
A Schur-Newton Method for the Matrix p’th
Root and its Inverse

Guo, Chun-Hua and Higham, Nicholas J.

2006

MIMS EPrint: 2005.9

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

A SCHUR–NEWTON METHOD FOR THE MATRIX PTH ROOT

AND ITS INVERSE∗

CHUN-HUA GUO† AND NICHOLAS J. HIGHAM‡

Abstract. Newton’s method for the inverse matrix pth root, A−1/p, has the attraction that it
involves only matrix multiplication. We show that if the starting matrix is c−1I for c ∈ R+ then the
iteration converges quadratically to A−1/p if the eigenvalues of A lie in a wedge-shaped convex set
containing the disc { z : |z−cp| < cp }. We derive an optimal choice of c for the case where A has real,
positive eigenvalues. An application is described to roots of transition matrices from Markov models,
in which for certain problems the convergence condition is satisfied with c = 1. Although the basic
Newton iteration is numerically unstable, a coupled version is stable and a simple modification of it
provides a new coupled iteration for the matrix pth root. For general matrices we develop a hybrid
algorithm that computes a Schur decomposition, takes square roots of the upper (quasi)triangular
factor, and applies the coupled Newton iteration to a matrix for which fast convergence is guaranteed.
The new algorithm can be used to compute either A1/p or A−1/p, and for large p that are not highly
composite it is more efficient than the method of Smith based entirely on the Schur decomposition.

Key words. Matrix pth root, principal pth root, matrix logarithm, inverse, Newton’s method,
preprocessing, Schur decomposition, numerical stability, convergence, Markov model, transition ma-
trix

AMS subject classifications. 65F30, 15A18, 15A51

1. Introduction. Newton methods for computing the principal matrix square
root have been studied for almost fifty years and are now well understood. Since
Laasonen proved convergence but observed numerical instability [25], several Newton
variants have been derived and proved numerically stable, for example by Higham
[13], [15], Iannazzo [18], and Meini [27]. For matrix pth roots, with p an integer
greater than 2, Newton methods were until recently little used, for two reasons: their
convergence in the presence of complex eigenvalues was not well understood and the
iterations were found to have poor numerical stability. The subtlety of the question of
convergence is clear from the scalar case, since the starting values for which Newton’s
method for zp−1 = 0 converges to some pth root of unity form fractal Julia sets in the
complex plane for p > 2 [28], [30], [33]. Nevertheless, Iannazzo [19] has recently proved
a new convergence result for the scalar Newton iteration and has thereby shown how
to build a practical algorithm for the matrix pth root.

Throughout this work we assume that A ∈ C
n×n has no eigenvalues on R

−, the
closed negative real axis. The particular pth root of interest is the principal pth
root (and its inverse), denoted by A1/p (A−1/p), which is the unique matrix X such
that Xp = A (X−p = A) and the eigenvalues of X lie in the segment { z : −π/p <
arg(z) < π/p }. We are interested in methods both for computing A1/p and for
computing A−1/p.

We briefly summarize Iannazzo’s contribution, which concerns Newton’s method
for Xp − A = 0, and then turn to the inverse Newton iteration. Newton’s method

∗Version of February 15, 2006. This work was supported by a Royal Society-Wolfson Research
Merit Award to the second author.

†Department of Mathematics and Statistics, University of Regina, Regina, SK S4S 0A2, Canada
(chguo@math.uregina.ca, http://www.math.uregina.ca/~chguo/). This work was supported in part
by a grant from the Natural Sciences and Engineering Research Council of Canada.

‡School of Mathematics, The University of Manchester, Sackville Street, Manchester, M60 1QD,
UK (higham@ma.man.ac.uk, http://www.ma.man.ac.uk/~higham/).

1

2 C.-H. GUO and N. J. HIGHAM

takes the form

Xk+1 =
1

p

[
(p− 1)Xk + X1−p

k A
]
, X0A = AX0.(1.1)

Iannazzo [19] shows that Xk → A1/p quadratically if X0 = I and each eigenvalue of
A belongs to the set

S = { z ∈ C : Re z > 0 and |z| ≤ 1 } ∪ R
+,(1.2)

where R
+ denotes the open positive real axis. Based on this result, he obtains the

following algorithm for computing the principal pth root.
Algorithm 1.1 (Matrix pth root via Newton iteration [19]). Given A ∈ C

n×n

with no eigenvalues on R
− this algorithm computes X = A1/p using the Newton

iteration.

1 B = A1/2

2 C = B/‖B‖ (any norm)

3 Use the iteration (1.3) to compute X = C2/p (p even) or X =
(
C1/p

)2
(p odd).

4 X ← ‖B‖2/p X
The iteration used in the algorithm is a rewritten version of (1.1):

Xk+1 = Xk

(
(p− 1)I + Mk

p

)
, X0 = I,

Mk+1 =

(
(p− 1)I + Mk

p

)−p

Mk, M0 = A,

(1.3)

where Mk ≡ X−p
k A. Iannazzo shows that, unlike (1.1), this coupled form is numeri-

cally stable.
Newton’s method can also be applied to X−p−A = 0, for which it takes the form

Xk+1 =
1

p

[
(p + 1)Xk −Xp+1

k A
]
, X0A = AX0.(1.4)

The iteration has been studied by several authors. R. A. Smith [34] uses infinite
product expansions to show that Xk converges to an inverse pth root of A if the
initial matrix X0 satisfies ρ(I−Xp

0A) < 1, where ρ denotes the spectral radius. Lakić
[26] reaches the same conclusion, under the assumption that A is diagonalizable, for
a family of iterations that includes (1.4). Bini1, Higham, and Meini take X0 = I and
prove convergence of the residuals I−Xp

kA to zero when ρ(I−A) < 1 (see Lemma 2.1
below) as well as convergence of Xk to A−1/p if A has real, positive eigenvalues and
ρ(A) < p + 1 [4]. They also show that (1.4) has poor numerical stability properties.
In none of these papers is it proved to which inverse pth root the iteration converges
when ρ(I − Xp

0A) < 1. The purpose of our work is to determine a larger region of
convergence to A−1/p for (1.4) and to build a numerically stable algorithm applicable
to arbitrary A having no eigenvalues on R

−.
In Section 2 we present convergence analysis to show that if the spectrum of A is

contained in a certain wedge-shaped convex region depending on a parameter c ∈ R
+

then quadratic convergence of the inverse Newton method with X0 = c−1I to A−1/p

1The authors of [4] were unaware of the papers of Lakić [26] and M. I. Smith [34], and Lakić
appears to have been unaware of Smith’s paper.

