and problems arising in music theory have constituted, at several points in 

history, strong motivation for investigations in mathematics and physics. This section will 

explore the use of mathematics to explain the phenomena in music. 

Initially, Pythagorean scales will be discussed. Before the introduction of the tempered 

scale, different scales existed and were used for different kinds of music. From the 

perspective of European music, Pythagoras is referred to as the first music theorist, so it is 

fitting to discuss his Pythagorean scale. The move away from Pythagorean scales and 

tuning will then be discussed. Finally, compositional techniques that are steeped in 

mathematics (the golden ratio and the circle of fifths) will be discussed. 

3 . 1  P Y T H A G O R A S  A N D  T H E  T H E O R Y  O F  M U S I C  

I N T E R V A L S

When human ears hear a note, they are really perceiving a periodic sequence of 

vibrations; sound enters our ears as a sine wave, which compresses the air in a period 

pattern [6]. The frequency of this sine wave is defined by the frequency at which maximum 

and minimum air pressure alternate per second [6]. Sounds, including notes played by 

instruments, do not reach our ears in their pure, basic sound wave. Instead, the noteʼs 

sound wave is accompanied with overtones. An overtone is a note whose frequency is an 

exact multiple of the fundamental [6]. Ancient Greeks were not aware of the power of 

overtones, which were discovered in 1636 by the French mathematician Marian Mersenne 

[6]. Then, in 1702, Joseph Sauveur studied overtones in great detail. In 1878, the physical 

properties of overtones were exhaustively discussed by John Strutt, 3rd Baron Rayleigh 

(1842-1919), in his book (a classic in the field of acoustics even today) Theory of Sound 

[6]. He discovered that the degree to which overtones enrich their fundamentals is 
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responsible for the specific timbre and quality of sound produced by a musical instrument, 

which includes the voice [6].

A musical interval is the ratio of the frequency of the sound waves of two tones, a 

fundamental and a second tone that is either a step lower or higher in pitch [6]. These two 

notes would be sounded together, or immediately after each other. The most basic musical 

interval is the prime, where the fundamental note is played in comparison to itself [7]. The 

ratio of this frequency obviously 1:1. 

The next interval (second most basic), is the octave, where the fundamental relates to a 

second note that has double the frequency of the fundamental. The ratio of the 

fundamental and second note when they differ by an octave is 1:2. This second note, is an 

overtone. The higher note of the octave is now the new fundamental note. All overtones 

related to this new fundamental, would still be the overtones of the original fundamental 

[6]. After the prime interval, the octave is the second most consonant (pleasant sounding) 

interval, because our human ears hear all sounds generated by these two tones as 

belonging together [7]. When sounded together or right after each other, the two tones of 

an octave sound the same to our ears; the two notes are heard to be equivalent, if the 

frequency of one is double the frequency of the other [7]. From any fundamental, the 

second note that makes a musical interval must sound at least as high as this first tone, 

but sound lower than its octave [6].

In [2], it is explained that the interval of a fifth corresponds to the numerical ration 3:2. This 

can be calculated by beginning with the overtone series of D. The overtone that follows 

after the octave is A, which is three times the frequency of D. If this A is played one octave 

lower, then the resulting interval D-A corresponds to the numerical ration 3:2. 
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Pythagoras, the first real music theorist3, and his school of thought, were the first to made 

this important discovery [4]. Pythagoras found the relation of musical intervals with ratios 

of integers, by using the interval of the fifth to create further intervals. Described by a 

Masonic4 biographer of Pythagoras, Jamblichus in his writing:

“[Pythagoras was] reasoning with himself, whether it would be possible to 

devise instrumental assistance to the hearing, which could be firm and unerring, 

such as the sight obtains through the compass and rule.” [4]

How did Pythagoras make this discovery two thousand years ago, when the theory of 

overtones was not known? He used experimentation and mathematics. Walking through 

the shop of a man who works with bronze, Pythagoras heard different sounds produced by 

hammers hitting an anvil [4]. He implemented his notion of consonance and dissonance, 

the fact that two notes donʼt always necessarily sound good together. He noticed that the 

pitch of the musical note that was produced by a particular hammer depended not on the 

magnitude of the stroke or place the anvil was hit, but rather on the weight of the hammer 

[4]. The musical interval between two notes that were produced by two different hammers, 

depended only on the weights of the hammers, and in particular the consonant musical 

intervals (which, in Ancient Greek music, was the intervals of the octave, the fifth, and 

fourth), corresponded with weights to fractions, 2/1, 3/2, and 4/3 respectively [4]. 

Pythagoras conducted a series of experiments, as explained in [4], using different 

instruments to confirm the relationship between musical intervals and fractions. 
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For example:

• He listened to the pitch produced by the vibration of strings that have the same 

length. Pythagoras suspended these strings from one end and attached weights 

to the other lose ends. 

• He listened to the pitch of strings, all of different lengths, that were stretched end 

to end then like an instrument.

• He listened to the pitch of notes played on popes and wind instruments.

• Pythagoras considered a collection of vases, each partly filled with different 

quantities of the same liquid. He observed them on “rapidity and slowness of 

movements of air vibrations” [4]. Then, he hit the vases in pairs and listened to the 

harmonies produced. He associated numbers to consonances. Pythagoras 

concluded that the octave, fifth and fourth correspond respectively to the ratios 

2/1, 3/2, 4/3 in terms of quotients of levels of liquid. 

All these experiments agreed with Pythagorasʼ hypothesis, that musical intervals 

correspond to defined ratios of integers in an immutable way, whether the integers were 

the length of pipes, strings or weights. These experiments conducted by Pythagoras had 

results so accurate, that when his experiments were repeated and reinterpreted by 

acousticians in the seventeenth century, his results held true [4]. The ideas and 

observations by Pythagoras and his school established the relationship between music 

intervals and ratios of intervals. 

Once Pythagoras established the ratio of the octave and the fifth, he used these 

relationships and simple mathematics to obtain further intervals. An explanation of the 

calculation of such intervals was explained in [6], and is summarized as follows.
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The second:

The interval D-A is the fifth, with D being the fundamental. When A is the 

fundamental, the interval A-E is the fifth. By a factor of 3/2, E is higher than A, 

and A is higher than the original fundamental D. Thus, to comparing the 

frequencies of D and E, all that is required is multiplication. 

∴ the frequency ratio of E-D

= (3:2) × (3:2) 

= 9:4

E must now be transposed down one octave. Recall that the frequency ratio of 

the note one octave below the fundamental and the fundamental itself is the 

ratio 1:2. Multiplying again gives the required ratio.

∴ the frequency ratio of D-E

= (9:4) × (1:2) 

= 9:8

⇒ any interval with the ratio 9:8 is a second

The sixth:

The interval E-B is the fifth, with E being the fundamental. By a factor of 3/2, the 

frequency of B is higher than E. 

∴ the frequency ratio of D-B 

= (E-B) × (D-E)

= (3:2) × (9:8) 

= 27:16

⇒ any interval with the ratio 27:16 is a sixth
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The fourth:

When G is the fundamental, D forms a fifth and the frequency ration G-D has 

the ratio 3:2. Inverting this ration, D-G becomes 2:3 (the reciprocal was taken). 

Transposing G up an octave, together with the original D a fourth is formed:

∴ (2:3) × (2:1) 

= 4:3

⇒ any interval with the ratio 4:3 is a fourth

The seventh:

The fundamental C with G forms a fifth. The note C frequency ratio of 2:3 with 

G, which is higher than the original fundamental D by a factor of 4:3 when 

transposed up an octave.  

∴ the frequency ratio of C and D 

= (2:3) × (4:3) 

= 8:9

⇒ any interval with the ratio 8:9 is a seventh

The third:

The fundamental F with C forms a fifth. The frequency of F is lower than C by a 

factor of 2:3. 

∴ the frequency ratio F-D 

= (2:3) × (16:9) 

= 32:27

⇒ any interval with the ratio 32:27 is a third
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Figure 7: Some of the frequency ratios created by the Pythagorean method of stacking 

fifths.

Pythagoras used these intervals to create an octave scale of whole tones [6]. On a piano, 

this scale would be each white note in the octave. Creating a Pythagorean scale is an 

iterative process, where pure fifths are essentially built on top of one another [4]. This 

process can give an infinite number of notes, but it is reasonable to stop after one octave 

has been divided into seven intervals. 

Table 1: The frequency ratios and corresponding notes to make a Pythagorean whole tone 

scale, with the note D as the fundamental.

Note D E F G A B C D

Freq. 
Ratio 1 9/8 32/27 4/3 3/2 27/16 16/9 2
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Figure 8: The notes of one octave of the Pythagorean whole tone scale labeled on the 

piano.

The semitone step (the minor second):

Looking at the piano keyboard above, evidently the smallest difference between whole 

tones exists between the notes E and F, and B and C. 

The interval D-E is a second, so multiplying the frequency of E by 8:9 gives the 

frequency of D. The interval D-F is a third, so multiplying the frequency of D by 

32:27 gives the frequency of F. 

∴ the frequency ratio E-F 

= (8:9) × (32:27) 

= 256:243

The inversion of the interval B-D (a sixth) multiplied by the seventh D-C gives 

the frequency ratio for B-C.

∴ the frequency ratio B-C

= (16:27) × (16:9) 

= 256:243

D   E    F   G    A   B   C   D
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In both of these cases, the resulting frequency ratio is 256:243, and is known either as the 

semitone step, or the minor second. This ratio tells us that every 256th overtone of the 

lower tones (E and B) coincides with every 243rd overtone of the higher tones (F and C)! 

[6] 

Now, the rest of the semitones can be added to the established whole tones, changing the 

diatonic scale to a chromatic one [6]. This means that the white keys on the piano are 

supplemented by the black ones. To do this, fifths continue to be added or moved 

downwards in intervals of fourths and transpose the tones obtained this way until they lie 

within the necessary octave [4].  

The Pythagorean scale has many beautiful properties. Fourths and fifths, the building 

blocks of all other intervals, are all pure sounds [4]. For example, the value of the interval 

between a second and a fifth note is:

(3/2) × (9/8) = 4/3

Pure intervals were so highly valued, that providing a scale with the maximum number of 

pure intervals because a huge area of research in early music theory [4]. It is, however, 

impossible to have only pure intervals in a scale, unless it is short [4]. This is the main 

problem with the Pythagorean scale. On instruments whose ranges cover several octaves 

(such as the guitar or harpsichord), perfect fifths must be built on top of each other to 

create a Pythagorean scale that spans more than one octave [4]. For example, it would be 

expected that catenation of twelve perfect fifths (or (3/2)12) gives the same numerical value 

as a seven octaves (or (2/1)7). Analyzing this mathematically, it is evident that the two do 

not equate:

(3/2)12  ≠  (2/1)7

129.7463379 ≠ 128  
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In fact, 

(3/2)12  ≻  (2/1)7

129.7463379 ≻ 128 

The difference between the two intervals is called the Pythagorean comma, and is 

calculated as follows:

(3/2)12 ∕ (2/1)7 ≃ 1.013643

The Pythagorean comma is a very small difference, and on most instruments such as the 

piano, it cannot be noted [5]. The Pythagorean comma describes, for example, the 

difference between the notes G♯ and A. On a piano keyboard, they share the same black 

key. Instrument creators have decided not to enrich the scale, and have not stacked more 

fifths on top of each other [4] (more black keys have not been added to the piano 

keyboard). On instruments such as the violin, for example, such a discrepancy can be 

heard. The make-up of the instrument, however is such that this problem can be avoided. 

