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In this project, we study the positive region of 7(x) — li(x). We provide several new
theorems based on Saouter-Demichel’s article [6] which was published in 2010. In
the second chapter, we give a new theorem with a better estimate for the error term
in Lehman’s Theorem. The third chapter makes further improvements to the error
term. Chapter four provides numerical results with a new theorem for the smallest
interval such that 7(x)—li(x) is positive. In the fifth chapter, we sharpen the interval
with new theorems, and chapter six improves the estimates for regions of positivity

with new theorems.
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Chapter 1

Introduction

This chapter covers previous work and background material for my project and in-

troduces the notation that I will use throughout.

Previous Work

The Riemann Zeta function ((s) is a function of a complex variable s = o 4 it. It is
an infinite series which converges for all s such that (s) = o > 1:

=1 1 1 1 1
= = b — = =+ = 1.
¢(s) B 1S+28+38+45+ R(s) =0 >

p = B + iy denotes the complex zeros of the Riemann Zeta function. We have trivial
zeros at s = —2, —4, —6, —8, ... . In 1859, Riemann established a relationship between
the zeros of the Riemann Zeta function and the distribution of the prime numbers

in his memoir "On The Number of Primes Less Than a Given Magnitude”. He

conjectured that the non-trivial zeros lie in the critical strip (0 < o < 1) at o = 3.

This is called the Riemann Hypothesis.
The function counting the primes numbers is classically denoted by m(z):
m(x) = Z 1.
p<z

Riemann’s prime counting function is denoted by II(z):

[(x) = Z % m(zV") = 7(x) + %W(xl/Q) + % () + ...

n=1
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In 1791, Gauss conjectured that m(x) ~ @. This was proven by Hadamard and
de la Vallée-Poussin in 1896. Then in 1849, Gauss suggested that the log-integral

function gives a better approximation for 7 (x). This function is denoted by li(z):

1—¢ 1 T 1
li(x) = lim / —dt +/ —dt ;.
=0 | J, logt 11 logt

In 1859, Riemann established his Explicit Formula as a relationship between 7(z)
and li(z):

1

[(z) = li(x) — Zli(mp) —log2+ /00 12— 1) Togt dt

where p are the complex zeros of ((s) in the critical strip. Gauss further noted that
the inequality 7(z) < li(x) holds for the first hundred thousand z. Since then, this
property has been checked up to 10,

On the other hand, in 1914, Littlewood proved that the difference of 7(x) — li(x)
changes signs infinitely many often. In 1933, Skewes proved that 7(z) > li(x) holds
at least once for a value x < 10101034 when assuming the Riemann Hypothesis. A
considerable improvement to this was given by Lehman in 1966. He established that

there exists a region near 1.65 x 10!16°

where the difference of 7(z) — li(z) is positive.
In 1987, te Riele discovered a region near 6.65 x 103", and Bays and Hudson found
a region near 1.40 x 10%1° in 1999. In 2006, Chao and Plymen improved the error
term in Lehman’s theorem. This enabled them to further sharpen Bays and Hudson’s
region to 1.398 x 10316,

We will show that the error term of Lehman’s theorem as well as the lower bound

can be further improved.
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Background Information

Estimation of Area

For the estimation of area, we consider three cases.
In the first case, we consider a continuous function. Two examples are shown

below:

x (b-a)

1 @

;|
6 - f(x)

]

4- (b-a)

..

o £(b)

1

D- T T T 1
i} 1 3 2 b 3 4

Figure 1.2: Estimation of Area For Continuous Functions
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Then
b
/ f(x) dr <length x height of the rectangle.

Hence in Figure 1.1 , we have
b
[ t@de< b= x (@),
and in Figure 1.2 , we have
b
[ #arin<0-0)x o).

For the second case, we consider a bell shaped curve whose total area is equal to
1. First, we look at the area around the center of the curve. Consider the two graphs

below:

f (a)- £ (b)

Figure 1.3: Estimation of Area For a Bell-Shaped Curve
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f(a)

i =

d

Figure 1.4: Estimation of Area For a Bell-Shaped Curve

The red shaded region in Figure 1.3 shows f(a) — f(b). The red shaded region in
Figure 1.4 shows f(a). Hence for a < b the area around the center of a bell-shaped

curve can be estimated by .

| 1@< p@.
Now if we consider the area around the tails towards either the left side or the right
side of the center, then the first case applies.

In the third case, we have a complex valued continuous function on a contour C'.

Then if |f(z)| is bounded by a constant M for all z on C and [(C') denotes the arc

/C F()dz

In particular we may take the maximum

length of C, we have
< MIC).

M =max|f(2)].

zeC

This is called the Estimate Lemma.
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Big-Oh-Notation

Let f(x) and g(z) be two functions defined on some subset of the real numbers. Then

if and only if there exists a positive real number M and a real number zy such that

|[f ()] < Mlg()| forz > o

Some Final Remarks

Throughout the paper, log x denotes the natural logarithm.
Any numerical values that differ from Saouter-Demichel’s numerical results were

computed using Maple 12. These computations can be found in the Appendix.



Chapter 2

Lehman’s Theorem

This chapter is based on Lehman’s Theorem. It gives fundamental

knowledge for understanding the following chapters.

Theorem 2.0.1 (Lehman’s Theorem([3]) Let A be a positive number such that
g = % for all complex zeros p = [ + iy of the Riemann Zeta function ((s) for
0 <~y <A Let a, i, and w be positive values such that w —n > 1, % <a< A%,
and % <n< %

Let K(y) = \/ge*a?f/2 .

Let I(w,n) = f:_t?n K(u—w)ue ?[n(e*) — li(e")] du .

Then for 2me < T < A, we have

Iw,n) =—1— Y <=4 R where |R| < 8y + Sy + S+ Si + S5 + Sg with

0<|y|<T
S = gt 4w )@

g, — 28*«1772/2
2= “Vman

S5 = 0.08 \/are= 7’/
Sy =e T2 (# log L + 86T ;—a) ,
S5 = 2%

S = Alog A e=A*/2at(wtn)/2 (4 a2 415 7}) .

w
If the Riemann Hypothesis holds, conditions % <a< A?and %4 <n< 5 Mmay be

omitted as well as the term Sg which may be omitted in the upper bound for R.

14
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We will prove the theorem below which is Lehman’s Theorem but with an

improvement of term Sg.

Theorem 2.0.2 Let A be a positive number such that § = % for all complex zeros
p = B+ iy of the Riemann Zeta function ((s) for 0 < v < A. Let a, n, and w be

positive values such that w —mn > 1, % <a< A%, and % <n<g.

Let K(y) = \/Z e /2 .
Let I(w, 17) = f:fnn K(u—w)ue ™2[x(e*) — li(e")] du .
Then for 2me < T < A, we have

Iw,n) =—1— Y <=4 R where |R| < Sy + Sy + S5+ Si+ S5+ Sg with

0<|yI<T
Si =5 +4(w+n) e~ /6
_ 26_‘”’2/2
S2 =T
Sy = 0.08 Jare /2
Sy=e T/ (mwg% +8kel 4+ T3> ,
— 005
SS — w-n "’

Sy = Alog A e=A*/2ert(wtn)/2 (3.2 a2 4 14.4 n) .

If the Riemann Hypothesis holds, conditions % <a< A?and %4 <n< %u may be

omitted as well as the term Sé which may be omitted in the upper bound for R.
We will use the following results and definitions to prove above theorem.

Proposition 2.0.3 ([3, page 400]) Let N(T) be the number of zeros for which
0<~<T. Then for T >2me , N(T) = %f;elog%dt—l— L+201ogT.

Proposition 2.0.4 ([3, Lemma 1]) If p(t) is a continuous function which is

positive and monotone decreasing for 2me < Ty <t <T,, then

Y w00 = Jr e log 5 dt + 0 [4p(T) log Ty +2 [y 42 di].

Th<y<T>

Proposition 2.0.5 ([3, Lemma 2]) IfT > 2we, then ) % <T'"logT
v>T

form =2 3 ...

Proposition 2.0.6 ([5, page 28]) > 71—2 < 0.025 .

0<y<oo
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Proposition 2.0.7 ([3, Lemma 4]) If o > 0 and ¢(t) is positive and monotone

decreasing fort > T > 0, then fTOO o(t) e /2 dt < Zo(T) e T2

Proposition 2.0.8 ([3, page 398]) 7 (x) =
li(x) — ng le(mp + 19(3551/2 +4 1/3>.