A SCHUR–NEWTON METHOD FOR THE MATRIX pTH ROOT 3

is guaranteed—with no restrictions on the Jordan structure of A. In Section 3 we con-
sider the practicalities of choosing c and implementing the inverse Newton iteration.
We derive an optimal choice of c for the case where A has real, positive eigenval-
ues, and we prove a finite termination property for a matrix with just one distinct
eigenvalue. A stable coupled version of (1.4) is noted, and by a simple modification
a new iteration is obtained for A1/p. For general A we propose a hybrid algorithm
for computing A−1/p or A1/p that precedes application of the Newton iteration with
a preprocessing step, in which a Schur reduction to triangular form is followed by the
computation of a sequence of square roots. An interesting and relatively unexplored
application of pth roots is to Markov models; in Section 4 we discuss this application
and show that convergence of the inverse Newton iteration is ensured with c = 1 in
certain cases. Numerical experiments are presented in Section 5, wherein we derive
a particular scaling of the residual that is appropriate for testing numerical stability.
Section 6 presents our conclusions.

Finally, we mention some other reasons for our interest in computing the inverse
matrix pth root. The pth root arises in the computation of the matrix logarithm by
the inverse scaling and squaring method. This method uses the relation log(A) =
p log A1/p, where p is typically a power of 2, and approximates log A1/p using a Padé
approximant [6], [22, App. A]. Since log(A) = −p log A−1/p, the inverse pth root can
equally well be employed. The inverse pth root also appears in the matrix sector
function, defined by sectp(A) = A(Ap)−1/p (of which the matrix sign function is
the special case with p = 2) [23], [31], and in the expression A(A∗A)−1/2 for the
unitary polar factor of a matrix [12], [29]. For scalars a ∈ R the inverse Newton
iteration is employed in floating point hardware to compute the square root a1/2 via
a−1/2 × a, since the whole computation can be done using only multiplications [7],
[21]. The inverse Newton iteration is also used to compute a1/p in arbitrarily high
precision in the MPFUN and ARPREC packages [1], [2], [3]. Our work will be useful
for computing matrix pth roots in high precision—a capability currently lacking in
MATLAB’s Symbolic Math Toolbox (Release 14, Service Pack 3).

2. Convergence to the inverse principal pth root. We begin by recalling a
result of Bini, Higham, and Meini [4, Prop. 6.1].

Lemma 2.1. The residuals Rk = I −Xp
kA from (1.4) satisfy

Rk+1 =

p+1∑

i=2

aiR
i
k,(2.1)

where the ai are all positive and
∑p+1

i=2 ai = 1. Hence if 0 < ‖R0‖ < 1 for some

consistent matrix norm then ‖Rk‖ decreases monotonically to 0 as k → ∞, with

‖Rk+1‖ < ‖Rk‖2.
In the scalar case, Lemma 2.1 implies the convergence of (1.4) to an inverse pth

root when ‖R0‖ < 1, and we will use this fact below; the limit is not necessarily the
inverse principal pth root, however. R. A. Smith [34] shows likewise that ‖R0‖ < 1
implies convergence to an inverse pth root for matrices. Note that the convergence
of Xk in the matrix case does not follow immediately from the convergence of Rk in
Lemma 2.1. Indeed, when ‖R0‖ < 1, the sequence of pth powers, {Xp

k}, is bounded
since Xp

k = (I − Rk)A−1, but the boundedness of {Xk} itself does not follow when
n > 1.

Our aim in this section is to show that for an appropriate range of X0 the Newton
iterates Xk converge to A−1/p. We begin with the scalar case. Thus, for a given

4 C.-H. GUO and N. J. HIGHAM

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 2.1. The region E for p = 4. The solid line marks the disk of radius 1, center 0, whose

interior is D.

λ ∈ C \ R
− we wish to determine for which x0 ∈ C the iteration

xk+1 =
1

p

[
(p + 1)xk − xp+1

k λ
]

(2.2)

yields λ−1/p, the principal inverse pth root of λ, which we know lies in the segment

{ z : −π/p < arg(z) < π/p }.(2.3)

We denote by D = { z : |z| < 1 } the open unit disc and by D its closure. Let

E = conv{D,−p} \ {−p, 1},

where conv denotes the convex hull. Figure 2.1 depicts E for p = 4. The next result
is a restatement of [34, Thm. 4].

Lemma 2.2. For iteration (2.2), if 1− xp
0λ ∈ E then 1− xp

1λ ∈ D.

The following result generalizes the scalar version of [4, Prop. 6.2] from x0 = 1 to
x0 > 0 and the proof is essentially the same.

Lemma 2.3. Let λ ∈ R
+. If x0 ∈ R

+ and 1 − xp
0λ ∈ (−p, 1) then the sequence

{xk} defined by (2.2) converges quadratically to λ−1/p.

We will also need the following complex mean value theorem from [9]. We denote
by Re(z) and Im(z) the real and imaginary parts of z ∈ C and define the line

L(a, b) = { a + t(b− a) : t ∈ (0, 1) }.

Lemma 2.4. Let Ω be an open convex set in C. If f : Ω 7→ C is an analytic

function and a, b are distinct points in Ω then there exist points u, v on L(a, b) such

that

Re

(
f(b)− f(a)

b− a

)
= Re(f ′(u)), Im

(
f(b)− f(a)

b− a

)
= Im(f ′(v)).

A SCHUR–NEWTON METHOD FOR THE MATRIX pTH ROOT 5

The next result improves Lemma 2.3 by extending the region of allowed 1− xp
0λ

from the interval (−p, 1) to the convex set E in the complex plane.
Lemma 2.5. Let λ ∈ C \ R

− and let x0 ∈ R
+ be such that 1 − xp

0λ ∈ E. Then

the iterates xk from (2.2) converge quadratically to λ−1/p.

Proof. By Lemma 2.2 we have 1 − xp
1λ ∈ D. It then follows from the scalar

version of Lemma 2.1 that xk converges quadratically to x(λ), an inverse pth root of
λ (see the discussion after Lemma 2.1). We need to show that x(λ) = λ−1/p. There
is nothing to prove for p = 1, so we assume p ≥ 2.

For any λ ∈ R
+ with 1 − xp

0λ ∈ (−p, 1) we know from Lemma 2.3 that x(λ) =
λ−1/p. Intuition suggests that x(λ) is a continuous function of λ. Since the principal
segment (2.3) is disjoint from the other p− 1 segments it then follows that for each λ
with 1−xp

0λ ∈ E, x(λ) must be the inverse of the principal pth root. We now provide
a rigorous proof of x(λ) = λ−1/p. (Once this is proved, the continuity of x(λ) as a
function of λ follows.)

We write x0 = 1/c. Then 1 − xp
0λ ∈ (−p, 1) becomes λ ∈ (0, (p + 1)cp), and

1− xp
0λ ∈ E is the same as λ ∈ Ec, where

Ec = conv
{
{ z : |z − cp| ≤ cp }, (p + 1)cp

}
\ { 0, (p + 1)cp }.