The strings allow for greater precision so a musician cannot commit the sin of enharmonic 

change and play a G♯ as an A. 

The Pythagorean scale is one example of a scale from Ancient Greece. It is founded using 

fourths and fifths, the interval its creators deemed to be the most pure. Defining and 

creating a scale evidently involves mathematical calculations, but also relies on arbitrary 

thought, such as which interval is believed to be the purest. The Ancient Greeks had many 

scales, as each were adopted to different melodies and different types of instruments [4]. 

The choice of scale determined the character and psychological effect of the music on the 

listener [4]. This subtle dependence of a piece of music on the scale chosen, lasted until 

the adoption of the tempered scale in European music. 
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3 . 2  T H E  M O V E  A W A Y  F R O M  P Y T H A G O R E A N  S C A L E S

Pre-renaissance music, such as that of classical Greece, included complicated systems of 

scales. Greek mathematical treatise contain descriptions of scales in terms of fractions, 

and the logic behind each definition is clearly discussed [4]. The Pythagorean scale is one 

such example that has been discussed in great detail in the previous section. An example 

of another scale, is one made by Aristoxenus (4 BC). Aristoxenus was an Ancient Greek 

philosopher and a student of Aristotle. He wrote about philosophy, ethics and music. While 

much of his work has been lost, parts of one musical treatise Elements of Harmony have 

been found. Aristoxenus created a systematic theory of scales that consist of tetrachords. 

Tetrachords are scales that are made up of four notes, which correspond to different 

divisions of fourths by tones and semitones [4]. These were short scales, but longer ones 

could easily be created by concatenating tetrachords. 

While the composition and creation of scales has differed, scales have always been 

considered the building blocks of musical composition (at least in tonal music, pre-

twentieth century European music) [4]. Itʼs been shown that the creation of scales is a very  

arithmetic process, yet scales are also a musical language. Many old music compositions 

are based on scales, and often contain fragments of scales in various forms. After the 

Renaissance, however, Western European classical music began to use a very limited 

number of scales [4]. Since the eighteenth century, thereʼs been general acceptance of the 

tempered scale [8]. There are two forms of the tempered scale: major and minor. The 

tempered scale divides the octave into twelve equal intervals. Two semitones make up a 

tone, and the distance between any two tones is a semitone. Each unit in a tempered 

scale is a tempered semitone, with a value of 12√2. Any two major scales (or two minor 

scales) are simply transpositions of each other on the set of pitches. The piano is an 

instrument which uses equal tempered scales. 
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The eight intervals of the octave have frequency ratios [5]:

1, f, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12

where f12 = 12 (⇒ f = 12√2) 

The interval, in semitones, between any two tones of the tempered scale is [5]:

12 × log2 (frequency ration)

Table 2: Intervals and frequencies (in cents) of the modern equal tempered scale. 

where: 1 semitone = 100 cents, 1 cent = 1200 log2 (f1∕f0)

Interval Cent
(from starting point)

unison 0

semitone or minor 2nd 100

whole tone or major 2nd 200

minor 3rd 300

major 3rd 400

perfect 4th 500

augmented 4th 
600

diminished 5th 
600

perfect fifth 700

minor 6th 800

major 6th 900

minor 7th 1000

major 7th 1100

octave 1200

! ! ! !
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An octave of a major tempered scale consists of the following pattern of whole tones (W) 

and semitones (S):

W, W, S, W, W, W, S

This scale can begin on any of the twelve frequencies in the octave. 

A minor scale has two forms. The harmonic minor scale:

W, S, W, W, S, (W + S = 3S), S

The melodic minor scale differs on the ascent (↑) and descent (↓):

↑: W, S, W, W, W, W, S

↓: W, S, W, W, S, W, W

Equal temperament is a controversial tuning system. On the one hand, it is very 

advantageous which is evident since it has dominated Western music for two hundred 

years. An equal tempered scale is perfectly suited to the design of a keyboard. These 

scales follow the same pattern, regardless of key allowing composers the freedom to 

modulate and transpose up or down without a change in the musical intervals [7]. In 

comparison, Pythagorean scales (and others before the introduction of equal 

temperament), maintained exact integer-ratio proportions to different intervals.

Another argument against equal temperament exists, on the other hand. Professor Ross 

W. Duffin eloquently argues against equal temperament in his book How equal 

temperament ruined harmony and why you should care [9]. He claims that equal 

temperament was a technique that began to be used two hundred years ago to attract 

people to play an instrument, yet in using the tempered scale, quality and depth in the 

music is lost [8]. A composition will sound flat. Prof Duffin argues in fact, that equal 

temperament was created to supply an expanding middle class population with 

instruments simple and easy enough that they could play themselves [8], [9]. Furthermore, 
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the compositional geniuses of two centuries ago, did not support this move in tuning 

system [8]. Bach wrote The Well-Tempered Clavier for irregular temperaments, working in 

a wide variety of keys [6]. Instruments in this work would not need to be retuned when you 

change keys. The mystical charm of many keys give this masterpiece depth far beyond 

that of compositions using equal temperament. In 1766, Bach was still having split key 

pianos (with seventeen keys) imported [8]. Haydn is another example of a seventeenth 

century composer who shunned equal temperament, since in 1802, he made an explicit 

note in the score of Op 77 No 2 Quartet that the celloʼs E♭ should be played as a D♯ [8]. 

3 . 3  R A M E A U  A D D S  T O  T H E  D I S C O V E R Y  O F  

P Y T H A G O R A S

Two centuries after Pythagoras, French the composer and theoretician Jean-Philippe 

Rameau made an important connection between music as an expressive, creative art, and 

mathematics as a rigorous, deductive science [4]. Rameau used Pythagorasʼ discovery 

about relationship between musical intervals and pairs of integers and enhanced it. He 

gave a musical context to the entire sequence of positive integers [7].
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Figure 9: A painting of Jean-Philippe Rameau, by Jacques André Joseph Aved, 1728.

Rameau believe that the infinite sequence of integers is elegantly contained in nature, 

masked as a series of frequencies [4]. When a rich body such as a voice or instrument 

vibrates, a long periodic variation of air pressure is created. The vibration, which is an 

acoustic wave, increases and multiplies. When this acoustic sound wave hits our 

eardrums, we hear a musical note. When a musical note, for example one that is produced 

by a vibrating string, is usually a superposition of a fundamental tones and overtones. The 

frequency of overtones is called the harmonic frequency [4]. Rameau discovered that the 

harmonic frequencies are multiples of the frequency of fundamental tones, and these 

multiples are given by the positive integers [7]. 
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Figure 10: An illustration of sound waves with different frequencies as time passes. The 

bottom, more condensed waves with greater oscillations have higher frequencies than 

those above.

For example, take the note C1, which corresponds to the lowest C key on the piano 

keyboard. The frequency of C1 is approximately:

% % % % f1 = 33Hz (cycles per second) 

The frequency of the corresponding overtones are multiples of f1, namely: 

% % % % f1, 2 f1, 3 f1, 4 f1, 5 f1, 6 f1 … 

Whose values in Hz are:

% % % % 33, 66, 99, 132, 165, 198 ...

and corresponding sequence notes are:

% % % % C1, C2, G2, C3, E3, G3 … 

Human hears can (in theory) hear the first four or five overtones on an instrument such as 

the organ. Astoundingly, Mersenne in Harmonie Universelle claimed he could hear the first 

nine [4]! 
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Rameauʼs theoretical work in sound theory is extremely important, but he could not have 

made such discoveries without the work of previous and other academics. In particular, he 

used the work of French mathematician Joseph Sauveur. Sauveur was deeply interested 

in music and acoustic theory, and has been credited with coining the term acoustique (he 

derived it from the Ancient Greek word ακουστός, which means “able to hear” [4]. 

Sauveur researched the correlation between frequency and musical pitch. Sauveur 

understood the phenomen of harmonics in music before Rameau, but it was Rameau who 

used it as the basis of his music teaching in his Traité de lʼHarmonie Réduite à Ses 

Principes Naturels [7]. All the theories Rameau developed and detailed in his writings, are 

based on simple rules which are derived from existence and the properties of the harmonic 

sequence. 

In his later work, Rameau argued that since the fundamental objects in mathematics are 

derived from sequences of positive integers, and since this sequence continues in music, 

mathematics is itself part of music [4]. Rameauʼs ideas unsettled other eighteenth century 

mathematicians, such as Castel and dʼAlembert, and a rift between these mathematicians 

developed [4].

Rameauʼs work, like that of Pythagoras, shed new light on the music theory and provided 

a foundation which others could use for their own research. Jacques Chailley, a famous 

musicologist and professor of music at the University of Paris, said of Rameau and 

Pythagoras:

“In 2500 years of written history, music has perhaps only known two genuine 

theoreticians and what the others did was only repackage or patch up their 

propositions. The first one in the VIst century before our era, was the fabulous 

Pythagoras. The other one died in Paris in 1764: this was Jean-Philippe 

Rameau.” [4]
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3 . 4  M U S I C  A N D  F I B O N A C C I

Music is evidently more than a collection of notes which create harmony. It is about rhythm 

and melody, and the changing of notes in relation to time. Interestingly, arithmetic and 

geometric patterns can be fond in music and its compositions if examined closely. 

Figure11:  A nineteenth century statue of Fibonacci in Camposanto, Pisa. 

Leonardo Fibonacci (also known as Leonardo de Pisa, or simply Fibonacci), was a 

mathematician from Pisa, Italy. In 1201, he developed a mathematical theory which 

constructs an infinite series of integers. A Fibonacci sequence begins with the numbers 1 

followed by a 1. Each successive term is constructed by adding the two previous terms. 
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For example, the first ten Fibonacci numbers are: 

% % % % ⇒ 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

A sequence of Fibonacci ratios is the series of numbers produced when each Fibonacci 

number is divided by the number that precedes it. 

Figure12: Dividing a line into segments according to the Fibonacci ratio, implies that the 

ratio of the length of a to a+b is the same as the ratio of the length of b to a. 