Definition For w = u +iv, v # 0, li(e¥) = ff“”. < dz

00+1v

Since the proof for above theorem has considerable length, we split it into several
steps.

In Step 1 (page 19), we show that

+o0o
K(y)dy=1.

—00

Step 2 (page 21) uses Proposition 2.0.8 to show that

3
I(w,n) / K(u—w 19(—+4ue_”/6) du
u

< (e,
S g Tiltne

In Step 3 (page 21), we use the fact that due to the property that

—+oo
K(y)dy =1,

we have

w—mn +oo
/ Ku—w)du= K(u—w)du.
—00 w+n

Using Proposition 2.0.7, we then show

o—on?/
K(u—w)du <
/ V2man

Step 4 (page 23) combines Step 2 and Step 3 to show that

w+n
](w,n):—l—Z/ K(u—w)ue "2 li(e") du
p @

3 2 e—om’/2
+ 9 +4(w+ e‘(“‘")/6+—).
(2 e —
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This gives us term S; and Sj.
In Step 5 (page 23), we assume the Riemann Hypothesis. Then through integration
by parts we get

w—+n )
—Z/ K(u—w)ue 2 li(e’) du = — Z ; Ku— w) e du
p v

0<yl<a ™ @l

Z Ku—)ﬁdu

0<|7|<A w=n

— Z K (u—w)ue 2 1i(e’™) du

ly|>A @™

Step 6 (page 25)uses Proposition 2.0.6 to evaluate the sum
Z K (u —w) e du

to get
yw
=Y e 0080 Vae

0<]y|<A

To be able to take the above sum over just the zeros, we add another error term.

Using Proposition 2.0.4 and Proposition 2.0.7, we then have for 27 <T < A

Z T 8logT 4a>

K (u—w) ”“du:e_TQ/Qa( C;Z log — +
0<|y|<A

pwn 2m T+ﬁ

+0.089 Vae /2,
This gives us term S3 and .Sy.

In Step 7 (page 27), we use Proposition 2.0.6 to prove that

S KU_ ) V< 05

0<|y|<A YN

This gives us term Ss.

Step 8 (page 28) combines all the previous steps. Letting A — 400, we then have

yw
Iw)=—-1- Y — ey R
0<|y[<T P

where
2

2 e—n’/2
V2man

N T | 8logT 4o
e ( Bt )

+0.089 e /2
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This is the conclusion of the theorem when we assume the Riemann Hypothesis.
For Step 9 (page 28), we consider the case where we do not assume the Riemann

Hypothesis. We use the function
fo(s) = pse P li(er) et

to estimate

-y - K(u— w)we 2 li(e”) du = — \/>Z /w P2 £ (u) du .

|y|>A @1 ||>A

Using integration by parts and the Estimation Lemma, we have for 1 < N < al—‘?

w+n
- Z K(u—w)ue 2 li(e’) du

>4 7@

<9 \/7 (/2 3

v>A

2/8 N-1

|:4€_O”7 Z n! N 4n, N! (ae)Nﬂ}
(yn/2)» AN AN '

n=0

Then we use Proposition 2.0.5 to show that

de=om’/s T p AN [ae\N? 3 2
ac /2. —A%/20 4 . —1/2
Z[ > ot o (N) }<4e p A2 4 012 10g A

2
y>A v n=0

Hence through combining above results, we proof that

< Alog Ae= /2ot wtn/2(3 9 4~1/2 414 47) .

‘ Z Ku w)ue Y2 1i(e’™) du

[y[>A~ e
This gives us term Sg and is the conclusion of the theorem when we do not assume

the Riemann Hypothesis.
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Proof For this proof we closely follow the proof of Lehman’s Theorem [3].

Let a, w, and n be positive numbers such that w—n > 1. Let 0 < § < 1. Let |[J| < 1.
Stepl
Let

Then for any v € R, we have

+oo
/ K(y) e dy = / o e~ /2 oy dy
o ™

+oo
= ‘/%/ e~ 2t gy
A —ay?/2+ivy+9° /20—92 /20
— % [ dy
Q[T al-sin/an? a?) /292 20
=13, e dy
+o00
= ¢ /2 /%/ e~ w=/a)?/2 gy,

o220 oo @ e—olv=irf 2/
= e T2 dy,
Vor J_x

2
To integrate fj;o e /2 dt | we consider (fj;o e~ /2 dt) and use polar coordinates.
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Then

+oo 2 2 oo 2 Foo 2
(/ et ﬂdt) = e’ ﬂdx) </ e_y/2dy>

+oo +oo 9. o
/ / 12 g

o0 oo
o0

27 + )
/ / re " /2 dr do.
0 0

Letting u = 7?/2, we get

2m +0c0 ) 27 400
// re—fﬂdrde:// e~ dudf
0 0 0 0
27 +o00 +oo
[ L)
0 0 0
21 “+00
_ / / 1d6
0 0
27

=0

0

=27.

Hence

“+o00
/ e/ qt = V2.

+o00 a +o0 29
/ K(y)dy=\/§/ eV /2 dy
= — e
V2T ) oo Y

1 +oo —t2/2 dt
= — e
V2T J o

- o

=1.

Then



CHAPTER 2. LEHMAN’S THEOREM 21

Step 2

Consider
w—+n
I(w,n) = K(u—w)ue "?[x(e") —li(e")] du.

w=n

By Proposition 2.0.8, for u > 1 we have

r(e") — li(e") () +0( 257 a0,

Then
_ u/2 u/2
we 2 [m(e) — li(e")] = - Zue /2 1(enP)
3 u/2 w/2
—H?(ue—Q —|—4ue_“/2e“/3>
U

3
— 1= we 2 li(e ) + 9 2+ due ).
ue i(e") + (u+ ue

p

Hence due to the property that

we use the second case for the estimation of area. Then

+4 (w4 mn)e @6,
w—=n

’/ —|—4ue W) K (u — w) du| <

Step 3
Note that
w—n +oo
/ K(u—w)du= K(u—w) du.
—00 w+

n

Let y =u —w . Then

“+o00 400
Klu-w)du= [ Ky)dy
w+n Ui
o0 /
:/ 7ay2/2dy
n
1 teo

e—av?/2 dy.
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Let t = ay. Then

/MK(U Cydu= | K- w)du

[e'¢) w+n

L
2
— ae_ay /2d
V2ma / Y
n

V 1 / e gy
2ra Jpa

Using Proposition 2.0.7, we have

+oo
1 /6_t2/2a dt < 1 « 6—772042/204
no

V2ma V2ma 77_04
67&7]2/2
R, 2770477'

Hence

22
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Step 4
As a consequence of Step 2 and Step 3, we then have

I(w,n) = i ! K(u—w)ue x(e) —li(e")] du

= K(u—w [ 1—Zue w2 (e “p)+19< +4ye /O )]du
w=n

w—+n
—/ K(u—w)du—/ Zue_“/zli(e“”)K(u—w)du
w—n w=n p
19(§+4ue_“/6) du
+o00
K(u—w du+/ K(u—w)du+ K(u—w)du
w—+n

e 2 li(e"’) K (u — w) du

19(§ + 4ue_“/6) du
u
e—om2/2 w+n
=—-1+42 —/ we 2 1i(e"?) K (u — w) du
Va2man w—n ;
3
+9 (— +4(w+n) e_(w_”)/(j) du
w ="
w=1)
S / K (1 — w)ue="/li(e") du
p CeEn
3 2e—an’/2
+19(— + 4w + e /6 4 = )

w—n V2mam

The interchange of summation is justified because

—1—Zue w2 i(e “p)+19( +4ue” ”/6)

p

L.
/.
T
[,

converges boundedly in the interval w —n <u < w + 7.
Step 5
From the definition of li(z), it follows that

pu z
li(e"?) :/ < d.