We rewrite Ec in polar form

Ec = { (r, θ) : 0 < r < (p + 1)cp, −θr ≤ θ ≤ θr },

where the exact expression for θr ≡ θ(r) is unimportant. We fix δ ∈ (0, 1) and define
the compact set

Ec,δ = { (r, θ) : δcp ≤ r ≤ (p + 1− δ)cp, −θr ≤ θ ≤ θr }.

We will prove that x(λ) is in the segment (2.3) for each λ ∈ Ec,δ. This will yield
x(λ) = λ−1/p for λ ∈ Ec, since δ can be arbitrarily small. More precisely, for each
fixed r ∈ [δcp, (p + 1− δ)cp], we will show that x(λ) is in the same segment for each
λ on the arc given in polar form by

Γr = { (r, θ) : −θr ≤ θ ≤ θr }.

This will complete the proof, since we already know that x(λ) is in the segment (2.3)
when θ = 0. Thus we only need to show that there exists ǫ > 0 such that for all
a, b ∈ Γr with |a − b| < ǫ, x(a) and x(b) are in the same segment. To do so, we
suppose that for all ǫ > 0 there exist a, b ∈ Γr with |a − b| < ǫ such that x(a) is in
segment i and x(b) is in segment j 6= i, and we will obtain a contradiction.

Let a and b be any such pair for a suitably small ǫ to be chosen below. Let x̃(b)
be the inverse pth root of b in segment i. Then |x(b) − x̃(b)| is at least the distance
between two neighboring inverse pth roots of b, i.e.,

|x(b)− x̃(b)| ≥ 2r−1/p sin
π

p
=: 4η.

Also, we have, by Lemma 2.4,

|x(a)− x̃(b)| ≤
√

2 sup
ξ∈L(a,b)

∣∣∣∣−
1

p
ξ−1/p−1

∣∣∣∣ |a− b| ≤
√

2

p

(r

2

)−1/p−1

|a− b|

6 C.-H. GUO and N. J. HIGHAM

when |a− b| ≤
√

3r. Therefore

|x(a)− x̃(b)| ≤ η

when |a− b| ≤ min{
√

3r, p√
2
(r
2)1/p+1η} =: ǫ1.

For every λ ∈ Ec,δ ⊂ Ec, we have 1−xp
0λ ∈ E. Thus 1−xp

1λ ∈ D by Lemma 2.2.
Since Ec,δ is compact, the set { 1−xp

1λ : λ ∈ Ec,δ } is a compact subset of D. Therefore
there is constant δ1 ∈ (0, 1), independent of λ, such that |1− xp

1λ| ≤ 1− δ1.
Now, for the iteration (2.2) with λ ∈ Γr, Lemma 2.1 implies

|1− xp
kλ| ≤ |1− xp

1λ|2
k−1 ≤ (1− δ1)

2k−1

for k ≥ 1. So

|(xk − r1)(xk − r2) · · · (xk − rp)| = |xp
k − λ−1| ≤ 1

r
(1− δ1)

2k−1

,

where r1, r2, . . . , rp are the pth roots of λ−1. Let

|xk − rs| = min
1≤j≤p

|xk − xj |.

Then

|xk − rs| ≤ r−1/p(1− δ1)
2k−1/p =: η1.

The iteration (2.2) is given by xk+1 = g(xk), where

g(x) =
1

p

[
(p + 1)x− xp+1λ

]
.

Note that for all x with |x− rs| ≤ η1,

|x− rj | ≤ |rs|+ |rj |+ η1 = 2r−1/p + η1, j 6= s,

and

|g′(x)| = p + 1

p
|1− xpλ| = p + 1

p
r|(x− r1)(x− r2) · · · (x− rp)|

≤ p + 1

p
rη1(2r

−1/p + η1)
p−1.

We now take a sufficiently large k, independent of λ, such that η1 ≤ η and
p+1

p rη1(2r
−1/p + η1)

p−1 ≤ 1
2 . Then, by Lemma 2.4,

|xk+1 − rs| = |g(xk)− g(rs)| ≤
√

2

2
|xk − rs|

and hence |xk+m − rs| ≤
(√

2
2

)m

|xk − rs| for all m ≥ 0. Thus xi → rs as i→∞ and

|xk − rs| ≤ η1 ≤ η. It follows that rs = x(λ) and |xk(λ)− x(λ)| ≤ η, where we write
xk(λ) for xk to indicate its dependence on λ. In particular, we have

|xk(a)− x(a)| ≤ η, |xk(b)− x(b)| ≤ η.

A SCHUR–NEWTON METHOD FOR THE MATRIX pTH ROOT 7

Now

|xk(a)− xk(b)| = |(xk(a)− x(a)) + (x(a)− x̃(b)) + (x̃(b)− x(b)) + (x(b)− xk(b))|
≥ |x̃(b)− x(b)| − |xk(a)− x(a)| − |x(a)− x̃(b)| − |x(b)− xk(b)|
≥ 4η − η − η − η = η.

On the other hand, for the chosen k, xk(λ) is a continuous function of λ on
the compact set Γr and is therefore uniformly continuous on Γr. Thus there exists
ǫ ∈ (0, ǫ1) such that for all a, b ∈ Γr with |a − b| < ǫ, |xk(a) − xk(b)| < η. This is a
contradiction since we have just shown that for any ǫ ∈ (0, ǫ1), |xk(a) − xk(b)| ≥ η
for some a, b ∈ Γr with |a− b| < ǫ. Our earlier assumption is therefore false, and the
proof is complete.

We are now ready to prove the convergence of (1.4) in the matrix case. The
iterations (1.4) and (2.2) have the form Xk+1 = g(Xk, A) and xk+1 = g(xk, λ), re-
spectively, where g(x, t) is a polynomial in two variables. We will need the following
special case of Theorem 4.16 in [11].

Lemma 2.6. Let g(x, t) be a rational function of two variables. Let the scalar

sequence generated by xk+1 = g(xk, λ) converge superlinearly to f(λ) for a given λ and

x0. Then the matrix sequence generated by Xk+1 = g(Xk, J(λ)) with X0 = x0I, where

J(λ) is a Jordan block, converges to a matrix X∗ with diag(X∗) = diag(f(J(λ))).
We now apply Lemmas 2.5 and 2.6 with x0 = 1/c and f(λ) = λ−1/p, where c > 0

is a constant.
Theorem 2.7. Let A ∈ C

n×n have no eigenvalues on R
−. For all p ≥ 1, the

iterates Xk from (1.4) with X0 = 1
c I and c ∈ R

+ converge quadratically to A−1/p if

all the eigenvalues of A are in the set

E(c, p) = conv
{
{ z : |z − cp| ≤ cp }, (p + 1)cp

}
\ { 0, (p + 1)cp }.