The first seven ratios are:

r(1) = 1/1 = 1

r(2) = 2/1 = 2

r(3) = 3/2 = 1.5

r(4) = 5/3 = 1.67

r(5) = 8/5 = 1.6

r(6) = 13/8 = 1.625

r(7) = 21/13 =  1.6125

These ratios converge to a constant limit which is called the golden ratio (also called the 

golden proportion, or golden section). The golden ratio is an irrational number which is 

defined as:

% % % % ψ = 1.61803398…
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One can observe that the odd terms of the Fibonacci ratio (the 1st, 3rd, 5th… terms) are all 

less than the golden ratio, while the even terms of the Fibonacci ration (the 2nd, 4th, 6th … 

terms) are all above the golden ration. 

The golden ratio is a powerful tool as it has a geometric interpretation. Dividing a line into 

two unequal parts follows the geometric application of this ratio if the proportion of the 

length of the whole line to the larger line segment is equal to the proportion of the bigger 

line segment to the smaller line segment. 

Figure 13: Ancient architectural marvels, such as the Greek Parthenon, used the power of 

the golden ration. 
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The golden ratio is meant to make objects aesthetically pleasing. It is found in geometric 

forms, such as in the length of the diagonal in relation to the length of the side of a 

pentagon. It is found in abundance in nature, such as in the length of a tree trunk in 

relation to the diameter of a tree, or in the physical properties of starfish and pinecones. 

When used, the golden ration makes works of art appear balanced and beautiful. It is 

found: throughout architecture, such as in mosques and the Acropolis; in book design; 

photographs; and paintings. Artists do not always consciously use the golden ratio, but 

sometimes its use is a result of impression of beauty and harmony. 

The golden ratio is a concept that is also found in music. The golden section is often used 

to generate rhythmic change or to develop a melody line, and is found in the musical 

timing of compositions. The climax of a song, for example, is often found at the point of the 

golden ration (approximately 61.8% of the way through a composition). This is often also 

the place where significant changes in key or chord structure are placed [10]. A thirty-two 

bar song for example, would have its climax at bar twenty. Deliberate application of the 

golden ration can be seen in Schillenger System of Musical Composition. It can also be 

seen in the first movement of Béla Bartókʼs piece Music for Strings, Percussion and 

Caleste where the climax is at the fifty-fifth bar of an eighty-nine bar composition. Many of 

Chopinʼs works (his Nocturnes and Études) are also based on the golden ration. The 

greatest musical expression and technical difficulty is in the last third of these works. 

Finally, there is much debate on whether Mozart used the golden section in his work. 

Mozart was a musical genius, yet no one knows how he created his music. Did he use 

inspiration from daily events, or did he compose measures of music from mathematical 

equations? [10] 

S. Shah, 7177223

MATH30000! 39



Figure 14: A watercolour painting by Carmontelle ca. 1763, of the Mozart family on tour. 

From left to right: Leopold, Wolfgang, and Nannerl.

Mozart was a child prodigy, and evidence exists that he was interested in mathematics. 

His sister claimed that “Wolfgang talked of nothing, thought of nothing but figures” during 

his school days [10]. In fact, in the margins of some of his compositions such as Fantasia 

and Fugue in C Major, he made a note of mathematical equations [10]. Studies have been 

performed to see if Mozart did indeed use this golden ratio [10]. Results indicate that he 

did, but only in some of his compositions. While this does not prove that Mozart 

purposefully employed the golden ration, it does imply that in addition to a great interest in 

music, Mozart was a genius who also enjoyed playing with numbers [10]. Analyzing the 

works of Beethoven, Debussy and other musical innovators in different musical periods 

shows the presence of Fibonacci sequence. 
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Use of the golden ratio is also seen in the design of different instruments, including string 

instruments such as the violin. The piano is designed using the golden ratio as well. 

Modern music tools, such as speaker wires, are also designed using the golden ratio. 

Finally, musical scales are based on Fibonacci numbers [5]. Disregarding the first one of 

the Fibonacci sequence, the next six Fibonacci numbers are: 1, 2, 3, 5, 8, 13.

% % % %

1st note ! root tone of the scale

2nd note ! whole tone two steps away from the root tone

3rd and 5th ! make the basic foundation of chords; based on the whole tone

8 ! eight notes make up a scale

13 ! number of notes in span of any note through its octave

The dominant note of a major scale is the fifth note. This is the eighth note of all thirteen 

notes that make up the scale, and is related to the golden ratio.

⇒   8/13 ≃ ψ

This section outlined a the use and definition of the golden ratio. It is a mystical irrational 

number, that appears throughout nature, art, architecture, music, etc. Artists and musicians 

alike exploit its beauty, either intentionally or unintentionally, to create the most 

aesthetically pleasing work possible.
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3 . 5  C I R C L E  O F  F I F T H S

The circle of fifths is a concept in music theory which geometrically describes the 

relationship of the twelve tones of the chromatic scale with key signatures in major and 

minor keys [7]. It illustrates pitch classes of chromatic scales. A circle of fifths is a useful 

tool for composers when creating harmonizing their work, creating melodies, building 

chords and moving to different keys in compositions [7]. A perfect fifth is a distance of five 

steps within a scale, this concept applies to both major and minor scales.

Figure 15: The circle of fifths has been a tool to help composers for hundreds of years. 

Nikolay Diletskyʼs circle of fifths in Ideal Grammatiki Musikiyskoy, Moscow 1679.

The circle begins at the top with C major and A minor, and no sharps or flats. Moving 

clockwise from the top, the notes ascend by fifths and a sharp in the key signature is 

gained until the maximum seven sharps is reached. Moving anti-clockwise, the notes 

descend by fourths and a flat is gained until the maximum seven flats is reached. At the 

bottom of the circle, six sharps and six flats overlap. This is the enharmonic key 

signatures. 
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Figure 16: A circle of fourths and fifths diagram for major and minor keys of a diatonic 

scale. Moving clockwise around the circle gives a circle of fifths. Moving anti-clockwise 

gives a circle of fourths.

Additionally, beginning at any pitch on the circle of fifths, one passes all twelve tones and 

returns to the beginning pitch of ascents are by the interval of an equally tempered perfect 

fifth. Ascending by just tuned perfect fifths, results in the circle not being completely closed 

by the amount of the Pythagorean comma. Reversing direction, tones can be separated by 

a perfect fourth. 
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The circle of fifths is typically used in the composition of classical music, while the circle of 

fourths is used in the analysis of jazz music [7]. The circle of fifths and fourths represents 

diatonic scales, or scales which are made up of seven notes, five of which are whole 

steps, and two are half steps with the half steps being maximally separated. The outside 

circle represents the major diatonic scales. Rotating this outside circle three spots to the 

left creates the inner circle. This circle shows the minor diatonic scales.

Music often modulates, or changes from one key, tonic or tonal centre to another [10]. 

Modulations articulate or create structure and form in many pieces. They also add depth 

and interest to a composition, are are instrumental in keeping the audience captivated in a 

musical performance. The circle of fifths is a vital tool for composers, as music often 

modulates by moving between adjacent scales on the circle of fifths [10]. A diatonic scale 

has seven pitch classes, each being a perfect fifth apart from itʼs adjacent class on the 

circle of fifths. Adjacent classes share six of their seven notes in a diatonic scale, and the 

uncommon note differs only by a semitone. Modulating by a perfect fifth is therefore 

discrete and easy, as only one note would change by a difference of a semitone [10]. This 

modulation does not necessarily need to include a change in the key signature [10]. For 

example, a piece in A major may modulate to E or D major, the two scales adjacent to A 

major on the circle of fifths. Moving to E major, the note D would become sharp. Moving to 

D major, the G sharp from the A major scale would no longer be a sharp.
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4.0 Messiaen: The Mathematics of his Musical Language
Olivier Messiaen (1908-1992), a French composer and organist, was a great contributor to 

contemporary music and thinking. Messiaenʼs long musical career includes thirty seven 

years of teaching at the Paris Conservatoire (1941-1978), and a lifetime of research in 

fields of music analysis, composition, rhythms (ancient and modern), birdsongs and 

theology [11]. Although Messiaenʼs techniques make his music distinctive and original, his 

brilliance extended beyond his technique and theory, but deeply affects universal 

questions of creativity and inspiration [11]. 

Figure 17: Olivier Messiaen

S. Shah, 7177223

MATH30000! 45



Messiaenʼs relationship with music stems from his childhood. After he had taught himself 

to play the piano, he began formal lessons [12]. At the age of eleven, he attended the 

Paris Conservatoire where he made excellent academic progress [12].  His vast repertoire 

of studied works include the orchestral works by Heitor Villa-Lobos, Jean-Phillippe 

Rameau, Isaac Albeniz, Chopinʼs Études, Mozartʼs instrumental works and operas, Claude 

le Jeuneʼs Le Printemps. Messiaenʼs greatest inspiration, however, came from the works 

(especially operas) of Claude Debussy, who he said had “probably the most decisive 

influence on me” [12]. Both Chopin and Debussy used some of what Messiaen called 

MOLT throughout their work, which shows the great affect they had on Messiaenʼs style 

and technique. 

Figure 18: Debussy performing at the piano, 1893.

In 1940 when the Nazis occupied Germany, Messiaen was made a prisoner of war. 

Throughout his captivity, he met with small groups of prisoners to discuss his creative 

ideas, especially his new symmetric scales (modes of limited transposition, or MOLT) and 

Ancient Greek rhythmic patterns [11]. It was in this camp that Messiaen composed the 

remarkable Quatuor pour la fin du temps (Quartet for the End of Time) for the four 
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available instruments: the piano, violin, cello and clarinet. After his release, Messiaen 

became a professor at the Paris Conservatoire until his retirement in 1978. He has an 

extensive list of distinguished pupils, including Quincy Jones, Robert Sherlaw-Johnson, 

Yvonne Loriod5 and Iannis Xenakis. Greek Xenakis, for example, was a famous composer 

who Messiaen provided with encouragement to take exploit and utilize his mathematical 

and architecture background in his music [13].

Figure 19: Photography of Quincy Jones, an American music conductor, record producer, 

musical arranger, and musician. Quincy Jones attended the Paris Conservatoire and was 

influenced by the teaching of Messiaen. Jones spent five decades in the entertainment 

industry, earning 75 Grammy Award nominations, 27 Gramm Awards including the 

Grammy Legend Award in 1991. He produced Michael Jacksonʼs album Thriller, which 

sold +110million copies world wide. Jones also conducted the hit charity song 

We Are the World.
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Messiaen was fundamentally a harmonist who was interested in rhythm [11]. His 

instrumental music is best known for his slow pace and strange modal melodic contours, 

sensuous harmonies, unheard of timbres and registrations, and exotic rhythmic formulae 

[11]. He was very well read and travelled, and paid attention to the works and ideas of both 

past and contemporary composers. Additionally, he absorbed many exotic musical 

influences, which is evident in his compositions. Messiaenʼs work can be described as 

being outside of tradition, but greatly influenced by it [11]. Throughout his work he denies 

western conventions, but the creators of the western masterpieces are who he is most 

influenced by [11]. In 1942, his unique techniques which constantly evolved were 

summarized by himself in a treatise called Technique de Mmn Language Musical 

(Technique of my Musical Language). This work influenced modern musicians because of 

his investigations into Greek meters from antiquity, modality, and palindromic rhythmic 

techniques. 