—oo—+iuy <
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Let t = pu — z. Then

pu e? 0 epu—t
/ —dz = —/ dt
—ootiuy # 400 PU — t

+oo  pu—t
e
= / dt.
0 pu—1

Through integration by parts, we then get

+o0 epu—t
li(e) = / dt
0

pu —t

ePu +o0 6puft
Ny
pu o (pu—1t)

U +0019 pu—t
=€—+/ LA
0

o P

epu g9 gPu—t| T
- 4=

pu () 1o
e n 9 efv

pu  (uy)*

24

Using this result and assuming that for a positive number A such that |y| < A the

Riemann Hypothesis holds, i.e. g = % we have

w—+n
—Z/ K(u—w)ue 2 li(e’) du = — Z K (u—w)ue 2 1i(e’™) du
p T

0<|y|l<A Y@
w—+n

— Z K(u—w)ue ?i(e’) du.

ly|>A @™
Further
w+n
- Z K (u — w)ue™?li(e’™) du
0<|yj<A @™
w—+n

-- ¥ K(u—w){u

0<|y|<A @™

e—u/2 eu/2+i’yu Ju e—u/2 eu/2:|
du

pu (uy)?
w—+n

== > K(u—w) [em + L)Q] du

0<|'y|<A w=n P u(’y

pwn

0<|y|<A 0<|y|<A YT

¥
Z Ku— e du — Z Ku— )u(7>2du.
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Hence
w+n
- Z/ K(u— w2 15(eP*) du
. w+’r]
Z —w) e du — Z / K(u—w) 5 du
0<pyi<a £ Jo=n O<lyl<A /W= u(v)
w—+n
- Z K(u— w)ue 2 li(e’) du.

y>A e

Step 6

Let y = u — w. Then
Z Ku— w) e du

o<|w|<Ap w=1l
+n
/ K(y) €M dy

-3 -
0<|v|<A
ey
0<|y|<A 0<|y|<A
-

0<piza P

/ K(y

z'yw +oo

K (y) e dy

ww » Z’YUJ +o00
K e dy + 2
Z 0 ) ) 4 Z L+ vy
o<y|<A 0<7<A 2
= Z eV L4y Z K(y) e”ydy'
0<|v|<A P 0<y<A 7
since
+oo

K(y) e dy = &7/

—00

by previous result. Using integration by parts, we then get

+o0o

Wy dy

K(y) e dy‘

ke = [[ELE K
+n vy vy
_ [T E ) = ) dy.
+1) vy

oo {K (y) e K'(y)e

+n

dy

25
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Thus because K (y) is monotone decreasing for y > 0, we get

400 ) —+o0 K’ i iy
K(y) e dy‘ _ (y)(e. € )dy‘
+n +n vy
too e _ ey
< [ a
+n vy

2 [t
< —/ K ()| dy
VS

2w

+n

Next, we use Proposition 2.0.6 and the fact that W < 0.4 to get

2
Z —w) e du

0<rl<a P e

=— Z e 2 gy Z K(y)e”ydy’
0<|y|<A p 0<y<A v

- _ Z ﬂe—ﬁ/%é +49 Z _2 | & —an?/2
0<|y|<A P 0<y<A v 2

_ Z €Z’Y o 72/204 + 8 19 l 70[772/2 Z -
0<|y|<A P 0<y<A '7

yw
=— Z S e 40089 Vae o2,
0<ly|<A p

26
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This sum can be taken over just the zeros if we add another error term. Given
T > 2me, by Proposition 2.0.4 we have

eivw

-y e
T<ly|<A P
€i7w 2

< Z ‘ef'y /204‘

T<~y<A P

-7*/2a
2y
T<vy<A v

1 [T —t2 /20 ¢ -T2 /2a +oo —12/2a
g—/ ¢ log — dt +8 < logT+4/ ¢ dt.

T Jp t 27 y T 12

Using Proposition 2.0.7 to estimate the integrals, we get

/+OO . it < &L 1720
T t TT

g e*TQ/QCV .

Hence for 2n < T < A, we have

e, o 2 e T?22 log T Ao o
. —v?/2c < — ] —T? /2« T -T?)2a
’ T<Z<A P ) m T Og2 ) T "
Y=
Y T 8logT 4«
2 1085~ 3]
T 2T T T

Combining above results, we then get

I : T2 o T 8logT 4«
. - . yu -T2 - e
E Ku—w)e"™du<e <7TT2 10g2ﬁ+ T +T3)

0<[y|<A P S
+0.089 ae /2,
Step 7
The sum

w—+n

- Z K(u—w)idu

2
U
0<|y|<A W i
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can be estimated using Proposition 2.0.6. Let y = v —w. Then

9 +
‘ Z Ku— )—du:‘ Z / Ky y—l——wdy

U
0<|y|<A Y@ 7 0<\7|<A

+77‘K
< —

w—n'

Step 8

Note that as of now we have not made use of the conditions % < a< A? | and
24

T Sn<%.

Let A — +o0o. If we assume the Riemann Hypothesis, then we can combine

YW

Iw,n) =—-1- ) e LR
0<| P
yI<T
where
3.05 2eon*/2 )
Rl < —= 4 4(w+n)e @6 22 1 0.08/ae /3

+ eTQ/QO‘( ;21 921 + SI?T + %) :

Since A — 400, we do not need to consider the last term in the estimate of R. Hence
if the Riemann Hypothesis holds, we obtain the conclusion of the theorem with the
last term in the estimate for R being omitted.
Step 9
To complete the proof, it is sufficient to show that
‘ Z K (u—w)ue 2 1i(e”™) du| < Alog Ae /20t @tm/2(320712 4 14.47)

y>A~eT

when A, a, w, and 7 satisfy % < a< A? and % <n<%.

Consider the function
fp(S) =ps e P8 M(eps) e_a(s—w)Z/Q

in the sector =7 < arg(s) < %. The inequality 37 < |arg(p)] < % holds because

0 < B < 1and |y| > 14 for every complex zero p. It follows from the definition of
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li(e™) that f/(s) exists for all s in the sector since for arg(ps) we have arg(ps) =

arg(p) +arg(s). Then Zm—=% < larg(ps)] < 5+ 7. Hence £ < |arg(ps)| < 3. Also

1£,(s)] = |pse P li(ers) et/

o0 e—t )
= ’,0 se Piel? / " dt e=@5=w)7/2
o PS—

‘ —a(s—w)?/2 /+OO e’ ‘
= |pse dt
o ps—t

S |,08||€_a5 w)? /2’ /+oo 7tdt

| (ps)|

< 2|e—a (s—w)? /2|

since

+o0 e—t
li(e”) = eps/ dt
o ps—t

by previous result. Further

w—+n
- Z K(u—w)ue 2 li(e’) du

ly[>A~ @1

' \ [>A
«/ Z/ we P elp=1/2u “li(ef™) e~ olu=w)*/2 gy,

M>A

\/> y o - /w eI £ (1) du.

M>A

w+n )
/ e~ 2 o721 (ePY) du
w1
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Using integration by parts, we get

w+n
/ 120 f () du

-

6(p71/2)u f ( ) w+n /erT] 6(p71/2)u f(l)( )d
= ——7— fo(u — _ u) du
,0_1/2 w—n w—n p_1/2 P
e(p—=1/2)(w+n) i ) elp—=1/2)(w—n) i ) Wt wtn o(p—1/2)u f(l)( d
=—F folw+n) - ———— folw—n — / —_— u
10_1/2 g p_1/2 g w—n w—n 10_1/2
(r—1/2) (r—1/2)u wn
(& (&
—— |ele1/2m _ o (p=1/2)n _ _ - (M
| e e ] - S )
w="n

/w-l—’f] e(p 1/2)u f(Z)( )d
+ — s u) du
wn (P 1/2)277
(p=1/2)w
e _ —(p—
= p——1/2 {e(p 1/2)n folw+n) —e (p=1/2)n folw — 77)]
(p—=1/2)w
e
= |ele=1/2m (1) — e =12 ),
g | I ) = 00— )

/w-f—n e(p 1/2)u f(2)( )d

+ _— u u

o ( —1/2)2°°

S DT (-1/2n 4(n)
L | I k) = e 10— )

n=

w+n 6(,071/2)u
o | e I du
w—n (p - 1/2)N P

where N is a positive integer which we will fix later.