Proof. Since X0 is a multiple of I the Xk are all rational functions of A. The
Jordan canonical form of A therefore enables us to reduce the proof to the case of
Jordan blocks J(λ), where λ ∈ E(c, p). Using Lemmas 2.5 and 2.6 we deduce that Xk

has a limit X∗ that satisfies X−p
∗ = A and has the same eigenvalues as A−1/p. Since

A−1/p is the only inverse pth root having these eigenvalues, X∗ = A−1/p. Now

Xk+1 −A−1/p =
1

p

[
(p + 1)Xk(A−1/p)p − p(A−1/p)p+1 −Xp+1

k

]
A

=
1

p

[
−(Xk −A−1/p)2

p∑

i=1

iXp−i
k (A−1/p)i−1

]
A,

and hence we have

‖Xk+1 −A−1/p‖ ≤ ‖Xk −A−1/p‖2 · p−1‖A‖
p∑

i=1

i‖Xp−i
k ‖‖A(1−i)/p‖,

which implies that the convergence is quadratic.
Recall that the convergence results summarized in Section 1 require ρ(I−Xp

0A) <
1 and do not specify to which root the iteration converges. When X0 = c−1I this
condition is maxi |λi − cp| < cp, where Λ(A) = {λ1, . . . , λn} is the spectrum of A.
Theorem 2.7 guarantees convergence to the inverse principal pth root for Λ(A) lying
in the much larger region E(c, p). The actual convergence region, determined exper-
imentally, is shown together with E(c, p) in Figure 2.2 for c = 1 and several values
of p.

8 C.-H. GUO and N. J. HIGHAM

0 1 2

−2

−1

0

1

2

p = 1

0 1 2 3

−2

−1

0

1

2

p = 2

0 1 2 3 4

−2

−1

0

1

2

p = 3

0 1 2 3 4 5

−2

−1

0

1

2

p = 4

0 1 2 3 4 5 6 7 8 9

−2

−1

0

1

2

p = 8

0 4 8 12 16

−2

−1

0

1

2

p = 16

Fig. 2.2. Regions of λ ∈ C for which the inverse Newton iteration (2.2) with x0 = 1 converges

to λ−1/p. The dark shaded region is E(1, p). The union of that region with the lighter shaded points

is the experimentally determined region of convergence. The solid line marks the disk of radius 1,
center 1. Note the differing x-axis limits.

3. Practical algorithms. Armed with the convergence result in Theorem 2.7,
we now build two practical algorithms applicable to arbitrary A ∈ C

n×n having no
eigenvalues on R

−. Both preprocess A by computing square roots before applying
the Newton iteration, one by computing a Schur decomposition and thereby working
with (quasi)triangular matrices.

We take X0 = c−1I, where the parameter c ∈ R
+ is at our disposal. Thus, to

recap, the iteration is

Xk+1 =
1

p

[
(p + 1)Xk −Xp+1

k A
]
, X0 =

1

c
I.(3.1)

Note that scaling X0 through c is equivalent to fixing X0 = I and scaling A: if
Xk(X0, A) denotes the dependence of Xk on X0 and A then

Xk(c−1I,A) = c−1Xk(I, c−pA).

We begin, in the next section, by considering numerical stability.

3.1. Coupled iterations. The Newton iteration (3.1) is usually numerically
unstable. Indeed, the iteration can be guaranteed to be stable only if the eigenvalues

A SCHUR–NEWTON METHOD FOR THE MATRIX pTH ROOT 9

of A satisfy [4]

1

p

∣∣∣∣∣p−
p∑

r=1

(
λi

λj

)r/p
∣∣∣∣∣ ≤ 1, i, j = 1:n.

This is a very restrictive condition on A. However, by introducing the matrix Mk =
Xp

kA, the iteration can be rewritten in the coupled form

Xk+1 = Xk

(
(p + 1)I −Mk

p

)
, X0 =

1

c
I,

Mk+1 =

(
(p + 1)I −Mk

p

)p

Mk, M0 =
1

cp
A.

(3.2)

When Xk → A−1/p we have Mk → I. This coupled iteration was suggested, and its
unconditional stability noted, by Iannazzo [19]. In fact, (3.2) is a special case of a
family of iterations of Lakić [26], and stability of the whole family is proved in [26].

Since the Xk in (3.2) are the same as those in the original iteration, their residuals
Rk satisfy Lemma 2.1. Since Mk = I − Rk and Mk → I, the Rk are errors for the
Mk.

Note that by setting Yk = X−1
k we obtain from (3.2) a new coupled iteration for

computing A1/p:

Yk+1 =

(
(p + 1)I −Mk

p

)−1

Yk, Y0 = cI,

Mk+1 =

(
(p + 1)I −Mk

p

)p

Mk, M0 =
1

cp
A.

(3.3)

If A1/p is wanted without computing any inverses then A1/p can be computed from
(3.2) and the formula A1/p = A(A−1/p)p−1 used (cf. (1.3)).

3.2. Algorithm not requiring eigenvalues. We now outline an algorithm
that works directly on A and does not compute any spectral information. We begin
by taking the square root twice by any iterative method [15]. This preprocessing
step brings the spectrum into the sector arg z ∈ (−π/4, π/4). The nearest point
to the origin that is both within this sector and on the boundary of E(c, p) is at a
distance cp

√
2. Hence the inverse Newton iteration in the form (3.2) can be applied

to B = A1/4 with c ≥ (ρ(B)/
√

2)1/p. If ρ(B) is not known and cannot be estimated
then we can replace it by the upper bound ‖B‖, for some norm. This corresponds
with the scaling used by Iannazzo in Algorithm 1.1 for A1/p. A disadvantage of using
the norm is that for nonnormal matrices ρ(B) ≪ ‖B‖ is possible, and this can lead
to much slower convergence, as illustrated by the following example.

We use the inverse Newton iteration to compute B−1/2, where B =
[

ǫ
0

1
ǫ

]
and

ǫ ≪ 1. If we use c = (‖B‖1/
√

2)1/2, the convergence will be very slow, since for the
eigenvalue ǫ, r0(ǫ) = 1 − x2

0ǫ ≈ 1 −
√

2ǫ. If we use c = (ρ(B)/
√

2)1/2, then we have
r0(ǫ) = 1 −

√
2 and the convergence will be fast (modulo the nonnormality). The

best choice of c for this example, however, is c = ǫ1/2. For this c we have immediate
convergence to the inverse square root: X1 = B−1/2. This finite convergence behavior
is a special case of that described in the next result.

Lemma 3.1. Suppose that A ∈ C
n×n has a positive eigenvalue λ of multiplicity

n and that the largest Jordan block is of size q. Then for the iteration (3.1) with

c = λ1/p we have Xm = A−1/p for the first m such that 2m ≥ q.

10 C.-H. GUO and N. J. HIGHAM

Proof. Let A have the Jordan from A = ZJZ−1. Then R0 = I − Xp
0A =

Z(I − 1
λJ)Z−1. Thus Rq

0 = 0. By Lemma 2.1, Rm = (R0)
2m

h(R0), where h(R0) is a
polynomial in R0. Thus Rm = 0 if 2m ≥ q.