Messiaenʼs knowledge on realms beyond his expertise of music was plentiful. He was 

curious about astronomy, and the imagery and symbolic meaning of the stars, planets and 

constellations were evoked in his work [11]. This is evident, for example, in Amen des 

Étoiles and de la Planète à lʼAnneau which are in Les Visions de lʼAmen which is 

composed for the piano. His Roman Catholic faith and nature also both affected his work 

[14]. Birds he believed were the greatest musicians of all and had the most beautiful 

musical language [12]. As a result, Messiaen wrote several works resembling bird songs, 

but also incorporated transcriptions of bird songs in most of his music. 
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Messiaen gave much thought to every parameter of sound, including pitch, dynamics, 

duration, and timbre [11]. He was fascinated with time and rhythm, and it is his 

contributions regarding time and rhythm that Messiaen made his work so unique [12]. 

Messiaen compared how composers organize time to how sculptors shape matter. The 

ponder the overall rhythm of the work, and then relate the rhythm to a larger form [11].  It is 

these ideas and influences which he tried to portray in his unique and evolving 

compositional techniques, which formed the basis for his music. His special techniques 

were integrated into his musical style, yet he also found and absorbed foreign techniques, 

such as Ancient Greek and Hindu rhythms (Śārṅgadevaʼs list of one hundred and twenty 

rhythmic units called the deçî-tâlas). 

Of his music in The Technique of My Musical Language, Messiaen said:

“One point will attract our attention at the outset: the charm of impossibilities. It 

is a glistening music we seek, giving to the aural sense voluptuously refined 

pleasures. At the same time, this music should be able to express some noble 

sentiments (and especially the most noble of all, the religious sentiments 

exalted by the theology and the truths of our Catholic faith). This charm, at once 

voluptuous and contemplative, resides particularly in certain mathematical 

impossibilities of the modal and rhythmic domains.”6 [15]
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6 “Un point fixera dʼabord notre attention: le charme des impossibilités. Cʼest une musique chatoyante que 
nous cherchons, donnant, au sense auditif des plaisirs voluptueusement raffinés. En même temps, cette 
musique doit pouvoir exprimer des sentiments nobles (et spécialement les plus nobles de tous, les 
sentiments religieux exaltés par la théologie et les vérités de notre foi catholique). Ce charme, à la fois 
voluptueux et contemplatif, réside particulièrement dans certaines impossiblités mathématique des 
domaines modal et rythmique” (Messiaen, Technique de mon langage musical [Paris: Alphonse Leduc, 
1944], p.5)



Messiaenʼs belief that “a technical process had all the more power when it came up, in its 

very essence, against an insuperable obstacle” is the foundation for his technique, which 

he called the “charm of impossibilities” [15]. He uses the term “charm of impossibilities” to  

explain how in his musical language, “certain mathematical impossibilities, certain closed 

circuits, possesses a strength of bewitchment, a magic strength, a charm” [15]. His three 

principle innovations, modes of limited transposition (MOLT), non-retrogradable rhythms, 

and symmetric permutations describe this power. 

“Magical enchantment” in the musical impossibilities of his compositions, according to 

Messiaen, is a result of using mathematics to create structural symmetries in his musical 

language [15]. The MOLT are created by dividing an octave into symmetrical groups. It is 

impossible to transpose them to all twelve notes of the octave without returning to the 

original note of the first transposition [15]. Non-retrogradable rhythms are palindromically 

structured rhythms [15]. A palindrome is a pattern that is read the same backwards of 

forwards. It is impossible to play rhythm of this form without repeating the original order of 

values. It is not possible to generate an astronomical number of permutations without 

returning to the original one [15]. Each of these innovative impossibilities form a closed 

circuit, bringing each musical form back to the origin [15]. The power of Messiaenʼs charm 

was that it challenged an “insuperable obstacle” - the compositional limitation established 

in each of the three innovations. This effect gave his music an added dimension beyond 

time and sound7. Messiaen was using the language and tools of mathematics to overcome 

impossibilities in his musical language. These two of Messiaenʼs techniques, which are 

mathematical in their nature, will now be discussed: modes of limited transposition, and 

non-retrogradable rhythms.
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Section 5.3: Messiaenʼs Use of Mathematical Ideas to Convey Religious Ones. 



4 . 1  M O D E S  O F  L I M I T E D  T R A N S P O S I T I O N

“My passion for the sound-colour relationship drove me to work with these 

modes of limited transposition, which people did not understand either, because 

they thought it had to be an arithmetical problem. But first and foremost it is a 

colour phenomenon. Each mode has a precisely definable colour, which 

changes every time it is transposed.” [15]

Sound-colour and Messiaenʼs perception of colour is a structural element that is 

fundamental to his music. In fact, some of Messiaenʼs scores, Coulerus de la Cité 

Célestes and Des Canyons aux Étoiles for example, noted the colour used in the music 

[11]. He did this not to specify which colours should be heard, but to help the conductor 

direct and interpret the music. Messiaenʼs sources of inspiration, Claudio Monteverdi, 

Mozart, Chopin, Richard Wagner, Mussorgsky and Stravinsky all wrote strongly coloured 

music [12]. He claimed that only two types of music existed: music with colour, or music 

without colour [12], and at the heart of his music, there must be colour. Messiaen had an 

“inner vision”, and saw colour in his minds eye when he heard or imagined music [15]. 

Messiaen credits sound-colour relationship to his childhood, where he developed a strong 

imagination that was nurtured by fairy tales, poetry and Shakespeare [15]. His perspective 

of colour is also largely related to his experiences with dazzlement. As a ten year old child, 

he felt dazzled and overwhelmed with beautiful colours when he first saw the stained glass 

windows of the Sainte Chapelle in Paris [15]. This was a shining revolution for him, and he 

began to link colours with emotions [15]. 
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Figure 20: The Rose window in Sainte Chapelle, a Gothic Cathedral in the heart of Paris 

where Messiaen discovered the power of colour.

Messiaenʼs MOLT, which appeared from his earliest compositions, are themselves very 

mathematical, but his inspiration in their creation came from his sound-colour perception. 

They are a systematized description of Messiaenʼs use of sound-colour in his musical 

language [15]. Messiaen began to use these modes instinctively, and he was guided by 

the colours each provoked [15]. Each mode possessed its own characteristic colours, 

which change with each transposition [15]. The colours are formed by symmetrical 

formulas in the modal domain, and it is this aspect of symmetry that Messiaen emphasizes 

[15].
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Of his MOLT, Messiaen says:

“Based on our present chromatic system, a tempered system of twelve sounds, 

these modes are formed of several symmetric groups, the last note in each 

group always common with the first of the following group. At the end of a 

certain number of chromatic transpositions which varies with each mode, they 

are no longer transposable, giving exactly the same notes as the first.” [15]

Using the fact that one octave is made up of twelve semitones, and the number twelve is 

divisible by various numbers, Messiaen formed the modes by dividing the octave into 

different recurring groups, each being a tiny transposition [15]. Each group has an identical 

order of intervals, and the last pitch of one group serves as the first pitch of the next [15]. 

The original form of each mode is called the first transposition, and always begins on the 

note C. Each transposition thereafter, begins on subsequent chromatic steps [15]. Each 

group within a mode is constructed in the same way, so only a limited number of 

transpositions would result in new modes [15]. Thus Messiaen created the term “modes of 

limited transposition”. Messiaenʼs seven modes can be seen and characterized in the 

following Figure 21 and Table 3.
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Table 3: Characteristics of Messiaenʼs modes of limited transposition.

Mode Alternative 
Name

Number of 
Groups

Number of 
Notes per 

Group

Number of 
Transpositions

Number 
of Modes

1 whole-tone 
scale

6 2 2 1

2 octatonic, 
diminished, 
semitone-

tone

4 3 3 2

3 - 3 4 4 3

4 - 2 5 6 4

5 - 2 4 6 3

6 - 2 5 6 4

7 - 2 6 6 5
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Figure 21: Messiaenʼs seven modes of limited transposition.

Mode 1:

Mode 2:

Mode 3:

Mode 4:

Mode 5:

Mode 6:

Mode 7:
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The transposition of Messiaenʼs modes can be defined by chromatic transformation.A 

diatonic scale is a scale with seven tones, five of which are whole steps, and two are 

semitone (or half) steps, with the half steps being maximally separated [12]. That is, 

between each half step there is two or three whole tines. Taking a major diatonic scale and 

transposing each note up a semitone results in each transposition giving a new note. The 

first MOLT, the whole-tone scale, has the following notes: C - D - E - F♯- G♯- A♯-C. 

Transposing this scale up a semi-tone twice results in the same combination of notes: D - 

E - F♯- G♯- A♯- C - D. This is illustrated in Figure 22. The first mode therefore has only 

two transpositions. This process is repeated for each of the other modes.

Figure 22: A piano keyboard which illustrates the chromatic transposition from Messiaenʼs 

first mode of limited transpositions. Begin on the lowest C where the pink circle is. Each 

consecutive whole tone step is shown, and connected with a pink line. Transposing up two 

semitones, results in the combination of notes shown by in green. In Messiaenʼs first 

MOLT, two transpositions are all thatʼs needed to return to the original set of notes.
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Messiaen found and defined seven modes, but primarily used colours of four of them: 

modes 2, 3, 4 and 6 [15]. Additionally, mode 2 occurs most frequently in his music, and its 

first transposition evoked shades of violet, his favourite colour [15]. Looking at Table 3, 

mode 2 only allows three transpositions, which possessed for Messiaen a strong sense of 

the power of impossibilities. Mode 2 is made up of four groups of three notes (4 × 3 = 12), 

and each group contains a half step and then a whole step. The first transposition of mode 

2 begins on C, the second on D♯, the third on D, and the fourth on E♭. It is the fourth 

transposition that results in the original set of notes. Messiaenʼs colour descriptions of 

mode 2 are surreal and mystical, sentiments he wished to convey to the listener [15]. 

Interestingly, Messiaen found that his immediate predecessors used mode 2 in their work. 

In his treatise The Technique of My Musical Language, he points out its use by Rimsky-

Korsakov, Scriabin, Ravel and Stravinsky [15]. 