Next, we estimate fén)(u) for w—n < u < w+n by using a contour integral around a
circle of radius r < % about the point u. If s is on this circle, then R(s) > w—n—9>7%
because n < %, and |J(s)| < #. Hence the circle lies in the sector |arg(s)| < 7 where

| £,(5)] < 2|e=*(5=%)/2|. Consequently, for w — 1 < u < w 4 n we have

o) = o f 2% g

271 S —u

=k f B g,

Y

2mi | (s — u)?
! S
f[52)<u’) = %% (Sfp_(u))g ds,

FO ) = 2 ¢ Jol®) g,

2w ) (s —u)t
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Thus it follows that
|
(n) _ n: fP(S)
£ () = -}I{(S_u)nﬂ ds.

21
Therefore
|
| = | L f (s
|f’” (u) 2mi 7{ (s —u)ntt ¥
n! | fo(5)]
< — ¢ —5 2 __d
—2r ) (s —u)"H| °
n! Q‘e—a(s—w)2/2|
< % 7’”""1 2rr
2”' 704(57“))2/2
< — max |e |

rn [s—u|=r

by the Estimate Lemma.
If s = o + it, then on the circle (0 — u)? + t* = r? we have
|6—a(s—w)2/2| — |6—a(a+it—w)2/2|
_ | ea(fcrz+2Uw7w2+20it+2wit+t2) /2|
_ ’ea[t27(o'fw)2]/2€a(ait+wit) ‘
— ealt?=(0-w)?)/2

_ ea[r2—(o—u)2—(a—w)2}/2

< ear2/2

If N < o Wecanﬁxr:NSincergﬁ. Then we get forw —n<u<w+n

16 o
2N
M (w)] < max e~ *(+7)/2|
" |s—ul=r
2N! 2
ar?/2
< Pl

Z
[N}

Il

[\

=
N

2 =l Z=|e

I
N
=
/7~
=[]
~
Z
no
o
2
[}

I
N
=
/7~
~— —
=
~
no
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To estimate the derivative at w47, we let r = 2. Since n < %, we have r < §. Then

on the circle |s — (w +n)| = r we have

e a(2/2| < galr=(o—(okm)? ~(o—)?)/2

< 6047"2/2

_ pon/2/2

= o7’ /2,

Note that since 0 < 3 < 1 we have |8 — 3| < 3. Hence

eB-1/D )| < cltn)/2

< elwtn)/2,

Then

|e(p—1/2)(w+77) _ 6(0—1/2)(w—n)’ |6(ﬁ+iv—1/2)(w+n) _ e(ﬁ+i7—1/2)(w—n)|

= |-V /D) givlwtn) _ o(8-1/2)(w=n) pir(w=n)|

< 2eltm/2,
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Combining all of above results, we then get

w—+n
‘— Z K(u—w)ue 2 li(e’™) du

>A @
— \/7 Z / =12 £ (4) du
|7|>A “T
(p—1/2)w
NEE By
|y \>A

elp—1/2)w

- Z 1 /2 = (‘6(’”/ 2115w — 77))

-—<:1>; [

S ‘
|’Y|>A

_ _pp=1/2)(w=n) 9, —n ,—an?/8
E e 2nl(n/2) e )
_ 1/2 n+1 <

<_1)N /“+,7 (—1/2)u o p7y [ &€ e
1) e “2N! N du

n
N-1
- w —n _—an?
[ - 1/2 o (6(0 VD@Hm onl (n/2)~" e=n /8)

n=0

1
<5 Z 2n! e’ ‘ (p=1/2)(wtn) _ ,(p=1/2)(w=n)
o v (n/2)
>A n= O

2N! NP2 peren
REAL <_) / el 1/2)“\du}
N o
N—1 _ N/2
2l e—on’/8 2N! [«e
<9 e T g w2 QN w2
2%;4[ EIOYe) CaET A T M !
a deon’/8 T3 pl AnN! [ ae\?
ST = SR C
2m oyl (yn/2)" v N

n=0

. an
provided 1 < N < T
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Fix N = [4].

Because

E|a>

Since 24 § n < g, we have

=,
A
3

|
IN

Hence 1 < N < ‘”2—6‘1 as required.
2
Also since 24 < p < 7, we have 2’4 = %% = M, Hence n > %_

Note that % < (AQ/Q) = 2 since N < A . Also note that

N-1
I < Z N
n=0

i

I
o

n

Further by Proposition 2.0.5, we have

S5 S (g e 5)

7>A n= O v>A 7
B S I I
v>A ’7 v>A ’7 v>A '7 W>A 'y>A

<A 'logA+ A% logA+ A3 logA+ A log A+ ...+ A NV 1og A

=log A(A"+ A2+ A7+ A4+ L+ AT
N-1

1
- 10g A Z Antl :
n=0

< a < A2, it follows that % <2< 2 Hence 1 < %2 = N.

34
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Hence
N-1

z(”!ﬁz

2
¥ = (m/2"

gemofs gemo /s L

1 nl
72 ; v (n/2)"

—an?/8
! IOgAZ 77/2 An+1

>

v>A

< 4o /810gAZ A/Q

N— NP

< fgeom’/8 log A Z

_ A ,—on /81 A
& Z N"A

1
— 4o /8100 A -
e og ;A

=4 TBNAT log A

<de /a4 log A.

Note that since N = L J we have L _1<N<L A . Also note that

NI < el—N NN+1/2.

(2N/A)"(A/2)" A

35
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Hence

dn N! [ ce N7z ae\ " _N
ZWNH (W) < 4n N/ N A " log A

v>A

N/2
< dp et~ NNHL/2 (%> AN log A
- N

N/2
— 4y lN+N/2 N12 NN (g) AN 1og A
N
o\ V2

— 477 elfN/Q N1/2(N2)N/2 <N> <A72>N/2 lOgA

N2 N/2
— 4pel~N/2 N1/2<§A2) log A

N/2
= 4y et~ N2 N1/2 ((Z—N) log A

2

A2 N/2
< 47761 N/2 N1/2<X2 a) lOgA

= 4n e N2 N2 1og A
<dpe! DA/ /@) log A

=42y e~ A2 f o1/ log A.

Combining, we get

5 | (@ /22{46_”2/8 Nz:l n! +477N!(046>N/2:|
o ¢ oy — (/2 ANTEAN

<2, / <w+’7>/2{ — S 0 Alog A+ 42 e A 2 log A}

Since \/T <04, e¥? < 4.5, and 22 <1 < ¥, we then get

2 2& elwtn)/2 [4 e~ /8 o714 log A+ 4¢€%?n e~ A2 o1 log A}
\ 27
<32a7Y24log A e~ /3HWEn/2 41y 4 n Alog A e~ A 20t (win)/2 g o1/ log A
<320 2 Alog Ae 2t @tn/2 4 14 4y Alog Ae A2t @tn)/2 4 0712 00 A

= Alog Ae=4"/20+(4m/2(3.2071/2 4 14.47).
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Hence
w—+n )
‘— Z K(u—w)ue 2 1i(e’) du|< Alog A e 4"/2atwtn)/2 (3.2 a2 4144 n).
y>Ae

g

The application of Lehman’s Theorem makes two essential assumptions. The first
assumption is that the Riemann Hypothesis has to be checked up to a height A. The
second assumption is that explicit values for the complex zeros of the Riemann Zeta
function ((s) have to be known up to a height T. If both assumptions are met, then

we can estimate the integral

w—+n
I(w,n) = / K(u—w)ue ?[x(e") —li(e")] du
w=1
using the equation
ei’yw 2 2
Iw,n) =—-1- Z — e VLR
0<|yI<T

where R is as previously defined in Theorem 2.0.2. Next, we find suitable values for
a and w such that the first two terms on the right-hand side of the equation
ei'yw

I(w,n) =-1- Z —— e PR

0<|y|<T

sum up to be a positive value larger than the associated error term |R|. Then the

integral
w—+n

I(w,n) = / K(u—w)ue ?[x(e") —li(e")] du

is established to be positive and therefore the term [mr(e*) — li(e")] must admit some

positive values for u in the interval [w —n,w + 1) .



Chapter 3

Improvements

In this chapter, we will further improve the error term R in the equation
ei'yw 2 90
I(w,n) =—-1—- Z —e" "+ R

o< |vI<T p

where R is as previously defined in Theorem 2.0.2. In fact, the dominating term for

R is Sl.

Theorem 3.0.9 (Dusart’s Theorem [2, Theorem 1.10]) If z > 32299, we have
L <1+ L, 18 ) <w(z) . Ifz > 355991, we have m(z) < o= (1+L+ﬁ).

log z log z log? T log log?