As for the complexity of iteration (3.2), the benchmark with which to compare is
the Schur method for the pth root of M. I. Smith [33]. It computes a Schur decomposi-
tion and obtains the pth root of the triangular factor by a recurrence, with a total cost
of (28+(p−1)/3)n3 flops. The cost of one iteration of (3.2) is about 2n3(2+ θ log2 p)
flops, where θ ∈ [1, 2], assuming that the pth power in (3.2) is evaluated by binary
powering [10, Alg. 11.2.2]. Since at least four iterations will typically be required,
unless p is large (p ≥ 200, say) it is difficult for (3.2) to be competitive in its opera-
tion count with the Schur method. However, the Newton iterations are rich in matrix
multiplication and matrix inversion, and on a modern machine with a hierarchical
memory these operations are much more efficient relative to a Schur decomposition
than their flop counts suggest. For special matrices A, such as the strictly diagonally
dominant stochastic matrices arising in the Markov model application in Section 4,
we can apply (3.2) and (3.3) with c = 1 without any preprocessing, which makes this
approach more efficient.

3.3. Schur–Newton algorithm. We now develop a more sophisticated algo-
rithm that begins by computing a Schur decomposition A = QRQ∗ (Q unitary, R
upper triangular). The Newton iteration is applied to a triangular matrix obtained
from R, thereby greatly reducing the cost of each iteration. We begin by considering
the choice of c, exploiting the fact that the spectrum of A is now available.

We consider first the case where the eigenvalues λi of A are all real and positive:
0 < λn ≤ · · · ≤ λ1. Consider the residual rk(λ) = 1− xp

kλ, and note that

rk+1(λ) = 1− 1

pp
(1− rk(λ))(p + rk(λ))p.(3.4)

Recall from Lemmas 2.1 and 2.2 that if r0 ∈ E, or equivalently λ ∈ E(c, p), then |r1| <
1 and |ri+1| ≤ |ri|2 for i ≥ 1. For c large enough, the spectrum of A lies in E(c, p)
and convergence is guaranteed. However, if c is too large, then r0(λn) = 1− (1

c)pλn is
extremely close to 1; r1(λn) is then also close to 1, by (3.4), and the convergence for
the eigenvalue λn is very slow. On the other hand, if c is so small that (1

c)pλ1 is close
to (but still less than) p + 1, then r0(λ1) = 1 − (1

c)pλ1 is close to −p, and, by (3.4),
r1(λ1) is very close to 1. Ideally we would like to choose c to minimize maxi |r1(λi)|.

Lemma 3.2. Let A have real, positive eigenvalues, 0 < λn ≤ · · · ≤ λ1 and

consider the residual rk(λ) = 1− xp
kλ. For any c ∈ R

+ such that

−p < r0(λ1) ≤ r0(λ2) ≤ · · · ≤ r0(λn) < 1,(3.5)

we have 0 ≤ rj(λi) < 1 for j ≥ 1 and i = 1:n, and

r̂j := max
1≤i≤n

rj(λi) = max
(
rj(λ1), rj(λn)

)
.

Moreover, for all j ≥ 1, r̂j is minimized when

c =

(
α1/pλ1 − λn

(α1/p − 1)(p + 1)

)1/p

, α =
λ1

λn
,(3.6)

if λ1 > λn. If λ1 = λn then r̂j = 0 for all j ≥ 0 for c = λ
1/p
n .

A SCHUR–NEWTON METHOD FOR THE MATRIX pTH ROOT 11

Table 3.1
Values of f(α, p) for some particular α and p.

α 2 5 10 50 100

p = 2 0.0852 0.3674 0.5883 0.8877 0.9403
p = 5 0.0690 0.3109 0.5190 0.8452 0.9125

p = 10 0.0635 0.2902 0.4915 0.8247 0.8979
p = 1000 0.0580 0.2688 0.4618 0.7999 0.8795

Proof. For each eigenvalue λ, we have, by (3.4), rk+1(λ) = f(rk(λ)) with f(x) =
1 − 1

pp (1 − x)(p + x)p. Since f ′(x) = p+1
pp x(p + x)p−1, f(x) is decreasing on (−p, 0]

and increasing on [0, 1), and since f(−p) = f(1) = 1 and f(0) = 0 it follows that
0 ≤ f(x) < 1 on (−p, 1). The first part of the result follows immediately. Since f(x)
is increasing on [0, 1), r̂j is minimized for all j ≥ 1 if and only if r̂1 is minimized. If
λ1 > λn it is easily seen that r̂1 is minimized when r1(λ1) = r1(λn), i.e.,

λ1 (p + 1− λ1/cp)
p

= λn (p + 1− λn/cp)
p
,

from which we find that c is given by (3.6). It is straightforward to verify that for
this c, (3.5) holds. The formula (3.6) is not valid when λ1 = λn. However, we have

lim
λ1→λn

c = lim
α→1

(
α1+1/p − 1

α1/p − 1

λn

p + 1

)1/p

= λ1/p
n .

Note that when λ1 = λn, r0(λ1) = r0(λn) = 0 for c = λ
1/p
n . So r̂j = 0 for all j ≥ 0.

When λ1 > λn, a little computation shows that the minimum value of r̂1, achieved
for c in (3.6), is

f(α, p) = 1− α
(p + 1)p+1

pp

(α− 1)p(α1/p − 1)

(α1+1/p − 1)p+1
.

Numerical experiments suggest that f(α, p) is increasing in α for fixed p, and decreas-
ing in p for fixed α. Moreover, it is easy to show that limα→1+ f(α, p) = 0. Some
particular values of f(α, p) are given in Table 3.1. From the table, we can see that
the values of f(α, p) are not sensitive to p, but are sensitive to α. It is advisable to
preprocess the matrix A to achieve α ≤ 2, since f(α, p) is then safely less than 1 and
rapid convergence can be expected.

We develop the idea of preprocessing in the context of general A with possibly non-
real eigenvalues. Suppose the eigenvalues are ordered |λn| ≤ · · · ≤ |λ1|. A convenient
way to reduce χ(A) := |λ1|/|λn| is to take k1 square roots of the triangular matrix R
in the Schur form, which can be done using the method of Björck and Hammarling [5],
or that of Higham [14] if R is real and quasitriangular. Since χ(A) = χ(R) ≤ κ2(R),
in IEEE double precision arithmetic we can reasonably assume that χ(R) ≤ 1016, and

then k1 ≤ 6 square roots are enough to achieve χ(R1/2k1
) ≤ 2. Write p = 2k0q where

q is odd. If q = 1, R1/p can be computed simply by k0 square roots. If q ≥ 3, we
will take a total of max(k0, k1) square roots, compute the qth root by the Newton
iteration, and finish with k1 − k0 squarings if k1 > k0. Taking k1 > k0 is justified
by the operation counts if it saves just one iteration of the Newton process, because
for triangular matrices the cost of a square root and a squaring is at most half of the
cost of one Newton iteration. When R has nonreal eigenvalues we will increase k1, if

12 C.-H. GUO and N. J. HIGHAM

necessary, so that the matrix B = R1/2k1
to which we apply the Newton iteration has

spectrum in the sector arg z ∈ (−π/8, π/8); in general we therefore require k1 ≥ 3.