Messiaenʼs set of seven modes is a group that cannot be expanded or altered. Messiaen 

himself says that no more modes can be found. “Their series is closed, it is mathematically 

impossible to find others of them, at least in our tempered system of twelve 

semitones” [12]. There is an impossibility of further transpositions, and it was this limitation 

that fascinated Messiaen [15]. It is a huge limitation, thatʼs been created by the tiny 

transpositions used to construct the mode [15]. The charm of the modes, for Messiaen, lay 

in the impossibility of further transpositions: their power was “from the impossibility of 

transpositions and also from the colour liked to this impossibility” [15].
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4 . 2  N O N - R E T R O G R A D A B L E  R H Y T H M S

“It is one of my favourite discoveries. As in the case of many discoveries, I 

simply found something that already existed, potentially, if not in fact. However, 

in spite of the very ancient Hindu “dhenkî … and the antique Greek 

“amphimacer” … which are, in date, the first known non-retrogradable rhythms, 

no one thought of establishing a musical theory of these rhythms and even less 

of putting them into practice.”8 [15]

Messiaenʼs second creator of the “charm of impossibilities” makes use of the power of 

time. As a student, Messiaen discovered non-retrogradable rhythmic patterns in the study 

of ancient Hindu rhythms. More specifically, he found a list of one hundred and twenty 

deçî-tâlas from Sharngadevaʼs thirteenth century treatise, the Samgitaratnakara [15]. He 

studied these ancient rhythms from North India from “every possible angle” [15]. When he 

applied the technique of retrogradation, Messiaen discovered something astonishing; this 

discovery was, for him, the “primordial element of these ancient Hindu rhythms” [15]. He 

found the existence of a rhythmic palindrome, that is, a special rhythmic form that is the 

same whether it is read backwards or forwards. Messiaen thus named gave the name the 

“non-retrogradable rhythm” [15]. 
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8 Cʼest une de mes découvertes préférées. Comme cela se passe dans beaucoup de découvertes, je nʼai fait 
que retrouver une chose qui existant déjà, en puissance sinon en fait. Cependant, malgré le très ancien 
“dkenkî” hindou … et lʼantique “amphimacre” grec … qui sont, en date, les premiers rythmes non 
rétrogradables connus - personne ne pensait à établir une théorie musicale de ces rythmes et encore moins 
à les mettre en pratique” (Messiaen, Traité de rythme, de couleur, et dʼornithologie (1949-1992), vol. II [Paris: 
Alphonse Leduc, 1995], p.7)



Among the list of the deçî-tâlas, Messiaen identified what he considered to be the first 

known retro-gradable rhythm: the dhenkî, deçî-tâla number 58: SIS. Messiaen translated 

the Hindu notation into the rhythm:

According to Messiaen, 

% % % S = Hindu time value guru = ♩ = quarter note

% % % I = Hindu time value laghu =  ♪ = eighth note

The entire rhythm contains five mâtras, the Hindu nit for counting these rhythms, and 

which corresponds to five eighth notes [15]. 

In Traité de rythme, de couleur, et dʼornithologie, Messiaen describes this rhythm.

“Dhenkî is a Bengali word designating a devide for the shelling of rice. This 

device is generally naeuvered by two women, the one on the right, the other on 

the left, the device between them, just as here the laghu is placed between the 

two gurus. Our tâla maybe also reproduces the movement imparted to the 

device by the two women, during the shelling… It is without doubt very old, like 

all the rhythms based on the number five, the number of fingers of the hand. 

The Dhenkî (I emphasize this) is the oldest, the simples and the most natural of 

the non-retrogradable rhythms.”9 [15]
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9 “Dhenkî est un mot bengali désignant un appareil pour le décorticage du riz. Cet appareil est généralement 
manuvré par 2 femmes, lʼune à droite, lʼautre à gauche, lʼappareil entre les deux comme ici le laghu est 
placé entre les 2 guru. Notre tâla reproduit peut-être aussi le mouvement imprimé à lʼappareil par les 2 
femmes, pendant le décorticage… Il est sans doute très ancien, comme tous les rythmes basés sur le chiffre 
5, nombre des doigts de la main. Le Dhenkî (je le répète avec force) est le plus ancien, le plus simple et le 
plus naturel des rythmes non rétrogradables.”



Interestingly, Messiaen found the same rhythmic pattern in the Amphimacer or Cretic 

rhythm of Ancient Greece [15]. The rhythmic pattern in this case was:

In his music, Messiaen represented this rhythmic pattern as:

Upon further study of these Hindu rhythmic patterns, Messiaen created a principle for non-

retrogradable rhythms. For simple rhythms which have only three values (such as the ones 

previously discussed), this rhythmic pattern holds if the outer two values are identical, and 

surround what Messiaen called a “free central value” [15].

Figure 23: The placement of the free central value.

When rhythms are more complex and contain more than three values, Messiaen extends 

his principle: “all rhythms divisible into two groups, one of which is the retrograde of the 

other, with a common central value, are non-retrogradable” [15].  

free central value

"
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These rhythms are simple mathematical patterns, yet Messiaen believed they held 

philosophic and symbolic importance: they “drew their strength from a temporal 

impossibility” just as the modes “drew their strength from a resonant impossibility” [15]. In 

his academic writing, Messiaen detailed the three main strength of these patterns [15]:

(i) Because of the identical relationship of the two outer groups of values (which are 

retrogrades of each other), closed circuitry is formed. When the two outer values 

are linked by a common central value a non-retrogradable rhythm is formed. A 

retrograde can no longer exist, and the pattern is the same whether read from left 

or right.  

(ii) Because the patterns are rhythmic palindromes, they donʼt change whether 

played backwards or forwards, and simply repeat themselves. This creates an 

irreversibility of time; whether time moves forward or backwards, the events are 

the same.

(iii)Messiaen believed this powerful rhythm could be liked to our temporal life. The 

two outer groups in his analogy are the past and the future. The middle and free 

central value is the present. The rhythm links past to future with the present in 

between. Messiaen claims that we canʼt distinguish the past and future without the 

freedom of the present, so it is impossible to distinguish the outer groups of the 

non-retrogradable rhythm without the freedom of a common and central value.
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Figure 24: From Messiaenʼs Oiseaus Exotiques. This example illustrates Messiaenʼs use 

of ancient and exotic rhythms. The percussion shows use of Ancient Greek rhythms, and 

examples of Messiaenʼs interpretation of the decî-tâla from Śārṅgadeva are also present. 

This example also illustrates the accuracy and skill Messiaen had and used when detailing 

the bird song. He identifies the exact instruments in the music who immitate certain birds. 

The brass and wind instruments, for example, mimic the crested laughing thrush, while the 

xylophone mimics the orchard oriole.

Messiaen found this power not only in Hindu rhythms, but everywhere around him. Non-

retrogradable rhythms were present throughout life and could be found in: architecture and 

the arts; patterns in nature such as leaves, seashells, and butterfly wings; ancient magic 

spells which used palindromic words; and even in the human body [15].

 

Messiaen was a brilliant man. He held new and original ideas about rhythm, orchestration, 

modal harmony, melodic writing and form. His versatility and liberalism in sharing his 

knowledge and experience made him one of the most eminent music teachers of the 

twentieth century.
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5.0 Religious Symbolism and Mathematics in Music
Throughout history, music has complemented nearly every religion, and has been 

composed for religious use. For example, music is an integral part of Christian services. 

Early Christians sung songs such as Phos Hilaron (Greek for Gladsome Light) during early 

morning prayers. Christian church services and special ceremonies such as baptisms, 

include singing of hymns. Gospel choirs add a contemporary element to music with 

religious meanings. Sikhs listen to and sing sacred hymns from Guru Granth Sahib often. 

Native Japanese have ceremonial music called Shintō music. Rastafarian music, 

Nyabinghi, which connections religion and music has been popularized by artists such as 

Bob Marley. The music is played at worship ceremonies, to complement drumming, 

chanting, dancing, prayer and ganja smoking. Buddhists recite the sutra throughout 

meditation or Buddhist ceremonies. Evidently different religions use different forms and 

types of music to share religious messages or speak to God. 

Conversely, throughout history, composers from different cultures and civilizations have 

drawn inspiration from their religion. Popular musicians who currently use religious ideas 

to influence their work include: the rock band Kings of Leon, a pop act called the Jonas 

Brothers, and different rap artists including Mase. 

The connection of mathematics to religious symbolism in music will be analyzed in this 

section of the report. The mystical and religious symbolism of numbers will first be 

explored. Then, two religious composers who used elements of mathematics to convey 

spiritual messages will be discussed. First, J. S. Bach was one of the most important and 

influential European classical composers, and wrote music for the Lutheran Church. An 

argument will be presented regarding his use of numbers in his work. Second, Olivier 

Messiaen, whoʼs technique has been discussed in section four, was a deeply religious 
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man. He used a mathematical layout in his work to convey his spiritual messages. Both of 

these composers use mathematical ideas and techniques to communicate with God, and 

represent their intensely religious philosophies.

5 . 1  N U M B E R S  A R E  G O D ʼ S  T O O L S

Since Greek antiquity, numbers have always held religious meaning, and have been used 

to communicate and explain the world. In Ancient Greece, the Pythagoreans believed that 

the numbers 1, 2, 3 and 4 were Godʼs “playing cards” [6]. These four numbers were the 

building blocks of life; everything on earth was created using numbers. Throughout history, 

this concept has remained in the minds and ideas of academics. Galileo expressed his 

ideas as follows:

“The whole of Philosophy is written in this grand book, the universe, which 

stands continually open to our gaze. But the book cannot be understood unless 

one first learns to understand the language and to decipher the characters in 

which it is expressed. This language is mathematics, and its characters are 

triangles, circles, and other geometric figures. Without knowledge of these it is 

humanly impossible to understand a single word of this book and we are 

condemned to traipse around aimlessly, lost in a dark labyrinth.” [6]

Galileo claimed that mathematics (numbers in particular) is the language needed to 

understand the world around us. Galileo believed that mathematics was founded in 

geometry [6]. Geometry, which included lines, circles and points of intersection, can be 

detected by our senses. We can see the elements of geometry in our natural world. 

Numbers and arithmetic, in comparison, have no direct link to our senses [6]. We canʼt 

see, taste, smell or touch the number five for example. We can see the elements we count 

up to make five, and mentally connect it to the symbol 5. 
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Figure 25: A portrait of Galileo Galilei, by Giusto Sustermans.

David Hilbert, a brilliant mathematician, provided great insight into geometry: all of 

geometry can be explained and incorporated by numbers [6]. All the insights and 

conclusions provided by geometry, can be deduced from arithmetic without the tangible 

element of sight and touch previously required to detail geometry. This idea has been 

extended. Academics now believe that all of intelligible reality can be explained by 

numbers [6]. Numbers are the materials God used to create our reality; they are his 

“playing cards”. Mathematics is a religious tool of communication, which is also used to 

explain and understand the world around us.
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5 . 2  R E L I G I O U S  S Y M B O L I S M  A N D  N U M B E R S  I N  B A C H ʼ S  

M U S I C

Johann Sebastian Bach (1685-1750) was an exceptional German composer, organist, 

harpsichordist, violist and violinist. Bach is considered to be the supreme composer of the 

Baroque period of music. His unique musical style was influenced by his improvisation at 

the keyboard, exposure to music from different parts of Europe (North Germany, South 

Germany, Italy and France), and his devotion to the Lutheran liturgy. Sacred music is at 

the centre of his repertoire. He wrote violin concertos, suites, six Brandenburg Concertos, 

sacred cantatas, and large scale choral works. Some of his masterpieces include: 

Goldenberg Variations, The Well-Tempered Clavier, The Art of Fugue and Mass in B Minor.