We are using above result to prove following theorem:

Theorem 3.0.10 ([6, Theorem 3.2]) Under the hypothesis of Lehman’s Theorem
and if w - n > 25.57, the equation I(w,n) = —1— > ei% eV’ 20 L R still holds if
0<|y|<T

Sy is replaced by Sy = ﬁ + @%%12 +1log2 (w+n)e W m/2 4 é (w+n)e /6

R is as previously defined in Lehman’s Theorem.

We will split the proof of above theorem into two steps.
In Step 1 (page 39), we use Dusart’s Theorem and the Riemann Explicit Formula

to show that

u/2 2 10.04 u/3
m(e") —li(e") > — le’(@“p) —log2 — eu (1 + " + 2 ) - 2(1i)g2) :
P

38
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Step 2 (page 41) then uses the result of Step 1 to show that the upper bound of the

expression

2 1004 2u e_“/6>
+ du

w+n
J = K(u— “42log2 + =
/w_v7 (u—w) (ue 0g2+ " + 2 log 2

can be estimated by

/

2 10.04 2
+ 2 o5 4 loga (4 ) @2 =

w—n (w—n)? log 2

which gives us the conclusion of the theorem.

Proof For this proof, we closely follow Saouter-Demichel’s proof of Theorem 3.0.10.
Step 1

Let

MI(z) = 7(x) + 5 7(a"?) + %w(xl/?’) b

This is a finite function because 7(x'/*¥) = 0 for z'/* < 2. 2'/* < 2 when k > %.

log x
log 2

Hence we have L J number of terms.

Let

e—0

o(z) = hm1 (H(:c +e)+Il(x — e)) :

For x > 1, the Riemann Explicit Formula is

+oo
. . 1
o(z) = li(x) — Ep li(x”) +/w (@ Duloga du —log 2

where p are the complex zeros of the Riemann Zeta function ¢ in the critical strip.

Then

1 1 1
éw(xl/Q) + gﬁ(xl/?’) +..< 3

1 log x
1/2 1/3
() 3 (=) Log QJ ‘

Using Dusart’s Theorem and the classic bound 7(z) < %, for x > 355991, we then
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get
12y, 1 1/3
7(x )—|—§7T(x )+ ..
1[ z'/? 1 2.51 1 223 |logx
<cl—%(1+ +— + < —=
2 | log x1/2 logz'/? ~ log® x1/2 3 log 21/3 | log 2
1[ z/? 1 2.51 1/ 2z'/3 log x
< 1+ + — )|+
2(1/2logx 1/2logz  1/4log”x 3\ 1/3logx /) | log2
z1/? 1 2.51 23\ | log z
< —11 2
- log33< * 1/2logx * 1/4log2x) * (log:v) LogQJ
1/2 2 10.04 3N\ 1
< x L+ L1001y x gz |
log = logz  log”x logz ) | log?2
From this, we have

ISR N PR xt/? 2 10.04 zt/3
— - .. < 1 21 — ).
2 @)+ 3 @) s log * log * log® z - log?2

N —

Combining this result with the Riemann Explicit Formula Ily(x), we get

1 1
m(z) + 3 m(z'/?) + 3 (23 + ...

o 1
— i _E (P —
li(x) p li(x )—I—/w (@ = 1)u Tog u du —log?2.

Then

xt/? 2 10.04 xt/3
m(x) + 1+ +—— ) +2
log x logz  log”x log 2

—+00

1
> li(z) — Zli(mp) + du —log?2.
0 T

(u? — 1)u logu

Hence we have

+o0
() > li(z) = Y li(z*) + / - 11)u oa du — log 2

p

r1/? 2 10.04 rt/3
log x logz  log”x log 2

/2 2 10.04 /3
> li(x) — li(x”) —log2 — 1 -2
2 li(z) Z i(a?) — log log x < * log x * long) (logQ

p

)

40
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Substituting x = e" for u > 25.57, we have

u/2 u/3
) > li(e li(e"") — lo 9 ¢ 1+2+10'04 o £
(e Z g
u

u u? log 2
ev/? 2 10.04 ev/3
— li( li(e*”) —log2 — 14—-—4+—]-2 .
m(e") — dile Z e o8 u ( * u * u? ) (logZ)

Step 2

Multiplying the inequality from Step 1 by we /2, we get
we ?[m(e) — li(e)]
u/2 2 10.04 u/3
_“/2[ le “P) log2—e (1—1——+ )—2(6 )
u

u u? log 2
—u/2 gu/2 2 10.04
= — E we 2 li(e") —ue ?log2 — u(l—i———k 5 )
. U U U
) (ueu/2 6u/3)
log 2
2 10.04 —u/6
= =Y we 2 li(e") —ue ?log2 — (14 - + Y et
. u u? log 2
2 10.04 2ue v
_ —u/2 7:( U u/2 “ .
= Zue li(e") — log2 —1— " 2 g2

This can be used to improve term S; in the equation
eiﬂyw 2 90
I(w,n) =—1— Z —e" Y+ R
0<|y|<T
where R is as defined in Theorem 3.0.10 . Following the proof of Lehman’s Theorem

[3], we have the same bounding terms Sy, S3, Sy, S5, and Sg. We derive term Sy from

bounding the expression

W 2 10.04 2ue /6
J::/ K(u—w)( “U2og2 + = + o+ ue )du.
- U U log 2

Then due to the property that

[ sy =1

oo



CHAPTER 3. IMPROVEMENTS 42

we can use case 2 for the estimation of area to get

w+n 2

/ K(u—w) (—

w—n u
Wt 10.0

=
N~
—_
o
o
g

K(u— du < d
- (55 ans 2
w+n 9 —u/6 2 —(w—n)/6
/ K(u—w) L)du< (wrne .
wen log 2 log 2
Hence
2 10.04 2
J < + + o+ ) e~ @/ L 1og 2 (w+n) e @M/,
w—n (w—n)?*  log2
Let this expression be equal to S;. U

We have seen in above proof that the value 2 in the term ﬁ derives from the term

1
logx

in Dusart’s Theorem. This value cannot be further improved since the term @

is fixed for the given values of x.
Due to the improvement of term Sg in Lehman’s Theorem in chapter 2, we can

then claim

Theorem 3.0.11 Under the hypothesis of Lehman’s Theorem
and if w - n > 25.57, the equation I(w,n) = —1— > ei% eV’/2* 4 R still holds if

0<|y|<T
Sy is replaced by S; = oo &%%12 +log 2 (w+n) e~ @M/2 4 ooz (W + n)e~w=m/6

w

R is as previously defined in Theorem 2.0.2 .



Chapter 4

Numerical Results

This chapter is based on Saouter-Demichel’s numerical values with some changes due
to the improvement of term Sg in Lehman’s Theorem.

As previously stated, Theorem 2.0.2 requires numerical verification of the Rie-
mann Hypothesis up to a height A. Then for 0 < T < A, the complex zeros p = S+i7y
such that |y| < T have real part § = % Since p occurs in conjugate pairs in the criti-
cal strip of the Riemann Zeta function ((s), the sum from Theorem 2.0.2 to evaluate

18
ew

2 e e 2
e 7 /20 _ [ — y :|€7 /20 .
2 2 B+iy B—ivy

o<pir P 0<A<T

43
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Then
Z ﬁ 6_’72/2a _ Z |: ei”ﬂ*}. n 6—7;'7‘.*7 :|€_,Y2/2a
olmer P oirlBriy By
B Z [eo [cos(yw) + i sin(yw)]
0<~<T B—i_lv
N e [cos(—yw) —l—‘z' sin(—’yw)]] /2
B —iy

— 17)[cos(yw) + i sin(yw)]
> { (B+i7)(8 — i)
(e ieotre) i)
(8- W)(ﬁ + i)
Beos(yw) + i B sin(yw) — iy cos(yw) + v sin(yw)
‘Z[ B+ (- 0)

N Beos(yw) — i B sin(yw) + 17y cos(yw) + v sin(yw) =7 /2a
(B + i) (B —i7)

0<~y<T

B Z [2 B cos(yw) + 27 sm(’yw)} o—1?/2a

oS B+

B Z '2(%)003(7@ + 2’782%(”yw):| /20
0<y<T L 2

_ Z [cos(yw) + 2 v sm(vw)} /2
0<H<T - 4 + ta

For this, Saouter and Demichel computed the first 22 million zeros of ((s). From
that, we have T' = 10379599.727431060 .