Then we take c =
(

µ1+µn

2

)1/q
, where µi = |λi|1/2k1

. For any eigenvalue µ of B we
have 2

3 ≤ (1
c)q|µ| ≤ 4

3 , since µ1/µn ≤ 2, and thus |1− (1
c)qµ| ≤ |1− 4

3ei π
8 | ≈ 0.56. So

the convergence of (3.2) is expected to be fast.

We now present our algorithm for computing the (inverse) principal pth root of
a general A. We state the algorithm for real matrices, but an analogous algorithm is
obtained for complex matrices by using the complex Schur decomposition.

Algorithm 3.3. Given A ∈ R
n×n with no eigenvalues on R

− this algorithm

computes X = A1/p or X = A−1/p, where p = 2k0q with k0 ≥ 0 and q odd.

1 Compute a real Schur decomposition A = QRQT .
2 if q = 1
3 k1 = k0

4 else

5 Choose k1 ≥ k0 such that |λ1/λn|1/2k1 ≤ 2,
where the eigenvalues of A are ordered |λn| ≤ · · · ≤ |λ1|.

6 end
7 If the λi are not all real and q 6= 1, increase k1 as necessary so that

arg
(
λ

1/2k1

i

)
∈ (−π/8, π/8) for all i.

8 Compute B = R1/2k1
by k1 invocations of the method of Higham [14] for the

square root of a quasi-triangular matrix. If q = 1, goto line 21.

9 Let µ1 = |λ1|1/2k1
, µn = |λn|1/2k1

.
10 if the λi are all real
11 if µ1 6= µn

12 determine c by (3.6) with λ1, λn, p in (3.6) replaced by µ1, µn, q
13 else

14 c = µ
1/q
n

15 end
16 else

17 c =
(

µ1+µn

2

)1/q

18 end

19 Compute

{
X = B−1/q by (3.2), if A−1/p required,
X = B1/q by (3.3), if A1/p required.

20 X ← X2k1−k0
(repeated squaring).

21 X ← QXQT

The cost of the algorithm is about

(
28 +

2

3
(k1 + k2)−

(
1

3
+

k2

2

)
k0 +

k2

2
log2 p

)
n3 flops,

where we assume that k2 iterations of (3.2) or (3.3) are needed (the cost per iteration
is the same for both for triangular matrices, except on the first iteration, where (3.2)
requires n3/3 fewer flops because X1 does not require a matrix multiplication). When
k0 = 0, k1 = 3, and k2 = 4, for example, the flop count becomes (322

3 + 2 log2 p)n3,

while the count is always (28 + p−1
3)n3 for Smith’s method. Note, however, that the

computational work can be reduced for Smith’s method if p is not prime by applying
the method over the prime factors of p (this is not beneficial for Algorithm 3.3).
Our algorithm is slightly more expensive than Smith’s method if p is small or highly

A SCHUR–NEWTON METHOD FOR THE MATRIX pTH ROOT 13

composite, but it is much less expensive than Smith’s method if p is large and has a
small number of prime factors.

Algorithm 3.3 can be modified to compute A1/p in a different way: by computing
X = B−1/q in line 19 and replacing line 21 with X ← QX−1QT , which is implemented
as a multiple right-hand-side triangular solve followed by a matrix multiplication.
The modified line 21 costs the same as the original, so the cost of the algorithm is
unchanged. We will call this variant Algorithm 3.3a.

A key feature of Algorithm 3.3 is that it applies the Newton iteration to a
(quasi)triangular matrix—one that has been “preconditioned” so that few iterations
will be required. This can be expected to improve the numerical properties of the
iteration, not least because for triangular matrices inversion and the solution of linear
systems tend to be more accurate than the conventional error bounds suggest [16,
Chap. 8].

4. An application to Markov models. Let P (t) be a transition matrix for a
time-homogeneous continuous-time Markov process. Thus P (t) is a stochastic matrix:
an n× n real matrix with nonnegative entries and row-sums 1. A generator Q of the
Markov process is an n×n real matrix with nonnegative off-diagonal entries and zero
row-sums such that P (t) = eQt. Clearly, Q must satisfy eQ = P ≡ P (1). If P has
distinct, real positive eigenvalues then the only real logarithm, and hence the only
candidate generator, is the principal logarithm, log P . In general, a generator may or
may not exist, and if it exists it need not be the principal logarithm of P [32].

Suppose a given transition matrix P ≡ P (1) has a generator Q = log P . Then Q
can be used to construct P (t) at other times, through P (t) = exp(Qt). For example,
if P is the transition matrix for the time period of one year then the transition matrix
for a month is P (1/12) = e

1
12

log P . However, it is more direct and efficient to compute
P (1/12) as P 1/12, thus avoiding the computation of a generator. Indeed, the standard
inverse scaling and squaring method for the principal logarithm of a matrix requires
the computation of a matrix root, as noted in Section 1. Similarly, the transition
matrix for a week can be computed directly as P 1/52.

This use of matrix roots is suggested by Waugh and Abel [35], mentioned by Israel,
Rosenthal, and Wei [20], and investigated in detail by Kreinin and Sidelnikova [24].
The latter authors, who are motivated by credit risk models, address the problems
that the principal root and principal logarithm of P may have the wrong sign patterns;
for example, the root may have negative elements, in which case it is not a transition
matrix. They show how to optimally adjust these matrices to achieve the required
properties, a process they term regularization. Their preferred method for obtaining
transition matrices for short times is to regularize the appropriate matrix root.

Transition matrices arising in the credit risk literature are typically strictly di-
agonally dominant [20], and such matrices are known to have at most one generator
[8]. For any strictly diagonally dominant stochastic matrix P , Gershgorin’s theorem
shows that every eigenvalue lies in one of the disks |z − aii| ≤ 1 − aii, and we have
aii > 0.5, so the spectrum lies in E(1, p) and the convergence of (3.2) and (3.3) (with
A = P) is guaranteed with c = 1. Note, however, that faster convergence is possible
by choosing c < 1 when P has eigenvalues close to 0. For c = 1, it is easy to see that
Xke = e and Mke = e for each k ≥ 0. Thus all approximations to P 1/p obtained
from (3.2) and (3.3) have unit row sums, though they are not necessarily nonnegative
matrices.

14 C.-H. GUO and N. J. HIGHAM

To illustrate, consider the strictly diagonally dominant stochastic matrix [35]

P =




0.6 0.3 0.1
0.2 0.7 0.1
0.1 0.1 0.8


 .