Figure 26: A portrait by Haussmann of J.S. Bach, 1748.
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Bachʼs music, and that of other geniuses including Haydn, Beethoven and Schubert, 

displays intellectual depth, technical command and artistic beauty [6]. His work achieves 

an internal balance. Each phrase has a purpose, making the piece sound incomplete 

without it. His musical compositions achieve aesthetic perfection. A mathematical 

approach to Bachʼs music would question: can numbers explain the building blocks Bach 

used (either consciously or unconsciously) to construct his very religious work [6]? The 

Baroque era, of which Bach was the master, was very aware of the symbolic significance 

of numbers concerning religion. It soon became obvious that numerical relationships were 

significant in Bachʼs work [6]. Every note in Bachʼs work is purposeful. Did Bach use 

numerical relationships between sequences of notes to conceal religious messages 

throughout his composition?

Evidence exists that Bach was greatly influenced by his Martin Luther translation of the 

Bible [6]. He created a numerological-symbolist disguise for his religious ideas using 

knowledge from this translation of the Bible. In his Bible copy10, Bach underlined all 

passages concerning people or events that featured numbers [6]. In this interpretation, 

God is seen as a guiding figure, who details and executes his wishes using the tool of 

numbers, and this is evident in his resulting product. This inspired and motivated Bach, 

who concluded that God was placing numbers at his disposal [6]. With the numbers 

throughout this Bible translation, Bach was to construct his own religious music. These 

guiding points must then be evident in the work of Back.
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The background knowledge required to present Bachʼs religious ideas through numbers 

also came from the philosophy and rationalist thinking of Gottfried Wilhelm Leibniz 

(1646-1716) [6]. Leibniz was a mathematical genius, who possessed great originality in his 

thoughts. His influence on Bachʼs work can be seen in the compositionʼs permutation of 

notes. In this instance, Bach derived guidance from Leibnizʼ work De Arte Combinatoria 

(On the Art of Combination), which Leibniz published in 1666 (when he was barely twenty 

years old). One such permutation that is often found in Bachʼs music is that of A, B♭, C 

and B. This permutation occurs in several forms, particularly the ascent A - B♭- B - C, the 

decent C - B - B♭- A, and the cruciform B♭- A - C - B. These permutations are especially 

important, because in German notation, B♭ is represented by B, and B by H. Therefore, 

Bach interpreted these set of notes as A, B, C, H, and not as A, B♭, C, B. Notice that his 

interpretation of the set of notes form his name: B, A, C, H. It is Bachʼs personal musical 

signature, which is illustrated in Figure 27, that can be heard throughout his work [6].
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Figure 27: Bachʼs musical signature.

A famous instance of Bachʼs musical signature is seen in the final counterpoint of Die 

Kunst der Fuge (The Art of the Fugue), in which the final theme is B♭- A - C - B. The 

theme is then concluded with the notes C♯- D, which are the next two notes of Bachʼs 

ascending signature. The combination of notes in the final counterpart hints at the notion 

of exaltation, or the notion of highly praising someone or something. In his Bible, Bach has 

underlined the phrase: “Humble yourselves therefore under the mighty hand of God, that 

he may exalt you in due time” [6]. 

Bachʼs musical signature can also be seen in the first bar of the A minor prelude from Part 

II of Das Wohltemperierte Klavier (The Well-Tempered Clavier) [6].  This is seen in Figure 

28.
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Figure 28: Bachʼs name signature in the first bar of the A minor prelude from Part II of Das 

Wohltemperierte Klavier.

When played on the piano, the right hand treble begins with a sequence of expressive 

pain, incorporating the four signature notes in a descending sequence of semitones. The 

first pair of notes, C - B, differ by just a semitone, and the second pair of notes, B♭- A, 

also differ by a semitone. In the bass, six descending notes are added, each differing from 

the previous note by a semitone. Interestingly, there are ten notes in all, each of which 

corresponds to one of the ten commandments [6]. 

The final theme to be discussed which uses numbers symbolically, is in the last fugue from 

Part I of The Well-Tempered Clavier, which is written in B minor. This theme 11 is seen 

below in Figure 29. Another similar theme is found in the prelude before “Es ist 

vollbracht” (It is finished) in The Passion According to St John, which is also a prelude in B 

minor [6]. 

S. Shah, 7177223

MATH30000! 71

11 Listening to this theme and “Kyrie” theme of The Mass in B Minor, similarities are evident. This theme 
begins “with an arpeggiated B minor triad. The next twelve notes sigh their way through a series of six 
stepped minor seconds until the theme ends with an arpeggiated F♯ triad and the return to the dominant of  
F♯.”



Figure 29: Theme of the last discussion.

Numerological connections exist in the lengths of these themes, as Bachʼs musical 

signature. The prelude is exactly nineteen bars long, and the fugue in B minor from The 

Well-Tempered Clavier is seventy-six bars long (4×19 = 76). In addition, the fugue is 

composed of fourteen repetitions of the theme. Remarkably, if each letter of the alphabet 

was assigned a number in consecutive order, 14 = 2 + 1 + 3 + 8 = B + A + C + H. Bachʼs 

signature appears right through to the end of the final fugue of the masterpiece that is The 

Well-Tempered Clavier [6].

Numerological significance and representation is apparent in this fugue in another form: 

the fugue uses each of the twelve notes from the chromatic scale. In numerology, the 

number twelve is very symbolic [6]:

• 12 notes in the chromatic scale

• 12 zodiac signs

• 12 months in a year

• 12 = 3 × 4 

% % ⇒ 12 = 3 persons of the trinity × 4 points on the compass %

% % ⇒ 12 = 3 spatial dimensions × 4 elements of antiquity (earth, air, water, fire)

In Bachʼs number symbolism, inverting the order of numbers results in a reversal of 

meaning [6]. Back used the number 12 to represent Godʼs perfection of Creation, so the 

number 21 would thus mean the yearning for redemption. Interestingly, there are twenty-

one notes in the theme of the fugue [6]! 
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Furthermore, in the theme of the B minor fugue, the twelve tones number of occurrences 

of each note is different. The dominant of B (the tonic) is F♯, occurs five times and this 

which is the most frequent of all the notes. The remaining tones occur five times below the 

F♯, and eleven times above it. In numerology, five and eleven occur in tragic contexts. [6]

Itʼs been shown how Bachʼs work reflects his deeply spiritual ideas and values. His work is 

seeped with numerical symbolism, yet academics argue whether these symbolic 

messages are planted by Bach (consciously or unconsciously), or are simply ideas that 

are “forced” out of the work.

5 . 3  M E S S I A E N ʼ S  U S E  O F  M A T H E M A T I C A L  I D E A S  T O  

C O N V E Y  R E L I G I O U S  O N E S

Olivier Messiaen and his unique musical techniques have been previously been 

investigated. This section analyzes his use of mathematical structures to represent his 

religious ideas in his compositions.

Messiaen drew his strength and energy to both live and compose from three sources: his 

strong and intense faith in Roman Catholicism; his love of nature; and the myth of Tristan 

and Isolde [11]. All three sources of inspiration complemented each other. In particular, 

Messiaen aimed to depict what he called “the marvellous aspects of the [Roman Catholic] 

faith” in his work [16]. Messiaenʼs life long endeavour to “hi-light the theological truths of 

the Catholic faith” was achieved through his compositions [12] Through his work, he 

depicted aspects of theology such as sin, but also more joyous ideas such as divine love 

and redemption. He composed works to express Christʼs nativity, crucifixion, resurrection, 

ascension, transfiguration, and apocalypse [12]. Messiaen brought modern religious work 

out of the church and into the concert hall [11].
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The power of Messiaenʼs musical charm comes from the impossibilities of his three 

techniques: modes of limited transposition, non-retrogradable rhythms, and symmetric 

permutations. The power of this charm is harnessed by challenging the obstacle of 

compositional limitation which exists because of each innovation [15]. Each innovation 

formed a complete group, and a closed circuit which would always go back to the 

beginning. This was Messiaenʼs way of describing his religious beliefs: with Catholic faith, 

you will always return to the truth of eternity [15]. 

Figure 30: Église de la Sainte-Trinité, ca. 1890-1900. Messiaen was the organist at this church 

from 1931 to his death in 1992.  
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Analyzing his work further, in his paper The Spiritual Layout in Messiaenʼs Conteplations of 

the Manger, Siglind Bruhn claims that by examining Messianʼs Vingt regards sur lʼEnfant-

Jesus, Messiaen used musical symbols to represent spiritual messages. The layout of this 

piece was carefully planned, as it can be divided further into mathematical cycles, which 

portray different ideas. [17]

As a devout Catholic composer, Messiaen was faced with a sever limitation: it was 

impossible while still on earth, to express the truths of his faith [15]. Messiaen used the 

mathematical techniques of his musical language, to transcend the temporal limitations of 

music, and express his faith [15]. Each technique reflects his belief that “a technical 

process had all the more power when it came up, inits very essence, against an 

insuperable obstacle” [15]. The foundation of the mystical power of his music was his 

innovations, Messiaenʼs “charm of impossibilities”. He overcame the impossibilities and 

limitations using mathematics.
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6.0 Musical Mathematics: The Artistic Aspect of 

Mathematics 
This section analyzes Jim Henleʼs argument that while music contains many mathematical 

elements, it is the fact that mathematics is musical which has attracted mathematicians to 

the study of music for throughout history [18]. The focus of this section will be specifically 

on Henleʼs study, yet other studies exist that draw parallels between the arts and 

mathematics. Henleʼs argument has been summarized, and supported (and therefore 

strengthened) with other examples. 

For thousands of years throughout history, mathematicians and philosophers have been 

fascinated and attracted to music. For example, ancient Greek scholars including 

Pythagoras, Aristoxenus, and Boethius established the discipline of music as a branch of 

mathematics, a notion which lasted until the end of the middle ages. 

Figure 31: Boethiusʼ academic work c.480. Boethius was a Roman philosopher who lived 

from Antiquity to the Middle Ages. He translated Greek authors such as Aristotle into Latin. 

He created Encyclopedic books of knowledge about arithmetic, geometry, astronomy and 

the theory of music for the quadrivium. Boethius wrote his own works for study as well. 

Among other things, he wrote about the relationship between music and science: the pitch 

of a note heard by human ears is related to the frequency of sound.
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After that, many prominent mathematicians, such as René Descartes, in the seventeenth 

and eighteenth centuries were also music theorists and wrote extensively not only on 

mathematics, but music as well. Discounting the few exceptions of academic composers 

whose compositions are based on mathematics, these feelings are not reciprocated and 

musicians often do not share the same enthusiasm for mathematics [18]. Why are 

mathematicians then so infatuated with the study of music?

In theory, as previously discussed in this report, music and musical techniques can often 

be explained by mathematics. The physics of sound, arithmetic of rhythm, and algebra of 

scales are examples of such a relationship and have been researched extensively by 

academics. Is this as far as the argument goes? Do mathematicians simply see music as 

an intellectual mathematically based discipline? One American academic, Jim Henle [18] 

argues that this is not the case. 