Then the relative precision that occurs due to rounding when computing the right-
hand side of the above equation is bounded by AT = |v* — +||t'(7)|. In his work [4] ,
te Riele gives the approximation |y* — | < 107. Hence we have

ATZ 1 Y ({cos ’yw)—l—Q'ysm('yw)} _W%)‘

0<7<T + 7

Numerically, the least known value for w such that I(w,n) is positive is

= 727.951335792. For the width a, we have o = 6 x 10'2. The value for A
which minimizes the interval length is A = 6.85 x 10". Note that even though we
were able to improve term Sg in Lehman’s Theorem, it does not change the optimal
value for A. Since we want the smallest possible value for n, we let n = %. Then

n = 0.00002283333334.



CHAPTER 4. NUMERICAL RESULTS 45

One should note that all of the above values satisfy the conditions % <a< A?and
% <n < % of Lehman’s Theorem. Further w—n > 25.57 which satisfies the condition

for Theorem 3.0.11.

Through computation, we obtain

yw
Z € 2 — _().002906086981405.
0<ly|<T p

Hence we have I*(w, n) = 0.002906086981405 as an estimate for

[w,p)= Y Ty R
0<|y|<T p

where |R| < S} + Sy + S5 + Sy + S5 + S5, and
Iw,n) >I"(w,n)—AI — S, — 8y, —S3— 5, — S5 — 5.
Then we have

S| = 0.002766382992

Sy = 7.612616054 x 107982
Ss = 1.045693526 x 1077
Sy = 0.00003202055302

S5 = 0.00006868591225 , and

Sy = 7.329532854 x 1077,

Hence

I(w,n) > 0.00003754811147 .

Above numerical results then show that I(w,n) is positive, and it follows that
there exists a value z in the interval [w — n,w + 7] =
[exp(727.951312959), exp(727.951358625)] for which 7(z) — li(x) > 0 holds.

Further Chao and Plymen’s work [1, page 689] shows that for u in some interval
(w —n,w +n) where ue *?[r(e) — li(e¥)] > &, we have 7(e*) — li(e*) > u~'e/?§ .

Hence for our interval [exp(727.951312959), exp(727.951358625)], we have

m(e") — li(e") > 6.096911165 x 10*°



CHAPTER 4. NUMERICAL RESULTS 46

where v = w and ¢ = 0.00003754811147 .

Thus we can claim

Theorem 4.0.12 There exists at least one value x in the interval
[exp(727.951312959), exp(727.951358625)] for which w(x) — li(x) > 0. Further, there
are more than 6.096911165 x 10*° successive integers in the vicinity of

exp(727.951335792) where the inequality holds.
This improves Saouter and Demichel’s original theorem:

Theorem 4.0.13 ([6, Theorem 4.1]) There exists at least one value x in the in-
terval [exp(727.9513130), exp(727.9513586)] for which w(x) > li(x) holds. Moreover,
there are more than 6.09 x 10'°° successive integers in the vicinity of

exp(727.951335792) where the inequality holds.

Even though Saouter-Demichel’s interval appears to be smaller, this is due to round-
ing and exhibits the same interval as in Theorem 4.0.12. The improvement lies with

the number of successive integers.



Chapter 5

Sharpening the Interval

In this chapter, we further sharpen the interval of Theorem 4.0.12. For this, we take
a look at the growth of m(x) — li(z).
First, we will consider the general case for which we do not assume the Riemann

Hypothesis. We will use the following theorem:

Theorem 5.0.14 ([6, Theorem 5.1]) If x > €®, we have
0 < li(w) — = (1+ L4 2 ) — Oy < 2 + Co with

- log z log x log? =

log 2 log 2 log? 2 log® t

Clzl’l(Q)— 2 (1+ 1 + 2 )GndCQZI;S 48 dt_loziz .

We will split the proof of above theorem into two steps.

In Step 1 (page 48), we use integration by parts to show that

1 2 Y6
li(z) — — (1+ +—= )—01:/ _dt
log z logz  log”x 9 log't

>0.

Step 2 (page 49) proves that for ¢ > €8, we have

6 12
/ A< Ty,
o log™t log™ x

Combining Step 1 and Step 2, we get the conclusion of the theorem.

47
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Proof We will closely follow Saouter-Demichel’s proof of the above theorem.
Step 1

From the definition of [i(z) given in chapter 2, we have for = > 2

i(x —/ —dt
logt
= —dt
0 logt /logt

=1i(2 / ——dt.
logt

Using integration by parts, we then get

Tl t ] S|
/ dt = +/ — dt
5 logt logt|, 5 log”t

_t ””+ t m+/l‘ 2 .
logt|, log”t|, Jo log’t
t | to]r 2t

X x 6
= + + [ —dt
logt|, log?t 9 log®t 9 /2 log*t

S R P m+/m6dt
N logt logt log2t 9 9 log4t '

Hence

t 1 2 ¢ T 6
li(x) = li(2 — 1 ——dt.
i) = 6(2) + [logt( T logt logt * log? t)} +/2 log* ¢

x 1 2
li(x)— 1 - C
i@) logx( +logx+log2x> '
x 1 2 1 2
= li(z) — 1 li(2
ix) logx( +logx+log2x) {Z() log2( log2+log22)}
t 1
=li(x) — li(2) — 1+
i) = 1i(2) [logt( logt lo 2t>]
t 1 ’ ¢
= [i(2 —1
i2) + Logt( +logt log? t)} +/2 log
t 1
—0l(2)— |—|(1
i2) {logt( +logt+log t)L
:/ indt
2 10g t
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and
ng%ﬁzu
Hence
0 < li(z) — 10; (1 + 10;5 + logQQI) —Cy.
Step 2

Using integration by parts, we have for z > 2
6 6t |" r24
/ T dt = 1 + / = dt.
o log™t log™t|, o log”t
Y Y 24
s log”t o log”t o log”t

6 6t |” Y
_/’ - ! _/ 'y
o log™t log™t|, o log”t

Then

For t = €%, we have

Then for ¢t > ¥, we have
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Hence for t > €8, we get

T 6 6t |© [ 24 T 24
/—4 dt — — —/ — dt:/ ——dt
o log™t log™t|, o log’t s log”t
1 [ 6
g—/ O
2 Jes log™t

L (" 6
S_/ 4 dt?
2 Jo log™t

so we have

/&
2 log4t log tl,

1/“”” 6
2 /s log4t log 1y

x xT 6
/ < / ot
log t o log™t
1/ 61t
2 log log ty
12t “ 48
| 4 =
log log tl, o log”t
8

12 24 < 48
— + | ——adt
2

8

* © 24
[
o log”t

8

“log*z  log*2 log® t
12
- 1 + CQ .
log™ x

Combining, we get

x 1 2
<li(x) — 1 —
0<li) logx< * log x * long) @

[
o log™t

122
S T
log™ x

+Cs.

Using above theorem with Dusart’s Theorem from chapter 3, we claim

Theorem 5.0.15 ([6, Theorem 5.2]) If x > 355991, we have
— 02 120 (C’l + 02) <m(zx)—li(x) < 05135 - .

log® x log™ x
Moreover, if x > €%, then |n(x) — li(z)| < 2 Cl .

log T
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We will split the proof of above theorem into three steps.

In Step 1 (page 51), we use Theorem 5.0.14 and Dusart’s Theorem to show that

0.2z 122
logz  log*x

(z) — li(z) > (O + C).

Step 2 (page 52) proves that

051z

3 1

m(x) —li(z) < oz

This gives us the first conclusion of the theorem.
In Step 3 (page 52), we show that

051z 0.2x 122
+C1 < - 3 1
log”x log™x

< m(zx)—li(x).

- —(C1+C
10g3az (G 2)

Combining this result with Step 2, we get the later conclusion of the theorem.