Suppose we wish to compute P (1/12) and P (1/52). After (for example) four iterations
of (3.3) with c = 1 we obtain (to four decimal places)

p =
1

12
: X =




0.9518 0.0384 0.0098
0.0253 0.9649 0.0098
0.0106 0.0089 0.9805


 , ‖X12 − P‖F = 4.7× 10−7

and

p =
1

52
: X =




0.9886 0.0092 0.0023
0.0060 0.9917 0.0023
0.0025 0.0021 0.9954


 , ‖X52 − P‖F = 2.5× 10−7,

and both matrices are stochastic to the working precision of about 10−16. Note
that such a computation, requiring just matrix multiplication and the solution of
multiple right-hand side linear systems, is easily carried out in a spreadsheet, which
is a computing environment used by some finance practitioners.

In summary, Markov models provide an application of matrix roots that is little
known to numerical analysts, and the Newton iterations (3.2) and (3.3) for computing
these roots are well-suited to the application.

5. Numerical experiments. We present some numerical experiments to com-
pare the behavior of Algorithm 1.1, Algorithm 3.3, and the Schur method of Smith
[33]. First, we need to develop appropriate residual-based measures of numerical
stability for pth roots and inverse pth roots.

Let X̃ = X + E be an approximation to a pth root X of A ∈ C
n×n. Then

X̃p = A +
∑p−1

i=0 XiEXp−1−i + O(‖E‖2). An obvious residual bound is ‖A− X̃p‖ ≤
p‖X‖p−1‖E‖+ O(‖E‖2). While this bound is satisfactory for p = 2 [14], for p ≥ 3 it
can be very weak, since ‖Xi‖ ≤ ‖X‖i can be an arbitrarily weak bound. Therefore
we use the vec operator, which stacks the columns of a matrix into one long column,
and the Kronecker product [17, Chap. 4], to write

vec(A− X̃p) = −
(

p−1∑

i=0

(
Xp−1−i

)T ⊗Xi

)
vec(E) + O(‖E‖2).

For the 2-norm, it follows that

‖A− X̃p‖F ≤ ‖E‖F
∥∥∥∥

p−1∑

i=0

(
Xp−1−i

)T ⊗Xi

∥∥∥∥
2

+ O(‖E‖2F)

is a sharp bound, to first order in E. If we suppose that ‖E‖F ≤ ǫ‖X‖F , then

‖A− X̃p‖F
‖X‖F

∥∥∑p−1
i=0

(
Xp−1−i

)T ⊗Xi
∥∥

2

≤ ǫ + O(ǫ2).

A SCHUR–NEWTON METHOD FOR THE MATRIX pTH ROOT 15

We conclude that if X̃ is a correctly rounded approximation to a pth root X̃ of A in
floating point arithmetic with unit roundoff u, then we expect the relative residual

ρA(X̃) :=
‖A− X̃p‖

‖X̃‖
∥∥∑p−1

i=0

(
X̃p−1−i

)T ⊗ X̃i
∥∥

to be of order u, where for practical purposes any norm can be taken. Therefore
ρA(X̃) is the appropriate residual to compute and compare with u. In [4] and [19]

the scaled residual ‖A− X̃p‖/‖A‖ was computed; this makes the interpretation of the

numerical results therein difficult when the denominator of ρA(X̃) is not of the same
order as ‖A‖.

For an approximate inverse pth root X̃ ≈ A−1/p the situation is more complicated,
as there is no natural residual. Criteria can be based on AX̃p− I, X̃pA− I, or indeed
X̃iAX̃p−i − I for any i = 0: p, as well as X̃−p −A and X̃p −A−1. Since they reduce
to the pth root case discussed above, we will use the latter two residuals, which
lead to the relative residuals ρA(X̃−1) and ρA−1(X̃). We compute the inverses in
high precision to ensure that errors in the inversion do not significantly influence the
computed residuals.

Iterations (3.2) and (3.3) can be terminated when ‖Mk−I‖ is less than a suitable
tolerance (nu in our experiments). This test has negligible cost and has proved to
be reliable when used within Algorithm 3.3. In Algorithm 1.1 square roots were
computed using the Schur method [14].

Our computational experience on a wide variety of matrices is easily summa-
rized. The Schur method invariably produces a computed X̂ ≈ A1/p with ρA(X̂) ≈ u,

and ρA−1(X̂−1) is usually of order u but occasionally much larger. When computing

A−1/p, Algorithm 3.3 usually produces an X̂ with ρA(X̂−1) order u, but occasion-
ally this residual is a couple of orders of magnitude larger. When computing A1/p,
Algorithms 3.3 and 3.3a invariably yield ρA(X̂) ≈ u.

We describe MATLAB tests with two particular matrices and p = 5. The first
matrix is gallery(’frank’,8)^5, where the Frank matrix is upper Hessenberg and
has real eigenvalues, the smaller of which are ill conditioned. The second matrix is
a random nonnormal 8× 8 matrix constructed as A = QTQT , where Q is a random
orthogonal matrix and T , is in real Schur form with eigenvalues αj±iβj , αj = −j2/10,
βj = −j, j = 1:n/2 and (2j, 2j + 1) elements −450. The infinity norm is used in
evaluating ρ. The results are summarized in Tables 5.1 and 5.2. The values for
k0, k1, and the number of iterations are the same for Algorithms 3.3 and 3.3a. For
the Frank matrix, ρA(X̂−1) ≫ u but for the pth root approximation obtained using
Algorithms 3.3 and 3.3a the residual is of order u. The five iterations required by the
iterative phase of Algorithm 3.3 are typical. Both matrices reveal two weaknesses of
Algorithm 1.1: it can require many iterations, making it significantly more expensive
than the Schur method, and it can suffer from instability, as indicated by the relative
residuals.

6. Conclusions. Our initial aim in this work was to strengthen existing con-
vergence results for Newton’s method for the inverse pth root. The analysis has led
us to develop a hybrid algorithm—employing a Schur decomposition, matrix square
roots, and two coupled versions of the Newton iteration—that computes either A1/p

or A−1/p. The new algorithm performs stably in practice and it is more efficient
than the Schur method of Smith for large p that are not highly composite. Although
the Newton iterations for A1/p and A−1/p have until recently rarely been used for

16 C.-H. GUO and N. J. HIGHAM

Table 5.1
Results for Frank matrix. p = 5, ‖A‖2 = 4.3 × 106, ‖A1/p‖2 = 2.4 × 101, ‖A−1/p‖2 = 1.0 × 104.

Schur Inverse Newton Newton (Alg. 1.1)

X̂ ≈ A1/p X̂ ≈ A−1/p, Ŷ ≈ A1/p (Alg. 3.3) X̂ ≈ A1/p

Ẑ ≈ A1/p (Alg. 3.3a)

ρA(X̂) = 1.5e-16 ρA(X̂−1) = 2.5e-13 ρA(X̂) = 1.8e-14

ρA−1(X̂−1) = 1.8e-7 ρA−1(X̂) = 1.8e-7 ρA−1(X̂−1) = 1.8e-7

ρA(Ŷ) = 8.2e-15

ρA(Ẑ) = 9.8e-16
k0 = 0, k1 = 6; 5 iterations 19 iterations

Table 5.2
Results for random nonnormal matrix. p = 5, ‖A‖2 = 4.5 × 102, ‖A1/p‖2 = 9.2 × 105,

‖A−1/p‖2 = 1.0 × 106.