“I would argue, in fact, that cause and effect have been confused here. The 

existence of countless mathematical analyses of music is merely evidence that 

mathematicians have been around, picking at the corpus of music in an attempt 

to understand its appeal.” [18]

Jim Henle claims that the affinity mathematicians have with music is not because music is 

mathematical, rather because mathematics is musical [18]. He claims that there is 

something profoundly similar about mathematics and music, which he deducted by the 

way the two fields respond to the intellectual currents in society. By analyzing the patterns 

in their growth over centuries, he found remarkable similarities which support his claim.12 

His claim can be supported with three arguments: mathematics can be defined as an art 
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as it shares many of the same characteristics; as in other forms of art, the history of 

mathematics contains different artistic periods; and these mathematical art periods share 

many of the same characteristics as corresponding musical periods, but differ from 

painting or literature periods.

6 . 1  M A T H E M A T I C S  A S  A R T  

Mathematics like other disciplines (science, art, religion, etc.) is complex and comprised of 

many different sub-disciplines. What exactly is mathematics? This is a convoluted 

question, with no one correct answer. The definition of mathematics, rather, depends on 

personal views and historical context [2]. Throughout history, civilizations have been 

defining and developing mathematics differently, to be used for their relevant purposes [1]. 

In Ancient Babylon, for example, scribes held the mathematical knowledge. For seven-

hundred years, they kept sophisticated astronomical records on clay tablets which were 

stored in huge libraries. Sophisticated mathematics was used to record superficial patterns 

of celestial activity. Pre-Greek mathematicians were craft mathematicians who focused on 

methods and concrete objets, and disregarded abstract thinking and deep theoretical 

knowledge of how things work. Mathematics was purposeful, and used to solve particular 

everyday problems. They, like European civilizations until the Renaissance, used ordinary 

language to detail their work, not symbols. The Ancient Greeks, however, were theorists 

who studied theoretical aspects of mathematics for itʼs beauty. Pythagoras, for example, 

founded a religion of mathematics based on the numbers 1, 2, 3 and 4. Pythagoreanism 

stated that mathematical structures were mystical, and they followed elaborate rituals and 

rules. Reality for Pythagoreans was constructed out of the four sacred numbers. In the 

history of mathematics, the 1600s and 1700s brought about a symbolic revolution. The first 

mathematical law of physics was invented by Descartes through his study of optics to 

explain rainbows. Descartes is also the inventor of analytic geometry. Whereas the pre-

Greek and Greek idea of a number was a concrete group of individual objects, Descartes 
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begins to see numbers symbolically, and places greater importance on equations. In the 

19th century, “new” mathematics begins to emerge, including negative numbers, irrationals, 

and vectors. In the current 20th century, three main views exist to define mathematics: 

formalism (believed by Hilbert), platonism (believed by Gödel), and physicolism (believed 

by Mills, Kitcher) [1].

Evidently, throughout history, the idea of what constitutes mathematics has changed, 

creating “phases” of mathematics. Today, the core of western civilization is believed to be 

science, and the core of science is mathematics [19]. In this case, mathematics is deemed 

to be rooted in the real world, to explain and hold absolute truth. Mathematics may not 

hold absolute truth, however, as in recent centuries many different types of mathematics 

have been discovered. For example, Euclidʼs infamous book The Elements, was believed 

to contain the only viable form of geometry until the 19th century [20]. 

 Figure 32: A fragment of Euclidʼs elements, found at Oxyrhynchus, dated to c.100 AD.
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In the 1800s, however, Gauss and his contemporaries went beyond Euclidʼs geometry. 

They stated the existence of other forms of geometry such as the geometry of spheres, 

which compared to Euclidʼs flat geometry, abides by different rules. Another example of 

where mathematics does not hold absolute truth is in the definition and importance of a 

number, which has varied greatly throughout history. Hilary Putnam, an important 

philosopher of mathematics, claims that we know the power of mathematics, but where it 

resides and comes from thereʼs no agreed view [21]. Mathematics, especially modern 

mathematics, is a compound subject that contains elements of philosophy, theology, etc. 

Henle claims [18] that analytic examination shows similarities between mathematics and 

art. 

Firstly, like artists, mathematicians are creators. Some branches of mathematics explain 

real-world phenomena, and are thus “forced into being” [18]. In comparison, Henle claims 

that similar to artistic inventions, other types of math are created [18]. For example, the 

famous mathematician Sir William Rowan Hamilton contributed to 4-dimensional spatial 

thinking when he first described quaternions in 1843. Quaternions are the quotient of two 

vectors. It is a type of multiplication which neglects a fundamental rule of normal 

multiplication: the commutative property. Through this mathematical development, 

Hamilton demonstrated that multiplication is more abstract than previously thought. In 

essence, he created a new type of mathematics, using a combination of rules. 

Quaternions are the artistic masterpiece which Hamilton created using the artistic tools of 

mathematical knowledge and ideas. 

Secondly, both art and mathematics are concerned with expressing ideas [18]. Form, 

means, channels and presentation are important and valued. Mathematicians seek 

harmony and elegance in the offering of their and ideas. Proofs are described by 

mathematicians as being beautiful. However, like artists, mathematicians tastes and 
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passions vary, each being interested in different fields of mathematics. Different ideas exist 

on what is deemed to be aesthetically pleasing, as well as varied ideas on what makes 

different works of mathematics beautiful (one mathematics structure may be admired for 

symmetry, while the other for singularity) [18]. According to Henle, this invites emotion into 

the study of mathematics.

6 . 2  M A T H E M A T I C A L  P E R I O D S

In his argument, Henle now applies periods in the history of mathematics to four artistic 

periods: the Renaissance, Baroque, Classical and Romantic. In his study, Henle states 

that the meaning of the terms Renaissance, Baroque, Classical and Romantic have 

evolved over centuries. Popular definitions were used, from contemporary sources from 

the same cultural context. Standard texts were used in music, art, literature, and 

mathematics: [3], [22], [23], and [19] respectively. 

Renaissance Mathematics

Henle states that the Renaissance mathematics period is marked by the recovery of 

Ancient Greek mathematics, and this revival was fuelled by the rise of commerce. The 

main characteristic of Renaissance mathematics is that the work moves beyond 

annotation and summarization of the classics from antiquity [18]. To illustrate this point, 

pre-Renaissance, Pacioi in his work Summa de Arithmetica, Geometria, Proportioni et 

Proportionalita (1494) organized and collected work and ideals already known and 

respected. He stated that future progress of mathematical ideas was unlikely. In the 

Renaissance period, Cardano in Ars Magna (1545) on the other hand, focuses on the 

solution of third and fourth degree equations. These were new ideas not previously 

discussed by classical mathematicians. 
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Figure 33: Leonardo da Vinci used perspective throughout his work, and this is evident in 

his sketch of this siege machine c.1480. 

Renaissance mathematics at this time was mainly developed for artists and painters, to 

help their two-dimensional art appear to be three dimensional and full of depth [18]. One of 

the main results was the geometry of perspective. These ideas were new, and 

independent of those of Ancient Greek academics. Key contributors to the thoughts and 

ideas of Renaissance mathematics were: Leone Battista Alberti (1440-1472), Piero della 

Francesca (c. 1410-1492), Leonardo (1452-1519), and Albrecht Dürer (1471-1528).
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Figure 34: Albrecht Dürer was a German print maker who made important contributions to 

the polyhedral literature in his book Underweysung der Messung, 1525. This is one of 

Durerʼs masterpieces, the engraving Melancholia I. A frustrated character is sitting by an 

uncommon polyhedron. 

Baroque Mathematics

New means of expression, according to music historian Grout in History of Music 

characterizes the musical Baroque period. He writes:

“Just as seventeenth-century philosophers were discarding outmoded ways of 

thinking about the world and establishing other more fruitful rationales, the 

contemporary musicians were seeking out other realms of emotions and an 

expanded language in which to cope with the new needs of expression.” [18]
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The mathematical Baroque period also is a time of new expression and of new 

mathematics [18]. Before this era, much of mathematical focus had been on geometry. 

Fermat (1601-1665) and Descartes (1596-1650) discovered, at this time, that geometric 

forms and ideas could be expressed algebraically. Thus algebra, a new mathematical 

language, and the field of analytic geometry developed, leading to advances in 

mathematics [18].

 

Grout also characterizes music of the Baroque period conflicting and having a tense 

relationship with music from previous eras. 

“Baroque music show conflict and tension between the centrifugal forces of 

freedom of expression and the centripetal forces of discipline and order in a 

musical composition. This tension, always latent in any work of art, was 

eventually made overt and consciously exploited by Baroque musicians; and 

this acknowledged dualism is the most important single principle which 

distinguishes between the music of this period and that of the 

Renaissance.” [18]

With the introduction of algebra, mathematicians witnessed a dual between the new field 

of algebra, and the historically established field of geometry [18]. As a disciple of 

mathematics, geometry had been studied in the same form from the time of the Ancient 

Greeks to the sixteenth century. It studied concrete ideas and objects, and followed well 

established rules. Algebra, in comparison, was for “freedom of expression” [18]. It 

encouraged the use of infinities, a notion that was banned by the Greeks. Geniuses such 

as Leibniz and Euler proved many fundamental algebraic results. Despite this, the gap 

between the certainty of geometry, and the perceived “lack of substance” of algebra 

divided mathematicians and philosophers [18]. 
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Figure 35: Thomas Hobbes.

Thomas Hobbes (1588-1679), for example, felt the excess of algebra and its ideas was 

totally unjustified. In fact, he referred to the topic as “a scab of symbols” [18].

Classical Mathematics

Grout describes the music of the classical period as follows:

“The ideal of music of the middle and later eighteenth century, then, might be 

described as follows: its language should be universal, not limited by national 

boundaries; it should be noble as well as entertaining; it should be expressive 

within the bounds of decorum; it should be ʻnaturalʼ, in the sense of being free 

of needless technical complications and capable of immediately pleasing any 

normally sensitive listener.” [18]
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Classical music should connect with the listener at once, communicating easily and 

directly. The listener should have an immediate understanding and appreciation for a 

piece. Henle argues that Classical mathematics has the same effect [18]. He characterizes 

classical mathematics as not being concerned with theory or philosophy, but simply 

motivated by the real world. To support his argument, Henle calls on the work of Kline, who 

in his book Mathematical Thought from Ancient to Modern says:

“Far more than in any other century, the mathematical work of the eighteenth 

was directly inspired by physical problems. In fact, one can say that the goal of 

the work was not mathematics, but rather the solution of physical problems; 

mathematics was just a means to physical ends.” [19]

Mathematicians, according to Kline, “dared merely to apply the rules and yet assert the 

reliability of their conclusions” [19]. Mathematicians were content with their results as long 

as when applied to problems, physically verifiable solutions resulted. Mathematicians of 

this era has a sense that formal inadequacies in their methods existed. Henle asserts that 

employment of mathematics, like enjoyment of music, was free of “needless technical 

complications” [18].