Proof For this proof, we closely follow Saouter-Demichel’s proof of above theorem.
Step 1
From Theorem 5.0.14, we have

x 1 2 122
li(z) — 1 - < Cs.
i) loga:( * log x * logQQ:) "= log" e

Then

12 1 2
li(x) < f +—(1+ +—— | +C1+Cs.
log>z logx logz  log”x

By Theorem 3.0.9, we have

x 1 1.8
1+ +— <m(x).
log logz  log®x

Then

v (1+ L 18 )—li(:z;)gﬂ(x)—li(x).

log x logz  log’x
Then

v, 1o, 18 120w (0012 N
log x logz  log?x log*z  logx logz  log’x ! ?
T 1 1.8
< 1 — i
- logm( + log x * log2x> i)

< m(x)—li(x).
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Hence
x 1 1.8
—li(x) > 1
m(z) = li(w) 2 1oga7< * log = * long)
12z T 1 2
—{ — + (1+ + — )+Cl+02:|
logz logw logz  log”x
x —0.2 12z
= — —(C1+ C
log = (log2x) log* x (C1+C)
0.2z 12x
=— — — (C1+ Cy) .
logz  log*x ( ! 2)
Step 2

From Theorem 5.0.14, we have

1 2
li(z) — — (1+ )—0120.

N log log x * log? x

Further from Theorem 3.0.9, we have

(r) < — (1+ : +2“21).
log x logz  log”x

x 1 2.51 x
< 1 — li(z) —
() < N log z - long) * { i() log x

_ L( 051 ) +li(z) — C

log z \ log* =
051z
B log® «

Hence

r(a) — i) < 22 .

log” x

Step 3

Note that %262 ~ 3.7 x 10" and 8¢ ~ 0.1,

1 2
Il++—+——]-C
( log x logzx) 1}

92
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40

Then for z = e*, we have

0.51z 0.51¢*

Clogz (loge®0)3
0.51 %0
T
20.4 %0
ST
201 0.4
40t 40°
20 48¢% 96 1

] 230%10_%1—%5:5548_210 2(2)  2(0
_2e _[ (€®) _ ()]_[() ()}

401 405 405 40 40
206 4st|” 2]
404 405 ,  40],

20 0

T —/2 @dt /—d’f
12e%0 g0

T 400 _4_04_/2 4_05dt /_dt

o 12e% 026" _/6 dt—/2 2
 (loge®)t - (loge0)* (loge40>5 o loge®

8

12 0.2 © 48 21
=2 _ f—/ 5dt—2/—dt
log"xz log’z o log”t o logt

0.2 12 < 48
R —/ "~ dt — 21i(2)
log”z log™ x o log’t

+2 2 1+ ! + ’ + 2
log 2 log2  log?2 log* 2

02z 12z 2 1 2
=— - —2|1i(2) — 1+ +
o'z~ ogts 25~ 3 (1 3+ )|

8

48 24
o 5 dt — 4
o log’t log™ 2

02z 12x

=— — —2C,—C5.
logz  loghx ! 2
Hence for = €*°, we have
051z 0.2z 12z
4 O < —— - (1 + &)
log” x log”x  log™ x

< m(x) —li(x).
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Then it follows that this inequality holds for > €*°. Hence for > €%°, we have

0.51 0.51
_( Sx—CH)SW(x)—li(x)S 3x—C'1.
log” x log” x

Thus

.51
() — li(a) < 2227
log” x

Using above theorem, we will now look at the tail parts of the integral

w—+n
I(w,n) = K(u—w)ue ?[x(e") — li(e*)] du.

w=n

Let ny be a real positive number such that 7y < 1. Then we can use case 1 for the

estimate of area to get

w+n
K(u—w)ue ?[x(e") —li(e")] du
w10
w+n
< /+ | K (u—w) we 2 [m(et) — li(e")]| du
< /i n}K(u —w)||u e_“/2’ (") — li(e")| du
= o K(u—w) ue’“/Q‘w(e“) — li(e")| du.
w10

Note that in Theorem 5.0.15 (4 is negative and () is positive. Using this theorem,

we then have

w+n
K(u—w) ue’“/2|7r(e“) — li(e")| du
w0
e 0.51(e"
< K(u—w)ue‘“m{ (62’—01] du
w0 (log e¥)
e 0.51 "
= K(u—w)ue‘“ﬁ{ ¢ —C’l} du
w10 u
i 0.51e"ue /2
= K(u—w)[e—ge—(}lueu/z} du
w0 u
i 0.51 ¢*/2
= K(u—w)[—j—@lue_“ﬂ} du
u
w10

0.51 elwtn)/2

M~ G mem].
0

<(n—m) K(no)[
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Let the right-hand side of the above inequality be equal to T}. Further

/w—no K(u—w)ue " ?m(e) — li(e")] du

-n

w—"0 51 u/2
</ K(u—w)[m—e—C'lue"/Q] du

- 2
—n u

0.51 e(w=m0)/2

< (n— o) K(_Uo)[

Let the right-hand side of this inequality be equal to T5. Then the sum of the two tail
integrals is bounded above by T} 4 T5. Using the previous numerical values, Saouter

and Demichel let ny = which gives us the optimal value for 7} and T5 such that

_n_
2.074

I(w,no) is positive. Then we obtain
77 = 0.00001594194397

and

T, = 0.00001594167602 .

Using the numerical results for 7} and T5 together with the estimate from chapter 4,
I(w,n) > 0.000037548111,

we get

I(w,n) > 0.000005664491481 .

Further, [w —n,w + 1] = [exp(727.951324783), exp(727.951346801)]. Then we have
m(e") — li(e") > 9.197773166 x 10149

Hence we can state a new theorem:

Theorem 5.0.16 There exists at least one value x in the interval
[exp(727.951324783), exp(727.951346801)] for which w(x) — li(x) > 0. Further, there
are more than 9.197773166 x 10'4° successive integers in the vicinity of

exp(727.951335792) where the inequality holds.

The above theorem refines Saouter and Demichel’s original theorem:
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Theorem 5.0.17 ([6, Theorem 5.3]) There exists one value x in the interval

lexp(727.95132478), exp(727.95134681)| such that w(x) — li(x) > 9.1472 x 1049,

The improvement lies with the number of successive integers due to the improvement
of term Sg in Lehman’s Theorem and a rounding error in the interval of Saouter-
Demichel’s theorem.

Next, we consider the case where the Riemann Hypothesis holds. For this we use

a result by Schoenfeld:

Theorem 5.0.18 ([7, page 339]) If the Riemann Hypothesis holds, then for x >
2657 we have |m(x) — li(z)| < &= /& logz.

Then looking again at the tail parts of the integral I(w,n) we get

w—+n
K(u—w)ue "?[x(e") —li(e")] du
w0
w—+n
< Ku—-w)u 6_“/2{7T(e“) — li(e")| du
w10
w—+n 1
< K(u—w)ue ™/? [—\/e_“loge“} du
w+no 87
w—+n 1
= K(u—w)ue“ﬂ[—e“mu} du
w+no 8
1ot
=— K(u—w)u?du
8 w10
1
< (n—0) S_WK(UO) (w+mn).

Let the right-hand side of above inequality be equal to 7). Further

8T -

1 [em
<—/ K(u— w)u®du

/w—ﬂo K(u—w)ue ?[x(e") — li(e")] du
1

<(n—m) 3 K (—10) (w—10)* .

Let the right-hand side of this inequality be equal to T,. Then the sum of the two

tail integrals is bounded above by Tll + TQ/. Using the previous numerical values, we
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let ng = which gives us the optimal values for T} and T, such that I(w, 1) is

_n
8.10
positive. Hence we obtain

Tll = (0.00001828536920

and

TQI = 0.00001828536792 .

Using the numerical results for T} and 7. 2/ together with the estimate from chapter 4,
I(w, n) > 0.000037548111

we get

I(w, no) > 9.97737436 x 1077

Further [w — 1o, w + 1mo] = [exp(727.951332973), exp(727.951338611)] and

m(e") — li(e*) > 1.58702111 x 109, Hence we can state a new theorem:

Theorem 5.0.19 If the Riemann Hypothesis holds, then there exists at least one
value z in the interval [exp(727.951332973), exp(727.951338611)] for which
m(x) —li(x) > 0. Further, there are more than 1.58702111 x 109 successive integers

in the vicinity of exp(727.951335792) where the inequality holds.
The above theorem improves Saouter-Demichel’s original theorem:

Theorem 5.0.20 ([6, Theorem 5.5]) If the Riemann Hypothesis holds, then there
exists one value x in the interval [exp(727.95133239), exp(727.95133919)] such that
m(x) — li(z) > 1.7503 x 1048,

The improvement is due to a new value for 7y and the improvement of term Sg in

Lehman’s Theorem. For Theorem 5.0.19, we use 1y = gi; rather than Saouter-

8.1

Demichel’s value 79 = 5. This is possible because we are using

(0= ) 5= K () -+ 1)°

and

(= ) 5 K () (@ = m)?
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as and estimate for the upper bound instead of Saouter-Demichel’s estimate

o () (@ +0)°

and

1

o K(=m) (@ —m)?.

o8



Chapter 6

Interval of Positivity

In this chapter, we will consider integers greater than x for which w(z) — li(z) is

positive.