Schur Inverse Newton Newton (Alg. 1.1)

X̂ ≈ A1/p X̂ ≈ A−1/p, Ŷ ≈ A1/p (Alg. 3.3) X̂ ≈ A1/p

Ẑ ≈ A1/p (Alg. 3.3a)

ρA(X̂) = 3.6e-18 ρA(X̂−1) = 5.0e-18 ρA(X̂) = 3.1e-12

ρA−1(X̂−1) = 4.1e-18 ρA−1(X̂) = 9.7e-19 ρA−1(X̂−1) = 1.6e-11

ρA(Ŷ) = 1.5e-18

ρA(Ẑ) = 5.4e-18
k0 = 0, k1 = 3; 5 iterations 21 iterations

p > 2, our work and that of Iannazzo [19] shows that these iterations are valuable
practical tools, and that general-purpose algorithms can be built around them based
on understanding of their convergence properties.

Acknowledgements. This work was carried out while the first author visited
MIMS in the School of Mathematics at the University of Manchester; he thanks the
School for its hospitality. Both authors thank the referees for their helpful comments.

REFERENCES

[1] D. H. Bailey, MPFUN: A portable high performance multiprecision package, Technical Report
RNR-90-022, NASA Ames Research Center, Moffett Field, CA, USA, Mar. 1990.

[2] , A Fortran 90-based multiprecision system, ACM Trans. Math. Software, 21 (1995),
pp. 379–387.

[3] D. H. Bailey, Y. Hida, X. S. Li, and B. Thompson, ARPREC: An arbitrary precision com-

putation package, Technical Report LBNL-53651, Lawrence Berkeley National Laboratory,
Berkeley, California, Mar. 2002.

[4] D. A. Bini, N. J. Higham, and B. Meini, Algorithms for the matrix pth root, Numer. Algo-
rithms, 39 (2005), pp. 349–378.

[5] Å. Björck and S. Hammarling, A Schur method for the square root of a matrix, Linear
Algebra Appl., 52/53 (1983), pp. 127–140.

[6] S. H. Cheng, N. J. Higham, C. S. Kenney, and A. J. Laub, Approximating the logarithm of

a matrix to specified accuracy, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 1112–1125.
[7] M. Cornea-Hasegan and B. Norin, IA-64 floating-point operations and the IEEE stan-

dard for binary floating-point arithmetic, Intel Technology Journal, Q4 (1999). http://

developer.intel.com/technology/itj/.
[8] J. R. Cuthbert, On uniqueness of the logarithm for Markov semi-groups, J. London Math.

Soc., 4 (1972), pp. 623–630.

A SCHUR–NEWTON METHOD FOR THE MATRIX pTH ROOT 17

[9] J.-C. Evard and F. Jafari, A complex Rolle’s theorem, Amer. Math. Monthly, 99 (1992),
pp. 858–861.

[10] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press,
Baltimore, MD, USA, third ed., 1996.

[11] N. J. Higham, Functions of a Matrix: Theory and Computation. Book in preparation.
[12] , Computing the polar decomposition—with applications, SIAM J. Sci. Statist. Comput.,

7 (1986), pp. 1160–1174.
[13] , Newton’s method for the matrix square root, Math. Comp., 46 (1986), pp. 537–549.
[14] , Computing real square roots of a real matrix, Linear Algebra Appl., 88/89 (1987),

pp. 405–430.
[15] , Stable iterations for the matrix square root, Numer. Algorithms, 15 (1997), pp. 227–242.
[16] , Accuracy and Stability of Numerical Algorithms, Society for Industrial and Applied

Mathematics, Philadelphia, PA, USA, second ed., 2002.
[17] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press,

1991.
[18] B. Iannazzo, A note on computing the matrix square root, CALCOLO, 40 (2003), pp. 273–283.
[19] , On the Newton method for the matrix pth root, SIAM J. Matrix Anal. Appl., (2006).

To appear.
[20] R. B. Israel, J. S. Rosenthal, and J. Z. Wei, Finding generators for Markov chains via

empirical transition matrices, with applications to credit ratings, Mathematical Finance,
11 (2001), pp. 245–265.

[21] A. H. Karp and P. Markstein, High-precision division and square root, ACM Trans. Math.
Software, 23 (1997), pp. 561–589.

[22] C. S. Kenney and A. J. Laub, Condition estimates for matrix functions, SIAM J. Matrix
Anal. Appl., 10 (1989), pp. 191–209.

[23] Ç. K. Koç and B. Bakkaloğlu, Halley’s method for the matrix sector function, IEEE Trans.
Automat. Control, 40 (1995), pp. 944–949.

[24] A. Kreinin and M. Sidelnikova, Regularization algorithms for transition matrices, Algo Re-
search Quarterly, 4 (2001), pp. 23–40.

[25] P. Laasonen, On the iterative solution of the matrix equation AX2 − I = 0, M.T.A.C., 12
(1958), pp. 109–116.

[26] S. Lakić, On the computation of the matrix k-th root, Z. Angew. Math. Mech., 78 (1998),
pp. 167–172.

[27] B. Meini, The matrix square root from a new functional perspective: Theoretical results and

computational issues, SIAM J. Matrix Anal. Appl., 26 (2004), pp. 362–376.
[28] H.-O. Peitgen, H. Jürgens, and D. Saupe, Fractals for the Classroom. Part Two: Complex

Systems and Mandelbrot Set, Springer-Verlag, New York, 1992.
[29] B. Philippe, An algorithm to improve nearly orthonormal sets of vectors on a vector processor,

SIAM J. Alg. Discrete Methods, 8 (1987), pp. 396–403.
[30] M. Schroeder, Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise, W. H.

Freeman, New York, 1991.
[31] L. S. Shieh, Y. T. Tsay, and C. T. Wang, Matrix sector functions and their applications to

system theory, IEE Proc., 131 (1984), pp. 171–181.
[32] B. Singer and S. Spilerman, The representation of social processes by Markov models, Amer.

J. Sociology, 82 (1976), pp. 1–54.
[33] M. I. Smith, A Schur algorithm for computing matrix pth roots, SIAM J. Matrix Anal. Appl.,

24 (2003), pp. 971–989.
[34] R. A. Smith, Infinite product expansions for matrix n-th roots, J. Australian Math. Soc., 8

(1968), pp. 242–249.
[35] F. V. Waugh and M. E. Abel, On fractional powers of a matrix, J. Amer. Statist. Assoc., 62

(1967), pp. 1018–1021.