Romantic Mathematics

Romantic art, in comparison to Classical art, places considerable importance on feelings of 

remoteness, strangeness and boundlessness. Grout characterizes romanticism with 

regards to art as follows:

“…Romanticism cherishes freedom, movement, passion, and endless pursuit of 

the unattainable. Just because its goal can never be attained, romantic art is 

haunted by a spirit of longing, of yearning after an impossible fulfillment.” [18]
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For example, these feelings are evident in the painting by Caspar David Friedrich,13 

Wanderer above the Sea of Fog, Figure 36. This painting is a well known Romantic 

masterpiece, painted with the unique content and style of Friedrich. John Lewis Gaddis, a 

writer, claims this painting leaves the viewer with a contradictory impression, “suggesting 

at once mastery over a landscape and the insignificance of the individual within it” [22]. In 

the painting, the audience is faced with the subjectʼs back. Facial expressions are not 

visible, so itʼs not clear what the young man was feeling.

Figure 36: Painting by the German Caspar David Friedrich entitled Wanderer Above the 

Sea of Fog, 1818

S. Shah, 7177223

MATH30000! 87

13 Casper David Friedrich was an important nineteenth century German Romantic painter. He is best known 
for his allegorical landscapes, featuring contemplative figures placed against night skies, morning mists, 
barren trees, or Gothic ruins. Friedrichʼs work aims to convey a subjective, emotional response to the natural 
world, and his paintings are often symbolic. 



In a similar fashion to Romantic art, mathematics of this era expressed two main and 

important ideas: the infinite and the impossible [18]. Throughout mathematics history 

before the nineteenth century, people alternately shunned and embraced the notion of 

absolute infinity. Paradoxes, such as those by Xeno, about infinity existed since the time of 

the Ancient Greeks, when philosophers would seriously contemplate such ideas [2]. While 

the validity of arguments about infinity have been discussed for over two thousand years, 

its concepts never rose above philosophy or religion. The first steps to mathematical 

success only came in the early nineteenth century with Augustin Cauchy. Great 

advancements regarding the infinite happened throughout the 1800s, and by 1900, 

George Cantor had laid the foundation for the theory of infinite numbers.

The notion of impossibility was another main focus of Romantic mathematics. Since 

ancient times, a series of problems which had not been solved had plagued 

mathematicians [20]. For centuries, mathematicians had attempted to solve problems such 

as the representation of π with radicals, and proof of Euclidʼs fifth postulate. The early 

nineteenth century marked a crucial turning point in the way mathematicians regarded 

such problems. 
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 Figure 37: The cover of Sir Henry Billingsleyʼs first English version of Euclidʼs Elements, 

1570.

Euclidʼs Elements was written in Alexandria in c.300 BC. It was comprised of 13 books and 

465 postulates from plane and solid geometry, and from number theory. Little of this work 

was Euclidʼs own invention. Rather he synthesized two hundred years of mathematical 

research, or all the known Greek mathematics, to create a superbly organized treatise 

[20]. His work was a self-contained system, that obliterated all preceding works of its type. 
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The first book of the treatise began by stating five postulates. They were deemed to be 

obvious, simple statements which required no proof. The first four postulates are [20]: 

1. Between two points there is a line

2. Any finite line can be extended

3. Around any point there is a circle

4. All right angles are equal

Controversy arose regarding Euclidʼs fifth postulate, however. It lacked the simplicity and 

compelling nature of the others, and thus mathematicians felt it could and should be 

proved [20]. Euclid himself was unsettled by this postulate, and avoided using it in his work 

until absolutely necessary. Postulate 5 states: 

“If a straight line falling on two straight lines make the interior angles on the 

same side less than two right angles, the two straight lines, if produced 

indefinitely, meet on that side on which are the angles less than the two right 

angles.” [20]

Figure 38: Illustration of Euclidʼs fifth postulate. If two lines cross a third such that the 

angles are <180o, then they intersect.

α

β
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The problem of solving this ugly postulate festered for 2000 years, and only towards the 

end of eighteenth century mathematicians began to believe it was impossible to solve. 

This leave in thought brought logical implications. Henle claims that if one believes 5th 

postulate canʼt be proved, then one must imagine the existence of a geometry in which 

first 4 axioms are true, the fifth false [18]. If the fifth postulate canʼt be proven, then there 

must exist a geometry unlike any previously known.

“Mathematicians could accept that the axiom was not probable, yet they could 

not make the logical step and imagine a different geometry. This step was taken 

in the early nineteenth century.” [18]

This example is vitally important in illustrating how thinking of mathematicians changed in 

the Romantic era [18]. All the pieces required to solve this puzzle were in the hands of 

mathematicians for hundreds of years. The problem, however, remained unsolved. It was 

eventually solved by independent mathematicians: Gauss (c.1813), Bolyai (c.1823), 

Lobachevsky (1827), Schweikart (c.1812), and Young (1860). How come all the solutions 

to this problem arose in the Romantic era of the 1800s? The answer, according to Henle, 

is that the environment and the intellectual climate of the nineteenth century was very 

different from other eras [18]. While all the requisite knowledge was already there, the 

requisite imagination needed to find a solution was not present before. Einstein said 

“imagination is more important than knowledge” [18]. This statement proved to be true by 

the mathematics produced during romanticism. 
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After Romanticism

In his argument, Henle does not describe any era after Romanticism. 

“We are still too close to the twentieth century to understand it, especially when 

we are trying to grasp a phenomenon as delicate as the artistic milieu of 

mathematics.” [18]

He claims categorizing this era at this stage in history would be premature [18].  

Additionally, after the romantic period, there was an explosion of different forms of music, 

mathematics, art and literature. In the twentieth-century, no one genre of any of the listed 

artistic forms of expression is clearly most popular. Thus categorization and generalization 

for comparison purposes would be difficult.

6 . 3  M A T H E M A T I C S  P E R I O D S  V S .  M U S I C A L  P E R I O D S

The previous section set the context of mathematical history in an artistic context. 

Definitions and characteristics of musical eras inspired the search of mathematics that had 

the same characteristics. For example, Groutʼs characteristics of the Baroque era were 

used, when Henle selected the mathematics that belonged to a corresponding 

mathematical Baroque era. When analyzing the times of each era, Henle used the 

expertise of music, mathematics, art and literature historians who used the main results 

and contributions of each era to date them [18]. Mathematical and music eras occurred at 

the same times, while visual art and literature eras occurred together. This is illustrated in 

Table 4. It is also noteworthy that this music and mathematic periods began after those of 

visual art and literature. 
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Table 4: Artistic Periods

1400 1500 1600 1700 1800 1900

MUSIC R B C Ro

MATH. R B C Ro

ART R B C Ro

LIT. R B C Ro

  (Key: R = Renaissance, B = Baroque, C = Classical, Ro = Romantic)14

This study does not disqualify any connections between mathematics and other arts such 

as literature and visual arts, nor is the only study that analyzes the cultural context of 

mathematics [18]. Other writers have discussed the connection between mathematics and 

other art forms such as poetry. Scott Buchanan, for example, wrote a book entitled Poetry 

and Mathematics. In addition, different writers have discussed the connection between 

mathematics and music. Yves Hellegouarch, for example, has written several papers 

which detail connections between mathematics and music. One such example is Le 

Romantisme des les Mathematiques which examines the romantic features of 

mathematics in the nineteenth century. On a similar note, much literature exists on the 

topic of Romanticism in the general sciences. 
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6 . 4  I S  F U R T H E R  A N A L Y S I S  N E E D E D ?

Henleʼs argument draws interesting parallels between mathematics and music. He shows 

that music and mathematics share many similar characteristics. Each can be categorized 

into four periods: Renaissance, Baroque, Classical and Romantic by the works and ideas 

of each time. Furthermore, art and literature periods occur together before mathematics 

and music periods, which also occur at the same time. The study argues that mathematics 

can be an artistic invention, and need not always be thought of in a scientific context.

As previously stated, many mathematicians throughout history have been interested in 

music, so much so that they were also considered music theorists. Mathematicians 

contributed to the wealth of knowledge on music theory, often by writing books and sharing 

their ideas. Do mathematical and music periods coincide because mathematicians were 

also music theorists? Did the published and shared work of mathematicians influence 

musicians? To enhance the argument in this study, these extra area of research can be 

undertaken.
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7.0 Conclusion
The report began by setting the stage by describing the historical context of the beginning 

of this relationship. Mathematicians are often music theorists, and some basic ideas to 

explain this were given. The mathematics in music was then discussed, by detailing the 

contributions of Pythagoras and J.P. Rameau, two of the greatest contributors to this field. 

Pythagoras and the Ancient Greeks are among the most critical and significant characters 

when detailing the relationship of mathematics and music. They were the first to 

understand how music can and should be studied as a part of mathematics. Rameau, 

unlike others in his generation, continued this thought pattern. The report then outlined 

Fibonacciʼs golden ratio and the circle of fifths, two great mathematical tools that are used 

by composers to create beautiful music which is as aesthetically pleasing to the ear as 

possible. Messiaen, a modern composer from the twentieth century, and his mathematical 

techniques which he uses to compose his work are then analyzed. In the first technique, 

he created his own set of seven modes. The second technique, non-retrogradable 

rhythms, are a rediscovery of Ancient Greek and Hindu rhythmic palindromic patterns. 

Many composers, including Messiaen and Bach, were very religious. Their use of 

mathematics and numbers to convey religious ideas throughout their work was the topic of 

the next section. Bach used numbers from a copy of his Bible to weave his religious 

message throughout his work. Messiaenʼs mathematical techniques, which he called his 

“charm of impossibilities”, were the tool he used to convey his religious ideas, and be 

closer to God. Finally, the similarities between thought and ideas of musical and 

mathematics periods were considered. Renaissance, Baroque, Classical and Romantic 

periods happened in all genres of the arts (including visual art, music, literature and 

mathematics), yet mathematics and music went through similar stages of revolution at the 

same time in history (later than that of visual art and literature).
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The relationship between mathematics and music is immense. It spans over two thousand 

years of history, and involves hundreds of people ranging from mathematicians, to 

musicians, to music theorists. Research and literature has been published on the different 

characters, eras and contributions involved. It would be impossible to discuss every aspect 

of the this complex relationship in a report of this nature. This report has thus provided a 

“snap shot” of this relationship. Iʼve tried to include the topics I found most interesting, and 

that I could best relate to and understand given my mathematics and music training. 

Individuals vary in their views on which connections between mathematics and music are 

valid, and which are most consequential and significant. Iʼve also discussed the main 

events and people, who I think have made a great contribution to this field, all the while 

striving to give as broad an overview of this subject as possible. The relationship between 

mathematics and music is incredibly interesting, and this exploration is one that could last 

a lifetime!
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