Let b be a positive. From the definition of li(x), it follows that

z—b
li(z —b) = —dt
iz ) /0 logt

/ logt

= li(x).

Let n denote the number of primes up to and including z. We will consider two cases.

For the first case, we let x be prime. Then

mx—1)=n—-1

=m(z)—1.

For the second case, we assume that x is not prime. Then

m(rx—1)=
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Hence in general,

m(x—1)>nm(x)—1.

From the above, it follows that

w(x —b) —li(x —b) > w(x) — b—li(x — b)

> m(x) —b—li(x)

=m7(x) —li(x) —b.

In Theorem 4.0.12, the interval [exp(727.951312959, exp(727.951358625)] exhibits
6.096911165 x 10'°° consecutive integers where m(x) — li(x) is positive. Hence we

have

w(x —b) —li(x —b) > m(x) —li(x) — b

> 6.096911165 x 10™°.

Thus we can confirm that the successive integers preceding = belong to the interval
of positivity. To obtain this result, we considered integers less than x. However, we
can get a better result if we consider integers greater than x. For this we use the

following theorem:

Theorem 6.0.21 ([6, Theorem 6.1]) Let x > 1, and y > 0. Then we have

li(x +y) —li(x) = [T @ dt < £
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1
logz "

Proof The graph below shows y =

Figure 6.1: y = Iog
ogx

We can clearly see that since z +y > x > 1, we have

Tty 1 p 1
[ <t (50)

B 1
—Y log x

Y
logx

Using above theorem, we then claim

Theorem 6.0.22 ([6, Theorem 6.2]) Let x be a real number such that w(x) —
li(r) = A where A > 0. Then if y is a real number such that 0 < y < Alogz,
we have w(x +y) — li(z +y) > 0.

Proof For this proof we closely follow Saouter-Demichel’s proof of above theorem.

Let A > 0 and y > 0 such that 0 < y < Alogz and m(x) — li(x) = A. Note that
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m(z +y) —m(xz) > 0. Then

m(x+y) —li(zr+y) =7m(z+y) —li(z+y)+ [7(x) — 7(z)] + [li(x) — li(z)]
= [z +y) —7w(x)] + [r(x) = li(x)] + [li(z) — li(z + y)]
=[r(x+y) —n(x)] + A+ [li(z) = li(z +y)]
> A+ [li(z) — li(z + y)]
= A~ [li(z +y) — li(z)]

>4
log x

>0.

g

From Theorem 5.0.16, we have A = 9.197773166x 10, Then Alogz = Aloge" =
A where u = w. Thus

Alogx = 6.695531258 x 1012

Let y = 0. Then Alogz > y > 0, so the conditions of Theorem 6.0.22 are met.
Hence we have 6.695531258 x 102 successive integers. However, we do not know
where the first x lies in the interval [exp(727.951324783), exp(727.951346801)] of The-
orem 5.0.16. We only know that the maximal value is at exp(727.951346801). But

exp(727.951346802) — exp(727.951346801) ~ 1.3972 x 10°"

> 6.695531258 x 1012

Then the 6.695531258 x 10'°? successive integers following = belong to the interval
[exp(727.951324783), exp(727.951346802)]. Hence we can claim:

Theorem 6.0.23 There are at least 6.695531258 x 1052 consecutive integers in the
interval [exp(727.951324783), exp(727.951346802)] for which 7(x) — li(z) > 0.

The above theorem improves Saouter and Demichel’s original theorem:
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Theorem 6.0.24 ([6, Theorem 6.3]) There are at least 6.6587 x 10'5? consecutive
integers x in the interval [exp(727.95132478), exp(727.95134682)] such that w(x) —
li(z) > 0.

The improvements are due to the improvements of Theorem 5.0.16.
Further if the Riemann Hypothesis holds, we can use Theorem 6.0.22 and Theo-
rem 5.0.19. Then A = 1.58702111 x 10'4°. Hence

Alogx = 1.15527413 x 102
and

exp(727.951338612) — exp(727.951338611) ~ 1.3972 x 10°"7

> 1.15527413 x 102 .

Hence we can claim:

Theorem 6.0.25 If the Riemann Hypothesis holds, then there are at least
1.15527413 x 10%? successive integers in the interval

lexp(727.951332973), exp(727.951338612)] for which w(x) — li(x) > 0.

Due to the improvements of Theorem 5.0.19, the above theorem refines Saouter-

Demichel’s original theorem:

Theorem 6.0.26 ([6, Theorem 6.4]) If the Riemann Hypothesis holds, then there
are at least 1.2741 x 10! consecutive integers in the interval

[exp(727.95133239), exp(727.95133920)] such that w(x) — li(z) > 0.
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APPENDIX A. MAPLE

o = 727.951335792;

727.951335792
A= 6.85-10";
6.850000000 107
o= 6-10"%
6000000000000
2.4
ni=——;
(04
0.00002283333334
=
noj:= 5074

0.00001100932176
T := 10379599.727431060;
1.0379599727431060 10’

S] = 2 L 10'042+ln(2)-(w+n)-exp(-mj+ . ~((x)+n)-exp(
evalf (S1);
0.002766382992
2

2.exp(— 2 ]
82 = - :

sqrt(2-m o) M
evalf(S2);

7.612616054 10758

2
S3 = 0.08~sqrt(0c)-exp[— = ];

evalf (S3);

1045693526 1077

S§4 = exp[— %J[ n'o;z -ln[ﬁ—] +ﬁlT(—7l +4T.3—OL];

evalf (S4);

0.00003202055302

- oo
®-n
0.00006868591225
3 0
S6 ==A~1n(A)-exp(- 2L +m]-(3.2~a - +14.4-n];
2-0 2
evalf' (S6);

7.329532854 107

JI = 0.002906086981405 — 7.1645945511-10"" — SI — 82 — S3 — S4 — S5 — S6;
evalf (J1);

0

@

©)]

“

®)

()

®

©)

(10)

(11)

(12)
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0.00003754811147 13)
Nolntegersl = mplvexp( % j Il
evalf (Nolntegersl);
6.096911165 10'° (14)
2
o oy
K = sqrt| — | -ex [- —j;
an{ 57 |00 - %5
0.51-exp( w;—n )
T1 = (n —n[0]) -subs(y=n[01, K) - 5 | sota(o ) 'exp(
(@ +n[0])
. o ol ) :
2 2
evalf (T1),
0.00001594194397 (15)
0.51-exp(—m—:§n-[—(—)lj
T2 := (n —n[0]) -subs(y=-n[0], K) - > +1.80141-(c0—n[0])-exp[
(0-n)
@ ) :
2 - )
evalf (T2),;
0.00001594167602 (16)
J2:=J1 —TI] -T2
evalf (J2);
0.000005664491481 a7

Nolntegers2 = 0)_1 -exp( % ] 72

evalf (Nolntegers2);
9.197773166 10'* (18)
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Tg100] = LL=WOD o) =001, ) - (@ + 1)

8m
—n[00
7291007 = (”—g’u~subs(y=—n{001,1<)~(m~n[001)2;
T
Jn[00] :==JI —TIn[00] — T25[00];
e N
0= iy
0.000002818930041
evalf (Jn[00]);
9.7737436 107
evalf (TIn[00]);
0.00001828536920
evalf (T2n[00]);
0.00001828536792

Nolntegers3 = (0—1 -exp( —;l j Jn[00];
evalf (Nolntegers3);

158702111 10°"

Nolntegers4 == Nolntegers2-w;
evalf (Nolntegers4),
6.695531258 10"
Nolntegers5 == Nolntegers3-w;
evalf (Nolntegers5),
1552 /4300
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